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fori=1,2,...

Solve (T — ApT)ve = v1 for vs
Normalize v2 to get a new v

end.

The desired DPSS is the last normalized solution, v;. Even though
(T'= A« 1) is nearly singular for eigenvalues . of very good accuracy,
inverse iteration is known to work well in these cases, many times
requiring only one or two iterations [10]. The norm of the residue
r = (T — A\J)v; may be used to determine the accuracy of the
final result. When the known eigenvalue )\, was accurate to within
TOL = le — 6 using the bisection method explained previously,
it was found that three iterations of the above procedure produced
accurate DPSS’s. Because matrix T(N. W) is tridiagonal, solving
the system equations during each iteration for the latest eigenvector
estimate was also simplified (p. 155 of [9]).

III. SOME EXAMPLES

Figs. 1-5 show some examples of DPSS’s generated using the
technique described above.

IV. CoNCLUSION

A method for accurate and computationally efficient generation
of any single DPSS of large length was presented. The method is
easy 1o implement and should prove useful in situations where only
a few DPSS’s out of a large set are desired. The availability of long
length DPSS’s will open the oportunity for their use in applications
requiring sequences of long length.
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be readily applied and are briefly discussed. We state conditions for their
convergence, and illustrate their performance through an example.
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I. INTRODUCTION

In this correspondence, we study the band-limited interpolation and
extrapolation problems for finite-dimensional signals (vectors) in the
direct and Fourier transformed domains. In the terminology of [1] this
corresponds to the discrete-discrete case. We show that under certain
conditions this problem can be easily reduced to the solution of a set
of linear equations with a real symmetric positive-definite matrix S
with spectral radius p(S) < 1. This fact allows the reconstruction
problem to be solved noniteratively or using iterative methods. In
either case, the algorithms have minimum dimensionality, that is, the
size of the matrix and vectors is equal to the number of missing
observations. This stands in contrast with works based on the finite-
dimensional Papoulis-Gerchberg algorithm [2], [3], where this size
is given by the total number of observations, and which results in
singular nonHermitian iteration matrices.

As a consequence of the Hermitian positive-definite character of S,
a number of well known alternative iterations can be readily applied
to the solution of the restoration problem considered. Again, this
is not the case with methods which directly fit into the constrained
reconstruction framework presented in [4], or based on the Papoulis-
Gerchberg algorithm [2], [3]. We discuss the relations among these
methods, and state conditions for the convergence of some of
the alternative iterations, illustrating their performance through an
example.

II. PRELIMINARIES

The discrete Fourier transform of x € C" is denoted by x and
defined by x = Fx, where F is the unitary n x » Fourier matrix with
elements F,; = %e”’“””. The inverse transformation is given by

x =F'x We say that x is band-limited if
x=TIx 8}

where T' is a diagonal matrix containing only zeros or ones, and with
at least one zero on the diagonal. The bandwidth of a band-limited
signal x is the quantity .J = ¢/n, where ¢ < n is the number of
nonzero elements of T'.

Let 4 and D be two subsets of {0.1..... n -1} with & elements.
We say that A and DB are equivalent if the elements of 4 can be
obtained by addition of an integer constant, modulo u, to the elements
of B. This means that A and B3 are related by a circular shift. We say
that a subset of {0,1.....n — 1} of cardinality k¥ < n is contiguous
if it is equivalent to {0.1..... k—~1}.

Equation (1) means that a band-limited signal x satisfies an
equation of the form x = Bx, where B is a band-limiting matrix
given by B = FATF. It is real, symmetric, circulant, nonnegative
definite, idempotent, and has ¢ unitary-and n — ¢ zero eigenvalues,
¢ being the number of nonzero elements of I'. We say that the set
of zero eigenvalues of B is contiguous if the corresponding set of
subscripts in T' is contiguous. The following results will be needed
in the sequel.

Theorem 11.1:  Let C be a 1. x n nonnegative definite circulant
matrix with k contiguous zero eigenvalues. Then every principal
submatrix of C of order not greater than n—k is positive definite.

Proof:  Since F diagonalizes all circulants, the quadratic form
o(x) = xTCx can be reduced to o(x) = %""I'x, where T =
FCF" is diagonal. We are interested in the restriction of o(x) to
subspaces of dimension not greater than n — k, characterized by
x; = 0 (for all / belonging to a given set S, of at least & elements).

If the theorem was false, there would exist a nonzero vector v
belonging to one such subspace and such that o(v) = 0. This would
imply that #; = 0 for all / belonging to a certain contiguous set S

3279

with n — & elements. That is, v would have to satisfy

> Fuvi=0forall k€ S;. %))
1ES;

This is a set of n — & equations for no more than n — & unknowns
v,. Its matrix has linear independent columns when Sy is contiguous
(if it is square it will be Vandermonde). It follows that v; = 0 for all
i ¢ S;. meaning that v is the zero vector, a contradiction. ]

Note that the contiguity of Sy (or, by duality, S;), is not necessary
for the linear independence of the columns of the matrix. It is easy
to construct a counterexample using the results in [5].

Lemma Il.1: If A is a Hermitian n X n nonnegative definite
matrix with eigenvalues Ay < Ay < -+ < \,, then

nA; < ZA,, <nA,.
i=1
Proof:  The trace of A is the sum of its eigenvalues, and these

are real and nonnegative. The inequality is a direct consequence of
this. a

III. RESULTS

Let x be a band-limited vector, satisfying x = Bx. Assume that
a subset of the .; is unknown. Our purpose is to state conditions for
its recovery from the remaining ;.

Let U be the set of subscripts of the # unknown ;. The equations
x = Bx imply that

€= Z Birrvr + Z DBy

kel rgl

for i/ € U. This set of & equations can be written in matrix form
as u = Su + h, where u is the k-dimensional vector of unknown
samples. S is a k& X k principal submatrix of B, and h is a known k-
dimensional vector. A similar approach has been used in a different
context [6]. The following theorem states conditions under which
these equations will have a solution.

Theorem Iil.1: Let B be a band-limiting matrix with k unity
contiguous eigenvalues, and let X be a vector such that x = Bx.
Let U be a subset of {0.1,....,n — 1} with p < n — k elements.
Denote by S the p x p matrix obtained by deleting from B the
rows and corresponding columns whose subscripts do not belong
to U, and let h be a p-dimensional vector given by

hi=Y Bz,

JEU

(i€ U).

Then, the p-dimensional vector u containing the x, (1 € U) can
be found noniteratively from u = (I — S)~'h, or iteratively
from u = lim,_. u'”, where the u'") are defined by u''+" =
Su'’' + h, and the limit is independent of u‘®.

Proof: The matrix I—B is a circulant nonnegative definite ma-
trix with & contiguous zero eigenvalues (B = F/' AF is equivalent
tol-B = FH(I—A)F). By Theorem 1I.1 every principal submatrix
of I — B of order not greater than n — £ is positive definite. Hence,
I — S has an inverse.

In order to justify the convergence of the iterative algorithm we
have to show that p(S) < 1. Since I — S is a principal submatrix of
a nonnegative definite idempotent matrix, its eigenvalues must all lie
in the interval [0. 1]. But since I — S is nonsingular, S may have no
eigenvalues equal to 1. O

The identity u = p(Su + h) 4+ (1 — p)u, for ¢ € IR, suggests
the iteration

u Y = (48 + (1 0Tu" + k. )
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If A is an eigenvalue of S, uA + (1 — ) will be an eigenvalue of
1S+ (1— )L Itis easy to see that iteration (3) will always converge
if p € (0,2), and that proper choice of y# € (1.2) may lead to faster
convergence.

A variety of more sophisticated iterative methods can be applied
to the solution of the interpolation and extrapolation problems. The
iteration matrices and vectors of the methods which we will use are
summarized in Table I. For details see, for example, [7] and [8]. We
will now state conditions under which convergence of these methods
is ensured, starting with Jacobi’s iteration.

Lemma lIl.1:  The vector v is an eigenvector of S pertaining
fo the eigenvalue X if and only if it is also an eigenvec-
for of the corresponding Jacobi matrix, pertaining to the
eigenvalue f(A) = (A — 8)/(1 - B).

Proof:  Recall that ;3 is the bandwidth of the matrix B of which
S is a principal submatrix. The diagonal of B is equal to the diagonal
of 31. The Jacobi matrix can be written as ﬁ(s — i3I) (see Table
D). Clearly, Sv = Av implies
1 A— 3

oS Iv= 1

V.

Conversely, if

%(S - 3D)v =qpuv

then Sv = [(1 — 3)p + 3]v, and inversion of g(u) = (1 — 3)u + .3
gives f(A). O

The following theorem gives a necessary and sufficient condition
for the convergence of Jacobi’s method under the conditions of
Theorem IIL.1.

Lemma 111.2:  Let B be a band-limiting matrix with bandwidth
B and let S be a principal submatrix of B with smallest and
largest eigenvalues 0 < Aniy < Amax < 1. The spectral radius

of Jacobi’s matrix J, = (S — A1) is
I = Amin Amax — 3
p(di) = max{/lﬁ ﬁ} 4)

and Jacobi’s method converges if and only if 8 < (Ayin + 1)/2.

Proof: Let A < 1 be an eigenvalue of S. Then f(\) will be
an eigenvalue of J;, and Jacobi’s method will converge if and only
if [f(A)] < 1 for all eigenvalues A. Note that |f| is zero for A = 3
and increases linearly as A — 0 and A — 1.

Since the diagonal elements S;; of S are all equal to .3, it follows
from Lemma IL1 that Apin < 3 and Aax > 3, with equality if and
only if S is diagonal. This justifies (4). It can be seen using (4) that
p(J1) < 1is equivalent to Ay, > 23 — 1. O

The following result relates the convergence rates of the iterative
method of Theorem IIL.1 and of Jacobi’s method, as a function of
the bandwidth 3.

Theorem 111.2: Let B be a band-limiting matrix with bandwidth
B and let S be a principal submatrix of B with smallest and
largest eigenvalues 0 < Ay < Amax < 1. Jacobi’s method con-
verges with better asymptotic convergence rate than the iteration
of Theorem 1.1 if and only if

/\max + /\min

<
ﬁ 1 + /\max

Proof:  We need to show that p(J; ), as given by (4), is less than
p(8) = Amax under the stated conditions. In the first place, note that

/\max - j j
-7 137

)\max -

Amax) > 0
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TABLE I
ITERATION MATRICES AND VECTORS FOR THE JacoBl, JOR, GAUSS-SEIDEL AND
SOR METHODS, APPLIED TO THE SOLUTION OF Mx = h. THE MATRICES
M, D, L anp U ARE RELATEDBY M =D - A =D - L - U.
MOREOVER, D = diag(M), U Is STRICTLY UPPER TRIANGULAR,
L Is STRICTLY LOWER TRIANGULAR, AND gt Is A REAL PARAMETER.

Method Iteration matriz Vector

Jacobi Jy=D7'A a; =D 'h

JOR J,=(1-p)I+uD 1A a, = uD"'h
Gauss-Seidel | G; = (D - L)"'U b, =(D-L)"'h
SOR Gy =(D - pL)7' [(1 - ¢)D +pU] | by = p(D - pL)"'h

and s0 (Amax — 3)/(1 — 3) is always less than Amay. On the other
hand

3 - min
Amax — 17/\3 = (Amax + /\min) - 3(1+ /\max)
which is positive if and only if 3 < (Amax + Amin)/(1 + Amax)-

O
This condition is necessary in the sense that it is not implied by
the convergence condition 3 < (1 + Amin)/2. Note that

Amax + Amin _ Amin + Amax _ 1+ Amin
1+ Amax 2 2

Introducing a relaxation parameter in Jacobi’s method, we arrive at
what Young [8] calls the JOR method. The eigenvalues of the JOR
matrix are easily related to those of S.

Lemma 1I1.3:  The vector v is an eigenvector of S pertaining
1o the eigenvalue ) if and only if it is also an eigenvector of the
corresponding JOR matrix pertaining to the eigenvalue

A=
1- -,
u+u1_

Proof:  As before, 7 is the bandwidth of the matrix B of which
S is a principal submatrix. Note that an eigenvalue A of the Jacobi
matrix is mapped into an eigenvalue 1 — p + pA of the JOR matrix
(see Table I). O

The interesting situation occurs when 1 < u < 2, since it may lead
to a faster convergent method. Comparing the eigenvalues of J,, as
a function of y, it is easy to see that this will be the case if and only
if J1 has no eigenvalues less than (¢ — 1)/(px + 1) < 1/3.

The Gauss-Seidel method is similar to Jacobi’s method except
that the new values of the components of u‘*) are used when-
ever available. This enables in-place calculation of the successive
approximations and often leads to significantly better convergence
rates.

In general, the analysis of the Gauss-Seidel method, or of the
more general SOR method, is not simple. However, in our case the
matrix I — S is Hermitian, and its diagonal elements are all positive.
Therefore we may directly apply the Ostrowski-Reich theorem [7],
which leads to the following corollary.

Corollary IIl.1:  Let B be a band-limiting matrix with band-
width 3 and let S be a principal submatrix of B such that
p(S) < 1. Then the SOR method applied to the solution of
x = Sx + h will be convergent if and only if 0 < pu < 2.

For any of these methods, the optimum value of u can often be
found experimentally. It is safe to start with # = 1 and increase it
until the desired effect is obtained.

IV. RELATION WITH OTHER ITERATIVE METHODS

The iterative method given by Theorem III.1 is related to the finite-
dimensional analog [2], [3] of the Papoulis-Gerchberg algorithm [9],
[10], as we will now see.
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Fig. 1. Band-limited random data vector with dimension 100. The bandwidth
is 0.41.

Let x be a band-limited vector, satisfying x = Bx, and let D
denote the n x n diagonal matrix defined by D,, = 0 if i € U,
D;; = 1 otherwise. As usual, U is the set of subscripts of k& unknown
z;. An algorithm for the recovery of the unknown r; can be found
using several methods. The identity

x = B(I-D)x+ BDx
for example, immediately suggests the iteration
D = B(I - D)x'” + By

where y = Dx is a known vector. This method is discussed in [3],
and its connection with the Papoulis-Gerchberg algorithm, Youla’s
alternating projection method [11], or the constrained restoration
framework presented in [4] is easily recognized. This iteration can
be reduced to the one given in Theorem IIL1. In fact, since y; = 0
for i € U, we may rewrite it as

.rg“) = Z Bkj.l‘jl) + Z By,

JEU €U

and restriction to £ € U gives an equation of the form u = Su+ h,
the required result.

V. EXAMPLES

A data vector with 100 randomly generated points was filtered
with a low-pass filter having bandwidth 0.41. The resulting signal is
depicted in Fig. 1.

The process which resulted in lost data was simulated using a
randomly generated binary sequence of length 100 and density 0.6,
depicted in Fig. 2. It can be thought of as a sampling sequence which
introduces a 40% data loss. The zero components of this sequence
mark the position of the unknown samples.

The error evolution for the several methods discussed is depicted
in Fig. 3 for a few values of the relaxation parameter. The error is,
by definition, the Euclidean distance between the reconstructed and
original vectors, i.e., the RMS error. The convergence rate of the SOR
method is clearly the best, and the effect of ; on the convergence
rate is apparent.

VI. CONCLUSION

A problem commonly found in signal processing is that of recov-
ering k lost samples of a band-limited discrete signal with a total of n
samples. The often-studied extrapolation problem, for example, is a
special case of this problem. There are a number of approaches to its
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Fig. 2. Sampling sequence used. The density is 0.6, corresponding to a
sampling process which introduced a 40% data loss.
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Fig. 3. RMS error versus number of iterations, for the methods: (a) simple
iteration; (b) Jacobi; (c¢) JOR with ¢ = 1.1; (d) Gauss-Seidel; (¢) SOR with
p = 1.1; and (f) SOR with g = 1.2.

solution, including Papoulis-Gerchberg iteration, but they generally
lead to a n x n singular nonHermitian iteration matrix.

We showed that the finite-dimensional band-limited interpolation
and extrapolation problems can be reduced to the solution of a
linear set of equations with a symmetric real positive-definite k£ x k
matrix, with spectral radius less than unity. This immediately gives
noniterative and iterative solutions to the problem. The convergence
rate of the iterative solution, which, as we have shown, is related to
a finite-dimensional alternating projection method, may be improved
using relaxation, as expressed by (3). Moreover, a number of well
understood and more favorable iterative methods may also be applied,
and often allow substantial improvements in the convergence rate.
The main advantages of the outlined approach are its simplicity, the
fact that it directly leads to a noniterative solution, and the ease with
which faster iterations may be applied.

Each iteration of the Papoulis-Gerchberg algorithm requires one
multiplication of a circulant n X n matrix by a vector, that is, a
circular convolution of length n, or, equivalently, a direct and an
inverse discrete Fourier transform. These can be performed using
the FFT algorithm, which requires about O(n log, n) multiplications
when n is a power of two. If n is not a highly composite number,
each iteration requires O(n?) multiplications. On the other hand,
the methods discussed in this work require O(k?) multiplications
per iteration. If n is not a highly composite number, or if k is
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small enough, the reasons why they are computationally attractive
are twofold: the more favorable convergence rates, meaning that less
iterations are required to obtain usable results; and less computational
effort per iteration, meaning that each iteration will complete faster.
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Counting the Degrees of Freedom When
Using AIC and MDL to Detect Signals

Douglas B. Williams

Abstract—In the well known paper by Wax and Kailath [2], the AIC and
MDL criteria for determining the number of signals in a multichannel
time-series are presented. An essential element of these criteria is the
number of degrees of freedom in the model. We propose a different
number for the degrees of freedom and show that the resulting MDL
criterion performs noticeably better than the previous criterion. We also
show that the same criteria are appropriate for either real or complex
data.
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1. INTRODUCTION
AIC and MDL are model-order determination algorithms that can
also be used for determining how many signals are present in vector-

valued data. Suppose the 3/ x 1 complex vector x(¢) can be modeled
as

x(t) = As(t) + n(t) (1)
where

A is a rank(P) M x P complex matrix whose columns are
determined by the unknown parameters associated with each
signal,

s(t) isa P’ x 1 complex vector whose pth element is the waveform
of the pth signal, and
n(t) is a complex, stationary, and ergodic Gaussian process with

zero mean and covariance matrix E{n(t)n’(t)} = 2L
The problem is to determine P from N observations of x(t); i.e.,
x(t1). x(t2)..... xX(txn).

Let R = E{x(f)x’(t)} be the covariance matrix of the data x(t),
and R = % Z;\;l x(t;)x'(#,) be an estimate of R. The matrix R
is completely determined by its eigenvalues A; and eigenvectors v;.
Furthermore, if P uncorrelated signals are present, the A — P smallest
eigenvalues of R are all equal to the noise power o2, and the vector
of parameters ©‘” specifying R can be written as

The number of signals are determined from the estimated covariance
matrix R. If 7y.. ... Iar are the eigenvalues of R in decreasing order
then

R 1/(M—P)
Ils,, 0
i=P+1 a + 2k

AIC(P) = ~2(M - P)NIn -
NP Z,:ﬁH L.

and
M 1/(M—P)
~ = Py i 1
MDL(P) = (M — P)NIn HTPH_\, + 5kinN
M—P Z::ﬁﬂ L

where k is the number of degrees of freedom in the model of R
assuming p signals. The estimated value of P is the value from
P=0.1.... M — 1 that minimizes the chosen criterion. Counting
the degrees of freedom is where the criteria in this paper differ from
those of Wax and Kailath [2]. There are, of course, numerous ways to
revise the penalty terms in AIC and MDL. In the following section we
present two intuitive arguments for changing the degrees of freedom
that are used in these penalty terms. Simulations are then, used to
demonstrate the resulting improvement in performance.

II. DETERMINING THE NUMBER OF DEGREES OF FREEDOM

Insight into the number of degrees of freedom for this problem
can be gained from the classical theory of hypothesis testing. The

probability density function of /;..... Inr given Ai....,Ap and
Apa1 = -+ = Ay = 02 can be approximated by
fellio. .. hvlM 22> p 2 App =+
=My =03)

=hALN. Pl )\)

Poav_a M N—AM
I l;

M N=LP@A-P-) i
x N\ 2 I I = -
AT (03)™
=1 i i=P+1
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