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A Comment on the Approximation
of Signals by Gaussian Functions

Paulo Jorge S. G. Ferreira

Abstract—We point out that an approximation property of Gaussian
functions, derived in a recent work, is a direct corollary to the work of
Wiener on the closure of translations inLLL1 andLLL2. This observation not
only simplifies the proof of the approximation property, but also renders
the result applicable, in a more general setting, to other functions (not
necessarily Gaussian).

Index Terms—Approximation methods, closure of translations, Gaus-
sion functions, nonlinear approximation, nonlinear functions, signal rep-
resentations, superpositions.

I. INTRODUCTION

The purpose of this note is to comment on certain side aspects
of a recent and interesting work [1]. Our remarks in no way
compromise the main results and conclusions presented in that paper,
which addresses the approximation of finite-energy signals by linear
combinations of Gaussian functions:
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It is not our intention to shift attention from the main results and
conclusions presented in [1], but simply to address this approximation
problem in the light of Wiener’s results on the closure of translations
which, despite their usefulness and importance, do not seem to be as
well known as some of the other works. We hope that our observations
might be of use to researchers interested in nonlinear approximation
problems such as this, and who remain unaware of Wiener’s results.

The purpose of the long Appendix in [1] is to prove that any
finite-energy signal which vanishes outside a certain interval can
be arbitrarily well approximated by linear combinations of Gaussian
functions. This is done very much in the spirit of Lauricella’s theorem
[2], that is, by showing that any sinusoidal signalsin(2�kt=T );
0 � t � T , can be approximated by Gaussian functions.

Our aim is to show that similar, and indeed more general, con-
clusions follow from the approximation results due to Wiener on the
closure of translations inL1 andL2—respectively, the Banach and
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TABLE I
APPROXIMATING sin(2�t); 0 � t � 1

Hilbert spaces of functionsf such thatjf j andjf j2 is Lebesgue inte-
grable over(�1;+1). Wiener showed that any function belonging
to L1 can be approximated to any prescribed tolerance, in theL1

norm, by linear combinations of the translates of a single function
 2 L1:

N

i=1

ai (t� ti)

if and only if the Fourier transform of has no zeros. He also showed
that a similar result holds inL2 if and only if the set of zeros of the
Fourier transform of has zero measure. Proofs of these results can
be found in [3] and [4], for example.

The Gaussian functiong(t; �) clearly belongs toL1 and L2,
independently of�, and its Fourier transform certainly has no zeros.
Thus, the results obtained by Wiener imply that, for anyf 2 L1 and
� > 0, there is an integerN and constants(ai)1�i�N and(ti)1�i�N
such that

1

�1

f(t)�
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aig(t� ti; �) dt < �:

A similar result holds for anyf 2 L2, the approximation now being
in the L2 norm:
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2

dt < �:

These conclusions generalize those obtained, at much greater length,
in [1].

The approximation property just discussed holds no matter the
value of �, a somewhat surprising result: the spacesL1 and L2
contain very rapidly varying functions, and the results mentioned
imply that even very spread-out Gaussian curves can somehow be
combined to closely approximate these signals.

Unfortunately, the methods used by Wiener are not constructive,
and do not offer any hints on how to pickN; (ai)1�i�N and
(ti)1�i�N. For example, the approximation of sinusoids as discussed
in [1, Appendix] is based on Gaussian curves of fixed width translated
to predetermined locations (the extrema of the sinusoid). Much better
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fits are possible if the Gaussians are less constrained, that is, if more
of their characteristics (amplitude, position, and width) are used. This
is demonstrated in Table I. For the first example, the position of the
Gaussians was held at the extrema ofsin(2�t), as done in [1], but the
remaining parameters were adjusted to minimize the squared error.
The result was a very good fit. Using all parameters, as in the second
example, reduced the squared error even further, by four orders of
magnitude.

As stated in [1], this is a nonlinear least squares curve fitting
problem. Hence, we see the practical importance of suboptimal but
efficient algorithms like the one proposed in that work.
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A Versatile Algorithm for Two-Dimensional
Symmetric Noncausal Modeling

George-Othon Glentis, Cornelis H. Slump, and Otto E. Herrmann

Abstract—In this brief, a novel algorithm is presented for the efficient
two-dimensional (2-D) symmetric noncausal finite impulse response (FIR)
filtering and autoregressive (AR) modeling. Symmetric filter masks of
general boundaries are allowed. The proposed algorithm offers the
greatest maneuverability in the 2-D index space in a computationally
efficient way. This flexibility can be taken advantage of if the shape of
the 2-D mask is nota priori known and has to be dynamically configured.

Index Terms—

Algorithms, filtering, image processing, least mean square error methods,
Toeplitz matrices.

I. INTRODUCTION

Two-dimensional least squares noncausal modeling is of great
importance in a wide range of applications. These include image
restoration, image enhancement, image compression, 2-D spectral
estimation, detection of changes in image sequences, stochastic
texture modeling, edge detection, etc. [1].

Let x(n1; n2) be the input of a linear, space invariant 2-D FIR
filter. The filter’s outputy(n1; n2) is a linear combination of past
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input valuesx(n1 � i1; n2 � i2) weighted by thefilter coefficients
ci ;i over a support region, orfilter maskM:

y(n1; n2) = �

(i ;i )2M

ci ;i x(n1 � i1; n2 � i2): (1)

A fairly general shape for the support region is considered. Thus,M

is allowed to be horizontally convex, i.e., the horizontal line segment
joining any two points(i1; i2); (i1; i3) 2 M lies in M.

The filter is restricted to be linear phase. Thus, the following
conditions should be satisfied [1]:

mask symmetry 8 (i1; i2) 2M; 9(�i1;�i2) 2M

coe�: symmetry ci ;i = c�i ;�i :

Given an input 2-D signalx(n1; n2) and a desired response 2-D
signal z(n1; n2), the optimal mean-squared error (MSE) 2-D FIR
filter is obtained by minimizing the cost function

E [(z(n1; n2)� y(n1; n2))
2
]: (2)

E [�] is the expectation operator. MSE 2-D linear prediction can be
handled as a special case of filtering, settingz(n1; n2) = x(n1; n2)

and excluding the originf(0; 0)g from the filter mask, i.e.,(i1; i2) 2
M � f(0;0)g.

Minimization of (2) with respect to the filter parametersci ;i

leads to a system of linear system of equations, the so-called normal
equations. Any well-behaved linear system solver can be applied for
the inversion of the 2-D normal equations. However, the special
structure of the normal equations gives rise to the development
of cost-effective algorithms for the determination of the unknown
parameters [2]–[4].

In this paper a new, highly efficient algorithm is developed for
the solution of the normal equations in atrue order recursive way
[7]. Filter masks of general, horizontally convex shape are allowed.
Fast recursions are developed for the updating of lower order filter
parameters toward any neighboring point. It can efficiently be applied
for the order-recursive estimation of the 2-D MSE FIR filter and
system identification, accelerating the exhaustive search procedures
required by most of the order determination criteria [8], [9].

II. 2-D SYMMETRIC SUPPORT REGION

Consider the support region depicted in Fig. 1. More precisely,M

consists of a union of intervals:

M =

k

i =�k

mmm(i1);

mmm(i1) = f(i1; i2): � k2(�i1) � i2 � k2(i1)g:

Clearly,k1 = maxfi1: (i1; i2) 2 Mg; k2(i1) = maxfi2: (i1; i2) 2

mmm(i1)g. Then, (1) takes the form

y(n1; n2) = �

k

i =�k

k (i )

i =�k (�i )

ci ;i x(n1 � i1; n2 � i2):

The above equation can be written as a linear regression:

y(n1; n2) = �X
t
M(n1; n2)CM (3)

where the regressor (data vector) and the filter coefficients vector are
defined by (4), (5), and (5a).

The filter coefficients’ symmetry implies that

CM = J CM (6)
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