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Abstract

It is shown that the set of fixed points of a nonexpansive operator is either empty
or closed and convex. Under rather general conditions this shows that the minimum
norm solution of an operator equation of the form x = Tx exists and is unique,
provided that T is nonexpansive. This holds in any strictly convex Banach space, a
class of spaces that includes Hilbert spaces as particular case, and has consequences
in signal and image reconstruction, as well as in other engineering applications.
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1 Introduction

Briefly speaking, a fixed point of a linear or nonlinear operator T is a solution
of the equation x = Tx. The basic fixed point theorems are Banach’s theo-
rem [1, 2], for contractive mappings, Brouwer’s theorem [3–6] for continuous
mappings in a finite-dimensional space, and Schauder’s generalization [4] of
Brouwer’s theorem to infinite-dimensional Banach spaces. Many other results
are discussed in [7, 8].

These fixed point theorems are tools of great importance in signal and image
reconstruction, tomography, telecommunications, interpolation, extrapolation,
signal enhancement, filter design, among many others [9–16]. A quick glance
through [9], for example, should convince any reader of the practical interest of
the subject: many interesting problems can be recast as fixed point problems.

For example, let x be a signal of interest, and let y be a distorted version of
x. Assume further that y and x are related by an operator equation y = Dx
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(y might be the signal measured at the receiving end of a transmission system
D, and x the transmitted signal). The problem is how to estimate x given y
and the model D of the distortion that x underwent.

If x satisfies a constraint equation x = Cx, then

x = Cx+ µ(y −DCx),

an identity of the form x = Tx. Under rather general conditions, the solution
to this equation will be the unknown signal x. This is the key to many iterative
constrained restoration algorithms

xi+1 = Cxi + µ(y −DCxi) = Txi,

as described in [9]. Their analysis is easy if T is a contraction (Banach’s
theorem applies and guarantees the existence and uniqueness of the solution).

If T is merely nonexpansive 2 , as it often is, the analysis of the problem is more
complex. A nonexpansive operator may have any number of fixed points, a
fact that suggests the study of the minimum norm solutions of x = Tx.

Brouwer’s theorem and Schauder’s theorem are among the results that ensure
the existence of fixed points of nonexpansive operators. In this paper we show
that the set of fixed points of a nonexpansive operator is either empty or closed
and convex. This turns out to be true in all strictly convex Banach spaces,
such as Lp, (1 < p < ∞), and in particular in all Hilbert spaces, such as L2.
This easily shows the existence and uniqueness of the minimum norm solution
of an operator equation of the form x = Tx, if T is nonexpansive.

2 Convexity of the set of fixed points

The set of fixed points of a given nonexpansive mapping may contain any
number of elements. For example, the translation T : f → f + g has no fixed
points at all. If g = 0 this changes drastically: T reduces to the identity map-
ping, which is clearly nonexpansive and for which every point in the domain
is also a fixed point.

In spite of this wide range of possibilities, there is an useful property that the

2 A linear or nonlinear operator T defined in a normed space X with norm ‖ · ‖ is
nonexpansive if ‖Tx− Ty‖ ≤ ‖x− y‖ for all x, y ∈ X.
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set of fixed points of a nonexpansive operator retains.

Theorem 1 Let X be a strictly convex normed space with norm ‖ · ‖. The
set of fixed points of a nonexpansive mapping T : X → X is either empty or
closed and convex.

PROOF. The example T : f → f+g shows that the set of fixed points can be
empty. If there is only one fixed point there is nothing to show. Consequently,
let x and y be two fixed points, and let

z = αx+ (1− α)y.

We wish to show that z is also a fixed point. Consider the inequalities

‖Tz − x‖ = ‖Tz − Tx‖ ≤ ‖z − x‖ = (1− α)‖x− y‖,

‖Tz − y‖ = ‖Tz − Ty‖ ≤ ‖z − y‖ = α‖x− y‖.

Adding them together leads to

‖Tz − x‖+ ‖Tz − y‖ ≤ ‖x− y‖.

But

‖Tz − x‖+ ‖Tz − y‖ ≥ ‖x− y‖,

by the triangle inequality, which shows that

‖Tz − x‖+ ‖Tz − y‖ = ‖x− y‖.

Let a = x − Tz and b = Tz − y. Then this is ‖a + b‖ = ‖a‖ + ‖b‖, and
since the norm is strictly convex, a = λb for some positive constant λ (see [2,
p. 336]). This means that Tz is a linear combination of x and y, that is,
Tz = βx+ (1− β)y for some real β. The previous results show that

‖Tz − x‖ = ‖z − x‖ = (1− α)‖x− y‖, (1)

‖Tz − y‖ = ‖z − y‖ = α‖x− y‖,

and consequently β = α, and Tz = z. 2
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Fig. 1. Geometrical interpretation of theorem 1.

A geometrical interpretation of this result is given in figure 1. The sets A and
B are defined by

A = {x : ‖Tz − x‖ ≤ (1− α)‖x− y‖},

B = {x : ‖Tz − y‖ ≤ α‖x− y‖}.

The image of z by T must lie in the intersection of A and B, which reduces
to the point z. Thus, Tz must coincide with z.

Note that the theorem ceases to be true if the balls A and B are not strictly
convex. Thus, the theorem does not hold in Banach spaces such as L1, that
are not strictly convex. It does hold in Lp, for 1 < p < ∞, including L2, as
well as any other Hilbert space.

If the normed space X is a Hilbert space, its norm satisfies the parallelogram
identity [2]

‖a− b‖2 + ‖a+ b‖2 = 2‖a‖2 + 2‖b‖2,

and the proof becomes simpler. Taking a = Tz − x and b = z − x leads to

‖Tz − z‖2 + ‖Tz − x+ z − x‖2 = 2‖Tz − x‖2 + 2‖z − x‖2,

and using both (1) and the fact that T is nonexpansive

‖Tz − z‖2≤ 4‖z − x‖2 − ‖Tz − Tx+ z − x‖2

≤ 4‖z − x‖2 − (‖Tz − Tx‖+ ‖z − x‖)2

≤ 4‖z − x‖2 − (‖z − x‖+ ‖z − x‖)2,

which means that ‖Tz − z‖ = 0 and consequently z = Tz.

Theorem 2 Any nonempty closed convex subset S of a strictly convex Banach
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space contains a unique element of smallest norm.

This is a well-known result and we omit the proof. In a Hilbert space, the proof
again depends on the parallelogram identity. In a strictly convex Banach space,
it is a corollary a the uniqueness of best approximations. See, for example,
[2, 17, 18]. The presentation in [18] is based on the (equivalent) concept of a
strictly normalized space.

Corollary 3 Let S be a compact and convex subset of a strictly convex Banach
space, and let T be a nonexpansive mapping which carries S into itself. Then,
the minimum-norm solution of x = Tx exists and is unique.

PROOF. By theorem 1, T has a nonempty and convex set of fixed points
(Schauder’s theorem shows that the set of fixed points is not empty). By
theorem 2, this set contains a unique element with minimum norm. 2
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