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The Rank of Random Binary Matrices and
Distributed Storage Applications

Paulo J. S. G. Ferreira, Bruno Jesus, José Vieira, and Armando J. Pinho

Abstract—Random binary matrices appear in a variety of
signal processing and encoding problems. They play an important
role in rateless codes and in distributed storage applications.
This paper focuses on block angular matrices, a class of random
rectangular binary matrices that are particularly suited to
distributed storage applications. We address one of the key
issues regarding binary random matrices in general, and block
angular matrices in particular: the probability of obtaining a full
rank matrix, when drawing uniformly at random from the set
of binary matrices with compatible structure. This paper gives
a closed-form expression for this probability, as well as some
bounds and approximations.

Index Terms—Random matrix, block angular matrix, dis-
tributed storage, fountain codes.

I. INTRODUCTION

RATELESS codes are erasure codes designed for channels
in which the erasure rate is not known a priori or is

unpredictable. LT codes [1] and raptor codes [2] are exam-
ples of rateless codes. These codes and the digital fountain
framework in general are particularly useful in the context of
multicast and broadcast protocols [3]. In this framework, the
encoded symbols are independently built from random linear
combinations of message symbols, and its number is therefore
virtually unlimited.

The vector of received encoded symbols that reaches the
decoder is therefore given by the product of a random matrix
with the vector of message symbols. The decoder has to solve
a linear set of equations involving this random matrix. This can
be done efficiently if the degree distribution of the encoded
symbols satisfies certain conditions [1], [2], [4]. There are
decoding algorithms able to recover k message symbols from
k(1+ ε) encoded symbols, where the overhead parameter ε is
a fixed small number (say, 0.1). In practice, this means that
any received subset of encoded symbols with sufficiently large
cardinality can be used to decode the message.

Similar ideas have been found useful in connection with
distributed storage systems. If a data file is encoded using
a rateless code, and the encoded symbols are distributed
across multiple servers, the file can be recovered by using
encoded symbols obtained from the servers that are reachable
at decoding time (or respond first).

The use of rateless codes allows the generation of an
unlimited number of encoded symbols, which can be stored
in a virtually unlimited number of servers. During decoding,
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every encoded symbol is useful, regardless of its origin. Also,
decoding performance is not limited by the slowest server,
since encoded symbols may come from any server, in any
order.

Binary random matrices with a more constrained structure
are also of interest. Parallelization of algorithms such as LU
and QR factorization have lead to an interest in block angular
random matrices, and in the problem of permuting sparse
rectangular matrices into block angular form [5]. A block
angular matrix has block structure

G =

(
X
Y

)
,

where Y is block diagonal. The simplest non-trivial example
(two diagonal blocks) is

G =

⎛
⎝A 0

0 B
C D

⎞
⎠ .

This structure is of high practical interest because the block
diagonal X allows the separation of any problem involving
the matrix G in a number of independent sub-problems,
one for each diagonal block. The remaining equations, those
involving Y = (C|D), represent the coupling between those
sub-problems. Because the sub-problems can be solved in-
dependently, a problem involving a block angular matrix is
inherently amenable to parallelization.

Block angular form is also useful in distributed storage
applications. Each diagonal block could be associated with
a local server group linked by a local network. In this
context, the block Y would describe connections between
the server groups, slower or more expensive than the local
ones. The block angular structure is well suited to deal with
the gradual loss of encoded symbols due to, say, hardware
failures. The idea is to replace lost encoded symbols with
linear combinations of existing ones. With the block angular
structure, this replacement or regeneration can be done locally,
at the group server level, without decoding the entire data file
or having to access servers outside the local group.

Note that we are not assuming that the diagonal blocks
of G are necessarily square because of our interest in the
performance of block angular structure in coding or distributed
storage contexts. The decoding problem starts with a random
subset of the elements of the vector y given by y = Gx,
not the entire vector y. Thus, the equation to solve involves
a submatrix of G obtained by discarding a subset of its
rows, determined by the erasure pattern. This submatrix of
G, denoted by M, will still have block angular structure, but
the blocks will in general be rectangular.
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In the applications mentioned, the matrix M typically has
more rows than columns and decoding is possible if Mx = y
can be solved for x. This explains the interest in the rank
of M — the probability of successful decoding depends on
it. This paper studies the rank of block angular and related
random matrices, extending the bounds given in [6]. Here we
go further, and by using a different approach we give the exact
expression for the probability of M being of full rank, and
other bounds and approximations.

II. RELATED WORK

The idea of local and global protection is also explored
(although in a different form) in pyramid codes [7], in
which block groups are protected by redundant blocks (local
protection) but the entire data are also protected by global
redundancy. Decoding starts at the lowest level and proceeds
to the global level, as in climbing a pyramid, as reflected in
the code name.

Erasure codes for storage over a network when the data
sources are distributed were considered in [8]. There, the au-
thors introduce optimally sparse decentralized erasure codes,
and show that they have advantages over random linear codes.
A more recent work [4] introduces codes able to recover k
message symbols from a random subset of (1 + ε)k encoded
symbols with high probability, with logarithmic locality: a
single symbol loss can be repaired by accessing O(log k)
encoded symbols.

The decoding problem for LT codes [1] involves random
matrices over finite fields. For a certain degree distribution it
can be solved efficiently by an online algorithm. Raptor codes
[2] use a pre-code to further reduce the needed degree to a
constant.

Random matrices (over finite or infinite fields) have many
other important applications. See [9] for an extensive review
of random matrix theory over the real or complex fields.
For results on the rank over the real numbers see [10]. A
number of results on random linear equations over finite fields
were reviewed in [11]. This includes results on the rank,
determinant and permanent of matrices over GF (q), assuming
elements with certain probability distributions. Wiedemann
gave a method to solve sparse equations over a finite field
[12].

Despite the wealth of results on random matrices and their
spectral properties, the current knowledge about structured
matrices is, as stated in the 65-page review [13], very limited.
The same can be said about random matrices over finite fields
(see [14] for a review). The rank of sparse matrices is studied
in [15] (see also [16], [17]) and [18] studies the spectral
distribution of a certain circulant matrix.

Our work differs from all these because we consider ma-
trices with a specific block structure. The work [5] considers
block angular matrices, but in connection with a very differ-
ent problem (the possibility of permuting sparse rectangular
matrices into block angular form).

III. BACKGROUND

This section summarizes a few known results about the
rank of random matrices that will be subsequently needed.

Some further details can be found in [6], [19]. A few useful
approximations that might be new are also given.

All matrices and vectors are taken over the field GF (2).
The number of full rank n × m matrices, with n ≥ m, is
given by

F (n,m) = (2n−1)(2n−2) · · · (2n−2m−1) =

m−1∏
i=0

(2n−2i).

(1)
If every n×m matrix is equally likely to occur, the probability
of selecting a matrix with full rank is

P (n,m) = 2−nm F (n,m) =

m−1∏
i=0

(1− 2i−n). (2)

There is a relatively small probability that a square matrix has
full rank over GF (2). In fact, P (n, n) converges rapidly to a
value close to 0.28. On the other hand, for fixed m, P (n,m)
quickly approaches unity as n increases beyond m. One can
derive the following upper bound

logP (n,m) =

m−1∑
i=0

log(1− 2i−n)

≤ −
m−1∑
i=0

2i−n = −2−n(2m − 1).

Denoting the excess of rows by k, so that n = m + k, this
can be written

logP (m+ k,m) ≤ −2−k(1− 2−m). (3)

The result can also be obtained by applying 1 − ε ≤ e−ε to
each of the terms in (2). In fact, it asymptotically approaches
the exact value in (2) as m increases, but this is perhaps best
shown directly from (2), since

P (n,m) = 1−
m−1∑
i=0

2i−n + · · · = 1− 2−n(2m − 1) + · · ·

The omitted terms are higher order products of the quantities
xi = 2i−n. Discarding them leads to

P (m+ k,m) ≈ 1− 2−k(1 − 2−m),

and so the probability of not having full rank satisfies

1− P (m+ k,m) ≈ 2−k(1 − 2−m),

or
log(1− P (m+ k,m)) ≈ −2−m − k log 2.

Thus, full rank matrices become exponentially more likely as
the excess number of rows increases.

The probability that a n × m matrix has rank r has been
known for over a century. The number of n × m matrices
with rank r can be obtained by multiplying the number
of matrices with an r-dimensional range by the number of
distinct subspaces of dimension r. If G(n,m, r) denotes the
number of n×m matrices of rank r, then

G(n,m, r) =
F (m, r)F (n, r)

F (r, r)
, (4)

To find the probability P (n,m, r) it is only necessary to divide
this quantity by the total number of n×m matrices. For more
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about this and the more general case in GF (q) see [19], for
example.

IV. FULL RANK PROBABILITY OF BLOCK ANGULAR

MATRICES

The matrix M mentioned in the theorems below is given
by

M =

⎛
⎝A 0

0 B
C D

⎞
⎠ =

(
L R

)
, (5)

where A is a× a′, B is b× b′, C is c× a′ and D is c× b′.
We denote the maximum number of nonzero elements of M
by

N = aa′ + bb′ + c(a′ + b′),

so that the number of distinct matrices M with geometry
defined by a, a′, b, b′ and c can be written simply as 2N . We
start with a simple upper bound that, in practice, is often quite
accurate.

Theorem 1: The probability p that the matrix M given by
(5) has full rank satisfies

p ≤ 2−NF (a+ c, a′)F (b+ c, b′). (6)

Proof: There are F (a + c, a′) full rank matrices L and
F (b + c, b′) full rank matrices R, since the zero blocks in L
and R can be ignored. Thus, the number of full rank matrices
of the form M = (L|R) cannot exceed the product F (a +
c, a′)F (b + c, b′).

The product is only an upper bound to the number of full
rank matrices M = (L R) because there the full rank matrices
L and R may contain a common subset of linearly dependent
columns, as in the following example:

M =

⎛
⎝A 0

0 B
C D

⎞
⎠ =

(
L R

)
=

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 0 0
0 0 0 0
0 0 1 1
0 0 0 0
1 0 1 0
0 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Both L and R have full column rank but M has linearly
dependent columns.
In the counterexample given above, the diagonal blocks A and
B are rank deficient. Because of this, the linear independence
of the columns of M depends on the linear independence
of the columns of C and D, which, therefore, cannot be
independently specified. The proof of the following theorem,
which gives the exact probability p, does in fact depend on
the balance between the rank of the diagonal blocks and the
rank of the C and D blocks.

Theorem 2: The probability p that the matrix M given by
(5) has full rank is given by

p =

∑
G(a, a′, i)G(b, b′, j)2(i+j)cF (c, a′ − i+ b′ − j)

2N
,

(7)
where the sum is over all pairs i, j that satisfy

i+ j ≥ a′ + b′ − c.

Proof: Assume that the ranks of A and B are i and
j, respectively. Then, i of the columns of C and j of the
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Fig. 1. Full rank probability for a block angular matrix according to (7),
and estimated values obtained by simulation. The block angular matrix has
square diagonal blocks.

columns of D can be selected in an arbitrary way. However,
the remaining a′ − i columns of C and b′ − j columns of D
must be linearly independent.

It is easy to count the number of matrices A and B with
ranks i and j: as seen before, it is given by G(a, a′, i) and
G(b, b′, j), respectively.

The i arbitrary columns of C can be selected in 2ic

ways, because each column has dimension c. Similarly, the
j arbitrary columns of D can be selected in 2jc ways.

Finally, the remaining a′− i and b′− j linearly independent
columns of C and D can be selected in F (c, a′ − i+ b′ − j)
ways, because they can be thought of as a full rank matrix of
size c×(a′−i+b′−j). This is possible only if c ≥ a′−i+b′−j,
that is, i+ j ≥ a′ + b′ − c.

The total number of full rank matrices M is obtained by
summing over all possible ranks:∑
i+j≥a′+b′−c

G(a, a′, i)G(b, b′, j)2(i+j)cF (c, a′ − i+ b′ − j),

which leads to (7).
Fig. 1 shows this probability for some possible sizes, as

well as estimated values obtained by simulation.
The case c = 0 has a simple interpretation. Assume to

simplify the notation that the diagonal blocks are square. Since
only the term due to i = a, j = b is allowed in the sum, the
expression for the probability reduces to

p =
G(a, a, a)G(b, b, b)

2a2+b2
=

F (a, a)F (b, b)

2a2+b2
, (8)

which represents the number of full rank a × a matrices A
multiplied by the number of full rank b×b matrices B, divided
by the total number of matrices — as one would expect in a
pure block diagonal case.

This can be compared with the upper bound (6). When c =
0, the bound coincides with the probability, since the matrix
M contains only the diagonal blocks. Setting c = 0 in (6)
leads to

p = 2−NF (a, a′)F (b, b′) = 2−aa′−bb′F (a, a′)F (b, b′),

which reduces to (8) when the diagonal blocks are square.
It would be interesting to compare the full rank probability

in the block angular case with the full rank probability of a
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Fig. 2. Full rank probability for block angular matrices and for matrices
without any block structure. The block angular matrix has square diagonal
blocks.
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Fig. 3. Rank deficient probability for block angular matrices and matrices
without any block structure. The block angular matrix has square diagonal
blocks.

rectangular, unrestricted matrix, but some care has to be taken
to ensure a fair comparison.

Assume to simplify the notation that a = a′ and b = b′.
Then, the maximum number of nonzero entries of a block
angular matrix is a2+b2+c(a+b). A rectangular matrix with
the same number of columns (a + b) would have to contain
about

n =
a2 + b2 + c(a+ b)

a+ b

rows. The comparison results shown in Fig. 2 and Fig. 3
show that the block angular structure does not imply a large
increase in redundancy (number of rows divided by number
of columns) as compared with unrestricted matrices without
any block structure.

The main result can be extended to several diagonal blocks
and consideration of fields other than GF(2) is also possible.
We intend to explore some of the possibilities in the future.

V. CONCLUSION

Binary random rectangular matrices over GF (2) with k
more rows than columns are of full rank with high probability
(in fact, the probability of not having full rank decreases with
2−k). We have given the exact expression for the full rank
probability in the block angular case and compared it with

the unrestricted rectangular case. The results show that it is
possible to rely on block angular structure at a small price,
namely, an increase in the excess of rows over columns for
the same full rank probability.

These results have consequences for the efficient decoding
of codes that lead to decoding problems involving block
angular matrices as well as for distributed storage applications,
in which encoded symbols are spread among a number of
servers but data retrieval has to be carried out using only the
servers that are reachable or respond faster at decoding time.

REFERENCES

[1] M. Luby, “LT codes,” in Proc. 2002 IEEE Symposium on Foundations
of Computer Science, pp. 271–282.

[2] A. Shokrollahi, “Raptor codes,” IEEE Trans. Inf. Theory, vol. 52, no. 6,
pp. 2551–2567, June 2006.

[3] J. W. Byers, M. Luby, and M. Mitzenmacher, “A digital fountain ap-
proach to asynchronous reliable multicast,” IEEE J. Sel. Areas Commun.,
vol. 20, no. 8, pp. 1528–1540, Oct. 2002.

[4] M. Asteris and A. G. Dimakis, “Repairable fountain codes,” in Proc
2012 IEEE International Symposium on Information Theory, pp. 1752–
1756.

[5] C. Aykanat, A. Pinar, and U. V. Çatalyürek, “Permuting sparse rectan-
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