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It is shown that the Whittaker–Kotel’nikov–Shannon sampling theorem of
signal analysis, which plays the central role in this article, as well as
(a particular case) of Poisson’s summation formula, the general Parseval
formula and the reproducing kernel formula, are all equivalent to one
another in the case of bandlimited functions. Here equivalent is meant in
the sense that each is a corollary of the other. Further, the sampling
theorem is equivalent to the Valiron–Tschakaloff sampling formula as well
as to the Paley–Wiener theorem of Fourier analysis. An independent proof
of the Valiron formula is provided. Many of the equivalences mentioned
are new results. Although the above theorems are equivalent amongst
themselves, it turns out that not only the sampling theorem but also
Poisson’s formula are in a certain sense the ‘strongest’ assertions of the six
well-known, basic theorems under discussion.

Keywords: sampling theorem; bandlimited signals; functions of exponential
type; Poisson’s summation formula; reproducing kernel formula;
Paley–Wiener’s theorem
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1. Introduction

1.1. The central equivalence grouping

The (classical) sampling theorem of signal analysis, so basic in mathematics and its
applications, such as communication engineering, control theory, data and image
processing, is connected not only with the name of Claude Shannon [1], but also with
the names of Edmund Taylor Whittaker [2], Kinnosuke Ogura [3], Vladimir
Aleksandrovich Kotel’nikov [4], Isao Someya [5] and many others, such as de la
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Vallée Poussin [6] and Herbert Raabe [7]; see for example [8–11] and the literature

cited there. For applications of the sampling theorem see e.g. [12–14].
Denote by Bp

� for �40, 1� p�1 the Bernstein space of all entire functions

f :C!C that belong to Lp(R) when restricted to the real axis and satisfy

f ðzÞ ¼ Of ðexpð�jIm zjÞ
�
ðjzj ! 1Þ, ð1Þ

i.e. f is exponential type �.

The sampling theorem now states:
For f2B2

� with some �40 we have

f ðzÞ ¼
X
k2Z

f

�
k�

�

�
sinc

��z
�
� k

�
ðz2CÞ,

the convergence being absolute and uniform in strips of bounded width parallel to the

real line.

Here the sinc-function is given by sinc z :¼ sin(�z)/(�z) for z2C n {0} and

sinc 0 :¼ 1. It plays an important role not only in the sampling theorem, but also in

most of the other theorems investigated in this article. It is easily verified that this

sinc-function belongs to Bp
� for all 15p�1. Moreover, the translates sinc(� þw)

belong to Bp
� for each fixed w2C, as can be seen from estimates (5) below. For the

important role played by sinc-functions see e.g. [15].
There are (at least) two ways of proving the sampling theorem, namely by

applying the Poisson summation formula (PSF) of Fourier/numerical analysis for

the particular case of functions belonging to B1
�, or the general Parseval formula

(GPF) known from the theory of trigonometric Fourier series. Already Someya [5]

used Poisson’s formula, so also Ralph Boas [16] (see e.g. [17, Section 3.1; 18, p. 50]).
But the use of Poisson’s or Parseval’s formula heavily depends on the fact that

the Fourier transform of a B2
�-function has compact support. This property is known

as Paley–Wiener’s theorem (PWT), which connects the growth condition (1) with the

support of the Fourier transform.
But in the manifold use of the sampling theorem in signal analysis a great danger

is involved, especially when employed as a ‘side result’ in (many) proofs. In fact, the

sampling formula itself, classical sampling formula (CSF), will be shown to yield the

PWT. Thus the sampling theorem for B2
� is fully equivalent to PWT for B2

�-functions,

in the sense that each is a corollary of the other. This is one of several new and

unexpected results of this article.
Another striking and especially applicable formula of mathematical analysis is

the fundamental reproducing kernel formula (RKF), which states under the

hypothesis f2B2
�, �40 (it holds in fact for f2Bp

� with p 6¼1) that

f ðzÞ ¼
�

�

Z
R

f ðuÞsinc
�

�
ðz� uÞdu ðz2CÞ,

thus f ðzÞ ¼ h f, �� sinc
�
� ðz� �Þi, z2C, in a Hilbert space notation; the

function �
� sinc

�
� ðz� �Þ 2B

2
�, for each z2C, is called the reproducing kernel for B2

� ,

and B2
� a reproducing kernel space. Concerning reproducing kernel theory see

e.g. [19,20].
Another representation of B2

�-functions by an infinite series similar to CSF is that

of Valiron/Tschakaloff (3) below. The interconnection of this formula with CSF was
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already discussed in [21], where it was shown that each of them can easily be deduced
from the other.

Let us now state the six formulae which are to be treated in this article.

Poisson summation formula (PSF): For f2B1
� with �40 we haveZ

R

f ðuÞdu ¼
2�

�

X
k2Z

f
�2k�
�

�
:

This means that in B1
� the trapezoidal rule with step size 2�/� is exact for integration

over R.

General Parseval formula (GPF): For f, g2B2
� with �40 we haveZ

R

f ðuÞgðuÞdu ¼
�

�

X
k2Z

f
�k�
�

�
g
�k�
�

�
:

Classical sampling formula (CSF): For f2B2
� with �40 we have

f ðzÞ ¼
X
k2Z

f
�k�
�

�
sinc

��z
�
� k

�
ðz2CÞ, ð2Þ

the convergence being absolute and uniform in strips of bounded width parallel to the
real line, thus in particular, on compact sets.

Reproducing Kernel formula (RKF): For f2B2
� with �40 we have

f ðzÞ ¼
�

�

Z
R

f ðuÞsinc
�

�
ðz� uÞdu ðz2CÞ:

Valiron’s or Tschakaloff’s sampling/interpolation formula (VSF):1 For f2B1� with
�40 we have for all z2C

f ðzÞ ¼ f 0ð0Þz sinc
��z
�

�
þ f ð0Þsinc

��z
�

�
þ

X
k2Znf0g

f

�
k�

�

�
�z

k�
sinc

�
�z

�
� k

�
, ð3Þ

the convergence being absolute and uniform on compact subsets of C.

Paley–Wiener theorem (PWT): For f2B2
� with �40 we have

bfðvÞ :¼
1ffiffiffiffiffiffi
2�
p

Z
R

f ðuÞe�ivu du ¼ 0 ða.e. for jvj4 �Þ:

Figure 1 presents the interconnections between the first four formulae under
discussion treated in Section 4. Figure 2 shows the additional connections with
Valiron’s formula and the PWT, which are discussed in Sections 5 and 6.

Although we are only interested in the equivalences of the theorems mentioned,
we will give a proof of one of them, namely Valiron’s formula, in the appendix.
Valiron established this formula in a more general frame as a generalization of
Lagrange’s interpolation formula in 1925 [22]. Tschakaloff presented this result in
the course of the solution of a concrete problem posed by Pólya in the section
‘Aufgaben und Lösungen’ [Problems and Solutions] of the Jahresbericht der
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Deutschen Mathematiker–Vereinigung in 1933 [23]. In fact, it follows immediately
from Equation (8) with �¼ 1 in this article. In the same volume of the Jahresbericht
Pólya commented on Tschakaloff ’s solution and used it to improve a result by
J.M. Whittaker. For the details see [24, Section 1.4].

1.2. Interconnection with further basic theorems

It is known that the sampling theorem is fully equivalent to the generalized
Vandermonde-Chu formula of combinatorial analysis, to the Gauss summation
formula of hypergeometric function theory [14], and also to the particular case of
Cauchy’s integral formula for f2B1

� [25], as well as the harmonic sampling formula
[26], both of complex analysis.

But there also exists the approximate sampling formula (ASF):

Let f2L2(R)\C({R) with Fourier transform f ^ðvÞ :¼ 1ffiffiffiffi
2�
p

R1
�1

f ðuÞe�ivudu2L1ðRÞ.
Then

f ðtÞ ¼
X
k2Z

f

�
k

w

�
sincðwt� kÞ þ ðRw f ÞðtÞ ðt2RÞ,

PSF

CSF

RKFGPF

PWTVSF

Figure 2. The interconnections with VSF and the PWT.

PSF

CSF

GPF RKF

Figure 1. The interconnections between the first four formulae.
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where the error term

ðRw f ÞðtÞ :¼
1ffiffiffiffiffiffi
2�
p

X
n2Z

�
1� e�it2�wn

� Z ð2nþ1Þ�w
ð2n�1Þ�w

f ^ðvÞeitv dv

satisfies the estimate

jðRw f ÞðtÞj �

ffiffiffi
2

�

r Z
jvj��w

j f ^ðvÞjdv ðt2RÞ:

In particular, uniformly for t2R,

f ðtÞ ¼ lim
w!1

X
k2Z

f
� k
w

�
sincðwt� kÞ:

In this respect it is already known that the ASF is equivalent to the general PSF

and the Abel–Plana formula of numerical analysis [14,27,28] and even to the famous
functional equation of the Riemann zeta function (which is known to be equivalent

to the transformation formula of Jacobi’s elliptic theta function); see [29]. In view of

the recent, unexpected result of Butzer et al. [30] that the CSF is equivalent to the
above approximate sampling theorem, the ASF, in fact all of the above theorems

have the potential for being equivalent to one another, again in the sense that each is
a corollary of the other. This potential would be realized if checks on consistency of

hypotheses, side results, etc., are successful across the board, and then the results
could be said to be fully equivalent.

But there are also ‘exotic’ theorems which are equivalent to the different versions
of the sampling theorem, such as the Phragmén–Lindelöf principle, the maximum

principle and the Cauchy integral formula of complex analysis; see [26]. The PSF and

Cauchy’s integral theorem are pivotal theorems in many branches of analysis. That
they are indeed equivalent to the many results mentioned suggests what pitfalls in

proofs must be avoided, what side results cannot be used in order to avoid possible
circular reasoning.

As mentioned, ASF is equivalent to CSF. There are more general results of this
type; for example, there is an approximate sampling formula in harmonic analysis, as

the approximate form of Kluvánek’s sampling theorem below2, and the original form
of Kluvánek’s sampling theorem, the harmonic analysis version of CSF, is used in its

proof in an essential but partial way, in the sense that a square summability

condition is also needed.
The converse result is that the approximate form of Kluvánek’s sampling

theorem implies Kluvánek’s theorem itself; this is trivial of course so that one might
say that the two are ‘close to being equivalent’, particularly since the square

summability condition ‘almost always’ holds.
Statements of these results are contained in the following two theorems; for

complete details and further references see [31].
Let G be a locally compact abelian group with discrete subgroup H, and let the

dual group of G be denoted by �. Let � have a discrete, countable subgroup � such
that �/� is compact with measurable transversal � and such that the annihilator

�?¼H of � is countable. The usual notations ^ and _ for the Fourier and the
inverse Fourier transform are used.
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Kluvánek’s sampling theorem can be stated using an abstract sampling operator
SH f, based on the classical operator (the right-hand side of (2)). For each f :¼G � C

write formally

ðSHf ÞðtÞ :¼
1

mð�Þ

X
h2H

f ðhÞ�_�ðt� hÞ ¼
1

mð�Þ
lim
n!1

Xn
j¼1

f ðhj Þ�
_
�ðt� hj Þ, ð4Þ

where hj¼ 1, 2, . . . is an enumeration of H and m(�) denotes the Haar measure of �.
The abstract analogue of B2

� (above) is the Paley–Wiener space

PW�ðGÞ :¼ f f2L2ðGÞ \ CðGÞ: f ^ð�Þ ¼ 0 for almost all � =2 �g:

Kluvánek’s sampling theorem can now be stated:

Kluvánek’s sampling theorem: In the notations just established, suppose f2PW�(G).
Then m(�)51 and f has a representation

f ðxÞ ¼ ðSHf ÞðxÞ ¼
1

mð�Þ

X
h2H

f ðhÞ�_�ðx� hÞ,

convergence being absolute, uniform in G and also in the L2(G)-norm. Furthermore,
f2 ‘2(H).

The abstract analogue of the classical approximate sampling theorem (cf [30])
can now be stated in terms of the abstract sampling operator SH f in (4) and the
function class:

F 2ðGÞ :¼ f f2L2ðGÞ \ CðGÞ: f ^ 2L1ð�Þg:

Approximate form of Kluvánek’s sampling theorem: Let G, �, �, � and H be as in
Kluvánek’s theorem. Suppose that f2F 2(G) and f2 ‘2(H). Then

f ðtÞ ¼ ðSHf ÞðtÞ þ ðRHf ÞðtÞ,

where

jðRHf ÞðtÞj � 2

Z
�n�

j f ^ð�Þjdmð�Þ:

The operator RH is a generalization of the error term Rw in the classical
case (above).

It would indeed be of interest to study approximate sampling theorems in a
Mellin transform setting on the multiplicative group R

þ as an application of the
approximate form of Kluvánek’s theorem.

1.3. Characteristics of equivalence groupings: Ideas of Hilbert and Thiele

We refer to a group of equivalent propositions as an ‘equivalence grouping’. Before
proceeding we discuss the characteristics that a satisfactory equivalence grouping
should possess and some of the pitfalls to be avoided.

The equivalence of a group of propositions means that each proposition is a
corollary of the others. The demonstration of the implications often requires a
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number of auxiliary results, which we call ‘side results’. For logical consistency it is
necessary to ensure that the side results do not introduce circularity.

Simplicity of proof is an important guideline to bear in mind when considering an
equivalence grouping. When the proofs of the implications between propositions are
very complex when compared with the proofs of the propositions themselves3 the
grouping seems artificial and of questionable usefulness. Simplicity, on the other
hand, conveys the opposite feeling. When the proofs of the implications are all of
similar complexity, the equivalent results can be considered to have ‘comparable
depth’ (see also [26, p. 334] and [32]).

To avoid circularity none of the propositions in the equivalence grouping (nor
any result implied by any of them) can be used as a side result [33, Section 2]. This
suggests another guideline: ‘powerful’ side results should be avoided as much as
possible. However, this may contradict the simplicity guideline, since without
powerful side results the complexity of the implication proofs is likely to grow.

What is then a satisfactory equivalence grouping? Roughly speaking, it is a set of
propositions linked by implications, the proofs of which are as straightforward as
possible, use a minimum of side results and avoid powerful ones. Simplicity,
usefulness and power are a matter of taste, and we are left with another question: can
(mathematical) criteria for ‘simplicity of proof ’ be given?

In 1900, David Hilbert put forth a collection of problems that he believed could
shape the course of mathematics in the twentieth century. In his address to the
International Congress of Mathematicians of 1900 he mentioned ten of those
problems; the expanded version of his speech, published soon after the congress,
contained 23 problems (see [34,35]).

Rüdiger Thiele [36] has discovered in Hilbert’s notebook one further problem
that Hilbert considered to include in the famous list. The problem asks for the
simplest proof of a theorem:

‘Criteria of simplicity, or proof of the greatest simplicity of certain proofs. Develop a
theory of the method of proof in mathematics in general. Under a given set of
conditions there can be but one simplest proof. Quite generally, if there are two proofs
for a theorem, you must keep going until you have derived each from the other, or until
it becomes quite evident what variant conditions (and aids) have been used in the two
proofs. Given two routes, it is not right to take either of these two or to look for a third;
it is necessary to investigate the area lying between the two routes . . .’

Part of the interest in equivalence groupings is due to the information that they
reveal about the area lying between the equivalent propositions. But can simplicity
be measured? Thiele [36] notes that in 1888 Émile Lemoine reduced geometric
constructions by rule and compass to five basic operations and quantified the
complexity of a construction by counting the number of times that it used the five
basic operations. In other similar ‘finitary’ contexts simplicity can be quantified (see
also [32] and the discussion about syzygies in [36]). Proofs are sequences of symbol
manipulations, performed according to certain rules or axioms. Each step in a proof
consists in the application of an axiom, as in Lemoine’s construction. According to
this view, assessing simplicity becomes a matter of ‘counting beans’ [36].

The complexity of a theorem could therefore be defined as the size of the shortest
legal sequence of symbol manipulations that produces the theorem. Note the
connection with Kolmogorov complexity, according to which the complexity of a
sequence of symbols is given by the size of the smallest computer program (or Turing
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machine) that prints the sequence and halts. The underlying idea is related to a

principle in the philosophy of science known as Occam’s Razor: ‘the simplest

explanation is best’. In other words, regular objects have concise descriptions. In this

respect see e.g. [37].
We add that the distance between two equivalent propositions could be defined

as the length of the shortest equivalence proof. When these distances are short,

equivalence groupings play two useful roles: they give prominence to the connections

between the set of theorems and they yield simple proofs of each (assuming that the

logical value of at least one of the propositions is known).
Simplicity remains important even outside proof theory and foundational issues.

In human terms it depends, as Thiele wrote, on the techniques used, one’s familiarity

with them, the novelty of ideas and so on. We argue that an equivalence grouping is

useful when it illustrates the nature of the mathematical landscape lying between the

propositions in the group – ‘the area between the routes’, to use Hilbert’s happy

choice of words.

1.4. Concerning contents

Whereas Section 2 is devoted to three auxiliary results, Section 3 contains several

corollaries of the CSF, including the Bernstein and Nikol’skiı̆ inequalities. Section 4.1

concerns the three implications CSF)RKF, CSF)GPF, CSF)PSF, and

Section 4.2 deals with the converse assertions. As to Section 4.3, further implications

are treated, thus PSF)GPF, PSF)RKF, GPF)RKF and RKF)GPF.
Sections 5 and 6 deal with the equivalence of CSF with VSF, and CSF with PWT,

respectively. Checking over the proofs of this article, the reader will observe that the

L2(R) Fourier transform is used only in Section 6 in conjunction with PWT.
Since all theorems of this article are equivalent among themselves, theoretically it is

not clear whether one can speak of a ‘stronger’ or ‘weaker’ theorem. However, if the

proof of the implication A)B is harder than that of B)A, or uses more difficult side

results, then one could say that Theorem B is the more ‘difficult’ or ‘stronger’ one.
In fact, the proofs of implications PSF)CSF, PSF)GPF and PSF)RKF

(Theorems 4.6, 4.7 and 4.8) are quite elementary, whereas the proof of CSF)PSF

(Theorem 4.3) is surely a more difficult one (as it needs, e.g. formula (9), a

consequence of CSF). Moreover, there seems to be no direct proof for GPF)PSF

or RKF)PSF. In this sense one could say that PSF is a ‘stronger’ result than the

other four.
Concerning CSF)RKF and CSF)GPF (Theorems 4.1 and 4.2), the proofs

follow more or less by integrating (a particular case of) CSF. Their respective

converse counterparts (Theorems 4.5 and 4.4), however, are more intricate. Here one

could say that CSF is stronger than RKF and GPF.
Finally, RKF may be regarded as the ‘weakest’ formula of the four, since e.g.

formula (20), the proof of which is by no means trivial, plays a basic role in the

proofs of RKF)CSF and RKF)GPF (Theorems 4.5 and 4.10). For the proof of

(20) see the Appendix.
This ranking is confirmed by Figure 1. The formula at the top, PSF, is the

‘strongest’, the formulae at the bottom, GPF and RKF, are ‘weaker’ ones.
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Concerning VSF and PWT, the former is somewhat ‘stronger’ than CSF, since it

holds for a larger class of functions. But CSF seems in turn to be ‘stronger’ than PWT.
As will be observed, CSF plays a central role in this article. As can be seen in

Figures 1 and 2, it is the only formula which is connected to each of the other five by

two implications. One might expect that also Valiron’s formula could play this

central role, but no attempt has been made in this respect. On the other hand, this

seems not possible for any of PSF, RKF, GPF or PWT.

2. Some auxiliary results

In the proofs below it will be often convenient to establish the desired result first for

functions f belonging to a certain subspace of Bp
� and then to extend this particular

case to all of Bp
� by density arguments. In this respect the following lemmas will be

useful in the proofs of many theorems.
We first define a suitable subspace of Bp

� . For �40 let

eB1
� :¼

�
f2B1

�; z
2f ðzÞ 2B1

�

	
:

If f2 eB1
�, then also zf ðzÞ 2B1

� and f(z)¼O(jzj�2) for jzj!1.4

LEMMA 2.1 Let 1� p�1. Then eB1
� is a subspace of Bp

� . Furthermore, there exists

for each f2Bp
� a sequence ð fnÞn2N �

eB1
� such that limn!1 fn(z)¼ f(z) and

limn!1 f 0nðzÞ¼ f 0(z) for all z2C. If p 6¼1, then the sequence can be chosen such

that in addition limn!1kfn� fkp¼ 0. In particular, eB1
� is a dense subspace of Bp

� for

1� p51.

Proof The subspace property is obvious, since f2 eB1
� implies f(t)¼O(jtj�2) for

jtj!1. For the following we first assume f2Bp
� and define for n2N,

fnðzÞ :¼ f

��
1�

1

nþ 1

�
z

�
sinc3

�
z

3ð1þ nÞ

�
ðz2CÞ:

One easily checks that fn 2 eB1
� and that the assertions concerning pointwise

convergence hold. As to the convergence in the norm, let "40. Then there exists

R40 such that Z
juj4R=2

j f ðuÞjpdu5 ",

and hence alsoZ
juj4R

j fnðuÞj
pdu �

nþ 1

n

Z
juj4 nR=ðnþ1Þ

j f ðuÞjpdu � 2

Z
juj�R=2

j f ðuÞjpdu5 2":

So one obtains

k fn � f kp

�


Z
juj�R

j fnðuÞ � f ðuÞjpdu

�1=p

þ


Z
juj4R

j fnðuÞj
pdu

�1=p

þ


Z
juj4R

j f ðuÞjpdu

�1=p

�


Z
juj�R

j fnðuÞ � f ðuÞjpdu

�1=p

þ ð2"Þ1=p þ "1=p:
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The norm convergence now follows from the fact that limn!1 fn(u)¼ f(u) uniformly

on the compact interval [�R,R].
For arbitrary �40 one has only to note that f2Bp

� if and only if the function

h: C! C, z� f
��z
�

�
belongs to Bp

� . The results then follow by a linear transformation. g

LEMMA 2.2 If (ak)k2Z is a sequence of complex numbers with
P

k2Z jakj
p51 and

1� p51, then for j¼ 1, 2 the seriesX
k2Z

aksincðz� kÞ j ðz2CÞ

are absolutely convergent and the convergence is uniform in strips of bounded width

parallel to the real line.

Proof Let jIm zj �M and N2N. Then one has by Hölder’s inequality with

1/pþ 1/q¼ 1,X
jkj�N

jaksinc
j
ðz� kÞj �


X
jkj�N

jakj
p

�1=p
X
jkj�N

jsincðz� kÞj jq
�1=q

:

It is now enough to show that the last series has a bound not depending on z.
Indeed, using the estimate

jsinc zj � min



e�jyj,

e�jyj

�jzj

�
�

2 e�jyj

1þ �jzj
ðz ¼ xþ iy, x, y2RÞ, ð5Þ

we find that(X
jkj�N

jsincðz�kÞjjq

)1=q

�2je�jyjj

(X
jkj�N

1

ð1þ�jx�kjÞjq

)1=q

�2je�jM

(X
k2Z

1

ð1þ�jx�kjÞjq

)1=q

�2je�jM

(
2þ2

X1
k¼1

1

ð1þ�kÞjq

)1=q

:

Since jp41, the latter series is convergent with limit independent of z. This completes

the proof. g

In the proofs below one of the main problems is the justification of the

interchange of summation and integration or the interchange of summation and

taking a limit. The following lemma will be helpful in this respect.

LEMMA 2.3 (a) Let f2Lp(R), g2Lq(R) with 1� p�1 and 1/pþ 1/q¼ 1.

Let ( fn)n2N�Lp(R), (gn)n2N�Lq(R) such that limn!1kfn� fkp¼ 0 and

limn!1kgn� gkq¼ 0; then

lim
n!1

Z
R

fnðuÞgnðuÞdu ¼

Z
R

f ðuÞgðuÞdu:
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In particular, there holds

lim
n!1

Z
R

fnðuÞgðuÞdu ¼

Z
R

f ðuÞgðuÞdu:

(b) Let a :¼ (�k)k2Z2 l
p(Z), b :¼ (�k)k2Z2 l

q(Z) and for each n2N let
an :¼ (�n,k)k2Z2 l

p(Z), bn :¼ (�n,k)k2Z2 l
q(Z) with limk!1kan� akl p(Z)¼ 0,

limn!1kbn� bklq(Z); then

lim
n!1

X1
k¼�1

�n,k�n,k ¼
X1

k¼�1

�k�k

and in particular,

lim
n!1

X1
k¼�1

�n,k�k ¼
X1

k¼�1

�k�k:

Proof It follows by Hölder’s inequality that

Z
R

fnðuÞgnðuÞdu�

Z
R

f ðuÞgðuÞdu

���� ����
�

Z
R

�� fnðuÞ � f ðuÞ
����gnðuÞ��duþ Z

R

��gnðuÞ � gðuÞ
���� f ðuÞ��du

� k fn � f kp kgnkq þ kgn � gkp k f kq:

The assumptions upon the sequences ( fn)n2N and (gn)n2N imply that the right-hand
side vanishes for n!1. This proves parts (a) and (b) follows analogously. g

3. The classical sampling formula and its consequences

The CSF enables us to deduce several basic well-known results concerning Bernstein
spaces, which will be used in several proofs below.

THEOREM 3.1 Let f2Bp
� , where 1� p�1, �40. The following statements are

consequences of CSF.

(i) Boas’ differentiation formula:

f 0ðzÞ ¼
4�

�2

X
k2Z

ð�1Þkþ1

ð2k� 1Þ2
f

�
zþ
ð2k� 1Þ�

2�

�
ðz2CÞ, ð6Þ

the series converging absolutely and uniformly in strips of bounded width
parallel to the real line.

(ii) Bernstein’s inequality:

k f 0kp � �k f kp: ð7Þ

Moreover, Bp
� is invariant under differentiation, i.e. if f2Bp

� , then f 0 2Bp
� .
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(iii) Nikol’skiı̆’s inequality: For h40 and p 6¼1,

h
X
k2Z

j f ðkhÞjp
�1=p

� ð1þ �hÞk f kp: ð8Þ

(iv) Derivative sampling formula: For p 6¼1 and all z2C,

f ðzÞ ¼
X
k2Z



f
�2k�
�

�
þ

��z
2�
� k

� 2�
�

f 0
�2k�
�

��
sinc2

��z
2�
� k

�
ðz2CÞ, ð9Þ

where the series converges absolutely and uniformly in strips of bounded width

parallel to the real line.
(v) Orthogonality of the sinc-functions: There holdsZ

R

sincðu� j Þsincðu� kÞdu ¼
1, j ¼ k

0, j 6¼ k.



ð j, k2ZÞ: ð10Þ

Proof As in case of La. 2.1 it suffices to prove the statements for �¼� only, since

the results for general � follow from those special cases by scaling. We will show this

in more detail in the proof of (i).

(i) Let �¼� and assume additionally that f2 eB1
�. Then f2B2

� and CSF yields

f ðtÞ ¼
X
k2Z

f ðkÞsincðt� kÞ ðt2RÞ,

where the series is uniformly convergent on R. Moreover, the termwise differentiated

series is also uniformly convergent on R in view of the fact that the additional

assumption f2 eB1
� implies f(t)¼O(jtj�2) for t!�1. So we obtain

f 0ðtÞ ¼
X
k2Z

f ðkÞsinc0ðt� kÞ ðt2RÞ:

Evaluating this equation at t¼ 1/2, we find that

f 0
�1
2

�
¼

4

�

X
k2Z

ð�1Þkþ1

ð2k� 1Þ2
f ðkÞ: ð11Þ

But this formula is valid even for every f2Bp
�. In fact, choose a sequence

ð fnÞn2N
� eB1

� as in La. 2.1, apply (11) to each fn and let n!1.

Now it easily follows from the definition of the Bernstein spaces that f2Bp
�

implies g :¼ f ð� þ z� 1=2Þ 2B1� for any z2C. Applying now (11) to g, we obtain (6)

for �¼�.
In order to prove (6) for f2Bp

� with �40 arbitrary, one applies (6) for �¼� to

f ð�z� Þ 2B
p
� and replaces z by �z

� afterwards. The absolute and uniform convergence of

the series follows from the fact that f is bounded in strips of bounded width parallel

to the real axis in view of (1).
(ii) For z¼ t2R and �¼�, we deduce from (6) that����f 0ðtÞ�

���� � 4

�2

X
k2Z

1

ð2k� 1Þ2

���� f�tþ k�
1

2

�����:
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Taking the Lp(R)-norm on both sides and noting the shift invariance of the norm

this yields

1

�
k f 0kp �

4

�2

X
k2Z

1

ð2k� 1Þ2





f�� þ k�
1

2

�




p

¼
4

�2

X
k2Z

1

ð2k� 1Þ2
k f kp:

Using (6) for calculating the derivative of cos�z at z¼ 1/2, we find that

4

�2

X
k2Z

1

ð2k� 1Þ2
¼ 1:

This proves (7) for �¼�; the general case follows again by a linear transformation.

Finally, assuming that j f ðzÞj �M expð�jIm zjÞ, we easily deduce from (6) for

�¼� that j f 0ðzÞj � �M expð�jIm zjÞ. Hence f2Bp
� implies f 0 2Bp

�.
(iii) The proof of inequality (8) follows by trivial tools from elementary integral

calculus together with Bernstein’s inequality (7); see [39, p. 123].
(iv) First assume that f2 eB1

� and define

FðzÞ :¼
�½ f ð2zÞ �

P
k2Z

f ð2kÞsinc2ðz� kÞ�

sin�z
, z2C n Z,

ð�1Þz2f 0ð2zÞ, z2Z:

8<: ð12Þ

We show that F2B2
�.

The assumption f2 eB1
� implies

P
k2Zjf(2k)j51. Thus the infinite series in (12) is

uniformly convergent on compact sets, implying that F is analytic for z2C nZ.
By l’Hospital’s rule it is easily verified that F is continuous at the integers, i.e. F is an

entire function5.

Next we note that CSF applies to f. Representing f(z) by the sampling formula

and replacing z by 2z afterwards, we deduce from (12) that

FðzÞ ¼
�
�P

k2Z
f ðkÞsincð2z� kÞ �

P
k2Z

f ð2kÞsinc2ðz� kÞ
�

sin�z
, ðz2C n ZÞ:

Combining the terms of even k in the first series with the terms in the second series,

we obtain after a short trigonometric calculation that

FðzÞ ¼
X
k2Z

ð�1Þk
�
f ð2kÞsinc0ðz� kÞ þ f ð2kþ 1Þ�sinc

�
z� k�

1

2

��
, ðz2CÞ: ð13Þ

Using that
P

k2Zjf(2k)j51 and
P

k2Zj f(2kþ 1)j51 together with the estimates

jsinc0ðz� kÞj � c1e
�jIm zj,

����sinc�z� k�
1

2

����� � c2e
�jIm zj, ðk2Z n f0g, z2CÞ

for two constants c1, c2, we conclude that

jFðzÞj �Me�jIm zj: ð14Þ

Now the representation (13) gives

tFðtÞ ¼
X
k2Z

ð�1Þk
�
f ð2kÞt sinc0ðt� kÞ þ f ð2kþ 1Þ�t sinc

�
t� k�

1

2

��
, ðt2RÞ: ð15Þ
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It can be shown in an elementary way that there exist constants d1 and d2 such that����tk sinc0ðt� kÞ

���� � d1,

����tk sinc
�
t� k�

1

2

����� � d2, ðk2Z n f0g, t2RÞ:

On the other hand, by the hypotheses z2f ðzÞ 2B1
� we have in view of (8) thatP

k2Zjkf(2k)j51 and
P

k2Zjkf(2kþ1)j51. Hence it follows from the representa-

tion (15) that tF(t) is bounded on R, which in turn implies that F2L2(R). Observing

(14), we end up with F2B2
�.

Now CSF applies to F and we obtain

FðzÞ ¼
X
k2Z

FðkÞsincðz� kÞ ¼ 2
X
k2Z

ð�1Þkf 0ð2kÞsincðz� kÞ, ðz2CÞ:

By the definition of F this can be rewritten as

f ð2zÞ ¼
X
k2Z

f ð2kÞsinc2ðz� kÞ þ
2 sin�z

�

X
k2Z

ð�1Þkf 0ð2kÞsincðz� kÞ

¼
X
k2Z

f ð2kÞsinc2ðz� kÞ þ 2
X
k2Z

f 0ð2kÞðz� kÞsinc2ðz� kÞ, ðz2CÞ:

This yields (9) for �¼� in replacing z by z/2.

In order to get rid of the more restrictive assumption f2 eB1
�, we first show that the

series (9) converges absolutely and uniformly in strips of bounded width parallel to

the real line for all f2Bp
� . Rewriting (9) for �¼� as

f ðzÞ ¼
X
k2Z

f ð2kÞsinc2
�
z

2
� k

�
þ

2

�

X
k2Z

f 0ð2kÞsinc

�
z

2
� k

�
sin�

�
z

2
� k

�
, ð16Þ

the first series converges absolutely and uniformly in strips of bounded width parallel

to the real line by La. 2.2, since
P

k2Zj f(2k)j
p51 by (8). Concerning the second

series, one hasX
k2Z

f 0ð2kÞsinc

�
z

2
� k

�
sin�

�
z

2
� k

����� ���� � ����sin�z2
����X
k2Z

f 0ð2kÞsinc

�
z

2
� k

����� ����
and the convergence assertion follows again by La. 2.2, in view of

P
k2Zj f

0(2k)jp51
by (8) and (7).

Finally, one can easily extend the desired result to all of Bp
� . To this end assume

f2Bp
� , and let ( fn)n2N be a sequence as in La. 2.1. As shown above, (9) is valid for

each fn, i.e. (cf (16)),

fnðzÞ ¼
X
k2Z

fnð2kÞsinc
2

�
z

2
� k

�
þ

2

�

X
k2Z

f 0nð2kÞsinc

�
z

2
� k

�
sin�

�
z

2
� k

�
:

Letting n!1 it easily follows by La. 2.3 (b) that (9) also holds for the limit

function f. Indeed, one has only to note that by (8) and (7),

k fnð2 �Þ � f ð2 �ÞklpðZÞ � ck fn � f kp ¼ oð1Þ ðn!1Þ,

k f 0nð2 �Þ � f 0ð2 �ÞklpðZÞ � ck f 0n � f 0kp � c�k fn � f kp ¼ oð1Þ ðn!1Þ,

and that ðsinc ðz2� kÞÞ 2 l qðZÞ as well as ðsinc ðz2� kÞ sin� ðz2� kÞÞ 2 l qðZÞ.

The above proof was inspired by the proof of the derivative sampling theorem

in [26] and will be basic for the proof of Theorem 4.3.
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(v) For s, u2R the function sinc(� þ u� s) belongs to B2
�, and we can apply CSF

to obtain

sincðzþ u� sÞ ¼
X
k2Z

sincðkþ u� sÞsincðz� kÞ, ðz2CÞ,

and in particular for z¼ t� u,

sincðt� sÞ ¼
X
k2Z

sincðkþ u� sÞsincðt� u� kÞ, ðs, t, u2RÞ:

Next we integrate both sides over [0, 1] with respect to u and note that integration
and summation may be interchanged since the series converges uniformly with
respect to u on compact sets. Therefore,

sincðt� sÞ ¼
X
k2Z

Z 1

0

sincðkþ u� sÞsincðt� u� kÞdt

¼
X
k2Z

Z kþ1

k

sincðv� sÞsincðt� vÞdv ¼

Z
R

sincðs� uÞsincðt� uÞdu:

This yields the orthogonality (10) by choosing s, t as integers. g

4. A first group of equivalences

4.1. The classical sampling formula implies certain assertions

THEOREM 4.1 CSF)RKF.

Proof Let z2C and u2R. Together with f, the shifted function f(� þ u) also belongs
to B2

�. Now we apply CSF to f(� þ u) and replace z by z� u in the resulting equation.
This gives

f ðzÞ ¼
X
k2Z

f ðkþ uÞsincðz� u� kÞ:

Integrating both sides over [0, 1] with respect to u and noting that integration and
summation may be interchanged since the series converges uniformly with respect to
u on compact sets, we obtain as in the proof of Theorem 3.1 (v),

f ðzÞ ¼
X
k2Z

Z 1

0

f ðkþ uÞsincðz� u� kÞdu

¼
X
k2Z

Z kþ1

k

f ðuÞsincðz� uÞdu ¼

Z
R

f ðuÞsincðz� uÞdu:

This shows that RKF holds. g

THEOREM 4.2 CSF)GPF.

Proof First assume f, g2 eB1
�. Since in this particular case the sequences (f(k))k2Z and

(g(k))k2Z both belong to l1(Z), it is easily seen that the series
P

k2Zf(k)sinc(� � k) andP
k2Zg(k)sinc(� � k) converge in L2(R)-norm towards f and g, respectively.
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Defining now Snf :¼
P
jkj�n f(k)sinc(� � k), it follows by La. 2.3 thatZ

R

f ðuÞgðuÞdu ¼ lim
n!1

Z
R

ðSnf ÞðuÞðSngÞðuÞdu

¼ lim
n!1

X
jkj�n

X
jjj�n

f ð j ÞgðkÞ

Z
R

sincðu� j Þsincðu� kÞdu:

In view of the orthogonality (10) the latter double sum reduces to
P
jkj�n f ðkÞgðkÞ,

giving GPF for f, g2 eB1
�.

To extend the particular case to arbitrary f, g2B2
�, we choose, according to

La. 2.1, two sequences ( fn)n2N and (gn)n2N with limn!1kfn� fk2¼ 0 and

limn!1kgn� gk2¼ 0. It follows from the first part of the proof thatZ
R

fnðuÞgnðuÞdu ¼
X
k2Z

fnðkÞgnðkÞ, ðn2NÞ:

For n!1 we obtain GPF by La. 2.3 with p¼ q¼ 2, since limn!1kfn� fk2¼ 0 and

limn!1kgn� gk2¼ 0 imply limn!1kfn(�)� f(�)kl2(Z)¼ 0 and limn!1kgn(�)�

g(�)kl2(Z)¼ 0 in view of (8). g

THEOREM 4.3 CSF)PSF.

Proof The proof is a slight modification of the proof in [26]. If f2B1
2� then

g :¼ f ð �2
�
2B1

� and we can apply (9) to g and replace z by 2t2R afterwards.

This yields

f ðtÞ ¼
X
k2Z

�
f ðkÞ þ ðt� kÞ f 0ðkÞ

	
sinc2ðt� kÞ, ðt2RÞ: ð17Þ

Now we assume, in addition, that f2 eB1
�. An application of (17) to zf(z) then yields

tf ðtÞ ¼
X
k2Z

�
kf ðkÞ þ ðt� kÞ½f ðkÞ þ kf 0ðkÞ�

	
sinc2ðt� kÞ, ðt2RÞ,

and after a small rearrangement and dividing by t we obtain,

f ðtÞ ¼
X
k2Z

f ðkÞsinc2ðt� kÞ þ
X
k2Z

ð�1Þkkf 0ðkÞsincðt� kÞsinct, ðt2RÞ: ð18Þ

The advantage of the representation (18) in comparison with (17) is that all terms of

the sums in (18) are absolutely integrable over R.
Now we integrate both sides of (18) over R. Since f2B1

�, and hence

(f(k))k2Z2 l
1(Z), the first series can be integrated term by term.

As regards the second series, we first recall that zf(z) belongs to B1
�. By

Theorem 3.1 (ii), the derivative f(z)þ zf 0(z) also belongs to B1
�. Since f2B

1
�, it follows

that zf 0(z) belongs to B1
�. Now (8) guarantees that (kf 0(k))k2Z2 l

1(Z), and so the

second series can be integrated term by term, too. Hence it follows thatZ
R

f ðuÞdu ¼
X
k2Z

f ðkÞ

Z
R

sinc2ðu� kÞduþ
X
k2Z

ð�1Þkkf 0ðkÞ

Z
R

sincðu� kÞsinc u du:
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Recalling (10), we obtain PSF immediately. Finally, the additional assumption f2 eB1
�

can be dropped by approximating f2B1
� by a sequence ð fnÞn2N

� eB1
� according to

La. 2.1, and using La. 2.3 with g¼ 1, p¼ 1, q¼1. g

4.2. Certain assertions imply the classical sampling formula

Let us observe that GPF, PSF and PWT are real variable statements, but CSF, VSF

and RKF are complex variable assertions. In order to prove that GPF implies CSF

one needs the following identity principle of complex analysis to obtain the full

complex version of CSF. The same holds when proceeding from GPF, PSF or PWT

to one of the three CSF, VSF or RKF.

Weak identity principle: If a function from B2
� vanishes on the real line, then it is

identically zero.

Now the CSF, VSF and RKF easily imply the weak identity principle (WIP).

However, it does not seem to be possible to deduce WIP from PSF, GPF or PWT.

On the other hand, WIP is covered by the classical identity theorem of complex

analysis. Indeed, it suffices to know that functions in a Bernstein space have locally a

power series expansion having positive radius of convergence. In fact, if a function

vanishes identically on the real line, then all its derivatives vanish, and hence at each

point of R it has a Taylor expansion, all coefficients of which are zero.
If WIP is not admitted as a side result, then one has to restrict the assertions of

CSF, VSF and RKF to the real variable frame.

THEOREM 4.4 GPFþWIP)CSF.

Proof Let t2R and note that the sinc-function is real-valued on the real line.

Then, applying GPF with g¼ sinc(t� �), we haveZ
R

f ðuÞsincðt� uÞdu ¼
X
k2Z

f ðkÞsincðt� kÞ:

Next, applying GPF with f replaced by f(t� �) and g¼ sinc, we deduceZ
R

f ðt� uÞsinc u du ¼
X
k2Z

f ðt� kÞsinc k ¼ f ðtÞ:

The integrals on the left-hand sides are equal, and so CSF follows for t2R.
In order to extend CSF to z2C, we consider the function h defined by

hðzÞ :¼
X
k2Z

f ðkÞsincðz� kÞ, ðz2CÞ: ð19Þ

We want to show that h2B2
� and that h¼ f on C. As to the convergence of the series

(19), applying GPF with f¼ g yieldsX
k2Z

j f ðkÞj2 ¼

Z
R

j f ðuÞj2du,
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showing by La. 2.2 that the series is absolutely and uniformly convergent in strips of
bounded width parallel to the real line and hence defines an entire function.

Next we apply GPF to f¼ g¼ sinc, noting that sincðz� �Þ 2B2
� for each fixed

z2C, to obtain X
k2Z

jsincðz� kÞj2 ¼

Z
R

jsincðz� uÞj2du:

Now it follows by Cauchy–Schwarz’ inequality that
X
k2Z

j f ðkÞsincðz� kÞj

�2

�
X
k2Z

j f ðkÞj2 �
X
k2Z

jsincðz� kÞj2

¼

Z
R

j f ðuÞj2du �

Z
R

jsincðz� uÞj2du:

Since jsinc(z� u)j2� exp(2�jyj) and also jsin�(z� u)j2� exp(2�jyj) for all
z¼ xþ iy2C and u2R, the last integral can be estimated byZ

R

jsincðz� uÞj2du ¼

Z
R

jsincðiy� uÞj2du �

Z 1

�1

e2�jyjduþ

Z
juj41

e2�jyj

y2 þ u2
du � 4e2�jyj:

Hence it follows that

jhðzÞj �M expð�jIm zjÞ ðz2CÞ

for some constant M.
By the first part of the proof we have that h(t)¼ f(t) for t2R, yielding h2L2(R).

Altogether we have shown h2B2
�. Hence h is a function in B2

�, which coincides on the
real line with f2B2

�. By WIP h and f coincide on the whole complex plane, which
is CSF. g

THEOREM 4.5 RKF)CSF.

Proof First we prove the sinc summation formula

sincð�� �Þ ¼
X
k2Z

sincð�� kÞsincð�� kÞ, ð�,�2CÞ: ð20Þ

It follows almost immediately from the cotangent expansion6

� cot�z ¼
1

z
þ
X1
k¼1

2z

z2 � k2
¼

1

z
þ
X1
k¼1

�
1

zþ k
þ

1

z� k

�
, ðz2C n ZÞ:

Indeed, it suffices to deduce (20) for �, �2CnZ only. Writing down two copies of the
latter expansion, we obtain

�ðcot��� cot��Þ ¼
1

�
�

1

�
þ
X1
k¼1

2�

�2 � k2
�
X1
k¼1

2�

�2 � k2
¼
X
k2Z

�
1

�� k
�

1

�� k

�
:

Hence there follows

�

�� �
ðcot��� cot��Þ ¼

X
k2Z

1

�� �

�
1

�� k
�

1

�� k

�
,
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so that

� sin�ð�� �Þ

ð�� �Þ sin�� sin��
¼
X
k2Z

1

ð�� kÞð�� kÞ
:

A small rearrangement finally gives the sinc formula (20).
Proceeding formally, one substitutes the expansion (20) into the integral of the

RKF assertion. An interchange of integration and summation then yields

f ðzÞ ¼
X
k2Z

sincðz� kÞ

Z
R

f ðuÞsincðu� kÞdu ¼
X
k2Z

f ðkÞsincðz� kÞ ð21Þ

by another application of RKF. This is already the desired result.
Now to the precise proof: We have to justify the interchange of integration and

summation in the above formal proof. Using the Hilbert space notation7

h f, gi :¼
R
R
f ðuÞgðuÞdu for the inner product in L2(R), we can rewrite RKF as

f ðkÞ ¼
�
f, sincð� � kÞ

�
, ð22Þ

and, in particular, we deduce the orthogonality of the shifted sinc-functions from

RKF, namely, �
sincð� � j Þ, sincð� � kÞ

�
¼ sincð j� kÞ ¼ 	j,k, ð j, k2ZÞ: ð23Þ

Next to the convergence of the sampling series on the right-hand side of (21). In

this respect we have,



f�X
jkj�n

f ðkÞsincð� � kÞ





2
2

¼

�
f�

X
j j j�n

f ð j Þsincð� � j Þ, f�
X
jkj�n

f ðkÞsincð� � kÞ

�
¼ k f k22 �

X
jkj�n

f ðkÞ
�
f, sincð� � kÞ

�
�
X
j j j�n

f ð j Þ
�
f, sincð� � j Þ

�
þ
X
jkj�n

X
j j j�n

f ð j Þf ðkÞhsincð� � j Þ, sincð� � kÞi:

Using (22) and (23), we obtain

k f k22 �
X
jkj�n

j f ðkÞj2 ¼





f�X
jkj�n

f ðkÞsincð� � kÞ





2
2

� 0,

showing that
P

k2Zjf(k)j
2
�kfk251.8 From La. 2.2 it now follows that the sampling

series is absolutely and uniformly convergent on strips of bounded width parallel to

the real line.
In order to justify the interchange of integration and summation in (21), we

consider for fixed z2C the sinc summation formula (20) in the form

sincðz� uÞ ¼
X
k2Z

sincðz� kÞsincðu� kÞ ðu2RÞ: ð24Þ
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For m, n2N one has by (23),



 X
m�jkj�n

sincðz� kÞsincð� � kÞ





2
2

¼

� X
m�jkj�n

sincðz� kÞsincð� � kÞ,
X

m�jjj�n

sincðz� j Þsincð� � j Þ

�
¼

X
m�jkj�n

sincðz� kÞ
X

m�jjj�n

sincðz� j Þhsincð� � j Þ, sincð� � kÞi

¼
X

m�jkj�n

jsincðz� kÞj2:

Since
P

k2Zjsinc(z� k)j251, it follows that�X
jkj�n

sincðz� kÞsincð� � kÞ

�
n2N

is a Cauchy sequence in L2(R), meaning that the series in (24) converges also in

L2(R)-norm towards sinc(z� �). This justifies the interchange of integration and

summation in (21) by La. 2.3 and completes the proof. g

THEOREM 4.6 PSFþWIP)CSF.

Proof Let f2B2
�, then for t2R, the functions f sinc(t� �) and f(t� �)sinc both

belong to B1
2�, and so PSF applies. It yieldsZ

R

f ðuÞsincðt� uÞdu ¼
X
k2Z

f ðkÞsincðt� kÞ

and Z
R

f ðt� uÞsinc u du ¼
X
k2Z

f ðt� kÞsinc k ¼ f ðtÞ:

The two integrals on the left-hand sides are equal as is seen by a change of variables.

Hence CSF holds for t2R.
Now, if f2B2

�, then the function z� f ðzÞf ðzÞ, z2C, belongs to B1
2�, and so

by PSF Z
R

j f ðuÞj2du ¼
X
k2Z

j f ðkÞj2,

yielding, in particular,
P

k2Zjf(k)j
251. Similarly, one has by applying PSF to

the function w� sincðz� wÞsincðz� wÞ, w2C, which belongs also to B1
2�,Z

R

jsincðz� uÞj2du ¼
X
k2Z

jsincðz� kÞj2:

Using these two identities, the extension of CSF to C and the absolute and

uniform convergence on strips of bounded width parallel to the real line now follow

exactly as in the proof of Theorem 4.4. g
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The implication PSF)CSF is well-known; see e.g. [17, Section 3.1; 26].
Similarly, CSF was known to yield RKF [26], but the converse, RKF)CSF, is a
new result of this article.

4.3. Some further implications

THEOREM 4.7 PSF)GPF.

Proof Under the hypothesis of GPF for �¼�, the function hðzÞ :¼ gðzÞ also
belongs to B2

�. Since f � h2B1
2�, we may apply PSF to f � h, which gives GPF. g

THEOREM 4.8 PSFþWIP)RKF.

Proof Let t2R. Again, by a change of variables and an application of PSF to
f(t� �)sinc, we deduceZ

R

f ðuÞsincðt� uÞdu ¼

Z
R

f ðt� uÞsinc u du ¼
X
k2Z

f ðt� kÞsinc k ¼ f ðtÞ,

and so RKF holds for t2R. The extension to z2C follows by WIP, since
z �

R
Rf(u)sinc(z� u)du is obviously an entire function of exponential type �. g

THEOREM 4.9 GPFþWIP)RKF.

Proof Let t2R. By a change of variables and an application of GPF with f replaced
by f(t� �) and g¼ sinc, we obtainZ

R

f ðuÞsincðt� uÞdu ¼

Z
R

f ðt� uÞsinc u du ¼
X
k2Z

f ðt� kÞsinc k ¼ f ðtÞ:

This is indeed RKF for t2R; the extension to the complex plane follow as above
by WIP. g

THEOREM 4.10 RKF)GPF.

Proof As in the proof of RKF)CSF (Theorem 4.5) we make use of the sinc
summation formula (20). Proceeding formally, we haveZ

R

gðuÞf ðuÞdu ¼

Z
R

gðuÞ

Z
R

f ðvÞsincðu� vÞdv du

¼

Z
R

gðuÞ


Z
R

f ðvÞ


X
k2Z

sincðv� kÞsincðu� kÞdv

��
du

¼
X
k2Z


Z
R

gðuÞsincðu� kÞdu

�
Z
R

f ðvÞsincðv� kÞdv

�
¼
X
k2Z

gðkÞf ðkÞ: ð25Þ

In order to make this proof precise we again have to justify the interchange of
summation and integration. The arguments are the same as in the proof of
Theorem 4.5. Indeed, there it was shown that RKF implies the orthogonality relation
(23) and that this in turn implies the L2(R)-convergence of the sequence
(
P
jkj�nsinc(u� k)sinc(� � k))n2N towards sinc(u� �) for each fixed u2R as well asP
k2Zjf(k)j

2
�kfk251.
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On the other hand, one has m, n2N by (23),



 X
m�jkj�n

f ðkÞsincð� � kÞ





2
2

¼

� X
m�jkj�n

f ðkÞsincð� � kÞ,
X

m�j jj�n

f ð j Þsincð� � j Þ

�
¼

X
m�jkj�n

f ðkÞ
X

m�j jj�n

f ð j Þ
�
sincð� � j Þ, sincð� � kÞ

�
¼

X
m�jkj�n

j f ðkÞj2

and it follows that (
P
jkj�n f(k)sinc(� � k))n2N is a Cauchy sequence and hence a

convergent sequence in L2(R).
The precise proof is now a consequence of La. 2.3, since in view of RKF and the

L2(R)-convergence of the series involved,Z
R

gðuÞf ðuÞdu ¼

Z
R

gðuÞ


Z
R

f ðvÞ


X
k2Z

sincðv� kÞsincðu� kÞ

�
dv

�
du

¼

Z
R

gðuÞ


X
k2Z

Z
R

f ðvÞsincðv� kÞdv sincðu� kÞ

�
du

¼

Z
R

gðuÞ


X
k2Z

f ðkÞsincðu� kÞ

�
du

¼
X
k2Z

f ðkÞ

Z
R

gðuÞsincðu� kÞdu

¼
X
k2Z

f ðkÞgðkÞ:

This completes the precise proof of GPF. g

It should be noted that we have only used the L2(R)-convergence of the sampling

series
P
jkj�nf(k)sinc(� � k), but not the fact that it converges towards f. So we have

not used CSF in the proof of RKF)GPF above.
The implication CSF)RKF (Theorem 4.1) as well as CSF)PSF

(Theorem 4.3) and its converse PSF)CSF (Theorem 4.6) can also be found in

[26]; see also [17, Section 3.1]. Concerning CSF,GPF (Theorems 4.2 and 4.4),
although the equivalence is known in the frame of orthogonal expansions in Hilbert

space, in our approach we did not want to make use of Hilbert space theory as side

results. The other five implications of Section 4 are new results of this article,
although some of the proofs are quite elementary.

5. The classical sampling formula and Valiron’s sampling formula

THEOREM 5.1 CSF)VSF.

Proof If f2B1� , then the function

gðzÞ :¼

f ðzÞ � f ð0Þ

z
, z 6¼ 0

f 0ð0Þ, z ¼ 0

8<:
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belongs to B2
�, and so CSF applies. For z 6¼ 0, it yields

f ðzÞ � f ð0Þ

z
¼ f 0ð0Þsinc zþ

X
k2Znf0g

f ðkÞ � f ð0Þ

k
sincðz� kÞ:

In particular, this formula holds for f¼ sinc, which gives

sinc z� 1

z
¼ �

X
k2Znf0g

1

k
sincðz� kÞ:

Combining the two equations, we obtain

f ðzÞ ¼ f 0ð0Þz sinczþ f ð0Þ sinczþ
X

k2Znf0g

f ðkÞ
z

k
sincðz� kÞ,

which is (3) for �¼�.
The absolute and uniform convergence of the series on compact subsets of C

follows in view of
P

k6¼0 j
f ðkÞ
k j

2 � kfk21
P

k 6¼0
1
k2

51. g

THEOREM 5.2 VSF)CSF.

Proof First assume f2 eB1
� and apply VSF to zf(z) to obtain,

zf ðzÞ ¼ f ð0Þz sinc zþ
X

k2Znf0g

f ðkÞz sincðz� kÞ ðz2CÞ:

Dividing by z yields CSF.
The problem now is to extend this particular case to all of B2

�, since we do not
know anything about the sequence ( f(k))k2Z. Note that we cannot use inequality (8),
since this was proved as a consequence of CSF. On the other hand, one can prove
assertions (i), (ii) and (iii) of Theorem 3.1 by starting with VSF instead of CSF. The
only difference in the proofs is that (11) now has to be deduced from VSF, which is
even easier, because the Valiron series (3) with �¼� can be differentiated term by
term for each f2B1� in view of the uniform convergence on compact sets. Thus,
differentiating (3) with �¼� and evaluating at z ¼ 1

2 yields (11) for each f2B1� . The
proofs of the assertions (i), (ii) and (iii) of Theorem 3.1 now follow in exactly the
same manner as given above. In particular, (8), i.e. ( f(k))k2Z2 l

2(Z), can also be
deduced from VSF.

In order to complete the proof of ‘VSF)CSF’, we approximate f2B2
� by a

sequence ( fn)n2N according to La. 2.1. Since CSF holds for fn it also holds for the
limit function f by La. 2.3. As a consequence of La. 2.2, the convergence of the series
in CSF is uniform in strips of bounded width parallel to the real line. g

The proof of CSF)VSF (Theorem 5.1) can already be found in [38, p. 220], see
also [21]. The converse direction VSF)CSF (Theorem 5.2) was proved in [21] using
the series expansion

f 0ðtÞ ¼
X

k2Znf0g

f ðtþ kÞ
ð�1Þkþ1

k
, ð f2B1

�, t2RÞ

to be found in [40, Section 4.2]. The proof of this representation for f 0, however, was
implicitly based on the PWT. Thus it does not fit into our approach.

For the interconnections of Valiron’s/Tschakaloff ’s formula with two basic
formulae of Euler see [41].
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6. The classical sampling formula and the Paley–Wiener theorem

Since the PWT connects the space B2
� with the Fourier transform, we need some basic

facts about the Fourier transform on L2(R). First we mention that the Fourier
transform is an isomorphism from L2(R) onto itself; see e.g. [42, Chapter 5.2].
Further, we need the transform of the sinc-function.

LEMMA 6.1 For �, t2R, � 6¼ 0, there holds the formula�
sinc �ð� � tÞ

�^
ðvÞ ¼

1ffiffiffiffiffiffi
2�
p

�
rect

�v
�

�
e�ivt a: e: ð26Þ

where

rectðtÞ :¼

1, jtj5�
1
2 , jtj ¼ �

0, jtj4�

8<: :

Proof The Fourier transform of the rect-function is given by�
1ffiffiffiffiffiffi
2�
p

�
rect

�
�

�

�
ei�t
�^
ðvÞ ¼ sinc�ðv� tÞ a: e: ð27Þ

This is shown by a simple integration. Equation (26) now follows from (27) by the
Fourier inversion formula. (For an elementary proof of (26) without using the
inversion formula see [43, p. 14].) g

We also need a result from trigonometric Fourier series. In fact, if g2L2(��, �),
then the Fourier coefficients of g belong to l2(Z) and the Fourier series of g converges
towards g with respect to L2(��, �)-norm. In this respect see [42, Chapter 4.2] or any
textbook on Fourier series.

THEOREM 6.2 PWTþWIP)CSF.

Proof Let f2B2
� and assume that the Fourier transform f6(v) vanishes a.e. outside

[��, �]. Then, noting (26), one has for the partial sums of the sampling series,

X
jkj�n

f ðkÞsincð� � kÞ

" #^
ðvÞ ¼

X
jkj�n

f ðkÞ½sincð� � kÞ�^ðvÞ

¼



1ffiffiffiffiffiffi
2�
p

X
jkj�n

f ðkÞe�ikv
�
rect v, ðv2RÞ:

Recalling that the Fourier transform in an isometry from L2(R) onto itself,
we deduce



f ðtÞ �X

jkj�n

f ðkÞsincðt� kÞ






L2ðRÞ

¼





f ^ðvÞ � 
 1ffiffiffiffiffiffi
2�
p

X
jkj�n

f ðkÞe�ikv
�
rect v






L2ðRÞ

¼ f ^ðvÞ �
1ffiffiffiffiffiffi
2�
p

X
jkj�n

f ðkÞe�ikv













L2ð��,�Þ

¼ f ^ðvÞ �
1ffiffiffiffiffiffi
2�
p

X
jkj�n

f ð�kÞeikv













L2ð��,�Þ

: ð28Þ
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Furthermore, it follows from the Fourier inversion formula that

f ð�kÞ ¼
1ffiffiffiffiffiffi
2�
p

Z �

��

bfðvÞe�ikvdv,
i.e.

P
k2Z f(�k)eikv is the trigonometric Fourier series of f62L2(��,�), which

is known to converge to f6 in L2(��,�)-norm. Hence the right-hand side

of (28) vanishes for n!1. This, in turn shows that the sampling series converges

in L2(R)-norm towards f.
As to the pointwise convergence, it follows from the theory of trigonometric

Fourier series that the Fourier coefficients of f62L2(��, �) are square summable,

giving
P

k2Zjf(�k)j
251. This implies by La. 2.2 that the sampling series of f

converges uniformly on R. Since f is continuous, we have that CSF holds for all

t2R. The extension to the complex version can be shown as in the proof of

Theorem 4.4, where the uniform convergence of the series in strips of bounded width

parallel to the real line follows again by La. 2.2. g

THEOREM 6.3 CSF)PWT.

Proof Again we can restrict ourselves to �¼�. Noting that CSF implies the

orthogonality relation (10) in view of Theorem 3.1, it follows as in the proof of

Theorem 4.10 that the sampling series converges in L2(R)-norm. Moreover, using

CSF once more, the L2(R)-limit must be equal to f.
Now, the Fourier transform is a bounded linear operator on L2(R), and we

obtain by (26) that

f ^ðvÞ ¼
X
k2Z

f ðkÞ½sincð� � kÞ�^ðvÞ ¼



1ffiffiffiffiffiffi
2�
p

X
k2Z

f ðkÞe�ikv
�
rect v,

where the convergence of the infinite series is to be understood in the norm of L2(R).

This shows that f6 vanishes a.e. outside [��,�]. g

For a different proof of PWT)CSF (Theorem 6.2) see [38, p. 220]; the converse,

CSF)PWT (Theorem 6.3), is new. There has been no attempt to establish direct

proofs for the equivalence of VSF or PWT with PSF, GPF or RKF.
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Notes

1. Georges (Jean Marie) Valiron, born 7 September 1884 in Lyon, died March 1955 in Paris.
He received his Agrégé de mathématiques in 1908, first taught at the lyceum of Besançon
(Doubs) while continuing his studies in complex function theory. At Besançon he was the
teacher of Georges Bloch (1894–1948) and his brother André. In 1914, he wrote his
dissertation ‘Sur les fonctions entières d’ordre nul et d’ordre fini et en particulier sur les
fonctions à correspondance régulière’ under É. Borel at the Université de Paris.
Thereafter he taught as Professor in Valence (Drôme), and in March–June 1921 he
presented a two-hour course on ‘Dirichlet series and factorial series’ at the reorganized
University of Strasbourg where he remained until 1931. M. Fréchet was his colleague
there from 1921 to 1927. Already in 1923 appeared his well-known ‘Lectures on the
general theory of integral functions’ (220 pp; reprinted Chelsea 1949; latest edition,
Iyer Press, March 2007) based on lectures he had presented at the University College of
Wales (Aberystwyth). In 1931, he received the Chair for analysis at the Faculté des
Sciences at Paris. In 1942, appeared his ‘Théorie des fonctions’ (real and complex)
followed in 1945 by ‘Équations fonctionnelles et applications’ (reprinted in one volume
by Masson 1966, by J. Gabay 1989). His speciality was complex function theory
(entire and meromorphic functions). One of his four doctoral students is the Fields
Medallist Laurent Schwartz, and according to the Mathematics Genealogy Project
(http://genealogy.math.ndsu.nodak.edu/index.php) Valiron has 1860 academic descen-
dants. Schwartz received his doctorate in 1943 at Clermond-Ferrand where the Université
Louis Pasteur-Strasbourg was evacuated during WW II. Valiron was the president of the
Société Mathématique de France in 1938, and received the Prix Poncelet in 1948.
Liubomir Nikolov Tschakaloff (K}amkho Mhimjmb W‘i‘jmb, also transliterated
as Tschakalov, Chakalov or similarly) was born on 18 February 1886 into the family
of an impoverished tailor of Samokov in Bulgaria, one of eleven children. The
young Tschakaloff went to school in Samokov, a small town near Sofia, and then
completed his schooling in the town of Plovdiv. By 1904, his attachment to mathematics
was so strong that it prompted him to walk from Samokov to Sofia to enrol in the
University there. He entered the University in the autumn of that year as a mathematics
student.
He graduated with honours in 1908, and in 1909 became an assistant at Sofia University.
During the period 1910–1912 he pursued advanced studies at the Universities of Leipzig
and Göttingen, coming into contact with some of the most famous mathematicians of the
age, particularly Hilbert and Klein; Edmund Landau encouraged him to study number
theory and analysis. The results of these studies became his Habilitationsschrift Analytical
characteristics of the Riemann function 
(z). In 1922, he became Professor at Sofia
University. A second two-year period of study abroad, from 1924 to 1925, found him in
Paris, Pisa and finally Naples, where he obtained his doctorate in 1925 with a dissertation
on Riccati equations. Tschakaloff is best known for his work in entire and univalent
functions, mean value theorems and Gaussian quadrature. His work was characterized by
an ability to find original and incisive methods, which were often powerful enough to find
wider uses. His scientific creativity was interrupted by two world wars, but apart from
these exceptional times he produced a steady stream of scholarly work between 1910 and
1963. He published 112 works during his life, including books on analytic functions and
differential equations.
He was a member of the Bulgarian Academy of Sciences, as well as several foreign
Academies. He died in September 1963.
For further details see http://www.math.bas.bg/~serdica/tschakaloff.html. The authors
thank Professor Virginia Kiryakova, Sofia, for supplying biographical information.

2. This result was proved in response to a question raised by one of the authors at the
conference SampTA 05, Samsun, Turkey, July 2005, of whether Kluvánek’s theorem
implies an abstract approximate sampling theorem, in analogy with the classical case
treated in [30].

3. Note, however, that an equivalence grouping can be of interest even when the logic value
of the propositions is unknown. An example is the collection of propositions equivalent to
the Riemann hypothesis.
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4. In fact, big O can be replaced by little o [38, p. 98], but this is much harder to prove and
will not be used in the sequel.

5. Let us point out that Riemann’s theorem on removable singularities has been used here.
The same applies to the function g in connection with Valiron’s formula (proof of
Theorem 5.1).

6. An elementary proof of this expansion can be found in the appendix. Note that we are not
using formula (20) as a side result, since it is a particular case of CSF.

7. This is only used to keep the formulae shorter. We do not apply any results from
Hilbert space theory in particular we do not make use of the theory of orthogonal
expansions in Hilbert spaces. In every case the inner product notation can be replaced by
integrals.

8. The reader will observe that this is Bessel’s inequality for the orthonormal system
(sinc(� � k))k2Z. See also the proof of Theorem 4.10.
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Appendix

Proof of Valiron’s sampling formula:Using the estimates (5) we easily conclude with the help of
the Cauchy–Schwarz inequality that the series (3) converges absolutely and uniformly on
compact subsets of C. It remains to show that it represents f(z).

Now let N2N, set N0 :¼ Nþ 1
2 and denote by SN the positively oriented square with

vertices at �N0�iN0, and set

INðzÞ :¼
z sin�z

2�i

Z
SN

f ð
Þ


ð
 � zÞ sin�

d
:

Then, for any z2CnZ inside the square we have, by the residue theorem,

INðzÞ ¼ f ðzÞ � f 0ð0Þzsinc z� f ð0Þsinc z�
X
k 6¼0

f ðkÞ
z

k
sincðz� kÞ,

where we have used that

z sin�zRes

 
f ð
Þ


ð
 � zÞ sinð�
Þ
, 
 ¼ z

!
¼ f ðzÞ,

z sin�zRes

 
f ð
Þ


ð
 � zÞ sinð�
Þ
, 
 ¼ 0

!
¼ �f 0ð0Þz sinc z� f ð0Þsinc z,

z sin�zRes

 
f ð
Þ


ð
 � zÞ sinð�
Þ
, 
 ¼ k

!
¼ �f ðkÞ

z

k
sincðz� kÞ, ðk2Z n f0gÞ:

Next, denote by I�hor the contributions to the integral coming from the two horizontal parts of
SN, where þ and � refer to the upper and lower line segment, respectively. Similarly, denote
by I�vert the contributions coming from the two vertical parts of SN, where now þ and � refer
to the right and the left line segment, respectively. Thus

INðzÞ ¼
z sinð�zÞ

2�i
ðI�hor þ Iþvert þ Iþhor þ I�vert

�
, ð29Þ

where

I�hor ¼ 	

Z N0

�N0

f ðt� iN0Þ

ðt� iN0Þðt� iN0 � zÞ sinð�ðt� iN0ÞÞ
dt
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and

I�vert ¼ �i

Z N0

�N0

f ð�N0 þ itÞ

ð�N0 þ itÞð�N0 þ it� zÞ sinð�ð�N0 þ itÞÞ
dt:

In order to estimate these integrals, we note that

jsinð�ðt� iN0ÞÞj � sinh�N0 ¼
e�N

0

2
ð1� e�2�N

0�
and

jsinð�ð�N0 þ itÞÞj ¼ cosh�t �
e�jtj

2
:

Recalling also j f ðzÞj �M expð�jIm zjÞ, we find that

jI�horj �
2M

1� e�2�N
0

Z 1
�1

dt

jt� iN0j � jt� iN0 � zj

and

jI�vertj � 2M

Z 1
�1

dt

j�N0 þ itj � j�N0 þ it� zj:

Now, for N0 � jIm zj þ 1, we have

�NðtÞ :¼
1

jt� iN0j � jt� iN0 � zj
�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt2 þ 1Þððt�Re zÞ2 þ 1Þ

q ¼: �ðtÞ:

Clearly,
R1
�1

�ðtÞdt51: Hence, by Lebesgue’s theorem of dominated convergence, we have

lim
N!1

Z 1
�1

�NðtÞdt ¼

Z 1
�1

lim
N!1

�NðtÞdt ¼ 0,

which implies that limN!1 jI
�
horj ¼ 0. Similarly, it is seen that limN!1 jI

�
vertj ¼ 0. Therefore the

right-hand side of (29) vanishes as N!1. This completes the proof. g

One could also have established this theorem using a circular contour instead of a square;
see e.g. [9].

Proof of the cotangent expansion: It is easily seen (e.g. by using l’Hospital’s rule twice) that

lim
z!n

�
� cot�z�

1

z� n

�
¼ 0

exists for each n2Z. Hence, introducing

gðzÞ :¼
1

z
þ
X1
n¼1

 
1

zþ n
þ

1

z� n

!
,

we find that

hðzÞ :¼ � cot�z� gðzÞ

defines a continuous function h on C. We have to show that h(z)
 0.
Next, by a simple trigonometric calculation, we verify that

f ðzÞ ¼
1

2



f
�z
2

�
þ f
�zþ 1

2

��
ðz2C n ZÞ ð30Þ
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holds for f(z) :¼� cot�z. Setting

gNðzÞ :¼
1

z
þ
XN
n¼1

 
1

zþ n
þ

1

z� n

!
,

and noting that

1

2



gN

�z
2

�
þ gN

�zþ 1

2

��
¼ g2NðzÞ þ

1

zþ 2Nþ 1
,

we conclude by letting N!1 that (30) holds for f :¼ g as well. Hence, in view of the
continuity of h, we obtain

hðzÞ ¼
1

2



h
�z
2

�
þ h

�zþ 1

2

��
, ðz2CÞ: ð31Þ

Since h is an odd function, we have h(0)¼ 0. Now, to obtain a contradiction that h is not
identically zero. Then there exists an r41 and a zr2Dr :¼ {z2 {C : jzj � r} of smallest positive
modulus such that

jhðzrÞj ¼ max
z2Dr

jhðzÞj ¼: Mr 4 0:

Obviously, zr/2 and (zrþ 1)/2 also belong to Dr and jzr/2j5jzrj. Hence, by our choice of zr we
have jh(zr/2)j5Mr. Thus, using (31) and the triangular inequality, we obtain

Mr ¼ jhðzrÞj �
1

2


����h�zr2
�����þ ����h�zr þ 1

2

������5Mr,

which is a contradiction. g

The proof given here may be seen as a planar version of the first part of a proof in
[44, Chapter 11, Section 2]. Note that we did not need any nontrivial result from
complex analysis. Whereas, the proof in [44] needs that h is analytic, here only the continuity
of h is used.
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