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Abstract—We point out that an approximation property of Gaussian - 1.9 1.99
functions, derived in a recent work, is a direct corollary to the work of position 25 22779
Wiener on the closure of translations inLy and L». This observation not width 0.327444 0.315398
only simplifies the proof of the approximation property, but also renders
the result applicable, in a more general setting, to other functions (not Error 1.1¢-06 1.3¢-10

necessarily Gaussian).

Index Terms—Approximation methods, closure of translations, Gaus- . L ) o .
sion functions, nonlinear approximation, nonlinear functions, signal rep- Hilbert spaces of functlon..s such thal f| and|f[" is Lepesgue inte-
resentations, superpositions. grable over(—co, +20). Wiener showed that any function belonging
to L; can be approximated to any prescribed tolerance, inlthe

norm, by linear combinations of the translates of a single function

I. INTRODUCTION v e L
The purpose of this note is to comment on certain side aspects N
of a recent and interesting work [1]. Our remarks in no way Zai'w(t—ti)
compromise the main results and conclusions presented in that paper, im1

which addresses the approximation of finite-energy signals by lin§aL, only if the Fourier transform af has no zeros. He also showed
combinations of Gaussian functions: that a similar result holds it if and only if the set of zeros of the
Z“"g(t —ti o) Fourier transform of/ has zero measure. Proofs of these results can
7 be found in [3] and [4], for example.

The Gaussian functiony(t,o) clearly belongs toL; and L,
independently ofr, and its Fourier transform certainly has no zeros.
Thus, the results obtained by Wiener imply that, for gng L, and

7iV2m e > 0, there is an integeN and constantéu; )1 <i<x and(t;)1<i<n
It is not our intention to shift attention from the main results anduch that
conclusions presented in [1], but simply to address this approximation /90

where

. 1 42 /952
g(t,o)) = ———¢" /203,

N

F() =Y aigt —ti0)

=1

problem in the light of Wiener’'s results on the closure of translations dt < e.
which, despite their usefulness and importance, do not seem to be as e
well known as some of the other works. We hope that our observationssimilar result holds for anyf € L., the approximation now being

might be of use to researchers interested in nonlinear approximatianthe L, norm:

problems such as this, and who remain unaware of Wiener's results. - N 2
The purpose of the long Appendix in [1] is to prove that any / F(t) — Za;g(t —t,0)| dt <e
finite-energy signal which vanishes outside a certain interval can —co pat i

be arbitrarily well approximated by linear combinations of GaUSSiaF'nese conclusions generalize those obtained, at much greater length
functions. This is done very much in the spirit of Lauricella’s theore% [1] ' ’
[2], that is, by showing that any sinusoidal signah(27kt/T), : S . .

. . . ’ Th hol h
0 <t < T, can be approximated by Gaussian functions. e approximation property just discussed holds no matter the

S S . value of o, a somewhat surprising result: the spades and L.
Our aim is to show that similar, and indeed more general, con- . . . : .
clusions follow from the approximation results due to Wiener on thContaln very rapidly varying functions, _and the results mentioned

) i . |ﬁ1ply that even very spread-out Gaussian curves can somehow be
closure of translations id; and L.—respectively, the Banach and

combined to closely approximate these signals.

Manuscript received November 16, 1995; revised April 24, 1996. This Unfortunately, the methods used by Wiener are not constructive,
paper was recommended by Associate Editor R. W. Newcomb. and do not offer any hints on how to pick, (a;);<i<y and

The author is with the Departamento de Elenica e Y F le. th imati fsi ids as di d
Telecomunicefes/INESC, Universidade de Aveiro, 3810 Aveiro, Portugaﬁ i)1<i<N- qr e.xampe, € apprO)l(lma ion o Sln,usm S,as ISCusse
(e-mail: pff@inesca.pt). in [1, Appendix] is based on Gaussian curves of fixed width translated

Publisher Item Identifier S 1057-7130(98)01638-3. to predetermined locations (the extrema of the sinusoid). Much better

1057-7130/98%$10.00 1998 IEEE



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 45, NO. 2, FEBRUARY 1998 251

fits are possible if the Gaussians are less constrained, that is, if mioqgut valuesz(n, — i1, no — i2) weighted by thefilter coefficients
of their characteristics (amplitude, position, and width) are used. Thig ;, over a support region, dilter maskM:
is demonstrated in Table I. For the first example, the position of the . .
Gaussians was held at the extremaief 27t), as done in [1], but the Yl nz) == Z Gt = inne —i2). (1)
remaining parameters were adjusted to minimize the squared error. (iLig)EM
The result was a very good fit. Using all parameters, as in the secahdiirly general shape for the support region is considered. Ths,
example, reduced the squared error even further, by four ordersiéllowed to be horizontally convex, i.e., the horizontal line segment
magnitude. joining any two points(iy, 2), (i1,i3) € M lies in M.

As stated in [1], this is a nonlinear least squares curve fitting The filter is restricted to be linear phase. Thus, the following
problem. Hence, we see the practical importance of suboptimal manditions should be satisfied [1]:

efficient algorithms like the one proposed in that work. mask symmetry  V (i1,is) € M, =iy, —is) € M
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Minimization of (2) with respect to the filter parameters :,
leads to a system of linear system of equations, the so-called normal
equations. Any well-behaved linear system solver can be applied for
the inversion of the 2-D normal equations. However, the special
structure of the normal equations gives rise to the development
of cost-effective algorithms for the determination of the unknown
George-Othon Glentis, Cornelis H. Slump, and Otto E. Herrman®arameters [2]-{4]. _ . o

In this paper a new, highly efficient algorithm is developed for
the solution of the normal equations intie order recursive way

Abstract—In this brief, a novel algorithm is presented for the efficient [7]. Filter masks of general, horizontally convex shape are allowed.
two-dimensional (2-D) symmetric noncausal finite impulse response (FIR) Fast recursions are developed for the updating of lower order filter
filtering and autoregressive (AR) modeling. Symmetric filter masks of parameters toward any neighboring point. It can efficiently be applied
general boundaries are allowed. The proposed algorithm offers the ¢ yho order-recursive estimation of the 2-D MSE FIR filter and
greatest maneuverability in the 2-D index space in a computationally . T : .
efficient way. This flexibility can be taken advantage of if the shape of SYStém identification, accelerating the ex_haust_lve_search procedures
the 2-D mask is nota priori known and has to be dynamically configured. required by most of the order determination criteria [8], [9].

A Versatile Algorithm for Two-Dimensional
Symmetric Noncausal Modeling

Index Terms—
. o . II. 2-D SYMMETRIC SUPPORT REGION
Algorithms, filtering, image processing, least mean square error methods,
Toeplitz matrices. Consider the support region depicted in Fig. 1. More precisely,
consists of a union of intervals:
k1
I. INTRODUCTION .
. . ) X ./M = U m(zly)./
Two-dimensional least squares noncausal modeling is of great 1=k
importance in a wide range of applications. These include image m(ir) = {(i1,i2): — ka(—i1) < i < ka(i1)}.

restoration, image enhancement, image compression, 2-D spectral o ) o
estimation, detection of changes in image sequences, stochaSiRarly, k1 = max{ii: (i1.i2) € M}, k2(i1) = max{iz: (i1,42) €

texture modeling, edge detection, etc. [1]. m(i1)}. Then, (1) takes the form
Let x(n1,n2) be the input of a linear, space invariant 2-D FIR ky ka(it)
filter. The filter's outputy(ni.n2) is a linear combination of past  y(n,,n,) = — Z Z Ciyip®(n1 —i1,m2 — i2).

i1=—k1 da=—ka(—i1)
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