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Abstract. This paper is concerned with the two summation formulae of
Euler–Maclaurin (EMSF) and Abel–Plana (APSF) of numerical analysis,
that of Poisson (PSF) of Fourier analysis, and the approximate sampling
formula (ASF) of signal analysis. It is shown that these four fundamental
propositions are all equivalent, in the sense that each is a corollary of
any of the others. For this purpose ten of the twelve possible implications
are established. Four of these, namely the implications of the grouping
APSF ⇐ ASF ⇒ EMSF ⇔ PSF are shown here for the first time. The
proofs of the others, which are already known and were established by
three of the above authors, have been adapted to the present setting.
In this unified exposition the use of powerful methods of proof has been
avoided as far as possible, in order that the implications may stand in
a clear light and not be overwhelmed by external factors. Finally, the
four propositions of this paper are brought into connection with four

After this manuscript was accepted for publication the authors learned that special issues
were being prepared to honour Heinrich Wefelscheid on the occasion of his 70th anniversary.
Since they valued his unstinted service to mathematics as a whole, thus the founding of the
present journal and his leading editorship over the years, his publication of the Collected
Works, in several volumes, of W. Blaschke and E. Landau, they expressed interest that the
present paper, already dedicated to A. Ostrowski, be included in the special issues.
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propositions of mathematical analysis for bandlimited functions, includ-
ing the Whittaker–Kotel’nikov–Shannon sampling theorem. In conclu-
sion, all eight propositions are equivalent to another. Finally, the first
three summation formulae are interpreted as quadrature formulae.
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1. Introduction

First to the Euler–Maclaurin summation formula of the broad area of numer-
ical analysis, a very important one, which has indeed many applications.

Euler–Maclaurin Summation Formula (EMSF)

For n, r ∈ N and f ∈ C(2r)[0, n], we have

n∑

k=0

f(k) =

n∫

0

f(x) dx

+
1
2

[f(0) + f(n)] +
r∑

k=1

B2k

(2k)!

[
f (2k−1)(n) − f (2k−1)(0)

]

+ (−1)r
∞∑

k=1

n∫

0

ei2πkt + e−i2πkt

(2πk)2r
f (2r)(t) dt, (1.1)

where B2k are the Bernoulli numbers.
Euler discovered this summation formula in connection with the so-called

Basel problem, i.e., with determining ζ(2) in modern terminology. It can be
found without proof in [23] (submitted 1732) and with a complete deduc-
tion in [24] (submitted 1735), where he used it to calculate ζ(2), ζ(3), ζ(4),
and the Euler constant γ; for more details see [26]. The formula was found
independently by Maclaurin in 1738 [38]; cf. [39] for the differences between
Euler’s and Maclaurin’s approaches. See also the review of Euler’s life and
works by Gautschi [27], and the overview by Apostol [3]. Of further inter-
est is that Ramanujan [4, Chaps. 6, 8] introduced a method of summation
based on EMSF. Candelpergher et al. [17,18] presented a rigorous treatment
of the method together with many applications. This formula is also treated
in Ostrowski’s three-volume treatise on differential and integral calculus [42,
vol. II, pp. 287–288], which was very popular in German speaking universities
in the 1960s.
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Whereas the Euler–Maclaurin summation formula is a standard one in
mathematics per se, our second formula, that of Abel–Plana1 is not. It reads

Abel–Plana Summation Formula (APSF)

Let f be analytic in {z ∈ C : �z ≥ 0}. Suppose that

lim
y→∞|f(x± iy)|e−2πy = 0 (1.2)

uniformly in x on every finite interval, and that
∞∫

0

|f(x+ iy) − f(x− iy)|e−2πy dy (1.3)

exists for every x ≥ 0 and tends to zero when x → ∞. Then

lim
N→∞

⎡

⎢⎣
N∑

k=0

f(k) −
N+1/2∫

0

f(x) dx

⎤

⎥⎦ =
1
2
f(0) + i

∞∫

0

f(iy) − f(−iy)
e2πy − 1

dy. (1.4)

This formula was obtained by Plana [44] in 1820 and independently by Abel
[1, p. 23] in 1823 in the form

∞∑

k=0

f(k) −
∞∫

0

f(x) dx =
1
2
f(0) + i

∞∫

0

f(iy) − f(−iy)
e2πy − 1

dy. (1.5)

As it was customary at that time, neither author gave hypotheses on f .
They proceeded via an integral representation of the Bernoulli numbers. Abel
[1, p. 27] also established the following interesting “alternating series version”:

∞∑

k=0

(−1)kf(k) =
1
2
f(0) + i

∞∫

0

f(iy) − f(−iy)
2 sinhπy

dy.

Although his proof was different, this formula can be obtained by apply-
ing (1.5) to the function z �→ 2f(2z) and subtracting the resulting equation
from (1.5).

1 Giovanni (Antonio Amedea) Plana, born 1781 in Voghera, Lombardy (Italy), died 1864 in

Turin, studied 1800–1803 at the École Polytéchnique in Paris under Fourier and Lagrange.
On the recommendation of Fourier, Plana in 1803 was appointed to the mathematics chair
at the Artillery school of Piedmont in Turin. With Lagrange’s recommendation he was also
appointed to the chair of astronomy at the University of Turin in 1811. He taught both
astronomy and mathematics at both institutions for the rest of his life. His teaching was
of the highest quality. Plana, one of the major Italian scientists of his time, stood in con-
tact with Francesco Carlini, Cauchy and Babbage. He was elected to the Turin Academy
of Sciences in 1841 and to the Académie des Sciences in Paris in 1860. Plana worked in
astronomy (on movement of the moon), Eulerian integrals, elliptic functions, heat, electro-
statics and geodesy. See the MacTutor history of mathematics archive http://www-history.
mcs.st-andrews.ac.uk/.

http://www-history.mcs.st-andrews.ac.uk/
http://www-history.mcs.st-andrews.ac.uk/
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Some authors, [19, I, p. 258, III, p. 53], [45, Sect. 2], consider (1.5) to
require in addition to our assumptions that

∫∞
0
f(x) dx exists and f(N) → 0

as N → ∞. However, the last assumption is superfluous. Indeed, by (1.4) the
existence of the integral implies the convergence of the series which entails
that f(N) → 0 as N → ∞.

APSF, as stated by us, is exactly what Henrici proves by contour inte-
gration in his book [30, Sect. 4.9]. However, his resulting theorem [30, Theo-
rem 4.9 c] is presented in a somewhat different form.

The Abel–Plana formula, connected with several great names of the past,
including Cauchy (1826), Kronecker (1889), Lindelöf (1905) (see his account of
the history until 1904 [37, pp. 68–69]), was almost forgotten until Henrici [30,
pp. 270–275] brought it up again in his text-book and applied it. One of the
most important recent applications of the APSF is to the vacuum expectation
values for the physical observables in the Casimir2 effect; see [21,40,45,50].
For a proof of the functional equation for the Riemann zeta function using the
Abel–Plana formula see [51], and for the interconnections of Plana’s formula
with Ramanujan’s integral formula see [55].

The third formula, which is fundamental in a variety of mathematical
fields, the Poisson summation formula, will be stated in the following form
(see e.g. [11, p. 202]):

Poisson Summation Formula (PSF)

Let f ∈ L1(R) ∩AC(R). Then
∞∑

k=−∞
f(k) =

√
2π

∞∑

k=−∞
f̂(2πk), (1.6)

where the series on the left-hand side converges absolutely.
Above, f̂ denotes the Fourier transform of f ∈ L1(R); it, as well as the

class AC(R), is defined in Sect. 2.
Although this formula is named after Poisson, it was given in a general

form without proof by Gauß in a note written on the interior of the cover page
of a book entitled “Opuscula mathematica 1799–1813”; see [25, p. 88]. Jacobi
in his work on the transformation formula for elliptic functions [36, p. 260]
attributes it to Poisson. Further remarks concerning the history of the Poisson
summation formula can be found in [13, p. 28], [53, pp. 36 f.].

Finally to the approximate sampling formula (ASF) of signal analysis,
actually due already to de la Vallée-Poussin (see [20], pp. 65–156 for a repro-
duction of this paper and pp. 421–453 for a commentary by Butzer-Stens),
Weiss [54], Brown [6], and Butzer-Splettstößer [14].

2 The Dutch physicist Hendrik Casimir (1909–2000) was awarded an Honorary Doctorate by
the RWTH Aachen University in 1966, the Laudation having been held by Professor Josef
Meixner.
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Approximate Sampling Formula (ASF)

For f belonging to the class F 2 (see Sect. 2 for definition), w > 0, we have

f(t) =
∞∑

k=−∞
f

(
k

w

)
sinc(wt− k) + (Rwf)(t) (t ∈ R), (1.7)

where the remainder Rwf is defined by

(Rwf)(t) :=
1√
2π

∞∑

k=−∞

(
1 − e−i2πkwt

)
(2k+1)πw∫

(2k−1)πw

f̂(v)eivt dv (t ∈ R),

(1.8)

the sinc-function being given by

sinc z :=

{ sin πz
πz if z ∈ C\{0},
1 if z = 0.

It is the sampling theorem for not necessarily bandlimited functions, general-
izing the classical Whittaker–Kotel’nikov–Shannon sampling theorem (CSF)
of signal analysis

f(t) =
∞∑

k=−∞
f

(
k

w

)
sinc(wt− k) (t ∈ R) (1.9)

for f ∈ B2
πw (for definition see Sect. 2). To proceed from (1.9) to (1.7) one has

to add the “error” term (Rwf)(t).

Remark. A consequence of the definition (1.8) of Rwf is the inequality

∣∣(Rwf)(t)
∣∣ ≤
√

2
π

∫

∣∣v
∣∣≥πw

|f̂(v)| dv, (1.10)

yielding

lim
w→∞

∞∑

k=−∞
f

(
k

w

)
sinc(wt− k) = f(t)

uniformly for t ∈ R.

The implications to be established in this paper between the assertions
of the summation formulae of Euler–Maclaurin (EMSF), Abel–Plana (APSF),
Poisson (PSF) and the approximate sampling formula (ASF), are indicated by
the arrows of the graphic in Fig. 1. As the reader observes, there are 12 possible
implications; of these we shall prove 10 implications, namely the grouping

APSF ⇐= ASF =⇒ EMSF ⇐⇒ PSF
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APSFEMSF

ASF

PSF

Figure 1. Diagram of the implications to be proven

as well as the grouping

ASF ⇐⇒ PSF =⇒ APSF ⇐⇒ EMSF =⇒ ASF.

The conclusion: All the formulae are equivalent to each other.
The first grouping consists of four new implications which are established

in this paper for the first time. Of the second grouping, the equivalence ASF ⇔
PSF, was first presented in the proceedings of the Edmonton conference of 1982
[15], the implication EMSF ⇒ ASF in the special issues dedicated to the 90th
birthday of A. Ostrowski in 1983 [16], and that of PSF ⇒ APSF ⇔ EMSF in
memory of U. N. Singh in 1994 [49].

The proofs of five of these six known implications of the second group-
ing, established by three of the present authors since 1982, are to be found
in conference proceedings and special issues not always readily available. For
this reason they are presented here with complete proofs, especially to make
sure that they do not involve “circular arguments”, so important in establish-
ing equivalences between many assertions. Further, they have been adapted
to those of the new implications of the first grouping in order to give a unified
exposition of the material. So the reader will find full proofs of all of the results
discussed in the present paper.

All the proofs use only a handful of modest side results, namely classi-
cal Fourier analysis, the Weierstraß theorem for algebraic (not trigonometric)
polynomials and Cauchy’s theorem of complex function theory. Therefore, if
we prove an implication X ⇒ Y, then it is fully justified to say that Y is a
direct corollary of X. Here “direct” means that the proof of the implication
proceeds directly from X to Y, and is not of the form X ⇒ Z ⇒ Y, where Z is
any other of the formulae under consideration.

The implications APSF ⇒ ASF and APSF ⇒ PSF are left open. The
problem is that APSF requires functions which are analytic in a half-plane,
whereas ASF and PSF hold for larger function classes. Thus it seems to be
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appropriate to proceed via a density argument based on an approximation pro-
cess which could be so cumbersome that one could not speak of “establishing
a direct corollary”.

For those readers who are primarily interested in the equivalence of the
four formulae, the presentation also allows several closed loops of implications,
one being PSF ⇒ APSF ⇒ EMSF ⇒ ASF ⇒ PSF. In this case only the proofs
of four implications are needed.

Concerning contents, Sect. 2 is devoted to notations and side results
needed. Section 3 is concerned with the proof of the equivalence of EMSF and
APSF, and Sect. 4 with the equivalence of PSF and ASF. Section 5 deals with
the PSF ⇔ EMSF and Sect. 6 with EMSF ⇔ ASF. Section 7 treats the APSF
as a corollary of ASF and PSF.

Section 8 presents a proof of EMSF; thus since one of the formulae has
been shown to be actually valid, the four formulae are not only equivalent
among themselves, but are all valid too.

Section 9 is concerned with APSF, EMSF and PSF considered as quad-
rature formulae in case the functions in question are bandlimited. Finally,
Sect. 10 compares the results presented here with a similar equivalence group-
ing for bandlimited functions in [7]. Section 11 contains a short biography of
A. Ostrowski.

2. Notations and Side Results

In what follows, the Fourier transform of f ∈ Lp(R), p = 1, 2, is defined by

f̂(v) :=
1√
2π

∫

R

f(u)e−ivu du (v ∈ R),

the integral being understood as the limit in the L2(R)-norm for p = 2. We
shall consider the following function spaces:

F p :=
{
f : R → C; f ∈ Lp(R) ∩ C(R), f̂ ∈ L1(R)

}
(p = 1, 2),

where C(R) denotes the space of all uniformly continuous and bounded func-
tions on R. Since f̂ ∈ L1(R) implies that f is bounded, there holds F 1 ⊂ F 2.

We also make use of the space AC(R) = AC(1)(R). It comprises all func-
tions f : R → C being absolutely continuous on R, i.e., those f having the
representation

f(t) =

t∫

−∞
f ′(u) du+ c (t ∈ R)

with f ′ ∈ L1(R). More generally, AC(r+1)(R), r ∈ N, consists of all functions
f with f ′ ∈ AC(r)(R) ∩ L1(R).
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The Bernstein spaces Bp
σ for p = 1, 2 and σ > 0 are defined in terms of

the Fourier transform via

Bp
σ :=

{
f ∈ Lp(R); f̂(v) = 0 a.e. outside [−πσ, πσ]

}
.

In view of the Paley–Wiener theorem (see e.g. [56, vol. II, p. 272]) these spaces
can be equivalently characterized as the set of all entire functions of exponen-
tial type σ, the restriction to R of which belongs to Lp(R). For this reason the
spaces B2

σ are also known as Paley–Wiener spaces.
Let us list some well-known results from Fourier analysis; see any text-

book in the matter, e.g. [11, Sects. 5.1, 5.2].

Proposition 2.1. a) If f ∈ Lp(R), p = 1, 2, then for each h ∈ R,

[e−ih·f(·)]∧(v) = f̂(v + h) (2.1)

for all v ∈ R in case p = 1 and a. e. in case p = 2.
b) If f ∈ L1(R), g ∈ Lp(R), p = 1, 2, then the convolution

(f ∗ g)(t) :=
1√
2π

∫

R

f(u)g(t− u) du (2.2)

belongs to Lp(R), and for the Fourier transform one has the convolution
theorem

(f ∗ g)∧(v) = f̂(v) ĝ(v) (2.3)

for all v ∈ R in case p = 1 and a. e. in case p = 2.
c) If f, g ∈ Lp(R), p = 1, 2, then there holds the exchange formula

∫

R

f(v)ĝ(v) dv =
∫

R

f̂(v)g(v) dv. (2.4)

d) If f ∈ L2(R), then f̂ also belongs to L2(R) and ‖f‖2 = ‖f̂‖2. Further-
more, there holds the inversion formula

f(t) =
1√
2π

∫

R

f̂(v)eivt dv = ̂̂
f(−t) a. e., (2.5)

where the integral is again understood as the limit in L2(R)-norm. If
f ∈ F p, p = 1, 2, then the integral in (2.5) exists as an ordinary Lebesgue
integral and both equalities hold for all t ∈ R.

Lemma 2.2. There hold the formulae
[

1√
2π w

rect
( ·
w

)
ei·t
]∧

(v) = sincw(v − t) = sincw(t− v) (t ∈ R)

(2.6)

[sincw(· − t)]∧ (v) =
1√

2π w
rect

( v
w

)
e−ivt (t ∈ R) (2.7)
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with the rectangle function

rect(t) :=

⎧
⎪⎨

⎪⎩

1, |t| < π
1
2 , |t| = π

0, |t| > π

.

Proof. Equation (2.6) is shown by a simple integration, and (2.7) follows from
(2.6) by the Fourier inversion formula. (For an elementary proof of (2.7) with-
out using the inversion formula see [5, p. 13 f].) �

Proposition 2.1 and Lemma 2.2 enable us to prove alternative represen-
tations of the sampling series

(Swf)(t) :=
∞∑

k=−∞
f

(
k

w

)
sincw(t− k) (2.8)

and the remainder Rwf of (1.8).

Proposition 2.3. For fixed t ∈ R, w > 0 let et,w(v), v ∈ R, be the function
obtained by restricting v �→ eitv to the interval [−πw, πw), and then extending
it to R by 2πw-periodic continuation. Then for f ∈ F 2,

(Swf)(t) =
1√
2π

∫

R

f̂(v)et,w(v) dv. (2.9)

Proof. By a simple calculation et,w has the Fourier expansion

et,w(v) =
∞∑

k=−∞
sinc(wt− k)eikv/w. (2.10)

Since et,w is of bounded variation, its Fourier series converges and (2.10) holds
at each point of continuity. Moreover, its partial sums

sn(v) :=
∑

|k|≤n

sincw(t− k)eikv/w (2.11)

are uniformly bounded with respect to v ∈ R and n ∈ N, that is

|sn(v)| ≤ C (v ∈ R;n ∈ N)

for some constant C > 0 depending on t only; see [56, p. 90, Theorem 3.7].
Since f̂ ∈ L1(R), we see that f̂ · sn has an absolutely integrable majorant for
all n ∈ N. Therefore, Lebesgue’s dominated convergence theorem allows us to
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conclude that
1√
2π

∫

R

f̂(v)et,w(v) dv = lim
n→∞

1√
2π

∫

R

f̂(v)sn(v) dv

= lim
n→∞

∑

|k|≤n

⎧
⎨

⎩
1√
2π

∫

R

f̂(v)eikv/w dv

⎫
⎬

⎭ sinc(wt− k)

= lim
n→∞

∑

|k|≤n

f

(
k

w

)
sincw(t− k),

where the Fourier inversion theorem (Proposition 2.1 d) has been used in the
last step. �
Proposition 2.4. For f ∈ F 2 and w > 0 we have the following two alternative
representations of the remainder Rwf of (1.8),

(Rwf)(t) =
∞∑

k=−∞

(
ei2πkwt − 1

) ∫

R

f(u)e−i2πkwu sincw(t− u) du (2.12)

= f(t) −
∞∑

k=−∞

∫

R

f(u)e−i2πkwu sincw(t− u) du (t ∈ R).

(2.13)

Proof. Using (2.4), (2.6) and (2.1) we obtain
(2k+1)πw∫

(2k−1)πw

f̂(v)eitv dv = ei2πkwt

∫

R

f̂(v + 2πkw) rect
( v
w

)
eitv dv

=
√

2π ei2πkwt

∫

R

f(u)e−i2πkwu sinc(t− u) du.

(2.14)

Inserting this into (1.8) yields (2.12).
Moreover, (1.8) can be rewritten as

(Rwf)(t) =
1√
2π

∞∫

−∞
f̂(v)eivt dv

− 1√
2π

∞∑

k=−∞
e−i2πkwt

(2k+1)πw∫

(2k−1)πw

f̂(v)eivt dv.

Noting that the first integral equals f(t) by the Fourier inversion formula
(2.5), and inserting (2.14) into the infinite series, we obtain the representation
(2.13). �
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We also need the following variant of Nikolskĭı’s inequality. Its proof is
nearly the same as that of [41, Theorem 3.3.1]. It requires only the mean value
theorems of integral calculus as well as Minkowski’s inequality for sums and
Hölder’s inequality for integrals.

Lemma 2.5. For f ∈ L1(R) ∩AC(R) there holds
∞∑

k=−∞
|f(k)| ≤ ‖f‖L1(R) + ‖f ′‖L1(R). (2.15)

In the proofs below it will often be convenient to prove the result first for
a particular case, and then the general case by a density argument using a suit-
able approximation. In this respect we will make use of the singular integral
of Fejér or Fejér means (cf. (2.2)), namely,

(σρf)(t) := (f ∗ χρ)(t) (t ∈ R, ρ > 0), (2.16)

χρ being Fejér’s kernel

χρ(u) := ρ
√

2π sinc2(ρu) (u ∈ R, ρ > 0), (2.17)

having Fourier transform

χ̂ρ(v) =
(

1 − |v|
2πρ

)

+

(v ∈ R, ρ > 0), (2.18)

where h+(u) := h(u) if h(u) ≥ 0, and h+(u) = 0 if h(u) < 0.

Proposition 2.6. a) If f ∈ Lp(R), 1 ≤ p < ∞, then for each r ∈ N,

σρf ∈ Lp(R) ∩ C(r)(R) with (σρf)(r) ∈ Lp(R) (ρ > 0)

and

lim
ρ→∞‖σρf − f‖Lp(R) = 0.

Furthermore, there holds limρ→∞(σρf)(t) = f(t) at each point t ∈ R

where f is continuous.
b) If f ∈ Lp(R) ∩C(s−1)(R) with f (s) ∈ Lp(R) for some s ∈ N and 1 ≤ p <

∞, then

lim
ρ→∞‖(σρf)(s) − f (s)‖Lp(R) = 0.

c) If f ∈ F 2, then for each w > 0,

lim
ρ→∞(Sw(σρf))(t) = (Swf)(t) (t ∈ R), (2.19)

and

lim
ρ→∞(Rw(σρf))(t) = (Rwf)(t) (t ∈ R). (2.20)
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d) If f ∈ L1(R) ∩AC(R), then

lim
ρ→∞

∞∑

k=−∞
(σρf)(k) =

∞∑

k=−∞
f(k), (2.21)

all series being absolutely convergent.

Proof. Parts a) and b) are well known (see e.g. [11, pp. 122, 134]). As to c), one
has by the convolution theorem (2.3) and by (2.9), noting that |et,w(v)| = 1,

∣∣(Sw(σρf))(t) − (Swf)(t)
∣∣ ≤ 1√

2π

∞∫

−∞

∣∣f̂(v)
∣∣
∣∣∣∣

(
1 − |v|

2πρ

)

+

− 1
∣∣∣∣dv.

Since f̂ ∈ L1(R), the last integral tends to zero for ρ → ∞ by Lebesgue’s
dominated convergence theorem. This yields (2.19).

Similarly, one has by (1.8),

∣∣(Rw(σρf))(t) − (Rwf)(t)
∣∣ ≤
√

2
π

∞∑

k=−∞

(2k+1)πw∫

(2k−1)πw

|f̂(v)|
∣∣∣∣

(
1 − |v|

2πρ

)

+

− 1
∣∣∣∣dv

=

√
2
π

∞∫

−∞

∣∣f̂(v)
∣∣
∣∣∣∣

(
1 − |v|

2πρ

)

+

− 1
∣∣∣∣dv,

which proves (2.20).
d) The proof of the absolute convergence of the series follows by

Lemma 2.5, noting that the assumptions upon f imply that σρf ∈ L1(R) ∩
AC(R) by part a). Assertion (2.21) is now an easy consequence of Lemma 2.5
and part b), since

∞∑

k=−∞

∣∣(σρf)(k) − f(k)
∣∣ ≤ ‖σρf − f‖L1(R) + ‖(σρf

′) − f ′‖L1(R).

�

Lemma 2.7. a) Let g be a continuous λ-periodic function with
∫ λ

0
g(u)du =

0. Then

∣∣∣
ρ∫

1

g(u)
u

du
∣∣∣ ≤ 2

λ∫

0

|g(u)| du

for ρ ∈ [1,∞).
b) There exists a constant C ∈ R, such that for all a, b, t ∈ R and k ∈ Z,

∣∣∣
b∫

a

sinc(t− u)ei2πku du
∣∣∣ ≤ C.
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Proof. By the second law of the mean for integrals, there exists ξ ∈ (1, ρ) such
that

ρ∫

1

g(u)
u

du =

ξ∫

1

g(u) du+
1
ρ

ρ∫

ξ

g(u) du.

Thus
∣∣∣

ρ∫

1

g(u)
u

du
∣∣∣ ≤
(

1 +
1
ρ

) λ∫

0

|g(u)| du ≤ 2

λ∫

0

|g(u)| du.

Part b) follows immediately by choosing g(u) := sinπ(t− u)ei2πu in a). �

3. The Summation Formulae of Euler–Maclaurin
and Abel–Plana

The summation formulae of Euler–Maclaurin and Abel–Plana can be inter-
preted as trapezoidal rules with remainders for quadrature over [0, n] and
[0,∞], respectively; see Sect. 9 below. As such, one may suspect that APSF is
somehow the limiting case n → ∞ of EMSF. However, the situation is more
intricate since the hypotheses on f and the representations of the remain-
ders in the two formulae are very different. Nevertheless, it was shown in [49]
that EMSF and APSF can be deduced from each other.3 The cited paper
established a conjecture raised by one of the authors at a lecture held at the
University of Erlangen-Nuremberg in February 1991.

The basic idea is to transform the remainders by using Cauchy’s theo-
rem for contour integration of analytic functions along rectangles. However,
in the hypotheses of EMSF the function f need not be analytic. Therefore f
is approximated by an analytic function ϕ so that APSF becomes applicable.
Such a function ϕ is obtained by a process based on the classical approximation
theorem of Weierstraß.

Since the paper [49] is not easily available, we borrow details from it and
present them here in a somewhat different form.

For our purpose it is convenient to introduce

Lj(z) := (−1)j
∞∑

k=1

e−2πkz

(2πk)j
(j ∈ N0). (3.1)

For j = 0 and j = 1 the series converges in the open right half-plane, where it
defines Lj as an analytic function.

Using the formula for the geometric series, we obtain

L0(z) =
1

e2πz − 1
(3.2)

3 Hardy [29, Sect. 13.14] only indicated a proof for EMSF ⇒ APSF, but he needed additional
assumptions on f for carrying it out.
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and may therefore consider L0 a meromorphic function which has simple poles
at z ∈ iZ and is analytic in C\iZ.

In the case j = 1 the Cauchy-Schwarz inequality implies for x > 0 and
y ∈ R that

|L1(x+ iy)| ≤
( ∞∑

k=1

1
(2πk)2

)1/2( ∞∑

k=1

e−4πkx

)1/2

=
1

2
√

6

(
e4πx − 1

)−1/2
,

and so

L1(x+ iy) = O(x−1/2) (x → 0+). (3.3)

For j ≥ 2 the functions Lj are defined in the closed right half-plane and
analytic in its interior. Two useful obvious properties are

Lj(z + i) = Lj(z), L′
j+1(z) = Lj(z) (3.4)

holding for �z > 0 and all j ∈ N0. We also mention that
B2k

(2k)!
= (−1)k+12L2k(0). (3.5)

As in [49], we will consider EMSF for r = 1 only, since the more general
form (1.1) can be deduced from that special case by repeated integration by
parts of the remainder. Employing the functions Lj , we may write EMSF, thus
(1.1), for r = 1, as

n∑

k=0

f(k) =
1
2
[
f(0) + f(n)

]
+

n∫

0

f(x) dx

+
1
12
[
f ′(n) − f ′(0)

]−
n∫

0

[
L2(it) + L2(−it)

]
f ′′(t) dt (3.6)

while APSF (1.4) takes the form

lim
N→∞

{ N∑

k=0

f(k) −
N+1/2∫

0

f(x) dx
}

=
1
2
f(0) + i

∞∫

0

L0(y) [f(iy) − f(−iy)] dy. (3.7)

The crucial link between the two summation formulae (3.6) and (3.7) is
contained in the following lemma.

Lemma 3.1. Let f satisfy the hypotheses of APSF. Then the expressions

An(f) := i

∞∫

0

L0(t) [f(it) − f(−it)] dt− i

∞∫

0

L0(t) [f(n+ it) − f(n− it)] dt
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and

Bn(f) :=
1
12
[
f ′(n) − f ′(0)

]−
n∫

0

[
L2(it) + L2(−it)

]
f ′′(t) dt

are equal.

Proof. For z0, z1 ∈ C, we mean by
∫ z1

z0
. . . dz the integral along the line segment

starting at z0 and ending at z1.
Let ε > 0 and K > ε. Introducing

F (z) := L0(−iz)f(z) and G(z) := L0(iz)f(z),

we define

I+
n (ε,K) :=

iK∫

iε

F (z) dz −
n+iK∫

n+iε

F (z) dz

and

I−
n (ε,K) :=

−iK∫

−iε

G(z) dz −
n−iK∫

n−iε

G(z) dz.

Then the expression An(f) can be rewritten as

An(f) = lim
ε→0+

lim
K→+∞

[
I+
n (ε,K) + I−

n (ε,K)
]
. (3.8)

Clearly, F is analytic in {z ∈ C : �z ≥ 0, � z ≥ ε}. Hence, by Cauchy’s
theorem, integration of the function F along the rectangle with vertices at
iε, n+ iε, n+ iK, iK yields

I+
n (ε,K) =

n+iε∫

iε

F (z) dz −
n+iK∫

iK

F (z) dz.

As a consequence of (1.2), the last integral vanishes as K → ∞. Analogous
considerations hold for G in {z ∈ C : � z ≥ 0, � z ≤ −ε}, and so (3.8) reduces
to

An(f) = lim
ε→0+

⎡

⎣
n+iε∫

iε

F (z) dz +

n−iε∫

−iε

G(z) dz

⎤

⎦. (3.9)

Now integrating by parts twice and using (3.4), we find that
n+iε∫

iε

F (z) dz =

n∫

0

L0(ε− it)f(t+ iε) dt

= [iL1(ε)f(t+ iε) + L2(ε)f ′(t+ iε)]t=n
t=0 −

n∫

0

L2(ε− it)f ′′(t+iε) dt. (3.10)
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Similarly for the second integral in (3.9),
n−iε∫

−iε

G(z) dz =

n∫

0

L0(ε+ it)f(t− iε) dt

= [−iL1(ε)f(t−iε)+L2(ε)f ′(t−iε)]t=n
t=0 −

n∫

0

L2(ε+it)f ′′(t−iε) dt. (3.11)

But from (3.3) it follows that

L1(ε)
[
f(t+ iε) − f(t− iε)

]
= O

(
ε1/2
)

→ 0 (ε → 0+).

Hence, combining (3.9)–(3.11) and letting ε → 0+, we obtain, since 2L2(0) =
B2/2 = 1/12,

An(f) = 2L2(0)
[
f ′(n) − f ′(0)

]−
n∫

0

[
L2(−it) + L2(it)

]
f ′′(t) dt = Bn(f)

as was to be shown. �

Now we turn to the aforementioned approximation process.

Lemma 3.2. Let f ∈ C(2)[0, n], where n ∈ N, and denote by ‖ · ‖C[0,n] the
supremum norm on [0, n]. Then, given ε > 0, there exists a function ϕ
satisfying the hypotheses of APSF such that

‖ f − ϕ ‖C[0,n] ≤ nε

2 (n2 + 1)
(3.12)

and

‖ f ′′ − ϕ′′ ‖C[0,n] ≤ ε

n (n2 + 1)
. (3.13)

Proof. By the approximation theorem of Weierstraß, there exists a polynomial
P (x) such that

‖ f ′′ − P ‖C[0,n] ≤ ε

2n(n2 + 1)
. (3.14)

Defining

Q(x) := f(0) + xf ′(0) +

x∫

0

(x− t)P (t) dt,

and choosing λ ∈ (0, 2π) such that

λ
(
n ‖Q′′ ‖C[0,n] + 2 ‖Q′ ‖C[0,n] + 2π ‖Q ‖C[0,n]

)
≤ ε

2n (n2 + 1)
, (3.15)

we claim that ϕ(z) := e−λzQ(z) has all the desired properties.
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Indeed, since Q is a polynomial and λ > 0, it is easily verified that ϕ
satisfies the hypotheses of APSF.

Next, writing f as

f(x) = f(0) + xf ′(0) +

x∫

0

(x− t)f ′′(t) dt,

which is a special case of Taylor’s formula, and recalling the definition of Q,
we find that

|f(x) −Q(x)| ≤
∣∣∣∣

x∫

0

(x− t) (f ′′(t) − P (t)) dt
∣∣∣∣ ≤

n2

2
‖ f ′′ − P ‖C[0,n]

(3.16)

for x ∈ [0, n]. On the same interval,

|1 − e−λx| ≤ 1 − e−λn ≤ nλ. (3.17)

Since

f(x) − ϕ(x) = f(x) −Q(x) +
(
1 − e−λx

)
Q(x),

we may employ (3.16) and (3.17) to deduce that

‖ f − ϕ ‖C[0,n] ≤ n2

2
‖ f ′′ − P ‖C[0,n] + nλ ‖Q ‖C[0,n] .

Now, estimating the right-hand side with the help of (3.14) and (3.15), we see
that (3.12) holds.

Finally, since Q′′(x) ≡ P (x), we have

f ′′(x) − ϕ′′(x) = f ′′(x) − P (x) + Q′′(x) − d2

dx2

(
e−λxQ(x)

)

and deduce that

‖ f ′′ − ϕ′′ ‖C[0,n] ≤ ‖ f ′′ − P ‖C[0,n] + nλ ‖Q′′ ‖C[0,n]

+ 2λ ‖Q′ ‖C[0,n] + λ2 ‖Q ‖C[0,n] .

In conjunction with (3.14) and (3.15), this implies (3.13). �

Proof of APSF ⇒ EMSF. As mentioned above, it suffices to prove (3.6). If f
satisfies the hypotheses of APSF, then so does f(· + n). Applying APSF to
these two functions and subtracting the results, we obtain

n−1∑

k=0

f(k) =
1
2
[
f(0) − f(n)

]
+

n∫

0

f(x) dx+An(f)

with An(f) as defined in Lemma 3.1. The conclusion of Lemma 3.1 gives (3.6)
immediately.
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Now suppose that f satisfies the hypotheses of EMSF only, i.e. f ∈
C(2)[0, n]. We have to show that

E(f) :=
1
2

[f(0) + f(n)] +
n−1∑

k=1

f(k) −
n∫

0

f(x) dx− 1
12
[
f ′(n) − f ′(0)

]

−
n∫

0

[
L2(it) − L2(−it)

]
f ′′(t) dt

vanishes. Given any ε > 0, we now employ Lemma 3.2 and define ψ := f − ϕ.
By what we have proved already, namely that E(ϕ) = 0,

E(f) = E(ϕ) + E(ψ) = E(ψ).

Finally, noting that

∣∣L2(it) − L2(−it)
∣∣ ≤
∣∣∣∣

∞∑

k=1

2 cos(2πkt)
(2πk)2

∣∣∣∣ ≤
1

2π2

∞∑

k=1

1
k2

=
1
12

for t ∈ R, and using (3.12) and (3.13), we conclude that

|E(ψ)| ≤ ‖ψ ‖C[0,n] + (n− 1) ‖ψ ‖C[0,n] + n ‖ψ ‖C[0,n]

+
1
12

n∫

0

|ψ′′(t)| dt+
n

12
‖ψ′′ ‖C[0,n]

≤ 2n ‖ψ ‖C[0,n] +
n

6
‖ψ′′ ‖C[0,n] < ε.

This implies that E(f) = 0. �

Proof of EMSF ⇒ APSF. Suppose that f satisfies the hypotheses of APSF
and that (3.6) holds. Employing Lemma 3.1, we may rewrite (3.6) as

n∑

k=0

f(k) =
1
2

[f(0) + f(n)] +

n∫

0

f(x) dx

+i

∞∫

0

L0(t) [f(it) − f(−it)] dt

−i
∞∫

0

L0(t) [f(n+ it) − f(n− it)] dt. (3.18)

Now let ε > 0 and K > ε. Consider the rectangle with vertices at

n+ iε, n+
1
2

+ iε, n+
1
2

+ iK, n+ iK
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and its conjugate in the lower half-plane. By contour integration of the function
L0(−iz)f(z) along the first rectangle and L0(iz)f(z) along the second, we find,
as in the proof of Lemma 3.1, that

i

∞∫

0

L0(t) [f(n+ it) − f(n− it)]dt

− i

∞∫

0

L0

(
t+

1
2
i

)[
f

(
n+

1
2

+ it

)
− f

(
n+

1
2

− it

)]
dt

= lim
ε→0+

n+1/2∫

n

[
L0(ε− it)f(t+ iε) + L0(ε+ it)f(t− iε)

]
dt =: Cn(f).

Next we observe that

lim
ε→0+

n+1/2∫

n

L0(ε∓ it) [f(t± iε) − f(t)] dt

= lim
ε→0+

n+1/2∫

n

ε

e2π(ε∓it) − 1
· f(t± iε) − f(t)

ε
dt = 0

since the integrand remains bounded on [n, n+ 1
2 ] as ε → 0+ and approaches

zero on (n, n+ 1
2 ]. Hence Cn(f) can be expressed as

Cn(f) = lim
ε→0+

n+1/2∫

n

[L0(ε− it) + L0(ε+ it)] f(t) dt

= lim
ε→0+

n+1/2∫

n

2
∞∑

k=1

e−2πkε cos(2πkt)f(t) dt

= lim
ε→0+

∞∑

k=1

e−2πkεak,

where

ak := 2

n+1/2∫

n

f(t) cos(2πkt) dt.
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We now interpret ak as the coefficients of a Fourier series. Indeed, let g̃ be the
1-periodic continuation of the function

g(x) :=
1
2
f(n+ |x− n|) −

n+1/2∫

n

f(t) dt

defined on [n− 1
2 , n+ 1

2 ]. Then g̃ is continuous and its associated Fourier series
is

g̃(x) ∼
∞∑

k=1

ak cos(2πkx).

Hence Cn(f) is the Abel–Poisson limit of the Fourier series of g̃ at x = 0; see
[11, p. 46, Proposition 1.2.8]. Therefore,

Cn(f) = g̃(0) = g(n) =
1
2
f(n) −

n+1/2∫

n

f(t) dt.

Altogether, we can rewrite (3.18) as

n∑

k=0

f(k) =
1
2
f(0)

n+1/2∫

0

f(x) dx+ i

∞∫

0

L0(t)
[
f(it) − f(−it)]dt

− i

∞∫

0

L0

(
t+

1
2
i

)[
f

(
n+

1
2

+ it

)
y − f

(
n+

1
2

− it

)]
dt.

Since

L0

(
t+

i

2

)
= − 1

e2πt + 1
,

we see from (1.3) that the last integral vanishes as n → ∞. Thus we arrive
at (3.7). �

4. Poisson’s Summation Formula and the Approximate
Sampling Formula

When we want to deduce ASF from one of the other formulae, it suffices to do
it for w = 1. Indeed, the general formula is obtained from that special case by
replacing f by f(·/w), t by wt and noting that

[
(R1f)

( ·
w

)]
(wt) = (Rwf)(t).

The two proofs of this section are adapted from [15].
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Proof of PSF ⇒ ASF. First we assume that f ∈ L2(R) ∩ AC(R). Then, for
fixed t ∈ R, the function gt(·) := f(·) sinc(t − ·) belongs to L1(R) ∩ AC(R),
and PSF (1.6) applies. Noting that

∞∑

k=−∞
gt(k) = (S1f)(t)

and
√

2π ĝt(2πk) =
∫

R

f(u)e−i2πku sinc(t− u) du,

PSF yields

(S1f)(t) =
∞∑

k=−∞

∫

R

f(u)e−i2πku sinc(t− u) du = f(t) − (R1f)(t),

the representation (2.13) being used for the remainder R1f . This is ASF for
w = 1 in that particular case.

In order to prove ASF for f ∈ F 2, we approximate f by the convolution
integral of Fejér σρf ; see (2.16). According to Proposition 2.6 a), σρf satisfies
the assumptions of the particular case, hence

(S1(σρf))(t) = (σρf)(t) − (R1(σρf))(t) (t ∈ R, ρ > 0)). (4.1)

Letting ρ → ∞, ASF for w = 1 follows again by Proposition 2.6. �

Next to the inverse implication.

Proof of ASF ⇒ PSF. Assume that f ∈ L1(R)∩AC(R) with f̂ ∈ L1(R). Then
ASF applies to f and we obtain for w = 1,

f(t) =
∞∑

k=−∞
f(k) sinc(t− k)

+
∞∑

k=−∞

(
ei2πkt − 1

) ∫

R

f(u)e−i2πku sinc(t− u) du (t ∈ R), (4.2)

where we have used the remainder in the form (2.12). Integrating this equation
term by term formally, one obtains

∫

R

f(t) dt =
∞∑

k=−∞
f(k)

∫

R

sinc(t− k) dt

+
∞∑

k=−∞

∫

R

f(u)e−i2πku

{∫

R

(
ei2πkt − 1

)
sinc(t− u) dt

}
du.
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Now, the integrals in the first series are equal to 1 by (2.7), and, similarly, the
integrals in curly brackets are equal to −1 for k �= 0 and equal to 0 for k = 0,
again by (2.7). So one has

∫

R

f(t) dt =
∞∑

k=−∞
f(k) −

√
2π

∞∑

k=−∞
k 	=0

f̂(2πk),

which is PSF.
To make these considerations rigorous, first assume that f̂(v) = 0 for

|v| > ρ for some ρ > 0. This implies in particular that f̂ ∈ L1(R). Now it
follows from (2.14) that the integrals in (4.2) vanish for |k| > ρ, i.e., (4.2) can
be rewritten as

f(t) =
∞∑

k=−∞
f(k) sinc(t− k)

+
∑

|k|≤ρ

(
ei2πkt − 1

) ∫

R

f(u)e−i2πku sinc(t− u) du (t ∈ R). (4.3)

Since the infinite series is uniformly convergent with respect to t in view
of (2.15), one can integrate (4.3) term by term from −R to R to deduce

R∫

−R

f(t) dt =
∞∑

k=−∞
f(k)

R∫

−R

sinc(t− k) dt

+
∑

|k|≤ρ

∫

R

f(u)e−i2πku

{ R∫

−R

(
ei2πkt − 1

)
sinc(t− u) dt

}
du, (4.4)

where the interchange of the order of integration is justified by Fubini’s
theorem.

Now take the limit for R → ∞. As to the infinite series, since the integrals
are uniformly bounded with respect to R > 0 and k ∈ Z by Lemma 2.7 b), one
can interchange the limit with summation. Similarly, in the second term on
the right-hand side of (4.4), the inner integrals are uniformly bounded with
respect to R > 0 and u ∈ R by Lemma 2.7 b), and hence one can also inter-
change the limit for R → ∞ with the outer integral. So one obtains from (4.4)
for R → ∞,

∞∫

−∞
f(t) dt =

∞∑

k=−∞
f(k)

∞∫

−∞
sinc(t− k) dt

+
∑

|k|≤ρ

∫

R

f(u)e−i2πku

{ ∞∫

−∞

(
ei2πkt − 1

)
sinc(t− u) dt

}
du.
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This yields PSF as in the formal proof, noting that by assumption f̂(2πk) = 0
for |k| > ρ.

It remains to show that the additional assumption f̂(v) = 0 for |v| > ρ
can be dropped. To this end, we consider the Fejér means σρf (cf. (2.16)). It
follows from (2.3), (2.18) and Proposition 2.6 a) that σρf satisfies the assump-
tions of the particular case, and hence

∞∑

k=−∞
(σρf)(k) =

√
2π
∑

|k|≤ρ

f̂(2πk)
(

1 − |k|
ρ

)
.

Letting now ρ → ∞ we obtain by Proposition 2.6 d) that
∞∑

k=−∞
f(k) = lim

ρ→∞
√

2π
∑

|k|≤ρ

f̂(2πk)
(

1 − |k|
ρ

)
. (4.5)

Finally, since f ∈ L1(R) ∩ AC(R) implies that f̂(v) = o
(|v|−1

)
for |v| → ∞

(cf. [11, p. 194]), it follows that

lim
ρ→∞

∑

|k|≤ρ

f̂(2πk)
|k|
ρ

= 0,

so that one can replace the right-hand side of (4.5) by
√

2π
∑∞

−∞ f̂(2πk),
giving PSF. �

5. Poisson’s Summation Formula and the Euler–Maclaurin
Formula

Proof of PSF ⇒ EMSF. Let f satisfy the hypothesis of EMSF for r = 1, that
is, f ∈ C(2)[0, n]. We may and will assume that f(0) = f(n) = 0. Indeed, we
simply have to add to f an appropriate linear function and observe that EMSF
is trivial for linear functions.

Defining

φ(x) :=

{
f(x), if x ∈ [0, n]

0, if x ∈ R\(0, n),
(5.1)

we see that

φ̂(v) =
1√
2π

n∫

0

f(u)e−iuv du.

Integrating by parts twice, we find that

φ̂(v) =
1√

2πv2

⎡

⎣f ′(n)e−inv − f ′(0) −
n∫

0

f ′′(u)e−iuv du

⎤

⎦ (5.2)
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for v �= 0. Hence there exist constants c1 > 0 and c2 > 0 such that

|φ̂(v)| ≤ min
{
c1,

c2
v2

}
(v ∈ R). (5.3)

With this it is readily seen that φ satisfies the hypothesis of Poisson’s summa-
tion formula. Hence we obtain

n∑

k=0

f(k) =
√

2π
∞∑

k=−∞
φ̂(2πk). (5.4)

Finally, calculating φ̂(2πk) for k �= 0 with the help of (5.2) and using that
∞∑

k=1

2
(2πk)2

=
B2

2!
=

1
12
, (5.5)

we arrive at
n∑

k=0

f(k) =

n∫

0

f(t) dt+
1
12
[
f ′(n) − f ′(0)

]

−
∞∑

k=1

n∫

0

ei2πku + e−i2πku

(2πk)2
f ′′(u) du.

This is EMSF for r = 1 and functions satisfying f(0) = f(n) = 0. �

The implication PSF ⇒ EMSF is new. A variant with n = ∞ for
functions belonging to the Schwarz space S of rapidly decreasing functions
can be found in [22, p. 112 ff.]. It is also proved as a corollary of PSF.

Now to the converse implication which is also new.

Proof of EMSF ⇒ PSF. Starting with EMSF for r = 1, we find for f ∈
C(2)[0, n] by an integration by parts of (1.1) that

n∑

k=0

f(k) =

n∫

0

f(x) dx+
1
2

[f(0) + f(n)] − 1
π

n∫

0

∞∑

k=1

sin(2πkt)
k

f ′(t) dt. (5.6)

It is known and can be shown in an elementary way that4

∞∑

k=1

sin(2πkt)
k

= −π
(
t− �t� − 1

2

)
(5.7)

for t ∈ R\Z. By Abelian summation and standard estimates, it can also be
shown that the partial sums of the series are uniformly bounded on the whole
of R.

Although (5.6) was derived for f ∈ C(2)[0, n], it is valid for functions
that are absolutely continuous on [0, n]. This follows by a density argument

4 This result can be found in many textbooks on Analysis for first year students.
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and a limiting process which is easy since in (5.6) we have a finite sum and
integrations over a finite interval.

Now assume f ∈ L1(R) ∩ AC(R) as in the hypothesis of PSF. From
Lemma 2.5 it follows in particular that f(n) → 0 as n → ±∞. Hence we may
apply (5.6) to f(x) and to f(−x), add the results and let n approach infinity.
This way we obtain

∞∑

k=−∞
f(k) =

∫

R

f(x) dx− 1
π

∫

R

∞∑

k=1

sin(2πkt)
k

f ′(t) dt.

Since the partial sums of the series are uniformly bounded and f ∈ AC(R),
Lebesgue’s theorem of dominated convergence allows us to interchange inte-
gration and summation. Thus,

∞∑

k=−∞
f(k) =

∫

R

f(x) dx− 1
π

∞∑

k=1

1
k

∫

R

sin(2πkt)f ′(t) dt. (5.8)

Now, expressing the sine by exponential functions and performing an integra-
tion by parts, we find that

− 1
π

∞∑

k=1

1
k

∫

R

sin(2πkt)f ′(t) dt

=
1

2πi

∞∑

k=1

1
k

[∫

R

e−i2πktf ′(t) dt−
∫

R

ei2πktf ′(t) dt]
]

=
∞∑

k=1

[∫

R

e−i2πktf(t) dt+
∫

R

ei2πktf(t) dt
]

=
√

2π
∞∑

k=1

[
f̂(k) + f̂(−k)

]
.

Substituting this in (5.8), we arrive at PSF. �

6. The Euler–Maclaurin Formula and the Approximate
Sampling Formula

Proof of EMSF ⇒ ASF. Let us first consider the particular case that f ∈
L2(R) ∩ AC(2)(R) with f ′′ ∈ C(R), and define gt(·) := f(·) sinc(t − ·) with
t ∈ R fixed. Now apply (1.1) for r = 1 to gt(·) and gt(−·) and add the two
formulae. This yields for each n ∈ N,
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n∑

k=−n

gt(k) =

n∫

−n

gt(u) du +
1
2

[gt(n) + gt(−n)] +
1
12

[g′
t(n) − g′

t(−n)]

−
∞∑

k=1

n∫

−n

ei2πku + e−i2πku

(2πk)2
g′′

t (u) du.

Since gt, g
′′
t ∈ L1(R) ∩ C(R) with limj→±∞ gt(j) = limj→±∞ g′

t(j) = 0, one
obtains for n → ∞ that

∞∑

k=−∞
gt(u) du =

∫

R

gt(u) du− lim
n→∞

∞∑

k=1

n∫

−n

ei2πku + e−i2πku

(2πk)2
g′′

t (u) du.

Now the infinite series on the right-hand side is uniformly convergent with
respect to n ∈ N and one can interchange the limits with summation to deduce

∞∑

k=−∞
gt(k) =

∫

R

gt(u) du−
∞∑

k=1

∫

R

ei2πku + e−i2πku

(2πk)2
g′′

t (u) du

=
∫

R

gt(u) du−
∞∑

k=−∞
k 	=0

1
(2πk)2

∫

R

e−i2πkug′′
t (u) du.

Integrating by parts twice yields
∞∑

k=−∞
gt(k) =

∞∑

k=−∞

∫

R

gt(u)e−i2πku du. (t ∈ R). (6.1)

Using now (2.13) with w = 1, we can rewrite the last integral as
∫

R

gt(u)e−i2πku du =
∫

R

f(u)e−i2πku sinc(t− u) du = f(t) − (R1f)(t).

This is ASF for w = 1 in that particular instance. The general case now fol-
lows as in the proof of PSF ⇒ ASF of Sect. 4 by approximating f by its Fejér
means σρf (cf. (2.16)). �

The proof of the foregoing implication is adapted from [16] and that of
the converse, to follow, is new.

Proof of ASF ⇒ EMSF. Let f ∈ C(2)[0, n]. Assuming again that f(0) =
f(n) = 0, we define φ by (5.1). Then (5.2) and (5.3) hold, and we see that φ
satisfies all the hypotheses of ASF. Therefore, ASF applies to φ, and we obtain

φ(t) −
∞∑

k=−∞
φ(k) sinc(t− k) = (Rφ)(t), (6.2)
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where the remainder is now given by

(Rφ)(t) =
1√
2π

∞∑

k=−∞

(
1 − e−i2πkt

)
(2k+1)π∫

(2k−1)π

φ̂(v)eitv dv. (6.3)

From (5.3) it follows that the series in (6.3) converges absolutely and uniformly.
Now we integrate both sides of (6.2) over [−ρ, ρ] and let ρ approach

infinity. On the left-hand side we easily see by (2.7) that

lim
ρ→∞

ρ∫

−ρ

[
φ(t) −

∞∑

k=−∞
φ(k) sinc(t− k)

]
dt

=

n∫

0

f(t) dt−
n∑

k=0

f(k) lim
ρ→∞

ρ∫

−ρ

sinc(t− k) dt

=

n∫

0

f(t) dt−
n∑

k=0

f(k).

The right-hand side needs more care. Using the representation (2.14) of
the integrals, we may rewrite (6.3) as

(Rφ)(t) =
∞∑

k=−∞

(
ei2πkt − 1

)
n∫

0

f(u)e−i2πku sinc(t− u) du.

Again the series converges absolutely and uniformly. Hence, when we integrate
over the finite interval [−ρ, ρ], we may interchange integration and summation
and employ Fubini’s theorem. This leads us to

ρ∫

−ρ

(Rφ)(t) dt =
∞∑

k=−∞

n∫

0

f(u)ak,ρ(u) du−
∞∑

k=−∞

n∫

0

f(u)bρ(u)e−i2πku du,

(6.4)

where

ak,ρ(u) :=

ρ−u∫

−ρ−u

ei2πkt sinc t dt and bρ(u) :=

ρ−u∫

−ρ−u

sinc t dt.

At the end of this proof we will show that the integrals in both series of (6.4)
are of order O(k−2) as k → ±∞, uniformly with respect to ρ. Therefore the
limit ρ → ∞ may be taken inside the summation. Since ak,ρ(u) and bρ(u) are
uniformly continuous as functions of (u, ρ) on [0, n] × [0,∞), that limit may
even by taken inside the integration. By (2.7), we have
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lim
ρ→∞ ak,ρ(u) = δk,0 and lim

ρ→∞ bρ(u) = 1,

where Kronecker’s delta has been used. Hence

lim
ρ→∞

ρ∫

−ρ

(Rφ)(t) dt = −
∞∑

k=−∞
k 	=0

n∫

0

f(u)e−i2πku du.

Altogether we have
n∫

0

f(t) dt−
n∑

k=0

f(k) = −
∞∑

k=1

n∫

0

(
ei2πku + e−i2πku

)
f(u) du. (6.5)

Integrating by parts twice on the right-hand side and noting (5.5) yields
EMSF (1.1).

It remains to show that the integrals on the right-hand side of (6.4) are of
order O(k−2) as k → ±∞ uniformly with respect to ρ. Indeed, two integrations
by parts yield

ak,ρ(u) =
[
ei2πkt

i2πk
sinc t+

ei2πkt

(2πk)2
sinc′ t

]t=ρ−u

t=−ρ−u

− 1
(2πk)2

ρ−u∫

−ρ−u

ei2πkt sinc′′ t dt.

This is a decomposition of ak,ρ(u) into five terms. When we multiply by
f(u) and integrate over [0, n], we see for the last three terms that they are
O(k−2) as k → ±∞, uniformly with respect to ρ. For the first two terms we
observe the same asymptotic behaviour after one integration by parts taking
f(u) sinc(±ρ− u) as the term to be differentiated and ei2πk(±ρ−u) as the one
to be integrated. Hence

n∫

0

f(u)ak,ρ(u) du = O
(

1
k2

)

uniformly with respect to ρ.
As regards bρ(u), we note that it is uniformly bounded with respect to ρ

and u by Lemma 2.7 b), and so are its derivatives. Hence two integrations by
parts, as in the calculation of φ̂ in (5.2), show that also

n∫

0

f(u)bρ(u)e−i2πku du = O
(

1
k2

)

uniformly with respect to ρ. This justifies the above procedure and completes
the proof. �
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7. The Abel–Plana Formula as a Corollary of Poisson’s
Summation Formula and of the Approximate Sampling
Formula

Proof of PSF ⇒ APSF. Suppose that f satisfies the hypotheses of APSF. We
may and will assume that, in addition, f(0) = 0. Indeed, we simply have to
replace f by f−f(0) sinc and observe that APSF is trivial for the sinc function.

For N ∈ N, we now define

fN (x) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f(x) if x ∈ [0, N + 1
2 ],

2f(N + 1
2 )(N + 1 − x) if x ∈ (N + 1

2 , N + 1],

0 if x ∈ R\[0, N + 1].

Then fN satisfies the hypothesis of PSF, and so

N∑

k=1

f(k) =
√

2π
{
f̂N (0) +

∞∑

k=1

[
f̂N (2πk) + f̂N (−2πk)

]}
. (7.1)

Obviously, we may write
√

2πf̂N as ϕN + ψN , where

ϕN (v) :=

N+1/2∫

0

e−ivuf(u) du

and

ψN (v) := 2f
(
N +

1
2

) N+1∫

N+1/2

e−ivu(N + 1 − u) du.

An easy calculation shows that

ψN (0) +
∞∑

k=1

[
ψN (2πk) + ψN (−2πk)

]
= 0,

and therefore (7.1) reduces to

N∑

k=1

f(k) =

N+1/2∫

0

f(x) dx+
∞∑

k=1

[
ϕN (2πk) + ϕN (−2πk)

]
. (7.2)
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Now, by contour integration in the lower half-plane along the rectangle with
vertices at 0, −iT, N + 1

2 − iT, N + 1
2 we find that

ϕN (v) = −i
T∫

0

e−vtf(−it) dt+

N+1/2∫

0

e−v(T+it)f(t− iT ) dt

+ i

T∫

0

e−v(t+iN+i/2)f

(
N +

1
2

− it

)
dt.

If v ≥ 2π, then, by (1.2), the second integral approaches zero as T → ∞.
Hence

ϕN (2πk) = −i
∞∫

0

e−2πktf(−it) + i(−1)k

∞∫

0

e−2πktf

(
N +

1
2

− it

)
dt

for k ∈ N. Analogous considerations in the upper half-plane yield

ϕN (−2πk) = i

∞∫

0

e−2πktf(it) dt− i(−1)k

∞∫

0

e−2πktf

(
N +

1
2

+ it

)
dt.

Thus (7.2) may be rewritten as

N∑

k=1

f(k) −
N+1/2∫

0

f(x) dx

= i

∞∑

k=1

{ ∞∫

0

e−2πkt [f(it) − f(−it)]dt

+ (−1)k+1

∞∫

0

e−2πkt

[
f

(
N +

1
2

+ it

)
− f

(
N +

1
2

− it

)]
dt

}
.

Next, we want to show that summation and integration may be inter-
changed. For x ∈ {0, N + 1

2}, the hypotheses of APSF guarantee the existence
of constants c1 > 0 and c2 > 0 such that

|f(x+ it) − f(x− it)| ≤ c1t for t ∈ [0, 1]

and

|f(x+ it) − f(x− it)| ≤ c2 e
2πt for t ∈ [1,∞).

This yields that for k > 1, we have
∞∫

0

e−2πkt|f(x+ it) − f(x− it)| dt ≤ c1
(2πk)2

+
c2e

−2π(k−1)

2π(k − 1)
=: Mk.
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Obviously,
∑∞

k=2Mk < ∞, and so an interchange of summation and integra-
tion is justified by the theorem of Beppo Levi. Thus, we obtain

N∑

k=1

f(k) −
N+1/2∫

0

f(x) dx

= i

∞∫

0

f(it) − f(−it)
e2πt − 1

dt+ i

∞∫

0

f

(
N +

1
2

+ it

)
− f

(
N +

1
2

− it

)

e2πt + 1
dt.

By (1.3), the last integral approaches zero as N → ∞, and so we arrive at
(1.4) for functions satisfying f(0) = 0. �

The above implication was proved in [49] as an application of a differ-
ent version of Poisson’s formula, namely f ∈ AC(R) being replaced by f ∈
L1(R) ∩BV (R). The following is new.

Proof of ASF ⇒APSF. Let g ∈ C(2)[0, N + 1
2 ] such that g(0) = g(N + 1

2 ) = 0.
Proceeding as in the proof of (6.5), we can deduce from ASF the analogous
equation

N+1/2∫

0

g(t) dt−
N∑

k=0

g(k) = −
∞∑

k=1

N+1/2∫

0

(
ei2πku + e−i2πku

)
g(u) du. (7.3)

If f satisfies the hypotheses of APSF, then this equation holds for

g(t) := f(t) − f(0) − t

N + 1
2

[
f

(
N +

1
2

)
− f(0)

]
.

Substituting this in (7.3), we find by a short calculation in which we use the
formula

∞∑

m=1

1
(2m− 1)2

=
π2

8

that
N+1/2∫

0

f(t) dt−
N∑

k=0

f(k) +
1
2
f(0) = −

∞∑

k=1

[
ϕN (2πk) + ϕN (−2πk)

]
(7.4)

with

ϕN (v) :=

N+1/2∫

0

e−ivuf(u) du.

The series on the right-hand side of (7.4) is exactly that in (7.2). Calculating
it as in the previous proof and using (1.3), we arrive at (1.4). �
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As mentioned in the introduction, the converse of the two implications
presented in this section have not been dealt with. The proofs would probably
be so involved that one could not really claim that one is a corollary of the
other.

8. A Proof of the Euler–Maclaurin Formula

Among the four formulae (EMSF, APSF, PSF, ASF) under consideration, it
is EMSF which permits the most elementary proof. Variants of the subsequent
approach can be found in many textbooks on Analysis.5 Proving the implica-
tions between the expositions does not include proofs of their truth or falsity.
Only if the truth value of any one of them is established independently will all
of them have the same truth value.

Proof of EMSF. Let f ∈ C(2r)[0, n] and define6 p(x) := 1
2x

2 − 1
2x + 1

12 . Two
integrations by parts yield

1∫

0

p(x)f ′′(x) dx = −1
2
[
f(0) + f(1)

]
+

1
12
[
f ′(1) − f ′(0)

]
+

1∫

0

f(x) dx.

(8.1)

Applying this formula to f( · + k) for k = 0, . . . , n − 1 and summing up the
results, we obtain

n∫

0

p̃(x)f ′′(x) dx = −1
2
f(0) −

n−1∑

k=1

f(k) − 1
2
f(n)

+
1
12
[
f ′(n) − f ′(0)

]
+

n∫

0

f(x) dx, (8.2)

where p̃ is the 1-periodic continuation of p from [0, 1] to the whole of R. Since
p̃ is an absolutely continuous even function, its Fourier series is an absolutely
convergent cosine series that represents p̃. Therefore

p̃(x) =
∞∑

k=0

ak cos(2πkx) =
∞∑

k=0

ak
ei2πkx + e−i2πkx

2
,

5 Some authors first establish (5.6) with the trigonometric series replaced by the right-
hand side of (5.7). For this, just one integration by parts for a Riemann-Stieltjes integral is
required; see e.g., [2, pp. 149–150], [31, pp. 506–507].
6 The attentive reader will note that 2p(x) is the Bernoulli polynomial B2(x).
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where a0 =
∫ 1

0
p(x) dx = 0 and

ak = 2

1∫

0

p(x) cos(2πkx) dx =
2

(2πk)2
(k ∈ N).

The last integral has been calculated by using (8.1) for the function f(x) =
−(2πk)−2 cos(2πkx). Substituting the Fourier series of p̃ in (8.2) and regroup-
ing terms, we obtain EMSF for r = 1. The formula for general r is deduced
from this special case by repeated integration by parts on the left-hand side
of (8.2) such that p̃ is integrated and f ′′ is differentiated.

We only carry out the case of r = 2. Using the notation (3.1) and the
relations (3.4)–(3.5), we find by two integrations by parts:

n∫

0

p̃(x)f ′′(x) dx =

n∫

0

[L2(ix) + L2(−ix)] f ′′(x) dx

=
[
1
i

[L3(ix) − L3(−ix)] f ′′(x) + [L4(ix) + L4(−ix)] f ′′′(x)
]x=n

x=0

−
n∫

0

[L4(ix) + L4(−ix)] f (4)(x) dx

= −B4

4!
[f ′′′(n) − f ′′′(0)] −

∞∑

k=1

n∫

0

ei2πkx + e−i2πkx

(2πk)4
f (4)(x) dx.

Substituting this in (8.2), we obtain the formula for r = 2. �

9. Quadrature Formulae for Bandlimited Functions

Suppose that the integrals under consideration exist. Then, by regrouping
terms, the three summation formulae EMSF, APSF and PSF can be inter-
preted as trapezoidal rules with remainders. In fact, we may write EMSF in
the form

n∫

0

f(x) dx =
1
2
f(0) +

n−1∑

k=1

f(k) +
1
2
f(n) +R[0,n](f) (9.1)

with remainder

R[0,n](f) = −
r∑

k=1

B2k

(2k)!

[
f (2k−1)(n) − f (2k−1)(0)

]

+ (−1)r
∞∑

k=1

n∫

0

ei2πkt + e−i2πkt

(2πk)r
f (2r)(t) dt,



392 P. L. Butzer et al. Results. Math.

APSF as

∞∫

0

f(x) dx =
1
2
f(0) +

∞∑

k=1

f(k) +R[0,∞)(f) (9.2)

with

R[0,∞)(f) = −i
∞∫

0

f(iy) − f(−iy)
e2πy − 1

dy (9.3)

and PSF as
∫

R

f(x) dx =
∑

k∈Z

f(k) +RR(f) (9.4)

with

RR(f) = −
√

2π
∑

k∈Z\{0}
f̂(2πk).

The three remainders are of a very different nature. If f̂(v) vanishes for
|v| ≥ 2π as it is the case when f belongs to the Bernstein space B1

2π, then
RR(f) = 0. In other words, the trapezoidal rule on R with nodes at the integers
is exact for absolutely integrable functions that are bandlimited to (−2π, 2π).

In contrast to this observation, ASF needs f to be bandlimited to (−π, π)
in order that its remainder vanishes and the classical sampling formula is
obtained. A similar phenomenon occurs for polynomials in connection with
Gaussian quadrature. While a polynomial of degree n − 1 needs at least n
samples for its reconstruction, the Gaussian quadrature formula with n nodes
is exact for polynomials up to degree 2n − 1. Other characterizations of the
Gaussian quadrature formula also hold analogously for the trapezoidal rule
over R applied to bandlimited functions; see [46], [13, Sect. 2.11.2]. It is there-
fore justified to call the trapezoidal rule on R a Gaussian quadrature formula
for bandlimited functions.

What happens to the remainders of the other two formulae (9.1) and
(9.2) when we apply them to bandlimited functions? In the case of formula
(9.2), this question was studied in [48]. The remainder R[0,∞)(f) does not van-
ish unless f is an even function. For practical applications, the representation
(9.3) has two disadvantages: It involves values of f on the imaginary axis and
it does not provide a sequence of gradual approximations. Therefore in [48,
Theorem 1] an expansion of R[0,∞](f) in terms of derivatives of f at 0 has
been established. It also connects APSF with EMSF. The result is as follows.
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Theorem. Let f be an entire function of exponential type σ less than 2π and
suppose that

∫∞
0
f(x) dx exists in the sense of Cauchy. Then

∞∫

0

f(x) dx =
1
2
f(0) +

∞∑

k=1

f(k) +
∞∑

j=1

f (2j−1)(0)
B2j

(2j)!
. (9.5)

The second series converges absolutely.

If, in addition, f is bounded on the whole real line, then the terms of the
second series can be estimated explicitly and it turns out that they decrease
like O((σ/(2π))2j) as j → ∞. Thus (9.5) includes a representation of R[0,∞)(f)
which yields gradual approximations by truncating the second series.

As a generalization of (9.5), it was shown in [48, Theorem 3], again under
the additional hypothesis of boundedness on R, that

∞∫

0

f(x) dx =
∞∑

k=0

f(z + k) +
∞∑

j=1

f (j−1)(0)
Bj(z)
j!

(z ∈ C),

where Bj(z) are the Bernoulli polynomials. Both series converge uniformly on
compact subsets of C. Moreover, the second series converges absolutely.

Connections to (9.1) are easily found by writing
n∫

0

f(x) dx =

∞∫

0

[
f(x) − f(x+ n)

]
dx

and applying (9.2) to the right-hand side.
A very general class of quadrature formulae involving derivatives at all

the nodes was established in [47]. It contains a generalization of EMSF [47,
Theorem 3] and of APSF [47, Corollary 6]. For another quadrature formula
over semi-infinite intervals see [52, formula (1.13)].

10. Epilogue

In a recent paper [7] the five authors considered, among others, the following
four formulae of mathematical analysis for bandlimited functions, i.e. for func-
tions belonging to the Bernstein spaces Bp

σ, σ > 0, p = 1, 2, (see Sect. 2 for
the definition):

Poisson Summation Formula for Bandlimited Functions (PSFB)

For f ∈ B1
σ with σ > 0 we have

∫

R

f(u) du =
2π
σ

∑

k∈Z

f

(
2kπ
σ

)
.

This means that in B1
σ the trapezoidal rule with step size 2π/σ is exact for

integration over R.
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PSFB

CSF

GPF RKF

Figure 2. The implications proved in [7]

Classical Sampling Formula (CSF)

For f ∈ B2
σ with σ > 0 we have

f(z) =
∑

k∈Z

f

(
kπ

σ

)
sinc

(σz
π

− k
)

(z ∈ C), (10.1)

the convergence being absolute and uniform in strips of bounded width parallel
to the real line, thus in particular, on compact sets.

General Parseval Formula (GPF)

For f, g ∈ B2
σ with σ > 0 we have

∫

R

f(u)g(u) du =
π

σ

∑

k∈Z

f

(
kπ

σ

)
g

(
kπ

σ

)
.

Reproducing Kernel Formula (RKF)

For f ∈ B2
σ with σ > 0 we have

f(z) =
σ

π

∫

R

f(u) sinc
σ

π
(z − u) du (z ∈ C).

In that paper it was shown that these formulae are equivalent. More
precisely, the implications indicated in Fig. 2 were established.

Now in [10] it was shown that the classical sampling formula (CSF)
for bandlimited functions is equivalent to the approximate sampling formula
(ASF) for not necessarily bandlimited functions, those belonging to F 2. Thus
all the assertions of Fig.1 are equivalent to those of Fig. 2.

Figure 3 shows the implications proved in the present paper together with
those established in [7,10].

It should be noted that in [7,10] the Bernstein spaces Bp
σ were defined via

functions of exponential type rather than in terms of the Fourier transform, as
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PSFB

CSF

GPF RKF

ASF

APSF

PSF

EMSF

Figure 3. The equivalence between the bandlimited and
non-bandlimited assertions

we did above in Sect. 2. The powerful Paley–Wiener theorem, however, guar-
antees that these two definitions are nevertheless equivalent. In view of these
different definitions the Paley–Wiener theorem has to be used as a side result
in order to establish CSF ⇔ ASF in Fig. 3.

In earlier papers some of the authors have shown that the four prop-
ositions dealing with bandlimited functions are equivalent to Gauß’s sum-
mation of the hypergeometric function, the generalised Vandermonde–Chou
formula, Tschakalov’s sampling theorem, Dougall’s bilateral sum, to the func-
tional equation of the Riemann zeta function and to the transformation for-
mula for Jacobi’s elliptic theta function.

For results of this type showing the equivalence of basic formulae in anal-
ysis to those in the diagrams above see, e.g. [8,9,12,32–35,55].

11. Short Biography of A. Ostrowski

Alexander (Markowich) Ostrowski (1893–1986) was born in Kiev and was a
student of Chebyshev’s disciple D. A. Grave at the University there; Grave
recommended him to E. Landau and K. Hensel. He then studied under Hensel
at Marburg University from 1912 on, moved to Göttingen in 1918 where he
received his doctorate under Hilbert and Landau in 1920. The next stop was
Hamburg where, as assistant to E. Hecke, he was awarded the Habilitation
degree in 1922. He returned to Göttingen as Dozent, spent the year 1925/1926
on a Rockefeller Research Fellowship at Oxford, Cambridge and Edinburgh,
and finally was offered the mathematics chair at Basel. He retired in 1958.
Ostrowski was the author of some 275 publications, dealing with linear algebra,
algebraic equations, estimating their roots, Galois theory, algebraic number
theory, differential equations, complex analysis, conformal mappings, numeri-
cal analysis, Cauchy functional equation, Cauchy–Frullani integrals, methods
for both finding and approximating eigenvalues of linear systems. In fact, his
works were published in six volumes [43].
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Ostrowski, one of the great mathematicians of the 20th century, was espe-
cially known for his desire to unravel the essential features of a problem, for his
elegant and succinct proofs, for investigating a topic exhaustively, once having
selected it, for his thoroughness based on his deep knowledge of the contem-
porary literature and especially the original sources. His 16 doctoral students
included S. E. Warschawski (1932), who helped build up the University of Min-
nesota’s mathematics department, T. Motzkin (1936), the well-known analyst,
E. Batschelet (1944), known for his work in statistics and biomathematics,
Werner Gautschi and his twin brother Walter Gautschi (1954), the eminent
numerical analyst. For Ostrowski’s life and work see, in particular, [28].

The paper on the Euler–Maclaurin formula [16] appeared in the volume
dedicated to Ostrowski’s 90th birthday. He invited PLB to a colloquium lecture
at Basel in 1957 and he participated together with his wife Margaret in the
symposium on “Abstract Spaces and Approximation” conducted by PLB, who
also had the honour to be invited to his villa at Montagnola in the seventies.
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and related Gauss-Christoffel rules, I, II, III. BIT 37(2), 256–295 (1997),
37(4), 804–832 (1997), 39(1), 51–78 (1999)

http://dx.doi.org/10.1080/00036811003627567
http://dx.doi.org/10.1080/00036811003627567


398 P. L. Butzer et al. Results. Math.

[20] de La Vallée Poussin, C.-J.: Collected Works/Œuvres Scientifiques, vol. III.
Edited by Butzer, P.L., Mawhin, J., Vetro, P. Académie Royale de Belgique,
Brussels, and Circolo Matematico di Palermo, Palermo (2004)

[21] Dowling, J.P.: The mathematics of the Casimir effect. Math. Mag. 62(5), 324–
331 (1989)

[22] Dym, H., McKean, H.P.: Fourier Series and Integrals. Probability and Mathe-
matical Statistics, vol. 14. Academic Press, New York (1972)

[23] Euler, L.: Methodus generalis summandi progressiones (A general method for
summing series). Commentarii academiae scientiarum Petropolitanae 6, 68–97.
Opera Omnia, ser. 1, vol. XIV, pp. 42–72. Presented to the St. Petersburg
Academy on June 20, 1732. English translation by I. Bruce. http://www.math.
dartmouth.edu/∼euler/pages/E025.html (1738)

[24] Euler, L.: Inventio summae cuiusque seriei ex dato termino generali (Finding the
sum of any series from a given general term). Commentarii academiae scientia-
rum Petropolitanae, 8, 9–22. Opera Omnia, ser. 1, vol. XIV, pp. 108–123. Pre-
sented to the St. Petersburg Academy on October 13, 1735. English translation
by J. Bell. http://www.math.dartmouth.edu/∼euler/pages/E047.html (1741)

[25] Gauss, C.F.: Werke, XIII. Band, herausgegeben von der Königlichen Gesellschaft
der Wissenschaften zu Göttingen (Collected works, vol. VIII). Teubner Verlag,
Leipzig, 1900. Reprint: Georg Olms Verlag, Hildesheim, 1973

[26] Gautschi, W.: Leonhard Eulers Umgang mit langsam konvergenten Reihen
(Leonhard Euler’s handling of slowly convergent series). Elem. Math. 62(4),
174–183 (2007)

[27] Gautschi, W.: Leonhard Euler: his life, the man, and his works. SIAM Rev.
50(1), 3–33 (2008)

[28] Gautschi, W.: Alexander M. Ostrowski (1893–1986), His life, work, and students.
In: Colbois, B., Riedtmann, C., Schroeder, V. (eds.) Schweizerische Mathema-
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