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Abstract The classical sampling theorem has often been attributed to E.T. Whittaker,
but this attribution is not strictly valid. One must carefully distinguish, for example,
between the concepts of sampling and of interpolation, and we find that Whittaker
worked in interpolation theory, not sampling theory. Again, it has been said that
K. Ogura was the first to give a properly rigorous proof of the sampling theorem.
We find that he only indicated where the method of proof could be found; we identify
what is, in all probability, the proof he had in mind. Ogura states his sampling the-
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orem as a “converse of Whittaker’s theorem”, but identifies an error in Whittaker’s
work.

In order to study these matters in detail we find it necessary to make a complete
review of the famous 1915 paper of E.T. Whittaker, and two not so well known papers
of Ogura dating from 1920. Since the life and work of Ogura is practically unknown
outside Japan, and there he is usually regarded only as an educationalist, we present
a detailed overview together with a list of some 70 papers of his which we had to
compile. K. Ogura is presented in the setting of mathematics in Japan of the early
20th century.

Finally, because many engineering textbooks refer to Whittaker as a source for
the sampling theorem, we make a very brief review of some early introductions of
sampling methods in the engineering context, mentioning H. Nyquist, K. Küpfmüller,
V. Kotel’nikov, H. Raabe, C.E. Shannon and I. Someya.

Keywords Sampling theorem · Sampling techniques in engineering · Interpolation ·
Japanese mathematics history

Mathematics Subject Classification (2000) 94A12 · 41A05 · 01-02 · 94-03 ·
01A27

1 Introduction

Several major questions concerning the early history of sampling theory remain unre-
solved. One of these is: Where does one find the first rigorous proof of the sampling
theorem? By this we mean the representation of a function f in the cardinal or clas-
sical sampling series:

f (z) = sinπz

π

∑

n∈Z

f (n)
(−1)n

z − n
, (1)

valid for all functions f belonging to some given function class. It has sometimes
been stated that Ogura was the first to give a proof of the classical sampling theorem
in 1920 [134]. One of our purposes here is to subject this statement to further re-
view, and, we hope, clarification. In pursuit of this we are led to a study of the paper
[81] by E.T. Whittaker and among the many ideas that emerge from this work we
find the answer to another fundamental question: where does the notion of frequency
content, in particular, band-limitation, first appear in the context of sampling theory?
It seems that neither Whittaker’s nor Ogura’s contributions to sampling theory have
been reviewed in depth before.

Sampling theory is known to have emerged from many independent beginnings
[16, 17, 30–33, 56, 65], and in preparing a preliminary chapter for the book [18]
it was felt necessary to come to a better understanding of its roots than has been
achieved up to now. The present study is part of this larger design.

It is necessary to recall the difference between interpolation and sampling.

Interpolation: Points (n, an), n ∈ Z, are given; one asks for an interpolant, that is,
a function with good properties that passes through these points.
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Sampling: A class of functions is given (e.g., the Bernstein space B
p
σ ); one asks for

a representation of its members in sampling series.

Interpolation and Sampling have been called ‘dual concepts’. Roughly speaking,
interpolation means that one constructs something; sampling means that one repre-
sents something.1

There is a sense in which Interpolation and Sampling can be considered converses
of each other. Indeed, suppose a theorem asserts that if a sequence of points {(n, an)}
is given, and the series

F(z) = sinπz

π

∑

n∈Z

an

(−1)n

z − n

converges, then its sum F is an interpolant with some ‘good’ properties, it can be
called an interpolation theorem.

A converse situation could be a theorem asserting that if members f of some
function class have ‘good’ properties then the series

sinπz

π

∑

n∈Z

f (n)
(−1)n

z − n

converges and represents f (z). This could be called a sampling theorem.
It will be in this sense that we refer to the notion of converse-type theorems in

what follows.

2 Edmund Taylor Whittaker and His Cardinal Function; Interpolation

2.1 E.T. Whittaker’s Paper of 1915

In [81], his only published paper on the subject, Whittaker introduced what came to
be called the cardinal series in the English literature:

C(x) :=
∞∑

r=−∞

f (a + rw) sin π
w

(x − a − rw)
π
w

(x − a − rw)
, (2)

in the context of interpolation theory.
There follows a section-by-section review of Whittaker’s paper. His methods in-

clude both real and complex function theory. He did not state explicitly any theorem
in the paper [81]. However, he did set several passages in italic which serve to in-
dicate his intentions, but sometimes these are vague or incomplete; hypotheses are
often scattered throughout the paper. He includes no sources in the paper, except for
an unreferenced attribution to Poisson, pp. 185–186.

1From a conversation that one of us (JRH) had with Wayne Walker many years ago.
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2.1.1 Introduction

Whittaker starts by supposing that one knows the values taken by a single valued
analytic function f at an arithmetic progression of points {a + rw}, r ∈ Z, a ≥ 0,
w > 0. These values will not generally determine the function f uniquely since one
could add to f any function that vanishes at the points. Whittaker calls the set of all
analytic functions that agree on the set {a + rw}, r ∈ Z, the cotabular set, which we
shall denote by C.

He shows that the sampling series (2) converges to a particular member of this
cotabular set which deserves a special name, the cardinal function, due to having
two important properties; it has no singularities in the finite part of the plane (that
is, it is an entire function; furthermore, Whittaker shows it to be bounded in strips
parallel to the real axis) and it is free of rapid oscillations (that is, it is band-limited).
To demonstrate these properties he uses a method of removing singularities and high
frequency terms from a function, which will be reviewed in Sects. 2.1.2 and 2.1.4.

Whittaker considers the Gauß interpolation formula (but does not call it that).
Let f (a + rw) = fr ; denote f1 − f0 by �f 1

2
, f0 − f−1 by �f− 1

2
, �f 1

2
− �f− 1

2

by �2f0, etc. Then the Gauß series is

f0 + z�f 1
2
+ z(z − 1)

2! �2f0 + (z + 1)z(z − 1)

3! �3f 1
2
+ · · · . (3)

He poses the following two questions:

(1) Which one of the functions of the cotabular set is represented by the expansion
(3) (that is, the Gauß formula)?

(2) Given any one function f (x) belonging to the cotabular set, is it possible to
construct from f (x), by analytic processes, that function of the cotabular set
which is represented by the expansion (3) (the Gauß formula)?

Both questions are a little vague. It seems that Whittaker is asking for some prop-
erties of the sum of the Gauß expansion. Answers are found in Sect. 2.1.7.

2.1.2 Removal of Singularities from a Function, by Substituting a Cotabular
Function for It

Whittaker’s procedure for ‘removing singularities’ from a function F is as follows.
He first supposes that F has a pole of order 1; let this be at z = z0 so that near z0
we can take F to be of the form F = A(z)/(z − z0), where A(z) is analytic in a
neighbourhood of z0. If F is replaced with f , say, where

f (z) := F(z) − A(z)
sin[π(z − a)/w]

(z − z0) sin[π(z0 − a)/w] , (4)

then clearly f is cotabular with F and has the effect of subtracting the singular part
of F , leaving a function that is analytic in a neighbourhood of z0. In fact, the process
introduces no new singularity, and for all sufficiently large |z| it remains bounded in
strips parallel to the real axis.
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Whittaker gives a more general construction for cases where the singularity is a
pole of higher order or an essential singularity. He now supposes that an entire func-
tion f has been obtained by applying such replacement procedures as are necessary
to remove its singularities.

2.1.3 Removal of Rapid Oscillations from a Function, by Substituting a Cotabular
Function for It

Whittaker shows that if a term has period less than 2w an expression can be found
which is cotabular with it but has period greater than 2w. The actual procedure is
found in the next subsection.

2.1.4 Introduction of the Cardinal Function

Here Whittaker starts with a function f which is assumed already to be an entire
function bounded in strips parallel to the real axis, such that {f (n)} is a bounded
sequence, and synthesises a new function, the cardinal function, by replacing short-
period components with long-period components which are cotabular with them.

In order to remove high frequency terms from f by replacing them with terms
whose frequencies2 lie in the range [− π

w
, π

w
] he starts with the representation3

f (x) = lim
k→0

1

π

∫ ∞

−∞
f (t)

∫ ∞

0
e−λk cosλ(x − t) dλdt (t ∈ R). (5)

He breaks up the inner integral into a sum of partial integrals, a typical one (apart
from the first) being of the form

∫ (2n+1)π/w

(2n−1)π/w

e−λk cosλ(x − t) dλ (n ∈ N). (6)

In this term the periodic factor cosλ(x − t) has frequency λ satisfying

(2n − 1)
π

w
≤ λ ≤ (2n + 1)

π

w
.

This periodic factor is replaced with

cos

[
λ(x − t) − 2πn

w
(x − a)

]
, (7)

which is cotabular with x �→ cosλ(x − t), and has frequency λ − 2nπ
w

satisfying

(2n − 1)
π

w
− 2nπ

w
≤ λ − 2nπ

w
≤ (2n + 1)

π

w
− 2nπ

w
,

or

2Whittaker uses the scale factor 1
w whereas most other writers use w.

3Formula (5) seems to be Fourier’s integral formula modified by incorporating a summability factor. Whit-
taker attributes it to Poisson, p. 186.
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−π

w
≤ λ − 2nπ

w
≤ π

w
.

Thus all high frequency terms have been replaced with low frequency terms; that is,
terms whose frequencies lie in the band [− π

w
, π

w
].

Now the right-hand side of (5) has been replaced with limk→0 G(x, k), where

G(x, k) := 1

π

∫ ∞

−∞
f (t)

{∫ π/w

0
e−λk cos[λ(x − t)]dλ

+
∞∑

n=1

∫ (2n+1)π/w

(2n−1)π/w

e−λk cos[λ(x − t) − 2πn(x − a)/w]dλ

}
dt.

By means of special summations and integrations, Whittaker is able to simplify this
expression, and finally taking limk→0 G(x, k) = G(x), say, he obtains

G(x) =
∞∑

r=−∞

f (a + rw) sin π
w

(x − a − rw)
π
w

(x − a − rw)
(8)

as the required function cotabular with f .
Whittaker achieves his purpose, then, of finding a function G with good properties

(a Paley-Wiener function in current terminology) which, he says in his conclusion,
could take the place of a not-so-well-behaved function f on the strength of being
cotabular with it.

Remark 1 We recognise this as an interpolation theorem, not a sampling theorem,
since Whittaker starts with points (n,f (n)) and constructs an interpolant G.

2.1.5 Examples

Whittaker gives two examples of constructing the cardinal function associated with a
given cotabular set.

Example 1 Let f (0) = 0, f (n) = (−1)n

n
and f (−n) = (−1)n+1

n
.

With these values Whittaker sums the series (8) (in which a = 0 and w = 1) by
means of Gamma functions, obtaining

G(x) = cosπx

x
− sinπx

πx2
.

Note that this is a Paley-Wiener function in current terminology (in fact it is the
derivative of sincx).

Example 2 Let

f (a + rw) =

⎧
⎪⎨

⎪⎩

1, r = 1 mod 6, or 2 mod 6;
0, r = 0 mod 3;

−1, r = 4 mod 6, or 5 mod 6.
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This time Whittaker sums the series (8) by using the expansion of the cotangent
function in partial fractions to obtain

G(x) = 2√
3

sin[π(x − a)/3w].

This function is periodic and belongs to B∞
π/(3w)

in current terminology. This example
was criticised by J.M. Whittaker [82, p. 41] because the sum cannot be analysed
by Fourier’s theorem. Perhaps J.M.W. overlooked the fact that E.T.W. had explicitly
allowed for periodic functions as well, see [81, p. 184].

2.1.6 Direct Proof of the Properties of the Cardinal Function C(x) (cf. (2))

10 C(x) is cotabular with f (x).
20 C(x) has no singularities in the finite part of the x-plane.

Whittaker asserts that (8) cannot fail to converge since it is a sum of residues. It
is interesting to note that because of this the sum must be understood as a Cauchy
principal value.

30 When C(x) is analysed into periodic constituents by Fourier’s integral-theorem,
all constituents of period less than 2w are absent.4

Whittaker’s method is to use Fourier’s integral-theorem to resolve

sin{ π
w

(x − c)}
π
w

(x − c)
(9)

into periodic constituents. Since this seems to be the first occurrence of the notion of
frequency limitation in the context of sampling and interpolation, it is worth quoting
Whittaker’s analysis in full.

Note that he does not use the Fourier transform, but Fourier’s integral theorem is
used in the following form (see e.g., [78, p. 13]). Under suitable conditions on the
function f (which in Whittaker’s context includes continuity),

f (x) = 1

π

∫ →∞

0

∫ ∞

−∞
f (t) cosu(x − t) dt du, (10)

the first integral being an improper Lebesgue integral. Then

sin{ π
w

(x − c)}
π
w

(x − c)
= 1

π

∫ →∞

0

∫ ∞

−∞
sin{ π

w
(t − c)}

π
w

(t − c)
cosu(x − t) dt du,

= w

π2

∫ →∞

0

∫ ∞

−∞
siny

y
cos

(
u

(
x − c − w

π
y

))
dy du. (11)

4In more modern notation we have to understand this as meaning that when the Fourier transform of C is
taken, none of its non-zero values lie outside the frequency range [−π/w,−π/w].
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Now Whittaker uses two special integrals:
∫ ∞

−∞
siny

y
cosκy dy = 0 (κ > 1);

and
∫ ∞

−∞
siny

y
sinκy dy = 0 (all κ).

Hence from (11) the inner integral vanishes if uw > π . Thus, (9) contains no con-
stituent of the type cosu(x − t) where uw > π , that is, no constituent with period
less than 2w.

Whittaker concludes that “The theorem being thus seen to be true for every single
term of the series (8), is consequently true for the cardinal function as a whole”.

Next, Whittaker gives a formula by means of which a whole family of analytic
functions that are cotabular with C(x) can be constructed. It is:

∞∑

r=−∞
e−c(x−a−rw)2m

f (a + rw)

{
sin π

w
(x − a − rw)

π
w

(x − a − rw)

}n

(12)

for any positive constant c and any positive integers m and n.

2.1.7 Solution of the Questions Proposed in Sect. 2.1.1

Using an ingenious contour integration Whittaker shows that the Gauß series repre-
sents the cardinal function, but this is not strictly relevant to the present discussion.

2.1.8 Conclusion

Whittaker speculates on the place to be taken by his cardinal series in the general
theory of expansion of functions, but again, there is nothing strictly relevant to the
present discussion.

2.2 A Summary of the Relevant Parts of Whittaker’s Paper

The main results in [81] appear to be the material in his Sect. 2.1.6 where he claims
that if f (z) is analytic and {f (n)} is a bounded sequence, then the sum G of the series
(8) has the properties Sect. 2.1.6, 10, 20 and 30. This is an interpolation result, but it
is false in general as Ogura showed by the following counter-example [134, p. 65],
repeated in [135, p. 138].

Example 3 Let ϕ be analytic and for n ∈ Z be such that

ϕ(n) =

⎧
⎪⎨

⎪⎩

(−1)n+1, n > 0;
0, n = 0;
(−1)n, n < 0.

Such functions can be constructed using (12). The series (8) (with a = 0, w = 1) is
divergent, e.g., when x = 1

2 .
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Whittaker did not state or prove the classical sampling theorem. However, he
clearly understood the significance of frequency content and its restriction to what
would now be called a “frequency band”; in fact he seems to have been the first to in-
troduce this concept in the context of interpolation. Whittaker’s work is not rigorous
by current standards, but the ideas in his paper have historical value.

2.3 Edmund Taylor Whittaker (1873–1956); His Vita

Whittaker’s family came from the north of England. His father, John Whittaker, was
a man of independent means, whose family had been established in Lancashire since
the late middle ages. His mother was Selina Taylor, whose father was a medical doctor
with a practice near Manchester.

Whittaker did not go to school until he entered Manchester Grammar School at the
age of eleven. Until then he had been taught solely by his mother. He entered Trinity
College, Cambridge, with a scholarship in 1892 where his outstanding work in ap-
plied mathematics earned him several awards and scholarships. He graduated in 1895
and was elected fellow of Trinity College in 1896. At this time his interests turned
more towards pure mathematics. Among those who attended his lectures at Cam-
bridge were H.M. Bateman, A.S. Eddington, G.H. Hardy, J.H. Jeans, J.E. Littlewood
and G.N. Watson.

In 1901 he married Mary Boyd. They had three sons and two daughters. The
middle son was the mathematician John McNaghten Whittaker; the eldest daugh-
ter Beatrice Mary Whittaker married the mathematician E.T. Copson. Sampling and
interpolation seems to have been quite a family affair; Whittaker and his son and his
son-in-law all published research in this topic!

Whittaker had a strong interest in astronomy. He was a member of the Royal As-
tronomical Society and served as its secretary from 1901 to 1906. He was appointed
Royal Astronomer of Ireland in 1906 and at the same time Professor of Astronomy
at the University of Dublin, where his duties consisted of lecturing in mathematical
physics.

In 1912 Whittaker was appointed professor at Edinburgh and remained there for
the rest of his carrier. He would normally have retired in 1943 but because of World
War II he agreed to extend his professorship for a further three years. His house in
George Square was a great centre for social and intellectual gatherings. In this and in
all his work he was strengthened and supported by the gracious presence of his wife
Mary.

Whittaker founded the Edinburgh Mathematical Laboratory to strengthen the prac-
tical side of his interest in numerical analysis. Other interests included, on the applied
side, interpolation, celestial mechanics, relativity, electromagnetic theory, actuarial
mathematics and the history of applied mathematics and physics, and, on the pure
side, algebraic functions, automorphic functions, special functions (especially Bessel
functions) and partial differential equations.
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He received many honours and prizes and held many lectureships at other univer-
sities throughout his career. He served on the Council of several learned societies,
including the Royal Society to which he was elected Fellow in 1905. He received
honorary degrees from the universities of California, Dublin, Manchester, St Andrews
and from the National University of Ireland.

He was a Foreign Member of the Accademia dei Lincei, the Societa Reale di
Napoli, the American Philosophical Society, the Académie Royal de Belgique, the
Benares Mathematical Society, the Indian Mathematical Society and Corresponding
Member of the Académie Française des Sciences.

Whittaker joined the Catholic Church in 1930. In 1935 Pope Pius XI conferred on
him the Cross Pro Ecclesia et Pontifice, and appointed him to the Pontifical Academy
of Sciences in 1936.

He was knighted in 1945. See also “The MacTutor History of Mathematics
archive” http://www.gap-system.org/ history/.

3 Kinnosuke Ogura and the Sampling Theorem

To understand the work of Ogura (see Fig. 1) in regard to sampling, the authors find
it appropriate to first present a scanned copy of Ogura’s paper [134], “On a Certain
Transcendental . . . ”, namely the page containing his first theorem, thus the result
“ I ” below, together with the two pages of Lindelöf’s book [51], cited by Ogura with
respect to the proof of his theorem.

3.1 Ogura’s Sampling Theorem; a Rigorous Proof Emerges

Ogura considers functions f (z) with the properties:

(i) f is a “transcendental integral function”; this is the older terminology for an
entire function;

(ii) “f does not become infinite even at z = ∞ so long as z is real”, can be inter-
preted as f being bounded on R;

(iii) “|f (z)| becomes infinite to a lower order than eπr| sin θ |” means that |f (z)| <

eσr| sin θ |, z = reiθ , σ < π , for all sufficiently large |z|.
He calls a function satisfying these three conditions a cardinal function. Observe

that it is not the same as E.T. Whittaker’s definition of cardinal function (see [81]).
Thus Ogura deals with entire functions of exponential type σ which are bounded

on the real axis rather than being square integrable there, namely with B∞
σ functions

for σ < π . His first theorem [134, p. 64] can be stated as follows:

Theorem 1 The cardinal function can be constructed analytically when its values
{f (n)}, n ∈ Z, are known. In fact,

f (z) = sinπz

π

∞∑

k=−∞
(−1)k

f (k)

z − k
= sinπz

π
lim

m→∞

m∑

k=−m

(−1)k
f (k)

z − k
. (13)

http://www.gap-system.org/~history/
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Proof Lindelöf’s general equation [51, p. 53, (3)], which he applies to different ex-
amples, is as follows:

m∑

k=−m

(−1)kg(k) = 1

2πi

∫

C

π

sinπz
g(z) dz −

∑

C

π

sinπz

(
g(z)

)
, (14)

where C is a suitable contour and the last term indicates the sum of residues of the
expression at the poles of g within C.

Now Ogura probably had in mind to apply this formula to g(z) = f (z)/(x − z)

with the contour Cm, the circle centred at the origin, of radius ρm = m + 1
2 ,

m ∈ N. The residue of πf (z)/(x − z) sinπz at z = x is easily calculated to be
−πf (x)/ sinπx. On taking the limit as m → ∞, (14) becomes

π

sinπx
f (x) = lim

m→∞

m∑

k=−m

(−1)k
f (k)

x − k
− lim

m→∞
1

2πi

∫

Cm

π

(x − ζ ) sinπζ
f (ζ ) dζ.

(15)
This will give the required result if the limit as m → ∞ of these integrals vanishes,
i.e. if

lim
m→∞

1

2πi

∫ 2π

0

ρmeiθf (ρmeiθ )

(x − ρmeiθ ) sin(πρmeiθ )
dθ = 0. (16)

Basic now is an estimate from below for the modulus of the sine-function | sinπζ |
on the circles Cm, where ζ = ξ + iη with ξ2 + η2 = ρ2

m, i. e. ζ ∈ Cm; see lemma
below.

To establish (16) we now use a uniform convergence argument, one which Ogura
could have had in mind. First note that |x − ρmeiθ | ≥ ρm − |x| for m sufficiently
large. Thus, when condition (iii) and (19) (below) are taken into account, the inte-
grands in (16) are no larger than

K
ρm

ρm − |x|e
−πρm| sin θ |f (ρmeiθ ) ≤ K

ρm

ρm − |x|e
−πρm| sin θ |eσρm| sin θ | ≤ K ′ (17)

where K,K ′ are suitable constants.
Of course these inequalities do not imply uniform convergence to zero of the in-

tegrands in (16) on the whole interval [0,2π]; but they do so on the subintervals
[δ,π − δ] and [π + δ,2π − δ] for every 0 < δ < π in view of σ < π .

Let us split up the integral as follows:

∫ 2π

0

ρmeiθf (ρmeiθ )

(x − ρmeiθ ) sin(πρmeiθ )
dθ

=
(∫ π−δ

δ

+
∫ 2π−δ

π+δ

+
∫ δ

0
+

∫ π+δ

π−δ

+
∫ 2π

2π−δ

) ρmeiθf (ρmeiθ )

(x − ρmeiθ ) sin(πρmeiθ )
dθ.

Then the first two integrals tend to zero for m → ∞ in view of the uniform conver-
gence of the integrands. The latter three integrals can be made smaller than any given
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ε > 0 by choosing δ appropriately, e.g. δ = ε/4K ′; it works since the integrands are
uniformly bounded by K ′. �

Observe that another argument establishing (16) follows by integrating inequality
(17), thus

∣∣∣∣
∫ 2π

0

ρmeiθf (ρmeiθ )

(x − ρmeiθ ) sin(πρmeiθ )
dθ

∣∣∣∣

≤ Kρm

ρm − |x|
∫ 2π

0
e−πρm| sin θ |eσρm| sin θ | dθ. (18)

Since sin θ ≥ 2θ/π for θ ∈ [0,π/2], as follows by a convexity argument, this
yields

∫ 2π

0
e−πρm| sin θ |eσρm| sin θ | dθ = 4

∫ π/2

0
e−(π−σ)ρm sin θ dθ

≤ 4
∫ π/2

0
e−2(1−σ/π)ρmθ dθ ≤ 2

(1 − σ/π)ρm

.

This shows that the left-hand side of (18) approaches zero as m → ∞. (It would
even approach zero if instead of K we had a quantity satisfying o(ρm) as m → ∞.)

Even a third argument could have been used in this respect, namely Lebesgue’s
dominated convergence theorem. Indeed, the integrands of (16) tend to zero for all
θ ∈ [0,2π] except for θ = 0 and θ = π , and are dominated by K ′ in view of (17).

Lemma There exists a constant C > 0 such that

1

| sinπz| ≤ Ce−π |y| = Ce−πρm| sin θ | ≤ C (z = x + iy = ρmeiθ ∈ Cm). (19)

Proof First consider those x for which m + 1
4 ≤ |x| ≤ m + 1

2 = ρm. Since | cos | is
non increasing on [π(m + 1

4 ),πρm],

| cosπx| ≤
∣∣∣∣cosπ

(
m + 1

4

)∣∣∣∣ = 1√
2
.

Thus

| sinπz|2 = cosh2 π |y| − cos2 π |x| ≥ 1

4
{e2π |y| + e−2π |y| + 2} − 1

2
≥ 1

4
e2π |y|,

yielding that

| sinπz| ≥ 1

2
eπ |y|

(
z = x + iy ∈ Cm; m + 1

4
≤ |x| ≤ ρm

)
.
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Now to those x with |x| ≤ m + 1
4 . Then |y|2 = ρ2

m − |x|2 ≥ ρ2
m − (m + 1

4 )2 ≥ 1
2 ,

i.e. |y| ≥ 1√
2

. So we obtain

| sinπz|2 = cosh2 π |y| − cos2 π |x| ≥ cosh2 π |y| − 1 ≥ 1

4
e2π |y| − 1

2
≥ 1

8
e2π |y|,

which gives the inequality

| sinπz| ≥ 1√
8
eπ |y|

(
z = x + iy ∈ Cm; |x| ≤ m + 1

4

)
.

Altogether we have established (19) with C = √
8. �

Ogura’s first theorem is in all respects the sampling theorem established in, e.g.,
Butzer-Ries-Stens [11], stating:

If f ∈ B∞
πτ for some 0 < τ < w, then

f (z) =
∞∑

k=−∞
f

( k

w

)
sinc(wz − k) = sinπz

π

∞∑

k=−∞
f

(
k

w

)
(−1)k

z − k
(z ∈ C),

where the two series, understood as Cauchy principal values, are uniformly conver-
gent on each bounded domain of C.

Here τ has to be strictly less than w as follows from the counterexample f (z) =
cosπwz ∈ B∞

πw . This corresponds to the condition σ < π in Ogura’s theorem. It
should be pointed out that this particular sampling theorem can be proved, as far as
we know, only by methods of complex analysis.

The proof in [11] was also based on Cauchy’s integral formula and residue meth-
ods. However, instead of a circular contour a square of side length 2m + 1 centred at
the origin was used.

Note that Jagerman-Fogel [37] already applied such an approach in 1956 under
somewhat different conditions.

Churkin-Jakowlev-Wunsch [22] and Wunsch [84] worked with a circular con-
tour but their proofs are not correct since they made use of the inequality | sinαz| >
1
2 exp(αr| sin θ |) for z = reiθ , which fails e.g. for θ = π

2 , α > 0.

3.2 A “Converse” to Ogura’s Sampling Theorem

Ogura also presents a “converse” to his Theorem 1, found in [136, p. 240]. It states

Theorem 2 Let
∑∞

k=−∞ |f (k)| < ∞. Then

F(z) = sinπz

π

∞∑

k=−∞
(−1)k

f (k)

z − k
(20)
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is cardinal such that F is cotablular with f , i.e. F(k) = f (k), k ∈ Z, and can be
represented for some g ∈ C[−π,π] as

F(z) =
∫ π

−π

g(u)e−izu du (z ∈ C).

Ogura calls it a “converse of Whittaker’s Theorem”, p. 240. Since the integral
representation implies that F satisfies the conditions (i)–(iii) it is indeed a converse
to Theorem 1. Whittaker, however, did not state a result of this type. As we have seen
in Sect. 2, his result is an interpolation formula as is (20). So it is not clear why Ogura
speaks of a “converse of Whittaker’s Theorem”.

As to the differences between Whittaker’s and Ogura’s interpolation formula,
Whittaker assumes that f is an entire function bounded in strips parallel to the real
axis, which implies, in particular, that (f (k))k∈Z is a bounded sequence. Ogura in
his Theorem 2 requires that this sequence is absolutely summable without any other
assumptions upon f . He shows that Whittaker’s boundedness assumption is indeed
too weak and that his result is false by giving a counterexample.

3.3 First Conclusions

Ogura’s result “ I ” in his paper [134], given in our Theorem 1, is the first clear state-
ment of the classical sampling theorem that the authors have ever met. Moreover,
the hypotheses and the formulation are both correct. In his footnote (1) to his result
Ogura cites Whittaker’s paper [81], especially pp. 182–187, and adds: “Although his
method is very interesting and instructive for practical work, it is not free from inac-
curacies. A proof of this theorem, which is simple and rigorous, can be obtained in
Lindelöf, Calcul des résidus [51], p. 53”.

In trying to follow Ogura’s “simple proof” the authors applied Lindelöf’s equation
(3) on his p. 53, to give (15) above. This immediately yields Theorem 1 provided the
integral in (15) tends to zero. The authors have presented three proofs of this fact, the
third of which is probably the simplest. But a rigorous approach was by no means the
usual practice around 1920. Even as late as 1971 proofs of the convergence to zero of
the integral in question given in [22, 84] were not fully accurate.

Ogura’s second result in the sampling area, namely Theorem 2, although quite
interesting, does not have the same historical value.

Unfortunately, Ogura’s work in sampling remained unrecognised for several gen-
erations. Only in 1992 was his fundamental theorem brought to the attention of the
mathematical community (see [12]), with the observation that Ogura referred erro-
neously to Whittaker as the initiator of the sampling theorem.

Sampling series are present in the work Cauchy, but only under suitable interpre-
tation (see, e.g., [17, 32, 49]). It is interesting that Lindelöf mentions Cauchy as a
source for his method (see the scan of his p. 53).
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4 K. Ogura, His Life and Work; a Survey

4.1 Ogura’s Vita

Kinnosuke Ogura was born in 1885 in Sakata Funaba-cho, Yamagata Prefecture,
Japan, as the eldest son of Kinzou Ogura. He began his studies in 1902 at the Tokyo
Butsuri Gakko5, now the prestigious Tokyo University of Science.

After graduating from there in 1905, he studied chemistry at the Imperial Univer-
sity of Tokyo as a non-regular student, married in 1906, and then worked with his
father for a while in his home town. He was not a regular student there perhaps be-
cause his father was a wealthy business man in a rural city and he should take over
the business later. However, he also had been studying mathematics at the same time
under the guidance of Tsuruichi Hayashi (1873–1935), even writing in 1910 a book
on infinite series. Under Hayashi he received in 1911 an assistantship at Tôhoku Uni-
versity, and in 1916 the Doctoral Degree6 from Tôhoku University with the thesis
“Paths of a mass point in conservative fields”. In the next year he received a position
as researcher at Siomi Institute of Physical and Chemical Research7 in Osaka.

In 1919 he went abroad to Europe for study purposes and stayed mainly in France.
After returning to Japan 1922 he concerned himself with Einstein’s visit to Japan
in the Fall of 1922, published a book on the elements of mathematical education
in 1924, another on statistics, and in 1925 became President of the Siomi Institute.
Simultaneously he was professor at the College of medicine,8 Osaka, from 1917 to
1926, when he had to retire from the university due to poor health; already in 1906 it
is mentioned [1, 24] that he was not in good health, likewise in 1941, 1945 and again
in 1951.

For the years 1927 to 1931 it is reported [1, 24, 159] that he read a book of Tolstoi,
translated several books and became interested in history of mathematics, starting
by gathering old Japanese mathematical books, and taught also at the University of
Hiroshima between 1931 and 1934. In 1932 he became Lecturer in mathematics at
Osaka Imperial University and taught there off and on till 1943, when he retired.

From 1940 to 1943 he was President of Tokyo Butsuri Gakko, his first Alma Mater,
in 1948 President of the History of Science Society of Japan, and finally in 1962
President of the Society of Japanese Mathematical History. He passed away in 1962
at the age of 77 in Sakata Funaba-cho, his birthplace.

Ogura’s first two papers, on differential geometry appeared 1908 [85, 86], and on
its applications to mathematical physics in 1911 [95]. His majors were in fact dif-
ferential geometry and applied analysis. Later his activities turned to mathematical

5A private institution founded 1881 as The Tokyo College of Physics by 21 graduates of the Department
of Physics of the pre-University of Tokyo; see [40]. The founders had studied physics mainly in France.
6As Masaru Kamada has kindly pointed out, the Tokyo University of Science celebrated its 125th Anniver-
sary in 2006, and Prof. Ogura is featured as the first D.Sc. among the graduates from private universities.
D.Sc. in Japan at the time was a fame comparable with being a minister.
7The Institute was set up by Dr. Hantaro Nagaoka (1865–1950) (see [35]); it was the antecedent of the
Faculty of Science of Osaka Imperial University, founded 1931.
8The Osaka Prefectural Medical College, with a long tradition, was a further antecedent of Osaka Univer-
sity.
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Fig. 1 Photos of Ogura. The first one was probably taken in 1916 when he received the D.Sc. from Tôhoku
University, the second from a web site of Yamagata prefecture, celebrating their local hero

education and history of both Western and Japanese mathematics, fields in which his
interests were deep and wide; they extended over to social problems in economics
(being influenced by Marxist historiography), also in the thirties to those against fas-
cism. He was thus a man of very broad interests, including applied mathematics,
statistics, philosophy and culture, and was able to make illuminating contributions
from the viewpoint of a scientist and a humanist.

Ogura was the author of at least 70 papers in mathematics; 42 of these papers
alone were published in the renowned Tôhoku Mathematical Journal in the short
period between 1911 and 1923. Furthermore, he was the author of some 35 books
in the areas described, especially ones relating to social, educational and scientific
problems in connection with human beings (16 of these books were published by
Keisoshobo and these books together with other related books on Ogura are in the
Yamagata Prefecture Library); see also [1, 24, 71, 159] as well as Poggendorff [66],
vol. V, pp. 920/921. We also find his contributions cited with admiration in Google
and other internet search engines.

Considering that Ogura began studying mathematics by himself only after 1905
in his early twenties, Hayashi, who had a gift for nurturing young mathematicians,
must have recognised his talents as he accepted him as his assistant when Tôhoku
university opened in 1911. It is reported that since Ogura received his education at
a private university in Tokyo and not at the Imperial one, he did not obtain a good
initial academic position; in fact he was not able to become full professor, nor even
lecturer or associate professor, for many years. However, he was finally the first to
make the grade. On top, the private institution specialized not in mathematics but
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physics. But that this education was a solid one is revealed by his work in the area
of relativity theory already in 1913. Thus was he a mathematician, physicist or a
mathematical physicist at the time? Interdisciplinary scientists, although so important
in research, may have their problems. Since Hayashi stood in best of terms with the
Tôhoku physicists—world famous ones at the time being Hantaro Nagaoka and his
student Kotaro Honda (1870–1954)—Ogura seems to have been lucky in this respect.
A further prerequisite for being appointed to a top level mathematical position at an
Imperial university was generally a period of further study abroad, such as Göttingen,
Berlin or Paris (see [23, p. 430]).

On checking Ogura’s bibliography, it seems that his preference was for France and
that he had hoped to be there by 1913 at the latest. Ogura’s academic uncles, Takagi
and Fujiwara, had both studied in Europe, the former returning to Japan in 1901 and
the latter in 1911. Fujiwara had in fact studied in all three cities (but only received his
doctorate in 1916 at age the age of 31). With World War I beginning in 1914 Ogura
probably decided to study for his doctorate at Tôhoku university—completing it in
1916—and it was not until 1919 that he was able to leave for France, at the age of 34.

4.2 Ogura in Europe

Ogura left for Europe in late 1919, arrived in Paris in January 1920 and stayed in
France till December 1921. He is reported to have studied French until August; hav-
ing translated in 1913 Rouché’s two volume work “Traité de Géométrie” (first edi-
tion 1883, seventh 1900; a total of 1212 pages), he certainly was fully familiar with
mathematical French. Having also read many French novels and books he was by no
means a newcomer in written French either. Thus 1920 he attended the lectures of
Émil Borel (1871–1956) and of Paul Langevin (1872–1946), the former, a student
of Henri Poincaré, Professor of the Theory of Functions at the Sorbonne, the latter
Professor of Physics there, both since 1909.

Especially on account of his monographs on entire functions of 1900 and on infi-
nite series of 1901, Borel was no doubt one of Europe’s great experts in mathemat-
ical analysis. In fact in 1899 he also studied the convergence of the cardinal series
for all t ∈ C. Since Ogura had written two books on infinite series, one together
with Hayashi in 1912, both had at least this common interest. Langevin, the promi-
nent physicist, a student of Pierre Curie, who developed Langevin dynamics and the
Langevin equation [50], had all the tools needed for proposing the special theory
of relativity before Einstein; but Einstein beat him to it and proposed it, as Einstein
himself reported.

As to Borel, Ogura can be said to have been on par with him. In fact, in his paper
[6] Borel noted with pleasure Ogura’s adoption of the term “kinematic space” in
Ogura’s paper of 1913 [99] on the Lorentz transformation. But he regretted that Ogura
had not yet “seen all the advantages” of the law of velocity addition in its original,
non-commutative form adopted by Borel in his newer paper [7]. Borel, shortly after
1909 had indeed taken up the study of relativity theory, as he said “in the form given
by the late Minkowski”, which he communicated in the two papers in question in the
Comptes Rendus.

The early twentieth century witnessed the development of Einstein’s special the-
ory of relativity (1905) and the extension to his general theory (1915), as well as of
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non-Euclidean and n-dimensional geometries. Two lectures by Hermann Minkowski
(1864–1909), Einstein’s mathematical teacher, played a basic role in this develop-
ment (Göttingen, Nov. 1907; Cologne, Sept. 1908). Borel first concerned his thoughts
upon the principle of relativity before his discovery of the notion of proper time
(Eigenzeit) with which he eventually elaborated the structure of space-time in terms
of four-dimensional point trajectories (or “world lines”) and a Lorentz-covariant me-
chanics. In fact he began by pointing out the differential equations—the Lorentz
transformation—used by Hendrik A. Lorentz (1853–1928) as the foundation of his
successful theory of electrons. After Minkowski’s death [80] Arnold Sommerfeld9

(1868–1951) took up the matter (Salzburg, Sept. 1909) and so did Vladimir Varicak
(1865–1942) (Karlsruhe, 1911). Already in 1913 there was a priority dispute between
Borel, Langevin, and Sommerfeld regarding the application of non-Euclidean geom-
etry to relativity. It is in this respect that Borel [6] had commented on Ogura’s paper.
While in Paris, Ogura actually wrote five papers in the broad area of relativity theory,
Borel communicated them to the Comptes Rendus (see papers [142–147]). Reviews
of two of these were made by Philipp Frank (1884–1966), the inaugurator of the
non-Euclidean style.

Ogura also attended the very exciting meetings of the universal Jacques Hadamard
(1865–1963), Professor at the Collège de France and the École Polytechnique at the
time, with Masazo Sono (1886–1969) and Yayotaro Abe (1883–1951).

Of interest is that Ogura also met Teiji Takagi, his academic uncle, while the latter
lectured on his field equation at the ICM held at Strasbourg in 1920. Ogura himself
also read a paper [141] there.

Moreover, he met Matsusaburô Fujiwara, a student of Fujisawa, when Fujiwara
was visiting Paris in 1921. Fujiwara and Hayashi were the founding mathematics
professors of Tôhoku University. It is also reported that he met Fréchet and the Amer-
icans L.P. Eisenhart and D.E. Smith while in Europe.

The European tradition of science and culture which Ogura observed especially in
Paris did impress him. Indeed, the level of general culture of France was very high in
comparison with the level of Japan, as he remarked.

4.3 Einstein in Japan; Ogura’s Comments

Einstein visited Japan for six weeks, arriving at Kobe on November 19, 1922 and
giving academic lectures on the theory of relativity at Tokyo and Kyoto, public ones
in several other cities, see [25]. Of unusual interest is that 14 publications connected
with Einstein’s lecture tour appeared in Japan between 1921 and 1922; all but one
were written by Japan’s great physicists — three had studied in Germany and had met

9Sommerfeld, who was the academic father of four Nobel laureates (Debye, Heisenberg, Pauli, and Bethe),
was Professor of Mechanics at Aachen 1900–1906 when he became Professor of Physics at Munich’s Uni-
versity; he took his assistant Peter Debye, born 1884 in Maastricht, with him. In Munich he belonged
together with Perron, Tietze, Caratheodory to the group of ten Munich professors of mathematics, all
members of the Bavarian Academy of Sciences, who were neither Nazis nor (what is not the same) mem-
bers of the Party, as Georg Faber reported. This contraposition to Nazism, headed by the great Oskar
Perron (1880–1975), in a city dominated by Germany’s highest Nazis, may have been unique for German
universities at the time. See [57].
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Einstein personally. One was Ayao Kuwaki (1878–1945), one of the first Japanese
physicists to study in Europe, in Berlin between 1907 and 1909; another was Jun
Ishiwara10 (1881–1947). Ogura, who was in close contact with Borel in connection
with relativity and who had attended Langevin’s lectures—probably also in relativity
theory—and who was also familiar with geometry, wrote the article “Interaction of
Physics and Geometry” [149]. Einstein had lectured on “Theory of Relativity and
Galileo” at Osaka’s Public Hall on 11 December 1922, with an audience of 2500.
Ogura taught at Osaka at the time.

Whereas the physicists expressed nothing more than admiration of Einstein’s way
of lecturing (see [25]), only Ogura touched on the content of the lectures. In fact he
wrote:

I have never seen such a lecturer always smiling and having great composure.
He was not very good at calculations nor rigorous in logic, but he had strong
intuition. He showed us how intuitive the great work of a genius is at its foun-
dation.

Even though Ishiwara, who had studied under Sommerfeld and Planck in Germany,
was the author of “Principle of Relativity” (Iwanami Shoten Publ., Tokyo, 1921),
had accompanied Einstein during his travels over Japan, he did not express himself
in such a form. In fact, as the prominent physicist Hiroshi Ezawa (1932– ) [25]
writes, “the direct impact of Einstein was not great among established scientists”.
This encounter speaks for Ogura’s noted role in Japanese top level academic life at
the time.

4.4 Ogura’s Mathematical Supervisor and Academic Grandfathers

4.4.1 Tsuruichi Hayashi

Tsuruichi Hayashi was born on June 13, 1873, in Tokushima (Shikoku Island), Japan
and died on October 4, 1935, in Matsue City, Shimane Prefecture. He came from a
traditional family of Wazan and was educated at the Third Higher School in Kyoto.
He studied mathematics at the Imperial University in Tokyo under Dairoku Kikuchi
(1855–1917) and Rikitaro Fujisawa (1861–1933), graduating in 1897. Tokyo Univer-
sity was the only university in Japan at the time.

Hayashi first taught mathematics at the Higher Normal School in Tokyo and at
the newly founded Kyoto Imperial University. When plans were made in 1907 to es-
tablish Tôhoku Imperial University, he became a founding professor of mathematics
there together with Matsusaburô Fujiwara (1881–1946). When the university was of-
ficially inaugurated in 1911, Hayashi served as director of the Mathematical Institute,

10Ishiwara (or Ishihara), who graduated from Tokyo University in 1906, must have had Rikitaro Fujisawa
as his mathematics professor. He was the author of ten papers on relativity theory, six of which were
published in Germany, including the review [34] written upon the request of Johannes Stark (1874–1857);
he was in Europe from April 1912 to May 1914, thereafter at Tôhoku University. Stark, Professor of
Physics in Aachen 1908–1917, received the Physics Nobel Prize 1919. But he was of a dubious character
and became a top Nazi, often called the “Physics-Führer”, when Hitler came to power.
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and both decided to make their department a rival to that at Tokyo Imperial Univer-
sity. In fact, until 1945 Tôhoku University was regarded as the Japanese replica of
Göttingen and Tokyo as that of Berlin University.

First of all, Hayashi launched the Tôhoku Mathematical Journal with his own
funds in 1911, the first international journal devoted to mathematics in Japan. As
Hayashi’s assistant, Ogura cooperated with Tadahiko Kubota (1885–1952), an as-
sociate professor at the time, and the physicist Jun Ishihara in editing the journal.
Secondly, Hayashi and Fujiwara were the first to organize “colloquia” for profes-
sors to communicate their research results, and “meetings for students”, to enlarge
their mathematical knowledge by reading books and international journals. Thirdly,
they established a regular collaboration between the departments of mathematics and
physics so that mathematics students could attend the basic physics courses and vice
versa. Thus the university became a world leader in differential geometry (with e.g.
Shigeo Sasaki (1912–1987), real analysis and especially Fourier series.

Hayashi and Fujiwara were also known as erudite and prolific authors of high qual-
ity mathematical books as well as of text books for secondary schools. But Hayashi,
who apparently did not study in Europe, also wrote a great number of mathematical
research papers; one just needs to check the long list in Poggendorff [66], vol. V,
pp. 509–511, vol. VI, p. 1055. For an obituary note on Hayashi see [28, 29], and on
Fujiwara see [46].

Hayashi was also interested in the history of Japanese mathematics, stimulated by
Kikuchi. His rivalry with Yoshio Mikami (see [58, 59]) over this history began in
1906 and ended only with Hayashi’s sudden death in 1935. His papers on the history
of mathematics were collected and published posthumously in two volumes in Tokyo
in 1937 under the title “Collected Papers on Japanese Mathematics”.

4.4.2 Dairoku Kikuchi

Of Ogura’s two academic grandfathers, Dairoku Kikuchi was the elder. Kikuchi was
sent to Great Britain in 1866, at age 11, to study for two years in London. He re-
turned to England in 1870, first to University College School, London, and then to
St. John’s College, Cambridge University, where he studied under Isaac Todhunter
(1820–1884).

Kikuchi was the first Japanese student to graduate from Cambridge University
with the BA degree in 1877, being the 19th Wrangler in the Mathematical Tripos of
that year. He received the MA (by proxy) in 1881. His specialization was physics and
mathematics, in particular geometry. After returning home in 1877, Kikuchi became
the first professor of mathematics at the Imperial University of Tokyo, founded 1877.
He received his doctorate in science there in 1888. He had a remarkable career as
an educator and administrator of science, serving as Dean of the College of Science,
1881–1898 when he was named President of the University. The title Baron was
bestowed on him in 1904.

He was also the first President of the Science Research Institute of Japan; see
[44, 45].
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4.4.3 Rikitaro Fujisawa

Finally to Ogura’s other academic grandfather, the eminent Fujisawa (or Fudzisawa).
Born 1861 in Niigata as a son of a direct vassal of the Tokugawa shogunate, Fuji-
sawa entered Tokyo University in 1878, studying mathematics and astronomy, and
graduated in 1882.

Fujisawa was the first undergraduate student11 of Kikuchi who sent him in 1882
to Europe to continue his studies, first to University College, London, to his friend
Prof. Richard Rowe, for several months, and then to Germany, to the University of
Berlin, where he attended the lectures of Karl Weierstraß and Leopold Kronecker, and
in October 1884 to the Kaiser-Wilhelm University at Strasbourg where he obtained
his doctorate, under the well-known Elwin Bruno Christoffel (1833–1900) in 1886;
see [10].12

Returning home in 1887, he was appointed a professor at the newly founded Fac-
ulty of Mathematics of Tokyo University. Whereas this university was originally
based on the English model, “Fujisawa steadily transferred the art of research in a
German university to Japan” by introducing, for example, research seminars in the
style initiated by Lejeune Dirichlet.

Kikuchi’s teaching generally did not go beyond analytic geometry and differential
and integral calculus, what he had received in England in the 1860s and 1870s. “Fu-
jisawa went far beyond these, delivering lectures on the theory of real and complex
variables, the theory of differential equations, and an introduction to the theory of
elliptic functions”; see [69].

Fujisawa was Japan’s speaker on the occasion of the third ICM held at Paris, in
1900.

He worked in elliptic functions and published 14 papers, one being in Japanese,
the others in German. He was elected to the Japan Academy in 1932. His collected
works were published in 1938 in three volumes [77]. One of his great practical credits
was the establishment of the Japanese insurance industry; see [27, 70].

11Fujisawa was an undergraduate student of Kikuchi, but a doctoral student of Christoffel. Hence, Kikuchi
and Fujisawa, as joint teachers of Hayashi, can be considered as academic grandfathers of Ogura; see [77].
12As to the real genealogies of Christoffel and Dirichlet (1805–1059), Christoffel was born in Monschau,
35 km south of Aachen, Dirichlet comes from Düren, 28 km east of Aachen. However, both paternal
grandfathers were born in Verviers, Belgium, 30 km south-west of Aachen, the one Charles Christophe in
1746, the other Antoine Lejeune Dirichlet in 1711.

Whereas the maternal ancestors of Christoffel came mostly from Monschau, Dirichlet’s mother on the
paternal side came from Annaberg (Saxony) and on the maternal side from the Rheinland. The ancestors
of both mathematicians descended from important families of the Verviers, Malmedy, Liège, Visé, Aachen
region; they have at least ten common ancestors between the eighth and tenth generation.

Of interest is that the genealogical tree of Christoffel has been traced back to the 25th generation, to
a certain Knight Michel d’Awir, 10 km south-west of Liège, who was born ca. 1035, and that of Dirichlet
in the 17th generation to a Knight Balduin of Waimes, 45 km south-west of Aachen, who is documented
for 1166. This information was kindly supplied by the late Manfred Jansen of Kalterherberg, just south
of Monschau, a friend of PLB. Jansen spent several years of his spare time in the excellent Archive of
the City of Liège locating and working out these genealogical tables. His own lineage also goes back to
Michel d’Awir; see [13, 38, 39]. This knight was a descendant of the Carolingian nobility according to
E. Winkhaus: “Ahnen zu Karl dem Großen und Widukind”, Selbstverlag, Ennetal (Hagen), Bd. I, 1950,
Bd. II, 1953.



344 J Fourier Anal Appl (2011) 17: 320–354

4.5 Further Conclusions

Of Ogura’s circa 70 papers in mathematics, we have examined in great detail two
papers in the area of sampling theory, dating to 1920, and, somewhat shorter, his
paper [99] of 1913 on the Lorentz transformation in the area of relativity theory à
la Minkowski, following up work of Borel. Being a graduate of the Tokyo College
of Physics in 1905, lecturing there from 1910 to 1911, as well as his cooperation
with physicists from 1911 to 1917 at Sendai, especially with Jun Ishiwara, explains
Ogura’s expertise in relativity, one of the extremely popular fields at the time.

In view of Ogura’s interdisciplinary work in mathematical analysis—his two pa-
pers on sampling being just a part of his 42 papers which appeared in the Tôhoku
Math. Jour. between 1911 and 1923, and his work in physics, differential geometry
applied to mathematical physics, specifically relativity theory—five of his six papers
in the area had been accepted for publication by Borel—one can certainly classify
him as a first rate, pre-WW II mathematical analyst.

Hantaro Nagaoka was surely of this opinion when in 1917 he founded the Siomi
Research Institute in Osaka, a part of the later Imperial University at Osaka, and of-
fered Ogura the research position. Nagaoka was Professor of Physics at Tokyo Uni-
versity from 1901 to 1925. From 1893 to 1898 he had studied in Vienna, Berlin and
Munich and was the first to present, in 1904, a Saturnian atomic model close to the
presently accepted model.

The question may arise why Ogura picked France and not Germany for his Eu-
ropean research stay; Germany had been the country practically all Japanese math-
ematicians (and physicists) had chosen before WW I. Well, after WW I the outside
world was essentially closed to German mathematicians, basic examples being the
ICM at Strasbourg and Toronto in 1920 and 1924, respectively. The Italians were the
first to admit them again, to the ICM at Bologna in 1928. As to that at Strasbourg,
Teiji Takagi reported that at his invited lecture on class field theory, in which he had
generalized work of H. Weber and Hilbert, “I could find only a few people among the
audience who could be interested in it”, and “the German mathematicians were not
invited”. Therefore he visited Hecke and Blaschke in Hamburg.

At the latest by 1913 Ogura planned to go to France, on account of his scientific
contacts with Borel and perhaps also because he had heard of Revue du mois, the ral-
lying point of the young scientists at Paris: Perrin, Langevin, Pierre and Marie Curie
and others, its chief protagonist being Borel. Of that group he attended Langevin’s
lectures on relativity theory.

4.6 Ogura’s Academic Uncles and Cousins, Founders of the Japanese School of
Modern Mathematics

Students of both Kikuchi and Fujisawa included Hayashi and Jittaro Kawai (1865–
1945), the teacher of Masazo Sono with his offspring Yasuo Akizuki (1902–1984)
and the Fields Medalist Heisuke Hironaka (1931– ).

Students whose primary mentor and teacher was Fujisawa included:

• Teiji Takagi (1875–1960) [36, 60, 76], who studied at Berlin with Fuchs, H.A.
Schwarz and Frobenius, and at Göttingen with Klein and Hilbert in 1898–1901,
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who had at least 380 mathematical descendants, including Sigekatu Kuroda
(1905–1972), Tadashi Nakayama (1912–1964), and especially of Shokichi Iyanaga
(1906–2006, who studied in Paris and Hamburg under Artin), with his own off-
spring Makoto Abe (1914–1945), the differential geometer Kentaro Yano (1912–
1993), the Fields Medalist Kunihiko Kodaira (1915–1997), Kiyosi Ito (1915–2008)
and Kenkichi Iwasawa (1917–1998); Takagi’s successor in office in 1936 was Zy-
oiti Suetuna (1898–1970), also a student of his;

• Yosie Takuji (1874–1947), who studied for three years with Klein and Hilbert in
Göttingen, with his offspring Mitio Nagumo (1905–1995), Kinjiro Kunugi (1903–
1975), Masuo Hukuhara (1905–2007),13 Kosaku Yosida (1909–1990), all expert
analysts;

• Senkichi Nakagawa (1876–1942), who studied for three years under H.A. Schwarz
at Berlin and was the co-supervisor of Shokichi Iyanaga;

• Matsusaburô Fujiwara was Ogura’s second teacher at Sendai as well as teacher of
Yoshitomo Okada (1892–1957), Shin-ichi Izumi (1904–1990), of Tadao Tannaka
(1908–1986), co-inspirer of Kodaira, and of Gen-ichirô Sunouchi (1911–2008);14

Okada spent some time at Göttingen in 1928 and was co-mentor (with Tatsujiro
Shimizu) of Shizuo Kakutani (1911–2004);

• Tadahiko Kubota [68], regarded as the founder of modern geometry in Japan;
• Soichi Kakeya (1886–1947), who was also inspired by Takagi. He is known for the

“Kakeya needle problem” (related to Reuleaux’s triangle);

As the late Prof. Gen-ichirô Sunouchi (1911–2008)15 of Tôhoku University had
written to one of the authors in 1979 (see [10, p. 6]), Fujisawa and his many out-
standing students were responsible for raising the standard of mathematics in Japan
to the European level. His student Teiji Takagi was regarded as the founder of
the Japanese school of modern mathematics, according to Prof. Katsuya Miyake
(1941– ) of Waseda University (Tokyo) [60]; see also [69]. Kinnosuke Ogura was
indeed an academic grandson of Fujisawa, his living model, as were also his acad-
emic uncles. However, Ogura’s academic life was considerably harder than that of
his shining examples—he had not begun his education at an Imperial university.

13It may be of interest that Prof. Hukuhara (or Fukuhara) accepted as chief-editor of Publications Research
Institute of Mathematical Sciences for publication in 1968 the paper Butzer, H. Berens and S. Pawelke,
“Limitierungsverfahren von Reihen mehrdimensionaler Kugelfunktionen und deren Saturationsverhalten”,
Publ. RIMS, Kyoto Univ., Ser. A, Vol. 4 (1968), 201–268. According to W. Kunyang and Li Luoqing,
“Harmonic Analysis and Approximation on the Unit Sphere”, Science Press, Beijing/New York, 2000,
p. i, it is the first basic paper on approximation problems on the sphere, which became an active field of
research from 1980 onwards.
14The doctoral students of Sunouchi at Tôhoku University included Chinami Watari (1932–199?),
Y. Suzuki, Satoru Igari (1936– ), Kōichi Saka (1944?– ), Jun Tateoka (1944?– ), Makoto Kaneko
(1944?– ), Takahiro Mizuhara (1945?– ), Shigehiko Kuratsubo (1945?– ).
15It was Prof. Sunouchi who during his three months research visit at PLB’s chair in 1963 explained the
structure of Japan’s university education, of the seven Imperial universities at the time, their great (ex-
clusive) role in its university life. Sunouchi’s great respect for Japan’s social customs, for his ancestors,
truly impressed PLB. While in Aachen, a joint paper was written: Butzer-Sunouchi, “Approximation the-
orems for the solution of Fourier’s problem and Dirichlet’s problem”, Math. Ann. 155:316–330 (1964).
During his time in Aachen Sunouchi also participated in the first conference on approximation PLB con-
ducted at the Mathematical Research Center, Lorenzenhof, Oberwolfach. See Butzer, J. Korevaar (eds.),
“On Approximation Theory”, Birkhäuser, Basel, 1964. See [14].



346 J Fourier Anal Appl (2011) 17: 320–354

4.7 Ogura, Protagonist in the Modernization of Japanese Education, the Basis to
Scientific Research

Whereas the Japanese descendants of E.B. Christoffel,16 headed by Rikitaro Fujisawa
and especially his academic son Teiji Takagi, raised the standard of mathematics in
Japan to the European level, it was Fujisawa’s academic grandson Ogura who was
Japan’s chief protagonist in raising the scientific level of the general public itself and
that of mathematical education to the European level.

In fact, just back in Japan from France, he lectured in many cities during 1922–
1923 on the need to popularize mathematics in Japan, it being “a treasure not to be
monopolized by mathematicians” [150]. He criticised the feudal and closed character
of the academic world in Japan and insisted on the need for modernization [152]. He
lectured about the “esprit scientifique” as he found it in the École Polytechnique, par-
ticularly the synthesis of theory, applications and practice, and about the importance
of spreading this scientific spirit in Japan.

To advance these aims he began to write pioneer articles on the history of Western
mathematics, also from the point of view of social, cultural and economic history
during 1929–1930, followed by his broad study of traditional Japanese as well as
Chinese mathematics, even in part in collaboration with the Chinese historian Li Yan
(1892–1963). For further details in this respect see [55].

5 Development of Sampling Techniques Among Engineers; a Survey

Although Whittaker and Ogura were working in interpolation theory, a purely math-
ematical topic, there were on the other hand engineers working independently on the
applied side who introduced the sampling theorem or had a major influence on its de-
velopment. It seems that E.T. Whittaker’s paper is the link by which the two strands
are connected. In fact, although Shannon cites the book of J.M. Whittaker (son of
E.T.W.) [83], many engineering papers and text books from about 1952 onwards cite
E.T. Whittaker [81] himself. Thus this section deals with the engineers who had a
hand in the matter, and addresses the question who was perhaps the first engineer to
give a proof of the sampling theorem (for bandlimited functions).

16Having gone into Japanese academic genealogies, a word is due to that of Christoffel, Fujisawa’s doc-
toral father, as well as to those of his teachers Weierstraß and Kronecker in Berlin. Christoffel was first
and foremost a student of J.P.G. Lejeune Dirichlet, although the referees of his dissertation at Berlin were
M. Ohm and E. Kummer. Dirichlet in turn, who had no formal doctoral degree, considered Gauß as his
teacher. He had studied from 1822 to 1826 in Paris where Fourier, Lacroix, Legendre and Poisson also had
sponsored him.

During his stay in Germany Fujisawa had studied also under Weierstraß, an academic grandson
of Gauß, as well as under Kronecker, who regarded Dirichlet as his teacher. Fujisawa’s student Teiji
Takagi and various other descendants as well as several Japanese physicists had studied under Fuchs,
H.A. Schwarz, Frobenius, Klein, Hilbert and Sommerfeld. Klein was an academic grandson of Dirich-
let, so that Hilbert, Minkowski and Sommerfeld (as students of Lindemann, in turn a student of Klein),
were academic great-grandsons of Dirichlet. Fuchs, Schwarz and Frobenius, as students of Weierstraß,
were academic great-grandsons of Gauß. Einstein had singled out A. Hurwitz (a student of Klein) and
Minkowski as his teachers at Zürich. See [8, 19–21].
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5.1 Harry Nyquist and Karl Küpfmüller

One person very often connected with the sampling theorem is the highly honoured
Swedish-born communication engineer H. Nyquist (1889–1976) in view of his land-
mark papers of 1924 [61] and 1928 [62] on telegraphy; he is often cited in this re-
spect together with Küpfmüller and Shannon. According to the recent [26], these two
papers reveal a complete strikingly modern understanding of the connection between
signalling speed, number of bits per symbol, and bandwidth; intersymbol interference
and its use are fully understood. However, the sampling theorem cannot be found ex-
plicitly anywhere in these two papers. Nor do they contain a statement concerning the
need to sample at twice the maximum frequency of the input signal. Nyquist did point
out, however, the importance of the frequency 1/T , where T is the duration of the
“time unit”, as well as its connection with the speed of transmission. The expressions
“Nyquist interval” or “Nyquist rate”, applied in relevance to band-limited signals and
the sampling theorem very likely had their origin in Shannon’s paper of 1949 [74].
For details see [26].

Concerning K. Küpfmüller (1897–1977), who is known for his seminal work in
almost all fields of electrical engineering as well as for being the German initiator
of early systems theory (see e.g. Bissel [4]), S. Verdú [79] writes: “In contrast to the
1920 papers of Nyquist and Küpfmüller, Shannon’s crisp statement (see below) and
proof [74] of the sampling theorem were instrumental in popularizing this result in
engineering”.

Küpfmüller is also known for the “Küpfmüller uncertainty principle” of 1924, the
inverse relationship between frequency and time domains: the narrower the band-
width the greater the rising/setting time of signals; see [47], [48, pp. 43–53, 149–167,
347–353].

5.2 Vladimir Kotel’nikov

The scientist who was honoured by the Eduard Rhein Foundation for being “the
first to formulate in a mathematically exact manner and publish the sampling theo-
rem within the context of problems in communication technology”, was the Russian
Vladimir A. Kotel’nikov (1908–2005); it was the award for the year 1999 (an amount
of 150,000 DM); see http://www.uni-koblenz.de/~physik/ERS/html/hauptseite_e.
html. His theorem in this respect is presented in his famous manuscript [43], prepared
for a conference never held, published 1933, but only internationally accessible since
2001, in the English translation by V. E. Katsnelson in [2, p. 27–45]. The knowledge
of its existence in the West is probably due to the appearance of two works of Kol-
mogorov and Tichomirov17of 1956 and 1960 [41, 42]. Kotel’nikov’s main theorem
reads:

17The authors doubt whether either Russian author ever saw Kotel’nikov’s paper [43], their assertions
regarding his theorem being rather vague. In fact, Prof. Tichomirov mentioned to PLB while in Aachen
1995 that he never saw the 1933 paper itself, it not being available in Moscow. But the late Prof. Lüke
obtained a copy of it from a friend in Moscow (Dr. R. Rachev). It is also available in the British Library in
Leeds.

http://www.uni-koblenz.de/~physik/ERS/html/hauptseite_e.html
http://www.uni-koblenz.de/~physik/ERS/html/hauptseite_e.html
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Any function F(t) which consists of frequencies between 0 and f1 is representable
by the series

F(t) =
∞∑

−∞
Dk

sinω1(t − k
2f1

)

t − k
2f1

, (21)

where k is an integer number, ω1 = 2πf1, Dk are constants depending on F(t).
Conversely, any function F(t), represented by the series (21), consists only of

frequencies between 0 and f1.
Kotel’nikov’s proof is superbly intuitive but not rigorous in the mathematical

sense. Also one does not notice an exact statement of the sampling theorem with
full hypotheses. But it is very interesting that Kotel’nikov gives his theorem in both
a direct and converse form.

5.3 Herbert Raabe

A further contribution to the sampling theorem is the doctoral dissertation “Unter-
suchungen an der wechselseitigen Mehrfachübertragung (Multiplexübertragung)”,
published in full 1939 in the journal “Elektrische Nachrichtentechnik” [67], which
became known after the historical studies by H.D. Lüke [52–54]. Its author was
Herbert Raabe (1909–2004), a student of Küpfmüller, W. Stäblein (1900–1945) and
H. Fassbender (1884–1970) at the TH Berlin. In this milestone dissertation Raabe
analyzed and built the first time-division multiplex system for telephony. This task
required of him an overall complete understanding of sampling of finite duration and
sampling of lowpass and bandpass signals. In comparison with the classical sampling
theorem there are two main differences: The (non-L(R)-integrable) sinc-kernel, the
Fourier transform of the ideal filter, has been replaced by (an integrable) h(t), the
impulse response of the filter used in the implementation; and there are only finitely
many samples f (k). But both differences must necessarily occur in any practical
realization of sampling.

In more mathematical terms Raabe actually studied what are now called general-
ized sampling series, first investigated systematically at Aachen (see [15, 75]),

(Sϕ
wf )(t) =

∞∑

k=−∞
f

( k

w

)
ϕ(wt − k)

which have the properties that the kernel ϕ is (at least) integrable over R such that
Swf exists for all f ∈ C(R) (not just bandlimited f ) but with limw→∞(S

ϕ
wf )(t) =

f (t). Non-bandlimited kernels such as B-splines, or linear combinations of trans-
lates of these, are examples; in such cases the sampling sums also have finitely many
samples, as with Raabe. But also the kernels of Fejér (sinc2 t/2), Jackson, de La Val-
lée Poussin, etc. are possible. Thus generalized sampling series are in every respect
easier to handle and more practical; for details see [9].

5.4 Claude Shannon

The person most closely connected with the nomenclature of the sampling theorem,
whether mathematician or engineer, is no doubt Claude Shannon (1916–2001), al-
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though he never claimed any credit for originating it. For him it was simply a part of
his original development of his mathematical theory of communication; it provided
for him the means of converting continuous time signals to discrete time signals with-
out loss of information. Shannon, who had been a student of Norbert Wiener, Van-
nevar Bush and Frank Hitchcock at MIT between 1936 and 1940, received the Eduard
Rhein Award of 1991 (DM 200,000) for “his fundamental research on informa-
tion theory”; see http://www.uni-koblenz.de/~physik/ERS/html/hauptseite_e.html.
He was among the first recipients of the Kyoto Prize in 1985 (50 million yen). For
the details see http://www.inamori-f.or.jp/laureates/K01_b_claude/prf_e.html and
http://www.inamori-f.or.jp/e_kp_out_out.html.

As one of his sources of the sampling theorem Shannon cites J.M. Whittaker [83],
as mentioned above, and, in particular, W.R. Bennett’s work [3] of 1941, which in
turn cited Raabe’s paper [67]; it had appeared only two years earlier during World
War II, then going on. Shannon’s Theorem 13 in [72, 73] reads:

Let f (t) contain no frequencies over W . Then

f (t) =
∞∑

−∞
Xn

sinπ(2Wt − n)

π(2Wt − n)

where Xn = f (n/2W).

5.5 Isao Someya

Independently and simultaneously to Shannon’s significant work, the book “Wave-
form Transmission”, written by the communication engineer Isao Someya (1915–
2007) appeared in Japan. In Chap. 4 it contains the sampling theorem along with
many interesting extensions and applications, treated in Chaps. 5 and 6. Someya de-
rived his basic result, in the same classical form as Shannon, using Poisson’s sum
formula (as did R.P. Boas [5] in 1972); he presents no references. A feature is that
topics are always discussed in both time and frequency domains. On the basis of this
book Someya received his doctorate in Electrical Engineering from the University of
Tokyo in 1950 (his bachelor’s degree 1938). For details see Ogawa [63, 64].
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