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This paper explores a seemingly counter-intuitive idea: the possibility of accelerating the
solution of certain linear equations by adding even more equations to the problem. The ba-
sic insight is to trade-off problem size by problem structure. We test this idea on Toeplitz
equations, in which case the expense of a larger set of equations easily leads to circulant
structure. The idea leads to a very simple iterative algorithm, which works for a certain
class of Toeplitz matrices, each iteration requiring only two circular convolutions. In the
symmetric definite case, numerical experiments show that the method can compete with
the preconditioned conjugate gradient method (PCG), which achieves O (n log n) perfor-
mance. Because the iteration does not converge for all Toeplitz matrices, we give necessary
and sufficient conditions to ensure convergence (for not necessarily symmetric matrices),
and suggest an efficient convergence test. In the positive definite case we determine the
value of the free parameter of the circulant that leads to the fastest convergence, as well
as the corresponding value for the spectral radius of the iteration matrix. Although the
usefulness of the proposed iteration is limited in the case of ill-conditioned matrices, we
believe that the results show that the problem size/problem structure trade-off deserves
further study.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

There are many problems that lead to Toeplitz equations, and many methods for solving them. Levinson’s algorithm
solves n Toeplitz equations in O (n2) flops [1]. Even the inverse of a Toeplitz can be computed in O (n2) flops, using the
Trench method [1]. Many variants of these methods have been introduced [2], including a number of methods that can
handle Toeplitz matrices with singular submatrices [3,4]. Efficient algorithms suited for rationally generated matrices have
also been given [5,6]. Quadratic inversion formulas for matrices “close” to Toeplitz have been given [7,8]. A more general
approach, described in [9], has lead to O (n2) algorithms for a class of matrices with recursive structure. This includes
Toeplitz, Hankel and other matrices. Block–Toeplitz matrices with Toeplitz entries are also studied in [10]. The fast solver
proposed in [11], based on a modified QR algorithm, is backward stable and can be applied to a class of nonsymmetric
Toeplitz-like matrices. It also explores displacement structure (see [12] for a review).

There are also O (n log2 n) methods. The one in [13] applies to matrices of low displacement rank, the method in [14] is
based on Padé approximation, and Ref. [15] uses a generalized Schur algorithm and applies to real positive definite Toeplitz
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matrices. The method described in [16] uses real trigonometric transformations and solves symmetric Toeplitz equations
with complexity O (n log2 n). Iterative approaches based on Newton’s method [17,18] have also been reported.

Hermitian positive definite Toeplitz equations can be solved using the preconditioned conjugate gradient (PCG) method
[19,20], implementing the matrix-vector products using the FFT. Adequate preconditioning [21–26] may lead to O (n log n)

performance.
This paper introduces a new idea for solving linear equations: the idea of embedding the original matrix in a larger but

more structured matrix. The size of the problem increases, but the more regular structure may allow a net performance
gain. We test the concept on Toeplitz equations, and show that the embedding of the Toeplitz matrix in a circulant leads to
an efficient and extremely simple iterative algorithm, that can under certain conditions compete with PCG.

In Section 2 we recall some theoretical facts regarding circulant and Toeplitz matrices, that will be used in the rest of the
paper. The proposed method is described in Section 3, and its convergence is analyzed in Section 4. Section 5 is concerned
with the very important problem of positive definite Toeplitz systems. For these matrices, we provide several theorems
which justify the convergence of the algorithm. Finally, some experimental results are shown.

Although the usefulness of the proposed iteration is limited in the case of ill-conditioned matrices, we believe that the
results show that the problem size/problem structure trade-off has potential, and deserves further study.

2. Preliminaries

Let us recall some results about Toeplitz and circulant matrices.
If C is a circulant matrix of order 2n, it is known that its eigenvalues are {λi(C)}0�i<2n , where λi(C) is the ith element

of the discrete Fourier transform (DFT) of the first row of C . On one hand, C can be written as

C =
[

T S

S T

]

where T , S are Toeplitz matrices. Note that T + S is a circulant, and T − S is skew-circulant. By expressing the DFT of
length 2n as two DFTs of length n, it is shown in [27] that the eigenvalues of T + S are {λ2i(C)}0�i<n , and those of T − S
are {λ2i+1(C)}0�i<n .

On the other hand, we can also write

C = 1

2

[
I I

I −I

][
T + S 0

0 T − S

][
I I

I −I

]
(1)

so C is invertible if and only if T ± S are nonsingular. In that case, C−1 is equal to

1

2

[
I I

I −I

][
(T + S)−1 0

0 (T − S)−1

][
I I

I −I

]
(2)

which is also a circulant matrix. Hence, multiplications by C or C−1 are computed as circular convolutions, which can be
efficiently implemented using the FFT algorithm.

For real symmetric matrices C , note that C is positive definite if and only if the real symmetric Toeplitz matrices T ± S
are positive definite.

3. The method

Consider the Toeplitz problem T x = y, where T is a real nonsingular n × n Toeplitz matrix with elements Tij = ti− j . It is
easy to realize that T can be embedded (as a principal submatrix) in a circulant matrix of size 2n − 1 or greater. We will
often consider circulants of size 2n, but larger sizes have practical and possibly theoretical advantages (the smallest power
of two greater than 2n − 1 is often a good size to use in practice, as FFTs of powers of two are especially efficient).

To build the circulant, define a Toeplitz matrix S , with elements Sij = si− j determined by si = ti−n , for i > 0, and
si = ti+n , for i < 0. The element α = s0 is arbitrary. Then,

C =
[

T S

S T

]

is a circulant of size 2n.
In any case, the Toeplitz linear system can now be replaced with a circulant problem:

C

[
x

0

]
=

[
T S

S T

][
x

0

]
=

[
y

z

]

where y = T x and z = Sx. The circulant equations Ca = b, with

a =
[

x
]

, b =
[

y
]

0 z
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are equivalent to T x = y. Note the difference between this formulation and the usual one: the left-hand side vector of a
traditionally written set of linear equations T x = y contains all the unknown quantities, whereas in our formulation there
are unknown elements in both the right-hand and left-hand side vectors. We may say that both a and b are partially known,
since x and z are unknown.

The proposed algorithm produces two sequences ak and bk which iteratively approximate a and b, respectively. At each
step, the known elements of a and b are reinserted in the approximations, and multiplication by C or C−1 leads to the next
approximation. More precisely, let

ak =
[

xk

ok

]
, bk =

[
yk

zk

]
(3)

be the approximations to a and b, and hence to the unknowns x and z, available at the end of step k. Step k + 1 is defined
by the following sequence of operations:

(1) Insert the known elements of b into bk , that is, replace yk by y and compute the matrix-vector product:

C−1
[

y

zk

]
=

[
xk+1

ok+1

]
= ak+1. (4)

(2) Insert the known elements of a into ak+1, that is, replace ok+1 by the zero vector, and compute the matrix-vector
product:

C

[
xk+1

0

]
=

[
yk+1

zk+1

]
= bk+1. (5)

(3) Stop if the result is acceptable. Otherwise repeat.

The matrix-vector products are 2n-dimensional circular convolutions that can be performed in O (n log n) flops using
standard FFT or fast convolution algorithms. The FFT of the first column of C needs to be computed only once, and imme-
diately determines the FFT of the first column of C−1. Both steps (1) and (2) of the algorithm require one FFT and one IFFT
of (at least) 2n points, and hence O (n log n) flops. More specific speedups are possible but will not be discussed for brevity
(for example, it is well known that the bit-reversal stages can be avoided by properly selecting the FFT and IFFT algorithms,
and that the FFT of 2n real data can be computed using one n-point complex FFT).

It is interesting to compare our work and [23,22], which explore preconditioning by embedding. These are based on
equations similar to[

T S

S T

][
x

x

]
=

[
y

y

]

of size m = 2n. They are not equivalent to T x = y but to (T + S)x = b, and lead to the (circulant) preconditioner T + S . This
is the same as our T + S when the size of the embedding is m = 2n. Another (skew-circulant) preconditioner obtained by
embedding is T − S (note its appearance in (1)).

It is important to note that the our approach can in principle be tried even when T is not Toeplitz, provided that it can
be embedded as a principal submatrix in a circulant of sufficiently small size. Note that principal submatrices of Toeplitz or
circulant matrices are not necessarily Toeplitz. For example,

⎡
⎣

a b d

d a c

b c a

⎤
⎦

is not Toeplitz, but it can be embedded as a principal submatrix in the circulant⎡
⎢⎢⎢⎣

a b c d

d a b c

c d a b

b c d a

⎤
⎥⎥⎥⎦

(note the row and column that must be added, in bold). For an example of a problem that leads to such non-Toeplitz
matrices see [28,29]. In fact, the circulant matrices considered in [28] have one interesting property: they have k zero
eigenvalues, but every principal submatrix obtained by deleting at least k of its rows and columns is nonsingular.

Since the proposed method only works if C is invertible, this suggests the following question: is it always possible to
embed T in a nonsingular circulant, by the described process? The following result shows that this is possible. We denote
by C0 the circulant embedding matrix obtained by choosing α = 0.
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Theorem 1. A Toeplitz matrix T can always be embedded in an infinite set of nonsingular circulant matrices C : the ones obtained by
choosing

α /∈ {−λ2i(C0), λ2i+1(C0), 0 � i < n
}
.

Proof. Given T , let us build as explained C0 and S0 such that α = s0 = 0. Hence, any other matrix S of that kind is
S = S0 +α I . Hence, T ± S = T ± (S0 +α I). Now, C is invertible if and only if its eigenvalues are nonzero, but its eigenvalues
are those of T + S0 + α I (say, λ2i(C0) + α), and those of T − S0 − α I (say, λ2i+1(C0) − α). It suffices to impose that these
2n numbers are not zero. �
4. Analysis of the algorithm

This section discusses the convergence of the algorithm, in the general case of invertible matrices T . The first theorem
provides a necessary and sufficient condition for convergence.

Theorem 2. If C is invertible, (T + S)−1 exists, and the algorithm converges if and only if the eigenvalues λ of A = (T + S)−1(T − S)

lie in the subset of the complex plane described by

4 cos θ − 2
√

2 < |λ + 1| < 4 cos θ + 2
√

2 (6)

where θ denotes the polar angle of λ, centered in λ = −1.

The complex domain defined by (6) is named Pascal’s snail, and is depicted in Fig. 1.

Proof. It follows from (3), (4) and (5) that

ak+1 = C−1 Q C P ak + C−1
[

y

0

]

where

P =
[

I 0

0 0

]
, Q = I − P .

It will be convenient to set

C−1 =
[

C1 C2

C2 C1

]
. (7)

A brief computation now shows that

C−1 Q C P =
[

C2 S 0

C1 S 0

]
,

and therefore xk converges if and only if the spectral radius of C2 S satisfies ρ(C2 S) < 1. To determine C2, it suffices to
compare Eqs. (7) and (2), and a straightforward computation shows that

C2 = 1

2

[
(T + S)−1 − (T − S)−1].

The product C2 S can now be written as

C2 S = 1

4

[
(T + S)−1 − (T − S)−1][(T + S) − (T − S)

]

= 1

4

(
2I − A − A−1),

with

A = (T + S)−1(T − S).

Any eigenvalue λ of A–they are not zero–corresponds to an eigenvalue f (λ) of the iteration matrix, with

f (λ) = 1

4

(
2 − λ − λ−1),

and so the algorithm converges if and only if | f (λ)| < 1. To finish, we find the set of complex numbers λ such that
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∣∣λ + λ−1 − 2
∣∣ < 4 ⇔ ∣∣λ2 + 1 − 2λ

∣∣ < 4|λ| ⇔ |λ − 1|2 < 4|λ|.
By writing λ = −1 + reiθ , this is equivalent to

∣∣reiθ − 2
∣∣2

< 4
∣∣reiθ − 1

∣∣ ⇔ r2 + 4 − 4r cos θ < 4
√

r2 + 1 − 2r cos θ;
we square this expression, and arrive to the inequality

r2 − 8r cos θ + 8
(
2 cos2 θ − 1

)
< 0

whose quadratic polynomial has roots 4 cos θ ± 2
√

2, so the final solution is

4 cos θ − 2
√

2 < r < 4 cos θ + 2
√

2

where r = |λ + 1|. �
Remark. The iteration matrix is C2 S = (2I − A − A−1)/4, not A. The theorem assures the possibility of studying the eigen-
values of the simpler matrix A, for convergence purposes.

5. Analysis for positive definite matrices

In many practical problems T is a positive definite Toeplitz matrix, that is, x∗T x > 0 for all nonzero complex vectors x,
a condition that implies that T is Hermitian [30]. In this case, the first question that arises is whether T can embedded in
a circulant positive definite matrix C .

To this aim, let us recall the circulant matrix C0; we will denote

L0 = min
0�i<n

λ2i(C0), L2n−2 = max
0�i<n

λ2i(C0),

L1 = min
0�i<n

λ2i+1(C0), L2n−1 = max
0�i<n

λ2i+1(C0) (8)

which correspond to the minimum and maximum eigenvalues of T + S0 and T − S0, respectively. Note that they are easily
computed by means of a 2n-point FFT of the first row of C0, and that this FFT has to be computed for the purpose of
efficiently implementing the circular convolutions required by the algorithm. Therefore, assuming that these four quantities
are known implies negligible computational overhead.

We first provide the theorem of existence in the positive definite case, analogous to Theorem 1 in the general case:

Theorem 3. A real positive definite Toeplitz matrix T can be embedded in a real positive definite circulant matrix C by the described
process if and only if

L0 + L1 > 0.

Moreover, C is positive definite if and only if α is chosen in the interval

α ∈ (−L0, L1). (9)

Proof. Recalling the preliminaries and the proof of Theorem 1, we now impose that the eigenvalues of T ± S = T ± (S0 +α I)
be positive. But the eigenvalues of T + S0 + α I are λ2i(C0) + α, and those of T − S0 − α I are λ2i+1(C0) − α. It suffices to
impose that these 2n numbers be positive. As C0 is real and symmetric, its eigenvalues λi(C0) are real; so we just choose

−λ2i(C0) < α < λ2k+1(C0), 0 � i,k < n,

or, in an equivalent way,

− min
0�i<n

λ2i(C0) = −L0 < α < min
0�k<n

λ2k+1(C0) = L1

which concludes the proof. �
Next, we apply the general convergence theorem to the particular case of positive definite matrices:

Theorem 4. If T is a positive definite Toeplitz matrix and α ∈ (−L0, L1), then the eigenvalues of A = (T + S)−1(T − S) are positive.
In this case, the algorithm converges if and only if they belong to the interval (1/c, c), where c = 3 + 2

√
2 (hence, 1/c = 3 − 2

√
2 ).
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Fig. 1. The curve | f (z)| = 1 in the complex plane, and the graph of | f (z)| for real z (as in Theorem 4, c = 3 + 2
√

2).

Proof. The previous theorem guarantees that C is positive definite; hence, it follows from (1) that both T + S and T − S are
also positive definite matrices, and so is (T + S)−1. We can therefore write (T + S)−1 = X X H , and hence A = X X H (T − S) =
X X H (T − S)X X−1. This shows that A is similar to B = X H (T − S)X (henceforth, they share eigenvalues). Moreover, B is
congruent to T − S , but T − S is also positive definite, and so is B; thus, A has positive eigenvalues.

Now let us impose the convergence condition (6) to the eigenvalues λ of A. We now know that they are positive, so
|λ + 1| = λ + 1, and their polar angle is θ = 0; the new necessary and sufficient condition is

c−1 = 3 − 2
√

2 < λ < 3 + 2
√

2 = c

which concludes the proof. �
The behavior of the function f (x) that maps eigenvalues of A to eigenvalues of the iteration matrix, and the rôle of the

interval (1/c, c), are depicted in Fig. 1.
Next, we will determine the values of α for which the method converges. To this aim, we provide a result concerning

the eigenvalues of matrix A as a function of α.

Theorem 5. For α ∈ (−L0, L1), all the eigenvalues of A are contained in the positive interval
(

L1 − α

L2n−2 + α
,

L2n−1 − α

L0 + α

)
.

Proof. On one hand, Theorem 4 guarantees that A has positive eigenvalues; consequently,

λmin(A) = 1

λmax(A−1)
.

On the other hand, Theorem 3 assures that C is positive definite. By applying standard results to A = (T + S)−1(T − S), we
get

λmax(A) � maxi λ2i+1(C)

mini λ2i(C)
= L2n−1 − α

L0 + α
. (10)

Similarly, considering A−1 = (T − S)−1(T + S) rather than A, yields

λmin(A) � mini λ2i+1(C)

maxi λ2i(C)
= L1 − α

L2n−2 + α
> 0. (11)

Together, (10) and (11) imply to the result. �
From Theorems 4 and 5 we deduce a very important sufficient condition of convergence:

Theorem 6. Let T be a positive definite Toeplitz matrix. If

L2n−1 + L2n−2
< c, (12)
L0 + L1
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then the algorithm converges for any α in the convergence interval

Icon =
(

L2n−1 − cL0

c + 1
,

cL1 − L2n−2

c + 1

)
.

Proof. The idea is to impose that the eigenvalues of A be in (1/c, c). As they belong to the interval given in the previous
theorem, it suffices to embed that interval into (1/c, c):

1

c
<

L1 − α

L2n−2 + α
,

L2n−1 − α

L0 + α
< c.

We obtain α from these inequalities:

L2n−1 − cL0

c + 1
< α <

cL1 − L2n−2

c + 1

which provide the sufficient interval of convergence Icon . To finish, Icon is nonempty whenever its length is > 0; and this
condition is equivalent to (12). �

This sufficient condition is used to check the convergence of the algorithm: it suffices to compute the quantity

d = L2n−1 + L2n−2

L0 + L1
, (13)

and see whether it is smaller than c or not (Eq. (12)).
Note that the computation of d implies negligible overhead, because the L j are eigenvalues of C0, and these eigenvalues,

as we have noted before, are precisely the DFT elements needed to efficiently implement the circular convolutions.
If this convergence check is fulfilled, then there are infinitely many ways of choosing the value α. But which one yields

the best convergence rate of the algorithm? The answer to this question is in our final result:

Theorem 7. If Eq. (12) is satisfied, then the best possible convergence rate is achieved by choosing

αbest = L1L2n−1 − L0L2n−2

L0 + L1 + L2n−2 + L2n−1
.

Moreover, the best spectral radius of the iteration matrix (obtained when α = αbest) is

ρbest � (d − 1)2

4d
< 1

where d is defined as in Eq. (13).

Proof. The iteration matrix of the algorithm is C2 S; our aim is to find the value of the parameter α which minimizes its
spectral radius. For any α in the convergence interval Icon , Theorem 5 states that eigenvalues λ of A are real and belong to
the interval

(
c1(α), c2(α)

) =
(

L1 − α

L2n−2 + α
,

L2n−1 − α

L0 + α

)
⊂

(
1

c
, c

)
.

Recall that the spectral radius is

ρ(C2 S) = max
{∣∣ f (λ)

∣∣, λ eigenvalue of A
}

and this maximum should be minimized. Notice in Fig. 1 that | f | is convex in (1/c, c), so it reaches its maximum at the
edges of each interval. Hence,

ρ(C2 S) � max
{∣∣ f

(
c1(α)

)∣∣, ∣∣ f
(
c2(α)

)∣∣}.
Observing the growth of | f |, we get that this maximum is | f (c1(α))| if c1(α)c2(α) � 1, and | f (c2(α))| otherwise. This
maximum is minimized when c1(α)c2(α) = 1. Direct manipulations show that the only value of the parameter which
verifies this condition is α = αbest . Moreover, it turns out that c2(αbest) = d ∈ [1, c) so finally

ρ(C2 S) �
∣∣ f

(
c2(αbest)

)∣∣ = ∣∣ f (d)
∣∣ = |d − 1|2

4|d|
which is smaller than 1, because d belongs to Pascal’s snail. �
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Remark. By choosing this parameter, the relative error between two consecutive iterations of the algorithm turns out to be

‖xk − x‖ = ∥∥(C2 S)(xk−1 − x)
∥∥ � ρbest‖xk−1 − x‖

so after k steps we have

‖xk − x‖ � (ρbest)
k‖x0 − x‖ (14)

where

ρbest � (d − 1)2

4d
< 1. (15)

This confirms that, regardless the initial guess vector x0, the algorithm always converges to the solution x, and gives an
expression for the rate of convergence.

5.1. An additional result about the convergence

As we have pointed out, the proposed algorithm may not always converge because the eigenvalues of the iteration matrix
C2 S may have modulus greater than 1. For instance, for ill-conditioned matrices T , the sufficient condition for convergence
(12) is no longer fulfilled, and ρ(C2 S) � 1; in other words, for some initial guess vectors, the iterative algorithm may not
converge.

Nevertheless, not everything is lost in that case; here we give an additional general result about the convergence of this
method:

Theorem 8. For positive definite Toeplitz matrices T of large enough size n, most of the eigenvalues of the iteration matrix C2 S are
clustered around 0.

Proof. By using the expression of C−1 given by Eq. (7), and the fact that C−1C = I , we get C2 S = I − C1 T , so its eigenvalues
λ are

λ(C2 S) = 1 − λ(C1T ).

On the other hand, for positive definite Toeplitz matrices T , [24] guarantees that the eigenvalues of C1T are clustered
around 1, except for some outliers. Moreover, in [26] it is proven that they are even more clustered around 1 than the
eigenvalues of matrix (T + S)−1T , which appears in the approach described in [23].

More precisely, for 0 < ε < 1 and n large enough, we can assure that

∣∣λ(C2 S)
∣∣ = ∣∣1 − λ(C1T )

∣∣ � ε < 1

for all eigenvalues λ(C2 S) except for some outliers. �
Remark. We have proven a general result: most of the eigenvalues of C2 S have small enough moduli. This means that our
algorithm in many cases can get to the solution, even for ill-conditioned large matrices T , whenever the initial guess vector
turns out to be properly chosen.

The choice of the initial guess vector x0 is a difficult theoretical problem. To ensure convergence, it suffices that the
initial error vector x0 − x belongs to the span of the eigenspaces associated to eigenvalues |λ(C2 S)| < 1. If the maximum of
these moduli is |λ0| � ε < 1 then, after k iterations, the error is

(xk − x) = (C2 S)k(x0 − x),

‖xk − x‖ � |λ0|k‖x0 − x‖ � εk‖x0 − x‖
which gives an idea of the rate of convergence of the algorithm, even in the ill-conditioned case.

5.2. Numerical results and discussion

We have considered a great variety of Toeplitz systems and observed the performance of the new algorithm, in compar-
ison to other techniques: Levinson’s method (implemented in a form that requires 2n2 flops [4]), the PCG method with the
circulant preconditioner given in [23], and the PCG method with Chan’s circulant preconditioner [22] (here renamed PCG2).
For each problem, the starting vector was the zero vector, y is a random vector, and the iterations were terminated when
the norm of the residual T x − y fell below a fixed threshold. All the necessary FFTs were computed using the FFTW package
[31,32], taking advantage of the real character of the data. The CPU time was measured by averaging over a number of runs.
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Fig. 2. Problem A: CPU time as a function of the Toeplitz matrix size, for the new algorithm, PCG, PCG2 and Levinson’s method.

Fig. 3. Problem B: CPU time as a function of the Toeplitz matrix size, for the new algorithm, PCG, PCG2 and Levinson’s method.

Problem A. The matrices were randomly generated, real, symmetric, and positive definite. The results are shown in Fig. 2.
Clearly the new method outperforms the existing ones, for all matrix sizes.

Problem B. Fig. 3 shows the results of the second experiment, for the matrix elements ti = (1+|i|)−2. This problem appeared
in [23] as Problem 6. Once again, the new algorithm outperforms the others, regardless the matrix size.

Problem C. This problem corresponds to Problem 1 in [23], defined through a parameter a as ti = ai for i = 0,1,2,3, ti = 0
otherwise. Fig. 4 shows the optimum behavior of our algorithm, as in the preceding problems.

Problem D. Corresponds to Problem 2 in [23], defined through a parameter a as ti = ai for all i. In this case the results
given in Fig. 5 show that the best performance is achieved either by PCG or the new method, depending on the matrix size.

Problem E. The last problem is Problem 4 of [23], defined through two parameters a,b as ti = (i + 1)ai +bi . Fig. 6 illustrates
that PCG, PCG2 and the new method compete for the best performance, but there is not a clear favorite for all matrix sizes.
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Fig. 4. Problem C: CPU time as a function of the Toeplitz matrix size, for the new algorithm, PCG, PCG2 and Levinson’s method.

Fig. 5. Problem D: CPU time as a function of the Toeplitz matrix size, for the new algorithm, PCG, PCG2 and Levinson’s method.

In summary, we deduce that, for a given matrix size, one can find examples where a particular method (PCG, PCG2 or
the proposed one) outperforms the others. But there is not a unique method with optimal behavior independently of the
matrix size. Nevertheless, the algorithm here proposed outperforms the other techniques for a great variety of problems
and for a wide range of matrix sizes.

When comparing the results, one should keep in mind that the proposed technique does not converge for all sym-
metric, positive definite Toeplitz matrices. In particular, the usefulness of the new method is limited when the matrix is
ill-conditioned. However, the theoretical results given in this paper help in identifying the class of matrices for which the
method is useful. Note that the method can be applied in the nonsymmetric case, though.

No attempt was made to improve the convergence rate of the method (say, using αbest) or to tune the free parameters
of the circulant in any other way. Nevertheless, for circulants of size m = 2n, using αbest would lead to better performance.
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Fig. 6. Problem E: CPU time as a function of the Toeplitz matrix size, for the new algorithm, PCG, PCG2 and Levinson’s method.

6. Conclusions

It is possible to replace a set of linear equations with a larger but more structured set, the solution of which leads to
the solution of the original problem. The question is whether there are computational benefits in doing so. We have tested
this idea for Toeplitz equations, since the Toeplitz structure immediately suggests trading-off size by circulant structure. The
idea of circulant embeddings, in one way or another, is quite well known. In signal processing, the computation of linear
convolutions is routinely accomplished using zero padding and the FFT; see also [19]. However, the idea explored in the
present paper uses circulant embeddings in a quite different direction: the Toeplitz set of equations T x = y (T nonsingular,
y known) is mapped into an equivalent, larger set Ca = b with circulant structure, so that both a and b contain unknown
quantities. The unknown quantities are determined by a simple iteration (multiplication by C and C−1), which constraints
the vectors a and b to certain known subspaces.

This idea leads to a very simple yet efficient algorithm. Since the method does not converge for all nonsingular T , or
even all positive definite T , we gave convergence conditions. We have also presented the results of numerical experiments.

The same basic idea might also be tried in the case of submatrices of circulants that are not necessarily Toeplitz. In
fact, the idea could in principle be explored for other matrix structures which are “close” to an even more structured class
(Hankel matrices and submatrices of retrocirculants, for example). In these cases, however, the potential of the method, at
least in its basic form, remains to be seen.
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