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This article discusses the interplay between multiplex signal transmission in
telegraphy and telephony, and sampling methods. It emphasizes the works
of Herbert Raabe (1909–2004) and Claude Shannon (1916–2001) and the
context in which they occurred. Attention is given to the role that the
exceptional research atmosphere in Berlin during the 1920s and early 1930s
played in the development of some of the ideas underlying these works, first
in Germany and then in the USA, as some of the protagonists moved there.
Raabe’s thesis, published in 1939, describes and analyses a time-division
multiplex system for telephony. In order to build his working prototype,
Raabe had to develop the theoretical tools he needed and achieved a
thorough understanding of sampling, including sampling with pulses of
finite duration and sampling of low-pass and band-pass signals. His
condition for reconstruction was known as ‘Raabe’s condition’ in the
German literature of the time. On the other hand, Shannon’s works of 1948
and 1949 contain the classical sampling theorem, but go much further and
lay down the abstract theoretical framework that underlies much of the
modern digital communications. It is interesting to compare Raabe’s very
practical approach with Shannon’s abstract work: Raabe independently
developed his methods to the degree he needed, but his main purpose was
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to build a working prototype. Shannon, on the other hand, approached
sampling independently of practical constraints, as part of information
theory – which became tremendously influential.

Keywords: sampling theorem; multiplexing; Raabe’s condition; Nyquist
rate; Shannon theory; historical review

AMS Subject Classifications: 01-02; 01A60; 94-03; 94A20

1. Introduction

Multiplex signal transmission had its origin in telegraphy [1,2]. The laying of the
telegraphic cables was a difficult and expensive process, and even the fastest
telegraphists could not use the line to its full speed. Multiplex systems such as those
invented by Baudot and Delany made a more rational use of the cables, by allowing
a single line to be shared among a number of telegraphists.

As telephony became increasingly more widespread, a new opportunity for
multiplex signal transmission arose. But the simplicity of telegraphy signals, which
assume only a few distinct values, is absent from telephony signals. The problem of
time-division multiplex in telephony is in fact closely related to a sampling problem –
one in which the samples can be instantaneous or have nonzero duration. If one
channel is observed through only a fraction of the time, how can the rest of the signal
be reconstructed? What is the magnitude of the reconstruction error? How does it
depend on the width of the observation window, or the frequency with which the
channel is visited, or sampled? In the 1930s there were no good answers to these
questions.

The purpose of this article is not only to discuss the role of multiplex signal
transmission in the development of sampling methods, emphasizing the works of
Herbert Raabe (1909–2004) and Claude Shannon (1916–2001), their similarities and
differences, but also the context in which they occurred, some of the main
forerunners and the role of the exceptional research atmosphere in Berlin in the
1920s and until the mid-1930s played in the development of some of the
underlying ideas.

Early work on the multiplexing of telephony signals, such as that done by Willard
Miner, was experimental [3]: the sampling frequency was determined by trial and
error. In his patent of 1903, Miner writes [3], [4 p. 7]:

. . . a frequency or rapidity approximating the frequency or average frequency of the
finer or more complex vibrations which are characteristic of the voice or of articulate
speech, . . . , as high as 4320 closures per second, at which rate I find that the voice with
all its original timbre and individuality may be successfully reproduced in the receiving
instrument. . .

Raabe’s thesis1 [5], published in 1939, goes further than mere experimentation. The
importance of his contribution became known only after the important historical
studies by Lüke [3,6–8]. Raabe describes and analyses a time-division multiplex
system for telephony, demonstrating a thorough understanding of sampling,
including sampling with pulses of finite duration and sampling of low-pass and
band-pass signals. Raabe shows that a number of channels carrying telephony
signals could be multiplexed and reconstructed with arbitrarily small error, provided
that a certain condition be met. The condition, known as ‘Raabe’s condition’ in the
German literature of the time, states that the sampling frequency must exceed twice
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the maximum frequency of the multiplexed signal. The other outstanding charac-
teristic of Raabe’s work is that he implemented the system – in 1939.

Shannon’s works of 1948 and 1949, on the other hand, contain the classical
sampling theorem in a precise form but go much further: they lay down the
theoretical framework that underlies much of modern digital communications.

It is interesting to compare Raabe’s practical engineering approach with
Shannon’s theory: Raabe independently developed his methods to the degree he
needed, his goal being to build a working prototype. He gives mathematical proofs of
his arguments, using Fourier series as the main tool, but he seems interested in
obtaining a prototype rather than a theory. Shannon, on the other hand, developed
his theory in an abstract, technology-independent way. For several reasons, Raabe’s
work remained poorly known despite its real importance. On the other hand,
Shannon’s information theory, as it is well known, was tremendously influential.

2. The research milieu in Berlin 1920–1940

To understand Raabe’s and Shannon’s work in sampling in the context of
information theory and its scientific growth correctly, it is appropriate to look at
the exceptional research climate existing not only at the TH Berlin and at Berlin’s
Friedrich-Wilhelms university but also in Berlin itself and at its international
industrial firms with their research centres during this period. As to Raabe, the
situation is clear since his thesis of 1939 was written at the Technische Hochschule
Berlin (TH Berlin), his advisors being Stäblein and Küpfmüller. As to Shannon, it
seems that basic ideas of his work can also be traced back to the Berlin atmosphere.
First, he cites Bennett2 [9], who had already cited Raabe. Bennett had joined the
communications research department at Bell Labs in 1925; thus, Raabe’s work must
have been known in the Bell Labs circle. Perhaps, Shannon also knew of the work of
Küpfmüller himself as it has many ideas in common with that of Hartley and
Nyquist which he cited. Second, Shannon probably became aware of the work of
Szilard through von Neumann and possibly also Wiener, as we will now discuss.

In the 1920s and until the mid-1930s Berlin was the capital of modern physics and
also a nucleus of electrical engineering. At the university there were giants such as
Max Planck, Max von Laue, Walter Nernst, Fritz Haber and James Frank, as well as
the younger future Nobel laureates Wolfgang Pauli and Werner Heisenberg, Planck’s
successor in Berlin in 1926. Berlin University’s fame was enhanced by its school of
thermodynamics, the world’s leading school by that name, which was known for
three fundamental principles: the ‘energy conservation principle’ by H. Helmholtz,
the ‘principle of entropy’ by R. Clausius, and the ‘zero entropy condition’ at absolute
zero temperature by Nernst [10]. Famous scientists who connected with the Berlin
school include the American Josiah Willard Gibbs (1839–1939, who spent a year in
Berlin in the time of Clausius and Helmholtz), A. Horstmann, C. Carathéodory, who
studied there in 1900, and Erwin Schrödinger.

It was at the famous Berlin colloquia, organized by von Laue, where people
reported on recent publications from the literature, that young graduate students
could communicate with the leaders of physics. Einstein, who was based at the
Prussian Academy of Sciences, but had been introduced to the circle of Berlin
physicists by Planck and Nernst, was also a regular visitor to the colloquia [11].
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It was at these colloquia where, for example, Szilard, Wigner, von Neumann and
Gabor, who were actually students at the TH Berlin and not at the university,
learned to know the giants of science.

The TH Berlin had as electrical engineers R. Franke (1870–1962), Ernst Max
Orlich (1868–1935), K.W. Wagner3 (1883–1953), who founded the Heinrich Hertz
Institut für Schwingungsforschung (Oscillation and Vibration Institute) in 1927,
H. Fassbender (1884–1970), Karl Küpfmüller (1897–1977), who first worked in 1921
at the renowned Siemens & Halske (becoming a director in 1937), W. Stäblein (1900–
1945), W. Cauer (1900–1945) and the high-frequency engineer Helmut Schreyer
(1912–1985) who influenced Konrad Zuse (1910–1995) on the design of his
calculating machine, the first binary digital computer in the world, the Z3,
completed in 1941.4

Its physicists included Ferdinand Kurlbaum (1857–1927) and his successor
Gustav Hertz (1887–1975), whose aim was to raise the level of physics at the TH to
that at the university, Richard Becker (1887–1955), Wilhelm Westphal (1882–1972)
and its mathematicians included the geometer Georg Scheffers (1866–1945), Georg
Hamel (1877–1954), the well-known student of Klein and Rudolf Rothe
(1873–1942). The future Nobel laureates D. Gabor and E. Wigner left Germany in
1933 when Hitler came to power.

Two famous employees at the Siemens & Halske research laboratory must be
mentioned, namely the electrical engineer Fritz Lüschen (1877–1945) and the
physicist Felix Strecker (1892–1951). The former joined its laboratory in 1920, where
also B. Pohlmann (1884–1958), Gabor and R. Feldtkeller (1901–1981) were
employed, the latter in 1923, becoming its plenipotentiary in 1935. Strecker
discovered the stability criterion usually associated with the name of Nyquist in 1930.

Leo Szilard,5 who took many courses in engineering at the TH Berlin from 1920
onwards, receiving his Diplom there in 1922, wrote his doctoral thesis at the
university under von Laue in 1923, with Einstein’s encouragement. The thesis
[12, pp. 34–102] was related to the Second Law of Thermodynamics. His Habilitation
thesis of 1927 [12, pp. 103–29] dealt with Maxwell’s Demon [10, 13–15], the famous
1867 Gedankenexperiment of Maxwell that would stimulate the investigation of the
connections between entropy and information; in this sense, it can be regarded as one
of the fundamental contributions to the development of information theory.
Szilard’s work on the subject, which we will consider in more detail later, is regarded
as the earliest known paper in the field of information theory and exposes the
connection between the concepts of information and statistical entropy, which
Boltzmann had studied 70 years earlier.

Szilard was a personal friend of John von Neumann6, who came to Berlin
University in 1921. Between 1921 and 1923 von Neumann attended, among others,
chemistry lectures by Fritz Haber and statistical mechanics by Einstein, who had
been asked by Szilard to lecture on the topic. Einstein’s audience included, in
addition to von Neumann, Szilard, Wigner and Gabor [11]. In 1926, von Neumann
became Privatdozent in Berlin after receiving his doctorate in mathematics at
Budapest. In 1930, Szilard and von Neumann taught together with Schrödinger a
theoretical physics seminar.

Szilard’s influence may have reached Shannon through von Neumann, who
convinced him to call information by the name ‘entropy’ [16, p. 45]. In this respect,
Shannon had met von Neumann already in Princeton. Von Neumann ‘pointed out
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Boltzmann’s observation (. . .) that entropy is related to missing information,

inasmuch as it is related to the number of alternatives which remain possible for a

physical system after all the macroscopically observable information concerning it

has been recorded’ [17, p. 156], [18, p. 3]. We will return to some of these points later.
Von Neumann had considered thought experiments similar to the Maxwell’s

Demon example [19] and was aware of Szilard’s explanation of the paradox, which

turns around the connection between entropy and information; he would refer to

Szilard’s work in his research on automata. In fact, Von Neumann himself had

introduced, as early as 1927, the quantum mechanical analogue of entropy in [20],

more than two decades before Shannon examined in detail its classical limit.
Whereas the capital of physics and engineering at the time was Berlin, that of

mathematics was Göttingen. Von Neumann also frequented it, especially because of

David Hilbert, the recognized leader in areas of mathematics in which he was

interested. Norbert Wiener, who had taken the courses of Hilbert and Landau in

1914, was also a regular visitor to Göttingen. Wiener had come to conclusions

similar to those of Szilard in the mid–1920s. In fact, from 1922 to 1927 Wiener

travelled to Europe practically every summer where he received considerably more

encouragement from mathematicians than he did at home. At his seminar talk at

Göttingen in 1924 the 27-year-old Heisenberg was a listener, who was then grappling

with the failure of the classical laws in atomic physics as was also Max Born at the

time. Wiener again lectured in Göttingen in 1925 when he attended the IMC in

Grenoble, as well as in 1926–27 when he gave there a series of lectures with a

Guggenheim Fellowship, the second term being at Copenhagen. It seems to have

been at Göttingen that Wiener was led to the nexus between communication

engineering and statistical mechanics, to the idea – a dream – of a comprehensive

quantum theory of entropy, embracing both matter and radiation, in which photons

would carry information, and the Second Law of Thermodynamics would become

‘rigidly true’ (see [21, p. 155–158]).
Wiener’s book of 1948 entitled ‘Cybernetics’, with the subtitle ‘Control and

communication in the animal and the machine’ [22], included a theory for the

amount of information in a signal and the transmission of this information through a

channel. In his original introduction, written in 1947, Wiener states (p. 10) in this

respect:

To cover this aspect of communication engineering, we had to develop a statistical
theory of the amount of information in which the unit amount of information was that
transmitted as a single decision between equally probable alternatives. This idea
occurred at about the same time to several writers, among them the statistician
R.A. Fisher, Dr Shannon of the Bell Telephone Laboratories, and this author. Fisher’s
motive in studying this subject is to be found in classical statistical theory, and that of
Shannon in the problem of coding information; and that of the author in the problem
of noise and message in electrical filters. Let it be remarked parenthetically that some of
my speculations in this direction attach themselves to the earlier work of Kolmogorov in
Russian, although a considerable part of my work was done before my attention was
called to the work of the Russian school.

As to the work of Sir Ronald Fisher (1890–1962), Wiener probably had that of 1934/

1935 [23,24] in mind (see also [18, p. 95]), and regarding Andrei N. Kolmogorov

(1903–1987) it is certainly his paper [25] of 1941 (see also Masani’s description of the

matter [21, pp. 153–159, 251–261]).
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Although Shannon was influenced by Wiener’s ideas – Wiener had been
Shannon’s teacher at MIT in the 1930s – they seem to have had little contact during
the years when they worked in communication theory. Speculating, it seems possible
that during Wiener’s stay in Göttingen 1925 he had heard of Szilard’s work or even
visited nearby Berlin and that it thus became known in the USA around 1930–1935;
the published versions of both theses had appeared in 1925 and 1929, respectively.

Shannon refers to Wiener’s influence in Mathematical Theory of Communication
[26] several times. He points out that the theory is concerned, as Wiener has
emphasized, not with operations on particular functions, but with operations on
ensembles of functions. And in a footnote he adds that

Communication theory is heavily indebted to Wiener for much of its basic philosophy
and theory. His classic NDRC report, The Interpolation, Extrapolation and Smoothing
of Stationary Time Series (Wiley, 1949), contains the first clear-cut formulation of
communication theory as a statistical problem, the study of operations on time series.
This work, although chiefly concerned with the linear prediction and filtering problem,
is an important collateral reference in connection with the present paper. We may also
refer here to Wiener’s Cybernetics (Wiley, 1948), dealing with the general problems of
communication and control.

In Cybernetics, Wiener acknowledges, among others, McCulloch, Pitts, Turing, von
Neumann and Shannon. He emphasizes the importance of the work of Gibbs; later,
in the 1950s, he would write

. . . I gradually came to realize the scope of statistics in my work and to apply them not
merely to one communication engineering problem, but to all. I was forced to see that
the basis of all measurement of information was statistical, and that the frame for it had
in fact already been provided by the work of Willard Gibbs.

This sentence appears in a book published posthumously [27]. Wiener went on to add
that once ‘the public in general had been alerted to the statistical element in
communication theory, confirmation began to flow in from all sides’. He referred to
the work of Shannon as an example, and added

I am inclined to believe that from the very start, a large part of [Shannon’s] ideas in
communication theory and its statistical basis were independent of mine, but whether
they were or not, each of us appreciated the significance of the work of the other.

To conclude this section, Szilard, von Neumann, Wiener and Shannon appear to
have worked on topics somehow related to entropy and information independently
of each other. However, their ideas seem to have influenced each other in subtle
ways. The extent of the influence is impossible to determine exactly, but there is
ample evidence that the Berlin circle played an important role in the exchange of
ideas, and that the exchange continued in the USA as some of the main protagonists,
especially von Neumann, moved there.

As we have seen, the works of Szilard and von Neumann on entropy, information
and quantum mechanics appeared in the 1920s and originated in the physics
community. Interestingly, the first attempts to quantify information in communi-
cation systems also appeared in the 1920s, but originated in the electrical engineering
community, with Nyquist and Hartley, in the USA, and Küpfmüller, in Germany.
The ideas in these works are important to fully appreciate Shannon’s work in the
USA and Raabe’s work in Berlin. The multiplexing problem, to which we now turn,
played an important role in the process.
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3. The time-division multiplexing problem in telephony

To the engineer, the word ‘multiplexing’ immediately suggests the simultaneous (or

apparently simultaneous) transmission of multiple signals through the same wire or

channel, and their recovery at the receiving end. The two simplest ways of achieving

it are time division and frequency division multiplexing [28, pp. 279–285, 363–368],

[29, Sections 2.9 and 3.5].
In the case of frequency division multiplexing, the frequency band available for

transmission is divided into intervals, called sub-bands. Each signal to be transmitted

is assigned one of the sub-bands, through a process called modulation. A discussion

of some pioneering developments related to frequency-division multiplexing can be

found in [30,31].
Time division multiplexing, as the name suggests, is based on time sharing. The

period of time available for the transmission is divided in intervals, and each

transmitter is assigned one such interval in turn. The duration of each interval is

typically very small compared with the duration of the messages, so that to an

observer the multiple transmissions appear to be happening simultaneously.
The mathematical model that describes the multiplexing of any finite number of

signals is simple. Assuming as an example that there are three channels, the relevant

signals would be related as shown in the diagram in Figure 1. The multiplexing

system can be regarded as a multi-channel system, with inputs x1(t), x2(t) and x3(t)

and one output m(t) given by

mðtÞ ¼
X3
i¼1

siðtÞ xiðtÞ:

Figure 1. The signals in a three channel time division multiplexing system. The blocks labelled
‘�’ and ‘þ’ perform, respectively, multiplication and addition of the indicated inputs.
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The extension to any finite number of channels should be clear.
The multiplexed signal m(t) would be transmitted to the receiver, where the

separation of x1(t), x2(t) and x3(t) from the input m(t) takes place. The receiver is
illustrated in the diagram of Figure 2. It is again a multi-channel system that takes
m(t) as the input and ideally would yield x1(t), x2(t) and x3(t) as outputs. The
existence of the operatorH, which reconstructs the signals xi(t) from si(t)m(t), cannot
be taken for granted due to the apparent loss of information in the process.

The idea of multiplex signal transmission found wide application in telegraphy
and was the subject of articles as early as 1883 [32]. The laying of the telegraphic
cables was a difficult and expensive process, particularly in the case of transatlantic
cables, and not even the fastest telegraphists were able to use them at maximum
speed. Multiplex transmission systems, by allowing a single line to be shared among
a number of telegraphists, resulted in a more rational use of the cables and attracted
the attention of a number of researchers and inventors (Figures 3 and 4), as we shall
see in the next section.

4. Raabe’s work

Raabe mentions two time-division multiplex systems, associated with the names of
Baudot7 and Delany.8 The Baudot system followed prior work by F.C. Bakewell
(1848), A.V. Newton (1851), M.B. Farmer (1853) and especially B. Meyer9 (1870).
The Delany system built on previous work by P. la Cour10 and had advantages over
the Baudot system. It impressed W.H. Preece, FRS, [33], and was adopted by the
British post-office.

Figure 2. The receiver (or de-multiplexer) of the three channel time division multiplexing
system.
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Raabe’s opening sentences and first diagram explain time division multiplexing:
two synchronized rotating switches connect several transmitters to an equal number
of receivers, so that each transmitter is connected to the corresponding receiver
throughout a certain interval, in a cyclic way.

Figure 3. The instruments on display at the museum of the Lehrstuhl und Institut für
Nachrichtentechnik (Institute of Communications Engineering) at RWTH Aachen University
give perspective on the evolution of telegraphy (including early telegraph multiplexers
mentioned by Raabe, such as Baudot’s, shown in Figure 4), the evolution of telephone
engineering (including exchange techniques, long distance amplifiers, electro-acoustics, valves
and radio receivers) and the evolution of image transmission (including picture telegraphy and
early television engineering). The museum provides background information on telecommu-
nications at the time Raabe and Shannon worked.

Figure 4. Baudot’s time division multiplexer for telegraphy at the museum of the Lehrstuhl
und Institut für Nachrichtentechnik at RWTH Aachen University (see also Figure 3).
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As a result of the switching, there is an apparent loss of information that Raabe
describes in the following terms:

(. . .) those sections of the function which fall within the instants of switching will not be
transmitted. The received signal is therefore different from the transmitted one.

Raabe writes that the application of multiplexing systems to telephony requires a
‘totally different technical setup’. He provides the necessary theory as well: he gives a
condition that guarantees that there is no ‘distortion’, that is, each of the input
(multiplexed) signals can be recovered (theoretically) without any error. The
condition is expressed in terms of the spectrum of the signals that are to be
multiplexed and in terms of the sampling frequency, that is, the rate at which each
particular channel is connected to the multiplexing system – given by the frequency
of any of the square waves s1(t), s2(t) or s3(t) in Figures 1 or 2.

The ‘sections of the function’ mentioned by Raabe could as well be called ‘local
averages’ or ‘samples’. They are determined by the product of the function by square
waves such as s1(t), s2(t) and s3(t) in our example. In one of the Raabe’s examples the
pulses are relatively wide, but in others they are so narrow that they appear as ‘line
needles’, as he refers to them.

The recovery of each multiplexed signal implies the recovery of each signal from
its ‘samples’. Since Raabe is interested in building the system, he cannot merely state
a condition for transmission without distortion – he has to describe a practical
recovery procedure as well. In other words, he determines a practical approximation
to the reconstruction operator H in Figure 2.

4.1. Raabe’s condition for distortionless transmission

To understand Raabe’s point of view, it is necessary to obtain the Fourier expansion
of the square waves s(t) that will be multiplied by the signals to be multiplexed.
Without loss of generality, they can be translated to become an even function. Their
Fourier series is then given by

sðtÞ ¼
k

2�
ym þ

X1
n¼1

ð�1Þn
2

n�
ym sin

nk

2
cos n!1t:

Here, ym is the height of each pulse, !1 is the angular sampling frequency and k/!1 is
the width of the pulse. In electrical engineering, the ratio of the width of the pulse to
the period of the wave is usually called the duty cycle. Thus we see that Raabe is
considering a square wave of frequency !1 and duty cycle k/2�. His parameter k, the
range of which is (0, 2�), corresponds to what he calls ‘the channel width’, ‘expressed
in terms of phase’.

The received signal will be the product of the square wave s(t) and the signal that
needs to be transmitted, denoted by f(t). For Raabe, the product

rðtÞ ¼ sðtÞ f ðtÞ

is ‘the modulated signal’, the square wave s(t) is ‘the unmodulated signal’ and the
signal f(t) is ‘the modulating signal’, a terminology borrowed from modulation
theory. Raabe is using a square wave instead of the usual sinusoidal carrier, but the
amplitude of this square wave is modulated by f(t), as in the standard amplitude
modulation scheme.
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To understand the effect of the modulating signal f(t) on the square wave s(t),

Raabe also expands f(t) in a Fourier series, and investigates the effect of the general

term of this Fourier series on each frequency of the square wave. So the problem is

reduced to that of understanding products of square waves and sinusoids. The result

for a more general f(t) follows by superposition. The square wave had been

decomposed in a Fourier series as well. As Raabe writes

(. . .) The modulation of a carrier representable as a Fourier series is equivalent to
modulating each single frequency of the whole spectrum on its own.

Raabe’s next step is to assume that the signal to transmit is simply cos(m!1t), where

m is a real number. Multiplication of this signal by the Fourier series of the square

wave s(t) yields the received signal r(t):

rðtÞ ¼
k

2�
ym cosm!1t

þ
X1
n¼1

ð�1Þn
1

n�
ym sin

nk

2
½cosðn�mÞ!1tþ cosðnþmÞ!1t�: ðAÞ

He notes that the received signal r(t) includes the transmitted signal, which has

replaced the ‘direct voltage term’, namely

k

2�
ym cosm!1t:

We will now consider the remaining terms, following Raabe’s reasoning.
Essentially, Raabe argues that to avoid ambiguity m has to satisfy m5 1�m,

that is, m5 1/2. In other words, the transmitted frequency must be below !1/2, that

is, one half of the sampling frequency. The condition guarantees that the spectral line

m (the one that replaced the ‘direct voltage term’) stays to the left of the

‘complementary frequency’ 1�m, which in the context of amplitude modulation is

called the ‘lower sideband of the first harmonic’.
For signals consisting of a superposition of terms with different frequencies, the

distortion can be avoided if all the frequencies are below one half of the sampling

rate. This is how Raabe puts it:

(. . .) the sampling frequency is determined by the range of signal frequencies. If these are
kept below half of the sampling frequency, all of the noise frequencies above this limit
can be kept away from the receiver by a low-pass filter. The transmission of a signal may
thus be completely distortionless, if the sampling frequency is twice the highest signal
frequency. The upper limitation of the signal frequencies is therefore a vital condition of
distortionless transmission by time division multiplex transmission.

This paragraph, also quoted by Lüke [3], summarizes what has been called ‘Raabe’s

condition’. The argument is based on the analysis of the Fourier spectrum of the

product of the modulating square wave and the signal. The conclusion has a

legitimate mathematical basis, valid for the class of signals Raabe considers.

4.2. Raabe’s condition in the band-pass case

Raabe realizes that the reconstruction of the sampled signal can be accomplished by

a ‘low-pass filter’, but he notes that sampling at ‘twice the highest signal frequency’
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is not always necessary. For band-pass signals, Raabe states, ‘special conditions

apply when the frequency range is limited to an octave’, in which case

(. . .) one can lay down the sampling frequency onto the upper frequency limit, and the
noise frequencies remain partly above the useful range, and partly, as in the case of the
complementary frequency, below.

The value ‘one octave’ is of course correct, as discussed in [34]. For yet another

perspective, note that the set [�2a, �a][ [a, 2a], which is similar to the support of the

Fourier transform of a real signal with a bandwidth of one octave, satisfies the

disjoint translates condition for translates by 2a. Thus, a spectrum with this type of

support can be repeated every 2a to give a 2a-periodic function. As Raabe writes, this

means that the sampling rate 2a will work for this signal.
Raabe also knows that ‘frequencies above the sampling frequency can also be

transmitted free from distortion, but the relative range of frequencies shrinks more

and more’. As is well known today, the minimum sampling density is determined by

the bandwidth of the signal and not necessarily by its highest frequency.
Raabe also mentions the recovery procedure in the band-pass case:

(. . .) one has to keep away from the receiver those noise frequencies lying outside of each
section by a band pass filter.

From his perspective of circuit design, the only change necessary is the replacement

of the low-pass filter by a band-pass filter.

4.3. Admissible functions

Raabe’s main mathematical tool is the Fourier series. The square wave that the

multiplexing system multiplies each signal by is expanded in a Fourier series, the

fundamental frequency of which is the sampling frequency. The signal to be

transmitted is also expanded in a Fourier series. The effect of the multiplication of

the Fourier series is analysed, term by term, to obtain the main results. Raabe’s

conclusions apply to signals that can be expressed as a linear combination of

sinusoidal terms (or complex exponentials), the frequencies of which do not exceed

one half of the sampling frequency. The admissible functions include all band-limited

periodic functions or trigonometric polynomials

f ðtÞ ¼
XN

k¼�M

cke
2�ikt=T

but not band-limited square-integrable (finite-energy) signals. However, for the

purposes of using Raabe’s time division multiplexing system this is not a restriction.

The system would be able to handle signals of arbitrarily large but finite duration.
Raabe’s practical perspective is reflected in the way he deals with the

reconstruction problem, which is essentially solved if the aliased terms or ‘noise

frequencies’ are separated from the signal frequencies by a linear filter.
This practical perspective may help to understand why Raabe did not explicitly

state a reconstruction formula based on the ideal low-pass filter, introduced by

Küpfmüller and known as ‘Küpfmüller-Tiefpass’ in the German literature.

654 P.L. Butzer et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
B
-
o
n
 
C
o
n
s
o
r
t
i
u
m
 
-
 
2
0
0
7
]
 
A
t
:
 
1
6
:
3
1
 
1
5
 
M
a
r
c
h
 
2
0
1
1



Instead of obtaining a theoretical reconstruction formula, for which he probably felt
very little need, Raabe obtains a real reconstructed signal.

4.4. Raabe and generalised sampling

It is worthwhile to discuss the connection between the system that Raabe built and
generalized sampling.11 Let f(t) be one of the input signals. The corresponding
sampled signal is obtained by multiplying f(t) by a square wave s(t), which can be
expressed as a sum of pulses p(t). Hence, assuming for simplicity a unitary sampling
period, we have

f ðtÞ sðtÞ ¼ f ðtÞ
X
n

pðt� nÞ:

Assume that the ‘channel width’ is small, so that the square waves look like ‘line
needles’. Then the sampled signal is approximately given by

gðtÞ ¼
X
n

f ðnÞ pðt� nÞ:

Let the response of the lowpass filter implemented by Raabe to a pulse p(t) be
denoted by h(t). The reconstructed signal obtained using Raabe’s system can then be
written as X

n

f ðnÞhðt� nÞ:

There are two main differences to the classical sampling theorem: the sinc kernel, the
Fourier transform of the ideal lowpass filter,12

sincðtÞ :¼
sin�t

�t
,

has been replaced by the function h(t), the pulse response of the filter used in the
implementation; and there are only finitely many samples f(n). Both differences
would necessarily occur in any practical realization of sampling.

Although the sampling theorem is not to be found explicitly in Raabe’s paper, it
is a reasonable inference that in view of Raabe’s approach and results he was aware
of more general results, but did not state anything in further generality because his
interests were in more practical directions.

4.5. Raabe’s condition for distorted transmission

In order to implement his technical innovations in practice, Raabe also investigated
the distortions which can arise during the transmission of square waves over a real
transmission line.13 To do this he first studied the possibility of a frequency
limitation through real transmission lines on the basis of their inherent lowpass
character. He shows that the cut-off of the carrier spectrum in general leads to a
crosstalk across the neighbouring channels. If one neglects all frequency terms above
a certain limit n¼ p in the receiver function, one obtains a truncation of the square
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wave function, namely

spðtÞ ¼
ks
2�

ym þ
Xp
n¼1

ð�1Þn
2ym
n�

sin

�
nks
2

�
cosðn!1tÞ,

the approximation of which improves with increasing p (Figure 5).
Raabe’s investigations therefore concentrate on the necessary frequency range

p!1/2� in order to reach a transmission with the highest possible crosstalk
attenuation. His procedure is as follows: first, he considers that part of sp(t) which
lies on the outside of the channel width ks/!1, and which extends across the
neighbouring channels. With a Fourier series approach together with a subsequent
formation of the associated average, he obtains the distorted part Id in a width
of ke/!1, namely

Id ¼
kske
4�2

ym þ
Xp
n¼1

ð�1Þn
2ym
n2�2

sin

�
nks
2

�
sin

�
nke
2

�
cosðn!1t1Þ:

Likewise he determines the average value of sp(t) within the channel width ks/!1,

namely

I0 ¼
kske
4�2

ym þ
Xp
n¼1

2ym
n2�2

sin
� nks

2

�
sin

� nke
2

�
;

and finally the crosstalk attenuation #¼ lnjI0/Idj. This attenuation should be large
and Id therefore small, and the values ks, ke, t1 and p should be chosen
correspondingly. If simultaneously the crosstalk attenuation of all neighbouring
channels should be large, then the analysis in this general case is hopeless.
Nevertheless, to obtain a clear picture, Raabe chooses a four-channel and a two-
channel system as concrete examples. For these he determines the channel width, the
phase position of the interfering channel and the neighbouring channels as well as the
necessary frequency ranges under the régime of high crosstalk attenuation.

Figure 5. Because of the frequency limitation, the graph of the function a, shown in the figure,
is changed to that of the function b. The section of the function b now represented by c is
received by the receiver distributor of a neighbouring channel. The two shaded areas in the
upper and lower diagrams represent I0 on the one hand and Id on the other.
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Finally, Raabe treats the influence of the transmission distortions on cross-
talking. The ratio of a complex input voltage U1 and the output voltage U2 of a
transmission line of length l terminated by the characteristic wave impedance is given
by U1/U2¼ e�l, with the transmission rate �¼ �þ j�. The attenuation rate � and
phase rate � are frequency dependent and therefore cause distortions. If now s1(t) is
the input voltage, then the output voltage becomes

s2ðtÞ ¼
ks
2�

yme
��0l þ

X1
n¼1

ð�1Þn
2ym
n�

e��nl sin

�
nks
2

�
cosðn!1t� �nl Þ:

Raabe now applies the above approach to evaluate the corresponding Id and I0, from
which he determines the crosstalk attenuation #¼ lnjI0/Idj. Since the evaluation of
this result is extremely complicated, Raabe presents an alternative approach for
determining the crosstalk attenuation. He represents s1(t) as a periodic sequence of
superposed unit step functions. These functions degenerate at the end of the
transmission line due to distortions. The output function can be interpreted as a
periodic sequence of superposed distorted step functions. In the course of his
analytical treatment, he obtains a series for which he just needs to determine
a few terms. In this way he arrives at a distorted carrier and finally the crosstalk
attenuation #¼ lnjI0/Idj.

5. Shannon’s sampling theorem in the frame of his information theory

It is difficult to determine when Shannon began to develop his theory of
communication. In a letter of February 1939 to Vannevar Bush he still represents
the ‘general systems for the transmission of intelligence, including telephony, radio,
television, telegraphy, etc.’ as a transformation of time-functions. At that time he
dealt with continuous frequency functions; discrete transmission of information
arose as a result of technical trends and cryptography during war research. In June
1941 in a letter to Dean Eisenhart of Princeton University, he already reports that he
is working on a ‘general theory of transmission and transformation of information’;
it is this theory for which he became famous.

Shannon may have began working on information theory as early as 1940 when
he was a National Research Fellow at Princeton. In an interview recorded by
F.W. Hagemeyer,14 Shannon said his ideas concerning information theory were
mostly developed around 1943–1945, but were not published until 1948 because
‘information theory was not considered first priority work’ during the war. He was
grateful to Bell Labs for tolerating his work, which ironically seemed of no practical
interest to AT&T [35]. It was cryptography that allowed him to work on information
theory. Pressed as to what gave him the basic idea to his theory, he said it was
Hartley’s paper of 1928 on the transmission of information [36].

One should note, however, that in his 1982 interview of Shannon, ‘Price tried
hard to get into the mind of the grey haired man sitting next to him’ [16] – but
Shannon resisted. He seemed hesitant in answering ‘these complex hypothetical
questions’, as he called them, or gave answers such as ‘I have no idea’. More recently,
the analysis of an unpublished manuscript of Shannon has raised some further
doubts: Shannon could have been working on the details of his information theory
[37] as late as 1948, shortly before its publication [38].
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This landmark work is singular: it signals the birth of a discipline, yet it also
contains some of its fundamental results. Initially, it was not unanimously well
received: engineers found it too mathematical, and mathematicians criticized its lack
of rigour. A review [39] asserted that ‘the discussion is suggestive throughout, rather
than mathematical, and it is not always clear that the author’s mathematical
intentions are honorable’. The view would rapidly change, however.

Only two years after the publication of his theory, Shannon was presenting a
summary of its main results under the title ‘Communication theory, exposition of
fundamentals’ at the Symposium on Information Theory held at the Royal Society,
London, 26–29 September 1950 (see W. Jackson, Ed., Proceedings of the Symposium
on Information Theory, Royal Society, London, Ministry of Supply, 1951). The
proceedings were also published in 1953 in the first issue of IRE Transactions on
Information Theory (Shannon contribution, also reproduced in [40, pp. 173–176], is
[41]). This was the only time Shannon presented a summary of his theory in front of
an international audience (over 130 participants from at least eight countries)
including experts such as J. Loeb, D. Indjoudjian, P. Aigrain, J. Oswald, J. Ville,
P. Chavasse, S. Colombo, Y. Delbrod, J. Icole, P. Marcou and E. Picault [42].
Information theory was spreading quickly.

In the Soviet Union, Andrei Kolmogorov (1903–1987) wrote [43]:

The significance of Shannon’s work for pure mathematics was not fully appreciated at
the outset. I remember that even at the International Congress of Mathematicians held
in Amsterdam in 1954 my American colleagues, specialists in probability, believed that
my interest in Shannon’ works was somewhat exaggerated since techniques prevailed
over mathematics in them. Nowadays, such opinions hardly need a refutation. It is true
that in situations of any degree of complexity Shannon left the strict mathematical
‘validation’ of his ideas to his followers. However, his mathematical intuition is
amazingly correct . . .

Shannon’s work was called ‘incomparably deep’ by Kolmogorov, who recognized its
connections with ergodic theory (see also [44]) and started a seminar at Moscow
University in the early 1950s to explore the mathematical foundations and
implications of information theory [45]. Kolmogorov reported some of the results
already in 1956 in the IRE Transactions on Information Theory [46]. He would
retain his interest in the foundations of information theory, probability and
computational complexity, and return to it as late as 1968 from a very different angle
[47]. A survey of the Soviet research on information theory can be found in [48].

It is pointless to elaborate on the impact of Shannon’s information theory, which,
as Slepian wrote in the introduction to [49], altered man’s understanding of
communication as perhaps no other work in the twentieth century. Even its
terminology became standard: Shannon called his measure of information ‘entropy’,
maybe as we have seen at the suggestion of von Neumann; he used the term ‘bit’,
which he attributed to J.W. Tukey (who had in fact proposed it in 1946 [50]); and he
introduced the expression ‘Nyquist rate’ as a tribute to Nyquist. All these terms have
stood the test of time.

Shannon introduces band-limited ensembles of functions and uses the sampling
theorem, which he regards as a sum of orthogonal functions, to map a band-limited
f(t) to a vector of samples in an infinite-dimensional space. For a proof of the
sampling theorem he refers to his paper of 1949 [26], which had been submitted in
1940. Shannon writes that a function is limited to a time T if all samples outside that
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interval of time are zero. Functions band-limited to W and time-limited to T can be
represented by 2WT coordinates.

The sampling theorem is a crucial tool in Shannon’s theory since it provides a
way of defining an ensemble of band-limited and time-limited functions by means of
a probability distribution p(x1, x2, . . . , xn) in n-dimensional space. Note, however,
that time-limitation and frequency-limitation are both essential. If the time-
limitation condition is not satisfied, Shannon suggests the consideration of 2WT
coordinates that correspond to an interval of duration T ‘to represent substantially
the part of the function in the interval T and the probability distribution p(x1, x2, . . . ,
xn) to give the statistical structure of the ensemble for intervals of that duration’.
From this point onwards Shannon makes no further direct references to the sampling
theorem – but the bridge between the continuous and the discrete domains that it has
established will be repeatedly used.

Shannon’s work was rapidly followed up and it became very popular. In fact, it
became too popular for Shannon’s own taste: by 1956, he felt the need to write the
editorial ‘The Bandwagon’ [51], in which he argues that maybe information theory
had been ‘ballooned to an importance beyond its actual accomplishments’. He insists
that information theory, as a branch of mathematics, is a deductive system; that a
thorough understanding of its mathematical foundations and applications in
communication are a prerequisite to other applications; and that the ‘house must
be kept in first-class order’ since the subject had been ‘oversold’. Shannon suggests
that attention should be directed to raising the publication standards: ‘a few first rate
research papers are preferable to a large number that are poorly conceived or half-
finished’ – good advice!

But let us first recall a few facts from Shannon’s life, and then turn into the
history.

5.1. A brief biography of Shannon

Claude Elwood Shannon was born on 30 April 1916 in Petoskey, Michigan. Through
his father he was a distant cousin of Thomas Edison, both being descendants of the
early colonial pilgrim John Ogden. His mother, Mabel Wolf, daughter of a German
immigrant, was a language teacher and Principal of Gaylord High School for some
years.

Shannon graduated from that school in 1932, and then entered the University of
Michigan, receiving his Bachelor of Science degree both in Electrical Engineering
and Mathematics in 1936. This dual interest continued throughout his career. As a
boy he constructed model planes, a radio controlled boat and a telegraph system to a
neighbour.

Although he was not outstanding in mathematics, he went to MIT, as a research
assistant in Electrical Engineering, where he studied with both Norbert Wiener and
Vannevar Bush. The latter had built an analogue computer called the Differential
Analyzer. Shannon was fascinated with the ‘Laws of Thought’ of George Boole,
which he had studied at Michigan; in his Master’s thesis [52] ‘A symbolic analysis of
relay and switching circuits’ (issued 1940 but worked out in 1937) he was able to
show with the help of Boolean algebra how logical symbols could be treated as a
series of on or off switches, and how binary arithmetic – manipulation of strings of 0s
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and 1s – could be carried out by electrical circuits. The work, which led to a paper
published in 1938 in the AIEE Transactions [53], earned Shannon the 1939 Alfred
Noble Prize of the combined engineering societies of the USA. The thesis has been
called ‘one of the most important master’s theses ever written’ [16] and essentially
founded digital circuit design.

In September 1938 Bush suggested to Shannon that he should change from the
Engineering to the Mathematics Department at MIT and that algebra might be as
useful in organizing genetic knowledge as it was in switching. Thereupon Shannon
wrote his doctoral thesis ‘An algebra for theoretical genetics’ [54]; the genetics he
learned from Dr Barbara Burks, of Cold Spring Harbor, NY; the supervisor of the
thesis at MIT was the algebraist Frank L. Hitchcock, who had already supervized
Shannon’s Master’s work. See [55] for some comments about Shannon’s work in
genetics and the almost simultaneous and related work by Cotterman and Malécot.
Shannon received MS degree in Electrical Engineering and his PhD in Mathematics
at the same commencement, in the Spring of 1940.

He spent the (academic) year 1940–1941 at the Institute for Advanced Study,
working under Hermann Weyl. It is here that he began to work seriously on his
ideas relating to information theory and efficient communication systems. As
we have seen, he had written already in February 1939 to Bush about these ideas.
He spent 15 years with Bell Labs, first working on anti-aircraft directors – devices
to observe enemy planes or missiles and calculate the aiming of counter missiles.
Some of the foremost scientists and mathematicians then at Bell Labs were: T.C. Fry,
head of its mathematics department, John Pierce, known for satellite
communication, Harry Nyquist, well known for his work in telegraphy and signal
theory, Hendrik Bode of feedback fame, Bardeen, Brattain and Shockley – the
transistor inventors. Slepian and George Stibitz, with his relay computer of 1938,
were also there.

At Bell Labs Shannon worked in information theory, as explained, which would
lead to his seminal works on the subject: ‘Communication in the Presence of Noise’
and ‘A Mathematical Theory of Communication’ [26,37]. Shannon focuses on the
problem of how to reliably reconstruct at a receiving point the information a sender
has transmitted. In yet another notable paper of 1949, ‘Communication Theory of
Secrecy Systems’ [56], he gave essential results in the mathematical theory of
cryptography.

From 1957 to 1978 Shannon was Donner Professor of Science at MIT. He was
known as ‘the Irascible Genius’. He worked alone, although he had a chance to meet
some of the brightest scientists and engineers of his time. He preferred to work out
everything in his head, instead of on paper, and it has been claimed that he would
write entire academic papers by dictating from memory alone, without correction
[35,57]. Colleagues accused him of not being sufficiently rigorous.

He held honorary degrees fromYale,Michigan, Princeton, Edinburgh, Pittsburgh,
Northwestern, Oxford, East Anglia, Carnegie-Mellon, Tufts and University of
Pennsylvania. In addition to the already mentioned Alfred Noble Prize, Shannon
received at least a dozen other awards, including the Morris Liebmann award of the
Institute of Radio Engineers (1949), the Stuart Ballantine Medal of the Franklin
Institute (1955), the Medal of Honor of the IEEE and the National Medal of Science
(1966), the Kyoto Prize (1985) and the Eduard Rhein Award15 (1991) (Figures 6
and 7). He was afflicted with Alzheimer’s disease and died in 2001.
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Figure 7. Shannon between his wife Betty and Hans-Dieter Lüke (1935–2005), signing the
document of the Award, with the signature shown. Both photos were kindly supplied by
Mrs. Bernhardine Lüke.

Figure 6. Claude E. Shannon (1916–2001) addressing the members of the Eduard Rhein
Foundation and invited guests in October 1991 at the German Federal Guest House
Petersberg (near Bonn), where he received the Eduard Rhein Award.
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5.2. Thoughts on the early history of information theory

The rapid replacement of optical telegraphy [2] and its expensive towers, devices,

telescopes and observers with electromagnetic telegraphy, which was capable of

operating almost independently of the weather conditions and at much higher
transmission rates, set the stage that would ultimately lead to modern information

theory.
The first telegraphy experiments by Gauss and Weber in 1833 [2,58] were the

work of scientists, not entrepreneurs. Both men lacked the means and the motivation

to develop the idea further; they do not seem to have had any intention of exploring

it for commercial purposes. For a while steps were under way to use the new

invention on the railroad, but the project was soon abandoned for financial reasons.

Thus, as Dunnington wrote, ‘Germany lost the honor of being the first to produce a

practical telegraph’ [58, p. 150].
Meanwhile, in the United States, the Morse-Vail method of telegraphy and its

efficient code of 1837 were quickly gaining acceptance. By 1844, a line was already

connecting Baltimore and Washington, DC – and the work of Gauss and Weber in

Europe was being for all practical purposes forgotten. New problems and challenges
were appearing and demanded attention, from transatlantic cables to multiplex

systems. Although they would lead to a lot of practical work and many patents, they

would also lead to theoretical work of great importance.
In a sense, information theory grew out of this effort to master specific problems

in telegraphy and then increasingly more general and abstract problems of

communication. It is impossible to understand the work of Raabe and Shannon

without putting it into perspective – and to do that one must at least briefly sketch

their connection with the work of Hartley and Nyquist in the USA and the work of

Karl Küpfmüller, Fritz Lüschen and Felix Strecker in Germany. These names are

also firmly associated with the birth of information theory.
We begin with Harry Nyquist,16 whose fundamental work on telegraphy was

published in 1924 and 1928 [59,60]. In these papers, Nyquist shows a thorough

understanding of the connection between signalling speed, number of bits per symbol
and bandwidth. He also fully understood intersymbol interference and how to avoid

it. These are landmark achievements, for which he is justly remembered.
He had started to work on the subject much earlier, as he himself writes in a

memorandum of 1934: ‘At the end of 1917, I was transferred to current work on

telegraph developments and later signalling work’. In his 1924 paper ‘Certain factors

affecting telegraph speed’ [59], Nyquist argued that the transmission rate of a

telegraph system is proportional to the logarithm of the ‘number of current values’,

that is, the number of signal levels. He gives the formula W¼K log m where K is a

constant and m is the number of distinct values of the current. The proportionality to

the bandwidth is one of the results of his second, more general paper on the subject,

‘Certain topics in telegraph transmission theory’, published in 1928 [60]. In that

paper Nyquist was especially interested in the ‘maximum speed of transmission of

intelligence’.
In 1928, Ralph V.L. Hartley,17 another engineer, published his ‘Transmission

of Information’ [36], also in the Bell System Technical Journal (not citing Nyquist

or anyone else). Hartley, whose first paper on electrical communication had

appeared in 1918 [61, p. 211], had performed research on voice and
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carrier transmission and was also interested in picture transmission and television.
For him, information was ‘a very elastic term’, and his first task was ‘to set up for
it a more specific meaning as applied to the present discussion’. He reached
the conclusion that Nyquist had reached in his 1924 paper: information was
proportional to the logarithm of the number of possible messages. Unlike Nyquist,
who spoke of ‘intelligence’, Hartley used the term ‘information’. Hartley’s law of
1928 states ‘that the total amount of information that can be transmitted is
proportional to the frequency range transmitted and the time of the transmission’.
In other words, the information content is proportional to a product of bandwidth
and time.18

Hartley not only considered telegraphy-like signals but also continuous-time
signals, similar to those that appear in telephony. To handle the latter, he
approximated them using step functions (see Figure 3 of [36, p. 543] and the
discussion in [61, p. 235]). The step-width was determined by the frequency, the
step-height by the magnitude of the intersymbol interference.

Meanwhile, in Germany, Karl Küpfmüller,19 in his paper ‘Über
Einschwingvorgänge in Wellenfiltern’ [62] of 1924, which appeared slightly earlier
than Nyquist’s paper of 1924, studied for the first time the maximum telegraph
signalling speed sustainable by bandlimited linear systems. In fact, Küpfmüller
discussed a relation between bandwidth and time similar to that of Nyquist. The
result of the two independent studies was the so-called Nyquist-Küpfmüller law,
stating that in order to transmit telegraph signals at a given rate a certain definite
frequency bandwidth was required. This provoked vehement protest from
Küpfmüller’s colleagues and also those of Nyquist, even after the latter had
produced the theoretically precise results in his paper of 1928 [60].

One should note that Küpfmüller, in his paper ‘Ausgleichsvorgänge in der
Telegraphen-und Telefontechnik’ of 1931, which appeared only in a Swedish version,
was aware of the papers of Hartley and Nyquist (but did not cite them). He
established a version of Hartley’s theorem of 1928, his ‘Zeitgesetz der Telefonie und
Telegrafie’.

Küpfmüller’s paper [63] contains one of the first discussions of stability in the
context of closed-loop systems [64] (see also the footnote on Felix Strecker).
Küpfmüller appears to have been the first researcher to use abstract, idealized linear
systems (characterized by input–output relationships described in the time or
frequency domains).

The landscape of scientific discovery at this period is complex, but the work of
Hartley, Nyquist and Küpfmüller is without doubt important and would have lasting
influence – in information theory and in sampling.

Fritz Lüschen20 in his paper ‘Moderne Nachrichtenysteme’ of 1932 [65] first
referred to both Hartley’s law and Küpfmüller’s ‘Zeitgesetz’ as the basic papers in
communication theory of the time [61, p. 251]. Lüschen presented this paper to the
IEE at their meeting in London in 8 April 1932, and probably also made Hartley’s
results first known in Britain. Hartley and Küpfmüller met at the International
Congress of Telegraphy and Telephony held at Lake Como (Italy) in honor of
Alessandro Volta (1745–1827) in September 1927 (where the physicists also held their
congress, with Bohr, Bragg, Frank, Gerlach, Rutherford, Millikan, Zeeman). With
the publication of Shannon’s papers of 1948/1949, references to the ‘law of Hartley’
stopped, as did references to Küpfmüller.
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In 1935, Felix Strecker21 was interested in the application of Hartley’s results to
telephony and concluded ‘that in a telephone system the effective bandwidth is at
most equal to that bandwidth which is equivalent to the actual one’. In other words,
any manipulation in the time and frequency distribution of telephone conversations
cannot reduce the bandwidth absolutely necessary for comprehensibility. In
connection with Strecker’s conclusion, one should note that in the USA, Carson
had written in 1922 that [66]

. . . a great deal of inventive thought has been devoted to the problem of narrowing the
band of transmission frequencies. Some of the schemes which are directed to this end
are very ingenious; all, however, are believed to involve a fundamental fallacy.

Strecker’s conclusion confirms Carson’s belief.
Let us also mention the ‘Theory of Communication’ presented by the physicist

Dennis Gabor22 in 1946 [67]. Gabor is one of the several remarkable Hungarian-
born scientists who studied in Berlin for some time and then left Germany. Some
other names are Theodore von Kármán (1881–1963), Eugene Paul Wigner (1902–
1995), Edward Teller (1908–2003) and of course the already mentioned Leo Szilard
and John von Neumann [11].

Gabor defined a ‘quantum of information’, which he called a ‘logon’, in terms of
the product of uncertainties of time and frequency of an electrical signal, a concept
he used to analyse waveforms in communication systems. Gabor’s theory is non-
statistical in nature. He refers to the Lüschen paper [65] of 1932; both had worked at
Siemens in 1932.

Now turning to the statistical aspects of Shannon’s theory, we recall that the
connection between entropy as it was known in statistical physics and Shannon’s
entropy in communication had been realized, among others, by Szilard and
von Neumann, who had pointed it to Shannon [16, p. 45], [18, p. 3], [68]. According
to Lanouette [15], Szilard ‘saw the key elements of information theory some three
decades before it became popular’. Müller [69] argues that Szilard was one of the
first, if not the first, to recognize that information could be converted into ‘negative
entropy’. In fact, by 1927–1929 [12, pp. 103–129], [70] Szilard had explained the
relation of physical entropy to information and ‘successfully exorcized’ Maxwell’s
Demon. For a detailed discussion, see [71, Chapter 13] and [72, Section 8.4],
or [73,74].

Still concerning the concept of entropy, it is worth noting that its quantum
mechanical version (the von Neumann entropy) was introduced more than two
decades before the classical limit was discussed at length by Shannon in the context
of information theory: Von Neumann first considered it in an article [20] of 1927, in
which he associates an entropy operator with a statistical operator (see also [75]).

The fact that both von Neumann and Szilard considered the concept of entropy,
although in very different contexts and for different purposes, is not totally
unexpected given that both were Hungarian-born, frequented the Berlin circle and
had some common interests. In Berlin both attended a statistical physics course by
Einstein, who had been persuaded by Szilard to lecture on the topic. Later, in 1930,
they taught together with Schrödinger a theoretical physics seminar. It is a fact that
von Neumann knew Szilard’s work very well; he mentioned it in lectures (an account
can be found in [76]) and in a review of Wiener’s Cybernetics. In the late 1940s, when
he became interested in automata, he investigated the extent to which reliable
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systems could be built out of unreliable components by exploring the role of

redundancy and error-correcting codes; he mentioned not only Szilard and Shannon,

but also Nyquist, Hartley and others.
As Shannon was completing his Mathematical Theory of Communication,

William Tuller (born 1918) was working on his MIT PhD thesis [77] (1948) on the

limits of information transmission in the presence of noise. William Tuller regards

his thesis as a follow-up of Hartley’s work, and places his work on the side of

Carson, Nyquist, Küpfmüller and Gabor, whose works he cites. He can be regarded

as one of the founders, with Shannon, of the mathematical theory of communication.
Tuller’s work comes closer to Shannon than any of his predecessors in that he

considers the effects of noise. Parts of Tuller’s thesis were published in 1949 as an

article [78]. Tuller points out that the previous workers in the field ‘failed to include

noise in their reasoning’ and mentions Wiener’s work on prediction and filtering

of stationary time series as well as its similarity with the problem of information

transmission. Tuller shows that the quantity of information H that may be

transmitted over a given circuit satisfies

H � 2BT logð1þ C=N Þ,

where B is the transmission link bandwidth, T the time of transmission and C/N the

carrier-to-noise ratio. In a footnote, he writes that he became aware of Shannon’s

work only in the spring of 1946, after completing the basic work underlying his

paper. He adds that he remained unaware of the details of Shannon’s theories until

the summer of 1948, eight months after completing his work.
When Shannon considers the capacity with an average power limitation P and

obtains the famous formula [37]

C ¼W log2 1þ
P

N

� �
,

which he had already discussed in [26], he mentions that Wiener, Tuller and Sullivan

had also obtained similar results ‘although with somewhat different interpretations’.

He gives no specific reference to H. Sullivan but cites Wiener’s book on cybernetics

[22] and Tuller’s thesis [77].
Now turning to mathematics and the sampling theorem itself or its variants, it is

well known that – unknown to the mentioned authors – Whittaker [79] had already

found in 1915 how to interpolate the sampled values of bandlimited functions

(see also [80] for a discussion of contributions by Hardy and other authors and

several other historical notes). In fact, the sampling theorem with the sinc function

for functions of finite duration was first established by the mathematician de la

Vallée Poussin [81] in 1908; for a discussion of his contribution and its influence,

see [82]. The sampling expansion for trigonometric polynomials is in fact much older,

being due to Euler, who discussed it more than once, as had Cauchy. See [83] for

details about the method used by Euler to derive expansions such as

cos vt ¼
sin�t

�

1

t
þ 2t

X1
n¼1

cos vn
ð�1Þn

t2 � n2

( )
, ðjvj � �Þ

and other related historical information.
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In Russia, the engineer Vladimir Kotel’nikov23 had formulated the sampling
theorem already in 1933 [84] in an interesting direct and converse form:

Any function F(t) which consists of frequencies between 0 and f1 is representable by the
series

FðtÞ ¼
X1

k¼�1

Dk

sin!1 t� k
2f1

� �
t� k

2f1

where k is an integer number, !1¼ 2�f1 and Dk are constants depending on F(t).
Conversely, any function F(t) represented by this series consists only of frequencies
between 0 and f1.

Kotel’nikov’s famous paper, prepared for a conference never held, did not appear
in an internationally accessible form until the publication in 2001 of the English
translation by V.E. Katsnelson [85, pp. 27–45]. It became known in the West only
much after its publication, possibly through two works of Kolmogorov and
Tichomirow24 published in 1956 and 1960 [46,86].

In Japan, the publication of Isao Someya’s book ‘Waveform Transmission’, in
1949 [87] provides another example of a work that includes the sampling theorem
and that also remained unknown in the West for a long time.

5.3. Sampling techniques in the course of Shannon’s work in information theory

Nyquist, Hartley, Küpfmüller and Gabor had not accounted for noise. Nor had they
considered probabilistic models of information sources. Much of the credit for
importing random processes into communication engineering is due to Wiener [88]
and Rice [89,90]. Nyquist and Hartley had also made no explicit distinction between
source, channel and destination. For Shannon, this distinction is essential. In his
ground-breaking abstraction of the communication process, his definition of the
amount of information is presented in semi-axiomatic form, the capacity of a
channel is defined for channels with or without noise and the source of information is
modelled as a random process. Let us consider it in some more detail.

5.3.1. Communication in the presence of noise

In ‘Communication in the Presence of Noise’ [26], Shannon begins by describing the
blocks that compose a communication system: an information source, the transmit-
ter, the channel, the receiver and the information destination. He then introduces the
unit of information, the bit, ‘following Nyquist and Hartley’ and citing [36,59].
He notes that when it is possible to reliably distinguish M different signal functions
of duration T on a channel, the channel transmits log2M bits in the interval T and
the rate of transmission is (log2M )/T bits/second. He then defines the channel
capacity as

C ¼ lim
T!1

log2 M

T
,

adding that the requirement of ‘reliable resolution’ will be clarified in the sequel.
This coincides with the definition of capacity that Shannon uses in the first part of

666 P.L. Butzer et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
B
-
o
n
 
C
o
n
s
o
r
t
i
u
m
 
-
 
2
0
0
7
]
 
A
t
:
 
1
6
:
3
1
 
1
5
 
M
a
r
c
h
 
2
0
1
1



‘A Mathematical Theory of Communication’ [37], in reference to the discrete

noiseless channel.
Shannon assumes that signals are band-limited to W cycles/second starting at

zero frequency (low-pass signals) and that the channel is available throughout T

seconds. He then considers the sampling theorem, stating it as follows: if a function

f(t) contains no frequencies higher than W cycles/second, it is completely determined

by giving its ordinates at a series of points spaced 1/2W seconds apart. He adds that

this is ‘common knowledge in the communication art’ and gives a proof based on the

Fourier series expansion of the Fourier transform of f(t). He takes the interval

[�W,W ] as the fundamental period and recognizes that the coefficients of the

Fourier series are the samples of f(t) at multiples of 1/2W. His equation (5) expresses

this clearly:

f
n

2W

� �
¼

1

2�

Z 2�W

�2�W

Fð!Þei!
n
2W d!:

Since these samples determine the Fourier series, they determine the Fourier

transform of f(t) in the range [�W,W ]. Hence, they determine f(t) as well.
Here Shannon is asserting that the integers, suitably scaled, form a set of

uniqueness for the Paley–Wiener space. Shannon’s proof is virtually the same as that

given by Borel [91], and this kind of uniqueness appears in the literature many times

after that (e.g. Whittaker [92] in a more general form).
Shannon then gives the usual series

f ðtÞ ¼
X1

n¼�1

xn
sin�ð2Wt� nÞ

�ð2Wt� nÞ
,

where ‘xn is the nth sample’, that is,

xn ¼ f
n

2W

� �
:

The question of quantization, raised by the real-valued character of the samples

and the need to represent them with finite precision, is explicitly addressed in

connection with sampling in another famous article of 1948, the paper on PCM25

by Oliver et al. [93].
Shannon then argues that the series represents f(t) because it ‘satisfies the

conditions on the spectrum and passes through the sampled values’. It is not clear

whether Shannon was aware that another kind of uniqueness holds, namely, that

only the sinc functions can give rise to a sampling series of the above form (see [94]

for further details).
Shannon adds that the theorem has been given in other forms by mathematicians

and mentions Whittaker’s book [95], but that ‘in spite of its evident importance

seems not to have appeared explicitly in the literature of communication theory’. He

cites the work of Bennett [9], which cites Raabe’s paper [5], adding that it contains ‘a

result similar to [the sampling theorem] but on a steady-state basis’ (see [34] for a

detailed discussion). Finally, he adds that because Nyquist had pointed out the

‘fundamental importance of the time interval 1/2W in connection with telegraphy’

he will call the interval ‘the Nyquist interval corresponding to the band W’.
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Shannon then introduces time-limitation along with band-limitation as in [37]: a

signal is time-limited to an interval if its samples outside that interval vanish. As a
result, a signal time-limited to T and band-limited to W is determined by giving 2WT
numbers. He adds that Nyquist [59,60] and Gabor [67] have pointed out this need for

2WT numbers, using the Fourier series expansion of the function on the interval T.
He closes the section on sampling with a remark on nonuniform sampling: the 2WT

numbers need not be the equally spaced samples. However, if nonuniform sampling
is used, the reconstruction will be more involved and there is the possibility of noise
sensitivity if there is ‘considerable bunching’. He mentions that the value of the

function and its second and third derivatives at every third sample point would also
work and that, in general, any set of 2WT independent numbers would perfectly

determine the function. These remarks would inspire a number of later works.
In the next section, Shannon stresses the parallel between the sampling theorem

and an expansion in an orthonormal basis. More precisely, if f(t) is determined by
2WT numbers, these numbers can be thought of as its coordinates. He shows that the

‘energy’ of f(t) can be written as

E ¼

Z 1
�1

f ðtÞ2 dt ¼
1

2W

X
n

x2n,

using the orthogonality of the shifted sinc functions. Thus, the distance from the
origin to the point represented by the xn is d

2
¼ 2WE or d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2WTP
p

, where P is the
power of the signal.

He uses this to give several geometric interpretations of messages: the input and

output messages are regarded as points in the input and output vector spaces; the
transmitter establishes the correspondence between them; the receiver establishes a
correspondence in the inverse direction. Shannon summarizes the entities in the

communication system and their geometrical counterparts in tabular form.
For example, ‘noise in the channel’ corresponds to ‘a region of uncertainty about

each point’.
The essence of the geometrical viewpoint used by Shannon had already become

clear by 1907, when F. Riesz and E. Fisher independently proved that the classes of
square-summable functions (L2) and square-summable sequences (‘2) are isometric

(see [96] for details on how geometrical ideas in Hilbert space evolved). Any complete
orthonormal system of functions would establish a correspondence between L2 and
‘2; Shannon, who was dealing with a subspace of L2, uses the sampling theorem and

the shifted sinc functions. The extent to which his geometrical ideas were re-invented
is unclear, but the idea of combining them with the sampling theorem to obtain a

probabilistic description of the signals was certainly original.
Shannon then discusses the dimension of the input and output spaces and its

effect. As an example, he gives a mapping from a line to a square (Figure 8) and
argues that when this is done the effect of noise becomes small relative to the length

of the line; but this is true only if the noise level does not exceed a critical value.
From this strikingly simple example he draws an emphatic conclusion about the

‘threshold effect’ due to noise: there is a critical noise amplitude that causes the
message to be very badly distorted.

Shannon also considers the opposite direction, when the dimensionality is
reduced to compress bandwidth or time or both. He points out that the effective
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dimension of the message space may be well below 2WT and that this is what makes
the transmission of signals such as speech at reduced bandwidths possible. He adds
that one-to-one mappings between the square and the line, of the type Cantor
introduced, can be used to reduce dimensionality even further but that it is
impossible to do so continuously. The unavoidable discontinuity will produce
threshold effects (which can also be understood geometrically, again from Figure 8).
Only in the absence of noise it is possible to arbitrarily reduce the time-frequency
product, with exact recovery of the original message.

Shannon remarks that Hartley’s law, which sets an upper limit to the amount of
information which may be transmitted in terms of the available bandwidth-time
product, is true in a sense and false in another sense. He argues again in terms of the
discontinuity of the mappings between input and output spaces of possibly different
dimensions and the effect of noise. To better understand its effect, he proceeds to
discuss the inherent limitations of a channel under additive white Gaussian noise of
bandwidth W. If the signal has power P and the noisy signal has power PþN,
the number of amplitudes that can be distinguished will be, roughly,

L ¼ K

ffiffiffiffiffiffiffiffiffiffiffiffiffi
PþN

N

r
:

Here, the constant of proportionality K determines the desired separation
(with smaller values corresponding to better separation). Since there are 2WT
independent amplitudes, the number of distinct signals will be M¼L2WT, and the
number of bits that can be transmitted during the T seconds will be

log2 M

T
¼

WT log2 L
2

T
¼W log2 K

2 PþN

N
:

Figure 8. Shannon’s example of a mapping from a line into a square, showing that the
uncertainty due to noise relative to the length of the line can be controlled only if the noise
level is below a certain critical value.
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Shannon makes this precise and gives the exact result: first, there exists an encoding

method that leads to transmission at the rate

C ¼W log2
PþN

N
,

with arbitrarily small error probability; second, it is impossible to send at a higher

rate and still have arbitrarily small error probability.
Shannon argues that since the perturbations due to noise are independent and

follow the Gaussian distribution, the probability of a perturbation having coordi-

nates (x1, x2, . . . , xn) is the product of the individual Gaussian probabilities. Due to

the characteristics of the Gaussian function, this product depends only on
P

x2i ,

meaning that the region of uncertainty is spherical.
But, using the geometrical interpretation discussed before,

P
x2i is equal to 2WT

times the average noise power during time T. As T increases,
P

x2i will approximate

2WTN. Thus, for sufficiently large T,
P

x2i will lie within a sphere of radiusffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2WTðNþ �Þ

p
. As Shannon puts it, when 2WT is large the noise regions can be

thought of ‘as sharply defined billiard balls’.
As for the received signals, they have an average power of PþN, and so they

must lie on the surface of a sphere of radius
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2WTðPþN Þ

p
. The number of distinct

signals cannot exceed the ratio of the volumes of the signal spheres and noise spheres.

This immediately leads to the bound

M �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
PþN

N

r !2WT

and therefore to

C ¼
log2 M

T
�W log2

PþN

N
:

It remains to show that there exists an encoding that achieves the upper bound with

error probability �. The M signal functions must be chosen in such a way that, when

a perturbed signal is received, the nearest signal point is, with probability greater

than 1� �, the original signal. Surprisingly, as Shannon writes, one signal point

selected at random from inside each sphere of radius
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2WTP
p

will do. Each

collection of M points obtained in this way corresponds to an encoding of the input.

Shannon then shows that the frequency of errors averaged over all such selections is

less than �. This establishes the existence of an encoding with the required property

(obviously, if the average of M numbers is below �, at least one of the numbers will

be smaller than �).
The last section of this article briefly deals with continuous sources. It points out

that it is impossible to send continuous information exactly over a channel of finite

capacity, but that in practice a certain amount of discrepancy has to be tolerated.

The rate of generating information must therefore be understood in connection with

a given criterion of fidelity. Shannon then gives bounds for the rate of generating

information in bits per second, in terms of the maximum tolerable mean square error

and the message source and entropy powers.
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5.3.2. A Mathematical Theory of Communication

Shannon’s masterpiece ‘A Mathematical Theory of Communication’ [37], later

reprinted in [18], considers some of the issues addressed in ‘Communication in the

Presence of Noise’ and goes further in several directions. It begins by pointing out

the interest of a general theory of communication in connection with modulation

methods such as PCM and PPM.25 Shannon mentions Nyquist and Hartley

[36,59,60] on the subject and adds that he will address the effect of noise and explore

the statistical nature of the messages.
The first part of his paper addresses the discrete noiseless channel. Pointing out

teletype and telegraphy as examples of discrete channels, he defines its capacity as

C ¼ lim
T!1

log2 NðT Þ

T
,

where N(T ) is the number of allowed signals of duration T.
Shannon suggests statistical descriptions of a discrete source based on Markov

models, from which he singles out the class of ergodic models as particularly suited

to communication theory. He then asks for a quantity that measures the rate at

which information is produced by such a source. After examining the properties that

such a measure should have, he reaches the expression

H ¼ �
Xn
i¼1

pi log2 pi,

which is the only continuous function of the pi with the desired properties (up to a

multiplicative factor that fixes the units). He points out its similarity with ‘the

entropy as defined in certain formulations of statistical mechanics’ and suggests the

name ‘entropy’.
Shannon then proves the fundamental theorem for a noiseless channel: let a

source have entropy H and a channel have capacity C, then it is possible to encode

the output of the source to transmit at the average rate of C/H� � symbols/second,

where � is positive and arbitrarily small. Furthermore, the result is sharp: it is not

possible to transmit at an average rate greater than C/H.
Shannon then turns to the discrete channel with noise. He observes that although

at first sight errorless transmission cannot ever be achieved in the presence of noise, it

is possible to reduce the probability of errors by introducing redundancy – for

example, by repeating the message sufficiently many times. This suggests that to

force the error probability to arbitrarily small values, the redundancy has to be

increased to arbitrarily large values, which seems to imply that the rate of

information transmission would approach zero.
Surprisingly this is not the case. Shannon’s definition of capacity of a noisy

channel, which reduces to the one already given in the noiseless case, is

C ¼ max HðxÞ �HyðxÞ
� �

where the maximum is taken with respect to all possible information sources used as

input to the channel. The fundamental theorem asserts that if the entropy of the

source, H, satisfies H�C, there exists a coding system such that the output of the
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source can be transmitted over the channel with an arbitrarily small error
probability. This is not the case if H4C.

The second part is devoted to the mathematically much more subtle continuous-
time case. After a few preliminaries, Shannon introduces band-limited ensembles
of functions and uses the sampling theorem, again regarded as an orthogonal
decomposition, to map a band-limited f(t) to a vector of samples in an infinite-
dimensional space. For a proof of the sampling theorem he refers to
‘Communication in the Presence of Noise’ [26] (which had been submitted in
1940) and in which he extensively discusses the geometrical interpretation of band-
limited signals as vectors of samples by means of the sampling theorem, as we
have seen.

Shannon [26] writes that a function is limited to a time T if all samples outside
that interval of time are zero. Functions band-limited toW and time-limited to T can
be represented by 2WT coordinates.

The sampling theorem is a crucial tool in Shannon’s theory since it provides a
way of defining an ensemble of band-limited and time-limited functions by means of
a probability distribution p(x1, x2, . . . , xn) in the n-th dimensional space. Note,
however, that time-limitation and frequency-limitation are both essential. If the time-
limitation condition is not satisfied, Shannon suggests the consideration of 2WT
coordinates that correspond to an interval of duration T ‘to represent substantially
the part of the function in the interval T and the probability distribution
p(x1, x2, . . . ,xn) to give the statistical structure of the ensemble for intervals of that
duration’. From this point onwards no further references to the sampling theorem
are needed – but the bridge that it establishes between the continuous and the
discrete has been established and will remain in the background.

6. Raabe’s condition, Shannon and the Nyquist rate, treatment of

transmission systems

It is difficult to determine the extent to which Raabe’s work was recognised
(or was ignored or unknown) through the scientific community at the time, mainly
in Germany and in the United States. We overview some of the main issues in
this section. For details and an English translation of the relevant parts of
Raabe’s thesis, see [34].

6.1. Background on Raabe’s condition

Prof. Hans Dieter Lüke (Aachen), who first drew attention to the importance of
Raabe’s work in connection with sampling, exchanged an extensive correspondence
with Raabe from 1978 onwards. On 10 October 1989 he congratulated Raabe on the
occasion of his 80th birthday and the publication of his thesis 50 years before;
Raabe’s vita and a photograph were published in [7]. In a letter dated 5 October
1978, Raabe writes that he had read with great pleasure Lüke’s article [6], where
Raabe’s dissertation is discussed with admiration. Lüke had stressed its practi-
cal aspects and the fact that it was independent of work in the same area by
Kotel’nikov [84].
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Raabe also mentions Koch’s work [8], who recalled the term Raabsche Bedingung
(Raabe’s condition). The term continued to be used in the German electrical
engineering terminology, but Koch expressed regret that it was not used in the USA
and that elsewhere its influence was dying out.

Raabe recalls that he first heard the expression ‘Raabe’s condition’ at a
conference during World War II chaired by Prof. Hans Rukop (1883–1958) [97,
pp. 148–150], Research Director of Telefunken at Berlin. Raabe also mentions that
in the USA there never was any reference to his article. The sampling theorem had
been credited to Shannon and one spoke of the ‘Nyquist rate’. People were
astonished whenever Raabe mentioned his 1939 paper.

In his reply of 30 October 1978 Lüke mentioned, without giving specific
examples, that Raabe’s paper was cited quite regularly in the German post-war
literature – in contrast to the situation in the USA, in which he knew only the
reference made by Bennett [9].

Bennett’s paper was published in 1941, only two years after the publication of
Raabe’s article, and is cited by Gabor and Shannon. According to Shannon, in it ‘a
result similar to [the sampling theorem] is established, but on a steady-state basis’
[26, p. 12]. The comparison of Bennett and Raabe’s work is interesting. Unlike
Raabe, Bennett considers a general ‘switching function’. Raabe specifically considers
a square wave and its Fourier series expansion, but goes on to consider band-pass
inputs as well. Both use Fourier series and periodic inputs and both compare
switching with amplitude modulation. Both papers can be considered to contain
sampling results on a ‘steady-state basis’, as Shannon wrote.

Raabe’s paper is mentioned by Bennett at the end of his paper in a group of three
‘Further References’, which are actually the essential ones for his own work. Bennett
must have been aware of the content of Raabe’s paper although it had been written
in German.

6.2. Shannon and the Nyquist rate

As we have seen, Nyquist’s classical papers of 1924 and 1928 on telegraphy [59,60]
show a thorough understanding of the connection between signalling speed, number
of bits per symbol and bandwidth. However, an explicit formulation of the sampling
theorem cannot be found there and it would take some more time to appear in the
engineering literature. Nyquist did establish that ‘the speed with which intelligence
can be transmitted’ increases linearly with the line speed or the number of symbols
that can be transmitted per unit time, and linearly with the number of bits per
symbol. His view of telegraphy is strikingly modern and contains key ideas
underlying digital communication systems such as PCM, which was discussed two
decades later.

PCM was the subject of the important paper by Oliver et al. [93]. The paper
connected key concepts such as sampling, quantization, coding and channel capacity.
Its Appendix I contains a proof of the sampling theorem (along the lines given in
[26]), but more importantly it described the essence of the problem in simple terms,
which would appeal strongly to the engineering audience:

To reconstruct the signal it is merely necessary to generate from each sample a
proportional impulse, and to pass this regularly spaced series of impulses through an
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ideal low-pass filter of cutoff frequency W0. The output of this filter will then be (except
for an overall time delay and possibly a constant of proportionality) identical to the
input signal. Since the response of an ideal lowpass filter to an impulse is a sin x/x pulse,
and since the total output is the linear sum of the responses to all inputs, this method of
reconstruction is simply the physical embodiment of [the sampling theorem].

This expository account is a synthesis of work that had its origin with Nyquist and
the earlier precursors of telegraphy and culminated in Shannon’s theory of
communication. As the advantages of PCM started to be recognized, the importance
of Nyquist’s legacy became clear. Oliver et al. wrote:

If it surprises the reader to find that 2W0T pieces of data will describe a continuous
function completely over the interval T, it should be remembered that the 2W0T
coefficients of the sine and cosine terms of a Fourier series do just this, if, as we have
assumed, the function contains no frequencies higher than W0.

The approach of Nyquist (as that of Raabe) was of course firmly based on the
analysis of the Fourier series of periodic signals, as these lines bring to mind. What
Shannon wrote when he discussed the sampling theorem in [26] is, therefore,
not surprising:

Nyquist pointed out the fundamental importance of the time interval 1/2W seconds in
connection with telegraphy, and we will call this the Nyquist interval corresponding to
the band.

Shannon’s ‘crisp statement and proof of the sampling theorem’, as Verdú puts it [98,
p. 2063], was instrumental in popularizing sampling in the engineering mainstream.
But although Shannon mentioned Whittaker, Hartley and Nyquist, one should
recognize the differences between their works. E.T. Whittaker, as pointed by
Khudiakov [99], considers the repetition rate of interpolation nodes; Nyquist
considers the repetition rate of elementary pulses and Kotel’nikov considers the
sampling frequency. Raabe, as we have seen, considers the multiplexing frequency,
which is nothing but the sampling frequency for each multiplexed channel. In one
way or the other, these authors are all interested in the relation between these rates
and the properties of the signal itself, and particularly in their frequency content.
Nyquist is concerned with the rate of transmission and the bandwidth required and
Whittaker is interested in the interpolation of regularly spaced samples by analytic
functions. To build his multiplexer, Raabe determines the required sampling
frequency for a given signal bandwidth, in the lowpass and bandpass cases; he
implements sampling without giving the sampling theorem explicitly. Kotel’nikov,
on the other hand, gives the reconstruction formula without implementing it.
Shannon recognizes the importance of sampling as a part of information theory,
separates the concepts of source, channel and receiver and considers stochastic
inputs; he is then able to go much further by introducing concepts such as entropy,
mutual information, code and capacity, around which the central results of
information theory would turn.

6.3. Raabe’s versus Shannon’s approach in treating transmission systems

As is well-known, electrical circuit theory depends heavily on simple linear circuit
elements which can, in general, be called impedances. Mathematically, the relation
between the voltage applied to an impedance and the current that flows through it
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can be expressed by a linear differential operator. This explains the usefulness and
success of Fourier techniques in circuit analysis.

The most natural Fourier analysis tool to use in circuit analysis when the signals
of interest are periodic is Fourier series. This is especially true in steady-state
analysis, in which the engineer is interested in quantities such as gain or magnitude as
functions of the frequency.

Since Fourier series were well known in Raabe’s time, and since the multiplexing
problem involves a periodic multiplexing signal and relatively simple circuit
elements, it is not surprising that both Raabe and Bennett have relied on them.

Generally speaking, harmonic analysis is not as successful in connection with the
investigation of highly non-linear or very complex systems. As communication
systems and communication problems became increasingly complex, the importance
of harmonic analysis gradually decreased while that of statistical methods increased.

This is true, for example, in the case of Shannon’s fundamental theorem for the
discrete channel with noise, a result that opened an entirely new research field. It
would take 50 years of intense efforts to find capacity-achieving codes [100,101] –
and probabilistic methods were essential to reach the goal.

6.4. Bennett’s work in treating transmission systems

Since Shannon cited Bennett’s [9] multiplex systems paper, which cited Raabe [5], it
is appropriate to give an overview of Bennett’s work on time division multiplex
systems. In fact, Shannon writes [26, p. 12] with respect to his sampling theorem that
‘a result similar to Theorem 1 is established [by Bennett], but on a steady-state basis’,
exactly the same basis as with Raabe.

Bennett, just like Raabe, assumes an N-channel system with a sinusoidal signal
Ej(t)¼Ej exp(i!jt) impressed on the j-th channel (see Figure 1 in [9, p. 201]). Then he
lets the switching between the j-th channel and the transmission line at the sending
end to be represented by Isj(t)¼Fj(t)Ej(t), where the function Fj(t) is periodic in time
with fundamental frequency q¼ 2�/T, where T is the time occupied by one cycle of
the switching operation. Here he assumes for Fj(t) a somewhat general function of
time, choosing a general Fourier series27 approach:

Fj ðtÞ ¼
X
m

Amje
iðmqt��mjÞ:

It follows that

IsjðtÞ ¼ Fj ðtÞEj ðtÞ ¼ Ej

X
m

Amje
iðmqtþ!jt��mjÞ: ð1Þ

The next step is the transmission of the wave over a line, the properties of which are
in general specified by a complex transfer impedance Er/Is¼Z(i!). The result of
applying the wave (1) to the line is then the open circuit voltage

Erj ¼ Ej

X
m

Amj Z½iðmqþ !j Þ� e
iðmqtþ!jt��mjÞ:

At the receiving end, another switching process takes place synchronously with that
at the transmitting end. Thus the switching process between the k-th channel and the
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line can be represented by Irk(t)¼Gk(t)Erj(t), where Gk(t) is a periodic function of
time with fundamental frequency q, and will be expressed in a manner analogous to
the corresponding Fj(t), namely as a general Fourier series:

GkðtÞ ¼
X
n

Bnke
iðnqt��nkÞ:

In combining all this Bennett finds

IrkðtÞ ¼ Ej

X
m

X
n

Amj Bnk Z½iðmqþ !j Þ� e
i½ðmþnÞqtþ!jt��mj��nk�:

In essence, this is his received wave equation (10) [9, p. 203], which thus consists of a
doubly infinite set of side frequencies involving harmonics of q. It is however possible
to set up conditions under which the original signal may be selected and the
frequencies involving the switching rate may be suppressed by filtering. Such a
separation is possible provided !j5 q/2, because it then follows that a lowpass filter
with cutoff frequency at q/2 will not pass any of the components with frequencies
dependent on q. The condition !j5 q/2 is exactly the Raabe condition. Then
assuming that it is fulfilled, he calculates channel output Ick(t)¼YjkEj exp(i!jt).
Raabe, in Bennett’s terminology, arrives at Icj(t)¼YjjEj exp(i!jt).

In his further treatment Bennett investigates crosstalk between adjacent channels,
as Raabe did, but he can carry this out in a greater generality due to Yjk. Bennett
treats on-and-off switching where he now selects suitable switching functions Fj(t)
and Gk(t) for crosstalk suppression and minimum bandwidth. Further on, he
investigates transmission requirements in the case that the transfer impedance Z is
acted by frequency-dependent phase shifts and gain.

All in all, Bennett’s approach is more general but in the same spirit as that of
Raabe. Both use Fourier series and periodic inputs and both compare switching with
amplitude modulation. Bennett considers a general ‘switching operation’ in which
the signal is multiplied by a periodic function, represented by a Fourier series. Raabe
specifically considers a square wave and its Fourier series expansion, but goes on to
consider band-pass inputs as well. As already mentioned in Section 6.1, both papers
can be considered to contain sampling results on a ‘steady-state basis’, as Shannon
wrote.

Bennett [102, pp. 140–152] still uses his results of 1941 without working in the
more modern statistical setup. In this sense this book – the basic results of which are
understandable in terms of operations on sine waves – represents a ‘back to basics’
approach.

7. A brief biography of Raabe

Herbert P. Raabe was born on 15 August 1909 in Halle, Germany. He attended the
Humboldt Oberrealschule in Zeitz, receiving the graduation certificate in 1929.
Subsequently, he studied Electrical Engineering and Telecommunications at the
TH Berlin, receiving the Diplom in 1936. In 1937 he became a Research Assistant
and in December 1939 an Oberingenieur at the Chair in Telecommunications of
Professors Wilhelm Stäblein (1900–1945) and Karl Küpfmüller, who between 1935
and 1936 had been responsible for the vacant chair in Telecommunications.
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In 1939 Raabe earned his doctorate (summa cum laude) with the dissertation
Untersuchungen an der wechselzeitigen Mehrfachübertragung which appeared in 1939
in the journal Elektrische Nachrichtentechnik [5] and in which he describes his time
division multiplexing system.

Raabe’s thesis was supervized by Stäblein and Heinrich Fassbender (1884–1970),
who had been professor of high-frequency engineering at TH Berlin since 1918.

Raabe sent his Erinnerungen (personal recollections) [103] to Prof. P. Noll
(Berlin), in a communication dated 20 December 1994. These highlight his time in
Berlin up to 1947 and show his practical experiences in signal processing and radar in
a new perspective. He speaks of his influences on his profession, and also singles out
some of his teachers for special mention. These include three electrical engineers
whom we have already met; Fassbender (whose lectures especially appealed to him),
Küpfmüller and Stäblein, among others.

In 1989 Raabe (Figure 9) was honoured at a celebration at Kleinheubach,
Germany, on the 50th anniversary of the publication of his doctoral thesis. Raabe,
who was the author of 15 articles and 19 patents, died on 25 August 2004, in
Potomac, Maryland, where he had resided since 1968.

8. Conclusion

There is convincing evidence for giving Raabe credit for discovering the minimum
sampling rate for errorless transmission, independently of Kotel’nikov. He also gave,
for the first time, the condition for the band-pass case. It turns out that his

Figure 9. Herbert Raabe around 1989, when he was about 80 years old.
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conclusions hold in more general contexts, but he formulated them in this setting,
one decade before Shannon named the condition after Nyquist, and deserves credit
for that.

Why was the impact of Raabe’s work not more widely felt? We have suggested
several reasons. His thesis was written in German, published in a German journal
and appeared just before World War II. After the war Raabe moved to the USA
where he began working in other areas. By that time Shannon’s work had appeared
in the USA and was having an enormous impact. The sampling theorem became
associated with the name of Shannon and the minimum sampling rate with that
of Nyquist, although for Shannon sampling was ‘common knowledge in the
communication art’ [37]. As has been pointed out, he cited Bennett [9], who had
already cited Raabe. However, as we discussed, this did not attract attention to
Raabe’s work.

By the time Shannon stated and proved the sampling theorem, a number of
mathematicians and engineers had already contributed to sampling. It is fair to
emphasize, however, one characteristic that distinguishes Raabe’s work: at a time
when the principles underlying his subject were still unclear, Raabe managed not
only to understand the problem, but also to build and test a system that carried the
idea to practice. This practical side of his work, which appeared before Shannon’s
communication theory had popularized sampling, is indeed outstanding.
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Notes

1. The article by Butzer et al. [34], an in-depth study of the life and work of Raabe, contains
an English translation of the relevant parts of Raabe’s doctoral thesis [5]; Raabe’s
contribution is analysed in detail, and the concepts used at the time are put into the
present day terminology. This article is, in contrast, centred on the life and work of
Shannon, which is described in some detail and set against the earlier work of Raabe.

2. William Robert Bennett was born on 5 June 1904, in Des Moines, Iowa. He received his
BS degree in electrical engineering from Oregon State College, in 1925, and A.M. and
PhD degrees from Columbia University, in 1928 and 1949, respectively. He joined the
research department of Bell Labs in 1925 and worked in multichannel communication,
including multiplex telephony. He also investigated the effects of nonlinear distortion and
the spectra of quantized signals [104]. His books on data transmission and noise include
[102,105,106]. He had a gift for exposition and could make a complex problem
understandable to ‘even the most inexperienced beginner’ [107]. He became a fellow of the
IEEE in 1956 and retired from Bell Labs in 1965, as Head of the Data Theory
Department. He accepted a Professorship at Columbia University and was appointed
Charles Batchelor Professor of Electrical Engineering there in 1968; Emeritus, 1972. He
received the Mervin J. Kelly Award in Telecommunications from IEEE in 1968 and died
on 21 August 1983.

3. Karl Willi Wagner was removed from office in 1936 since he refused to dismiss his Jewish
employees. He escaped being sent to a concentration camp in view of a thrombosis.
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His research assistant and later co-author of his well-known book on operational
calculus, Dr Alfred Thoma, who denounced certain accusations made against his teacher,
was fired immediately. This information was kindly supplied by his son Ulrich O.E.
Thoma and is to be found in his father’s autobiography; see http:/www.ulrichthoma.de/
alfredthoma/.

4. See [108] and also the web link http:/www.nue.tu-berlin.de/history/, which includes
biographies and other useful historical information pertaining to the TH/TU Berlin.

5. Leo Szilard was born on 11 February 1898, in Budapest. He moved to Germany in
December 1919 and became a student of the TH Berlin. Divided among engineering and
physics, he started to attend the physics colloquia at Berlin University in January 1920;
joining this eminent circle of physicists changed Szilard’s life. He obtained his PhD degree
from Berlin University in 1922, officially under von Laue, but with the support of
Einstein, with whom he had developed a close relationship. Of the several patents and
inventions that he filed from 1926 onwards, several were joint work with Einstein. In 1933
Szilard left from Germany to England. Later on, in 1938, he moved to the USA. During
that period he developed his ideas about nuclear chain reaction and critical mass, for
which he would file a patent. With Wigner, he organized the letter of Einstein to
Roosevelt that would initiate the atomic bomb project. However, in 1945 he started two
versions of a petition to prevent the deployment of atomic bombs against Japan. He
would defend nuclear weapon control until the end of his life. He was appointed Professor
at the University of Chicago in 1946, a Fellow of the American Academy of Arts and
Sciences in 1954 and a member of the National Academy of Sciences of the USA in 1961.
He received the USA Atoms for Peace Award in 1960 (see also [11,109]). Szilard died on
30 May 1964 in La Jolla, CA.

6. John von Neumann was born on 28 December 1903, in Budapest. In 1921 he enrolled in
mathematics at the University of Budapest, but spent most of his time at the TU Berlin
and the Zurich Polytechnic, where he studied mathematics and chemical engineering. He
obtained his PhD degree in mathematics from the University of Budapest and the
chemical engineering degree from Zurich at about the same time, in 1925. During the
period 1927–1929 he taught as a Privatdozent at the University of Berlin. In 1929 he
moved to the University of Hamburg, and in 1930 to the USA. In 1930 he became a
visiting professor at Princeton University. He obtained a permanent position there in
1931 and in 1933 he was invited to join the Institute for Advanced Study, becoming the
youngest of its six initial members. Von Neumann made fundamental contributions in a
number of topics: the axiomatization of set theory, the mathematical foundations of
quantum physics (included in this group is his famous book [75] on the mathematics of
quantum mechanics), game theory and mathematical economics (among which stands out
the influential book with Oskar Morgenstern on game theory and economic behaviour),
spectral theory and operator algebras, ergodic theory and numerical mathematics and
computer science. His contributions to modern computing are discussed in
[17,19,110,111], among others. See also the paper by Ulam [112], which is part of a
memorial issue of the Bulletin of the AMS that also includes an account written by
Shannon [113] of von Neumann’s work on automata theory. John von Neumann died on
8 February 1957, in Washington, DC.

7. Jean-Maurice-Émile Baudot (1845–1903) was born on 11 September 1845 in Magneux,
France. A telegraph engineer and one of the pioneers of telecommunications, he worked
in the development of fast telegraphy, and invented the Baudot system for simultaneous
transmission of several signals over the same wire (Figure 4). Baudot’s invention of
1875–1977 was based upon a distributor of B. Meyer of 1870/1871 and the code used by
Gauss and Weber in their telegraph experiments of 1833 [2,58]. Baudot’s name became
attached to the Baudot code, a predecessor of the ASCII code. The term ‘baud’, a
measure of the number of symbols transmitted per second, is named after him.

8. Patrick Bernard Delany (1845–1924) was born in King’s County, Ireland, on 28 January
1845, and moved to the United States in 1854. By the age of 16 he was already an
accomplished telegraphist and became Chief Operator of the Franklin Telegraph
Company, Assistant General Superintendent of the Southern and Atlantic Telegraph
Company and superintendent of the Automatic Telegraph Company. He left
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telegraphy and became a newspaper correspondent at Washington and subsequently
Editor of Old Commonwealth, Harrisonburg, Virginia. From 1880 onwards he turned his
attention to inventing. He obtained over 100 patents, mostly related to telegraphy. For his
work in high speed and synchronous telegraphy, the Franklin Institut awarded Delany
the John Scott Medal in 1885 and the Elliot Cresson Medal in 1886 and 1896,
respectively.

9. Bernard Meyer (1830–1884) was a French telegraph operator. Meyer’s distributor of
1870/1871, which influenced Baudot, led to a multiplexer that was first used on the Paris–
Lyon line already in 1872.

10. Poul la Cour (1846–1908), a Danish meteorologist, invented and patented in 1874 (the
year Edison invented quadruplex telegraphy) a telegraphic device based on tuning forks.
Today the main idea behind la Cour’s device would be described as frequency-domain
multiplexing (see [30,31] for an account of other pioneering efforts at frequency-domain
multiplexing). In the United States, la Cour’s invention was credited to Elisha Gray, who
had worked along similar lines. la Cour protested but found himself unable to support the
legal battle and withdrew his claim. Nevertheless, in 1886, the Franklin Institute awarded
la Cour the John Scott Medal for his phonic wheel of 1877.

11. Generalized sampling theory was developed at Aachen from 1977 onwards. It was first
studied in the doctoral dissertation of Splettstößer [114], continued by Stens [115],
Ries–Stens [116] and Butzer et al. [117]; overview papers are [118–120]. Let us point
out that it was Otto Lange who in 1975 introduced PLB and his research group,
especially Wolfgang Splettstößer, to signal analysis, in particular to investigate Shannon’s
sampling theorem from a critical, mathematical point of view. It finally lead to some 150
papers in the broad area by this research group up to 1994 [121]. In 1970, while studying
and doing graduate work in EE and information science at Aachen, Dr Lange obtained,
in addition, his Dipl. Math. degree, one examiner being PLB.

12. The sinc function (which had been defined by Raabe’s teacher Küpfmüller) is never
mentioned by Raabe. However, it should be kept in mind that the ideal lowpass filter, and
hence the sinc function, cannot be implemented. Therefore, it could not ever become part
of the multiplexing system that Raabe was trying to design and build.

13. This subsection on distortion treats Sections 5 and 6 of Raabe’s doctoral thesis [5] which
were not discussed nor translated in [34]. The authors are planning to present an online
translation of the whole Raabe thesis.

14. Recorded at Winchester, MA, 28 February 1977. Other sources of information by
Shannon himself include an interview with Robert Price (28 July 1982) and a Kyoto Prize
speech draft that Shannon wrote in 1985. See also the comprehensive thesis of Hagemeyer
[61] and that of Guizzo [16].

15. Shannon received this award (of DM 200,000) for his ‘fundamental research on
information theory’. Prof. H.D. Lüke, chairman of the Board of Curators of the Eduard
Rhein Foundation, had suggested Shannon for the Award. The foundation of Eduard
Rudolph Rhein (1900–1993) is now managed by his nephew Dr Rolf Gartz.

16. Harry Nyquist was born on 7 February 1889 in Nilsby, Sweden. He emigrated to America,
attended the University of North Dakota, Grand Forks, from 1912 to 1915, and received
his BS and MS degrees in Electrical Engineering in 1914 and 1915, respectively. He
attended Yale University, NewHaven, Connecticut, from 1915 to 1917, and was awarded a
PhD in 1917.

From 1917 to 1934 Nyquist was employed by the American Telephone and Telegraph
Company in the Department of Development and Research Transmission, where he was
concerned with studies on telegraph picture and voice transmission. From 1934 to 1954
he was with the Bell Telephone Laboratories, Inc., where he continued in the work of
communications engineering, especially in transmission engineering and systems engineer-
ing. When he retired he had obtained 138 US patents and published 12 technical articles.

He received many honours for his outstanding work. He was the fourth person to receive
the National Academy of Engineer’s Founder’s Medal, ‘in recognition of his many
fundamental contributions to engineering’. In 1960, he received the IRE Medal of Honor
‘for fundamental contributions to a quantitative understanding of thermal noise, data
transmission and negative feedback’. Nyquist was also awarded the Stuart Ballantine
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Medal of the Franklin Institute in 1960, and the Mervin J. Kelly award in 1961. He passed
away on 4 April 1976.

17. Ralph Vinton Lyon Hartley was born on 30 November 1888 in Spruce, Nevada.
He attended the University of Utah and received as a Rhodes Scholar the BA degree in
1912 and the BSc degree in 1913 from Oxford University. Upon returning to the USA, he
worked for the Western Electric Company and was in charge of the Bell System’s
transatlantic radiotelephone tests. He invented the oscillating circuit that beared his name
during that period. After World War I he worked at Bell Laboratories, doing research on
repeaters and voice transmission. After a period of illness he returned to Bell Laboratories
as a consultant. Hartley proposed the linear transformation that beared his name in
1942 [122]. He received the IRE Medal of Honor in 1946 ‘for his early work on oscillating
circuits employing triode tubes and likewise for his early recognition and clear exposition
of the fundamental relationship between the total amount of information which may be
transmitted over a transmission system of limited band-width and the time required’.
He retired in 1950 and died on 1 May 1970.

18. It is worth pointing out that McCulloch [123], a promoter of cybernetics, reports having
received from Hartley in 1929 ‘a reference to the definition of information by C.S. Peirce’,
which McCulloch calls ‘the bud of the American definition of information as a quantity’.
C.S. Peirce (1839–1914), a philosopher and logician, was a co-founder of semiotics.

19. Karl Küpfmüller, born on 6 October 1897 in Nürnberg, was an Electrical Engineer and a
pioneer in communication theory and control engineering [124, pp. 96–102], [125]. After
attending school, he received a practical engineering education in Siemens-Schuckert
Werke in Nürnberg in 1914–1915 and attended until 1919 the Ohm-Polytechnikum in
Nürnberg, the period 1916–1918 being spent with the armed forces. During 1919–1921 he
was fortunate to be an assistant of Karl W. Wagner at the Telegraphentechnisches
Reichsamt in Berlin and in 1921 he entered the Zentral-Laboratorium of Siemens &Halske
AG as an engineer. During his years at Siemens he attended for three semesters a variety
of university courses, and in 1928, as a non-academic, he received a full professorship for
general communication engineering at the TH Danzig. In 1935 he was with the TH Berlin
and in 1937 back again at Siemens & Halske, where he became Director of Research and
Development for Communication Theory. He remained at the TH Berlin as honorary
professor. After the war, he was with the firm Rohde & Schwarz during 1946–1948 in
Munich (but interned until 1947 by the US occupational forces). In 1948–1952 he was
with Standard Electric Lorenz AG, and finally from 1952 to 1963 as Full Professor and
Director of the Institute for Telecommunication Engineering at the TH Darmstadt,
perhaps the best in the field at that time. There he was a co-founder of the ITG
(Informationstechnische Gesellschaft).

Küpfmüller’s classic textbook Einführung in die Theoretische Elektrotechnik (1st
edition, Berlin 1932, 285pp.) is still in print after 18 editions [126]. His Die Systemtheorie
der elektrischen Nachrichtenübertragung (Stuttgart, 386pp.), which appeared in 1949, was
based on lectures given from 1937 to 1943.

He was highly honoured in his lifetime, being awarded, e.g. the Gauss-Weber Medal in
1932, honorary doctorates from the TH Danzig in 1944 and Erlangen in 1976, in addition
to medals from Sweden and Austria. He died on December 26, 1977, in Darmstadt.

20. Fritz (Friedrich Heinrich) Lüschen, born on 19 March 1877 in Oldenburg, was one of the
most important German communication engineers between WW I and WW II. He
worked for 25 years for the Deutsche Reichspost, entering its administration as an 18 year
old in 1895. After 10 years there, he spent five months at the École Supérieure des Postes et
Télégraphes in Paris and then studied during 1905–1911 mathematics and physics at the
University of Berlin, besides his work at the Reichspost. He also took in 1907 a nine-
month engineering course at the Reichspostversuchsamt. Then in 1911 he became a
telegraph engineering inspector. During WW I, he first served as a stage telegraph
inspector and after 1917 as a second lieutenant at the headquarters of the German army in
Turkey and Palestine. In 1920 Lüschen joined Siemens & Halske AG, first as Chief-
Engineer of the laboratory for low-voltage cables, then in 1921 as Director of their
Central Laboratory for Telecommunications, which he founded, and then in 1930 as
director of their total cable community. Finally, in 1944 he was appointed by Albert Speer
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as Chairman of Development and Production of the entire German electrical engineering
industry. On 18 June 1945 he committed suicide in Berlin. He was awarded honorary
doctorates from Cologne University in 1925 and TH Danzig in 1929. He received the
prestigious Gauss-Weber Medal from Göttingen in 1933 (see also [127]).

21. Felix (Alexander Philipp) Strecker, born on 27 February 1892 in Dembno (Jarotschin
District, now Poland), was an authority in communication theory, a subject to which he
contributed substantially. He studied botany and zoology during 1910–1914 at the
University of Halle and the TH Munich. He joined the armed forces during WW I, then
he studied in 1921–1923 at Halle, receiving his Dr. rer. nat. in physics under Karl E.F.
Schmidt in 1923. In that same year he joined Siemens & Halske AG, the main laboratory
of which was just coming into being and would gather names like Lüschen, Bruno
Pohlmann (1884–1958), Küpfmüller and Dennis Gabor. Strecker worked first as a Patent
Engineer, then in 1929 he became in charge of the Zentrallabor headed by Fritz Berger,
in 1934 he became Chief-Engineer and in 1935 head of the long distance telephone
laboratory, among other duties. From 1937 to 1944 he was the authorized person
(Bevollmächtigter) of the Siemens & Halske AG, Berlin-Siemensstadt. During this period
alone he published more than 20 papers. After the war his health deteriorated, but he
wrote two books and returned to the Zentrallabor. In 1950 he settled in Munich, where he
passed away in 1951.

Let us just mention two prominent results (see [128–132] for more information). In 1929
Strecker introduced together with Richard Feldtkeller (1901–1981) matrix calculus into
the theory of linear networks and amplifiers, giving it the present form; he had been
introduced to the calculus by his teacher Prof. H. Jung at Halle.

In 1930 he discovered the stability criterion usually associated with the name of
Nyquist. He lectured on it in 1931 and wrote a manuscript entitled ‘Die Bedingungen der
Selbsterregung in linearen Gebilden’ which the journal Elektrische Nachrichtentechnik did
not publish (the journal still exists). As a result, the first publication on the subject was
Nyquist’s paper of 1932 [133], who found the criterion independently. Strecker was able
to publish his result of 1931 only in 1947 in his book ‘Die elektrische Selbsterregung’ [134]
(see also [135]).

22. Dennis Gabor was born on 5 June 1900, in Budapest, Hungary. Already in high school he
was demonstrating a deep understanding of physics. He attended the Budapest Technical
University, and obtained a degree in Mechanical Engineering. Because he opposed the
monarchy that had come to power in 1920, he fled to Germany and studied at the
Technical University of Berlin, from which he received the Diploma in Engineering in
1924 and the doctorate in 1927. During this period, he invented a fast-response cathode-
ray oscilloscope. After graduation he worked in the physics laboratory of Siemens and
Halske but was forced to return to Hungary in 1933: the Nazi regime had started and his
contract was terminated because he was not German. He emigrated to the UK and got
a job at the British Thomson-Houston Company. During the war, his Hungarian
citizenship proved to be an obstacle and his scientific work did not go well. The
breakthrough occurred in 1947, when he invented holography. Although the potential of
his invention was not fully appreciated until the invention of the laser, its importance
would be recognized. He was awarded the Nobel Prize for Physics in 1971 as a result of
his pioneering work in holography. He received other honours, including the Albert
Michelson Medal of the Franklin Institute, in 1968, and the Medal of Honour of the
IEEE, in 1970. He died on 9 February 1979, in London.

23. Vladimir Alexandrovich Kotel’nikov (1908–2005) was born on 6 September 1908 in
Kazan, the capital of what was then the Republic of Tatarstan. He graduated from the
Moscow Power Engineering Institute (MEI) in 1930. He became a postgraduate at MEI,
and was promoted to Senior Laboratory Assistant and then to Assistant Professor.
His doctor of science thesis of 1946, translated in 1959 [136], is another of his
pioneering works that drew little attention at the time it appeared despite the importance
of the results it contained (see, in this respect, [137]). Kotel’nikov also worked in
cryptography and planetary radar. He was elected a full member of the USSR Academy
of Sciences in 1953, received the State Prize (twice, in 1943 and 1946), the Lenin prize
(1964), the Eduard Rhein Foundation award (in 1999, at age 91, following a proposal
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made by Hans Dieter Lüke), the IEEE Alexander Graham Bell Medal (2000) and several
other honours.

24. As late as 1995, Vladimir Tichomirow, the great Russian expert in the broad areas of
signal analysis and approximation, and a student of Kolmogorov, told one of the authors
(P.L.B.) at Aachen that this paper was not available in Moscow; he himself had never
seen it.

25. In PCM, or pulse code modulation, an analogue signal is represented by uniformly
sampling it and then quantizing the samples to a fixed, finite precision. In the compact
disc, for example, the sampling rate is 44.1 kHz and the samples are quantized to 16 bits.

26. In PPM, or pulse position modulation, a message is conveyed by varying the position of a
pulse. If the pulse can occupy any of 2n equally likely positions, each message will consist
of n bits.

27. We have slightly simplified Bennett’s equations by taking his 	¼ 0 and using complex
exponentials.
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[135] C.C. Bissell, Karl Küpfmüller, a German contributor to the early development of linear

systems theory, Int. J. Control 44(4) (1986), pp. 977–989.
[136] V.A. Kotel’nikov, The Theory of Optimum Noise Immunity, McGraw-Hill, New York,

1959.
[137] T. Kailath and H.V. Poor, Detection of stochastic processes, IEEE Trans. Inform.

Theory 44(6) (1998), pp. 2230–2259.

688 P.L. Butzer et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
B
-
o
n
 
C
o
n
s
o
r
t
i
u
m
 
-
 
2
0
0
7
]
 
A
t
:
 
1
6
:
3
1
 
1
5
 
M
a
r
c
h
 
2
0
1
1


