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A New Preconditioner for Toeplitz Matrices

Maria Elena Dominguez-Jiménez and Paulo J. S. G. Ferreira

Abstract—TIn this paper we introduce and analyze a new precon-
ditioner for Toeplitz matrices that exhibits excellent spectral prop-
erties: the eigenvalues of the preconditioned matrix are highly clus-
tered around the unity. As a result, it yields very rapid convergence
when used to solve Toeplitz equations via the preconditioned con-
jugate gradient method. The new preconditioner can be regarded
as a refinement of preconditioners built by embedding the Toeplitz
matrix in a positive definite circulant. Necessary and sufficient con-
ditions that ensure that the positive definite embedding is possible
are given.

Index Terms—PCG, preconditioners, Toeplitz matrices.

I. INTRODUCTION

HE stability of direct methods and the convergence rate
T of iterative methods for the solution of the linear problem
Tx = b depend on the condition number of T'. This suggests
the replacement of T'x = b by an equivalent problem (for ex-
ample, P~1Tz = P~'b) with better spectral properties (that is,
a smaller condition number or a more favorable eigenvalue dis-
tribution) and hence numerically easier to solve. This process
is known as preconditioning, and matrices such as P are called
preconditioners [1].

A preconditioner P represents a trade-off between contradic-
tory requirements: P should be much easier to invert than 7',
yet very close to it. The first condition ensures that the compu-
tational demands posed by preconditioning do not significantly
add to the overall workload; as for the second condition, the idea
is that if P is somehow “close” to T', then P~1T will be “close”
to the identity matrix, and therefore well-conditioned.

Among the linear problems 7'z = b, those with a Toeplitz ma-
trix occur in many signal processing applications and have been
the subject of much interest. In addition to O(n?) methods such
as Levinson’s [2], O(nlog® n) methods have been described
[3]. However, the conjugate gradient method, introduced over
half a century ago by Hestenes and Stiefel [2], [4], is among the
methods most often used. The required Toeplitz multiplications
can be performed efficiently using the FFT, and preconditioning
can speed up the convergence rate very effectively, yielding a
method that, in practice, is of overall computational complexity
O(nlogn).

The preconditioner should satisfy the following conditions.

1) For any vector v, the product P~'v should be easily com-

puted (in at most O(n logn) time).
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2) P77 = I in the sense that almost all the eigenvalues of
P17 should be clustered around the unity.

Several preconditioners have been proposed for Toeplitz equa-
tions [5]-[13]. Their impact on the convergence rate of the pre-
conditioned conjugate gradient method depends on the eigen-
value distribution of P~T. For example, when T is positive
definite the error in the T-norm is O(a™) after m iterations,
where « = (y/k — 1/\/k + 1) and & is the spectral condition
number of 7' [2], [14]. The error bound decreases as \/ka™ [15,
p. 154] in the Euclidean norm.

In the spectral norm, & is the ratio of the largest and smallest
eigenvalues; if the ratio is not too large (that is, if the matrix is
well-conditioned) the method will converge rapidly. Precondi-
tioning, which effectively replaces 7" by P~17’, is one way of
achieving that.

The convergence rate may in fact be far more rapid than the
error bounds suggest. If the extremal eigenvalues of the pre-
conditioned matrix P~!T are well separated, the method ex-
hibits superlinear convergence [14]. This happens because the
error components in the directions of the eigenvectors associ-
ated with these eigenvalues tends to be eliminated first, and then
the method is able to proceed as if it was dealing with an increas-
ingly well-conditioned matrix. This stands in contrast with the
multilevel case [16], in which superlinear convergence cannot
be achieved with circulant-like preconditioners. The results in
[14] can also be used to show [5] that when the eigenvalues of
the preconditioned matrix lie in (1 — €, 1 + €) except for r out-
liers, the error in an appropriate norm will decrease at least by
€2 per iteration after r initial iterations.

The goal of this paper is to introduce a new preconditioner
for Toeplitz matrices which improves the performance of the
preconditioned conjugate gradient method due to its excellent
eigenvalue clustering properties. The preconditioner is defined
by

Pt =y (21 = TCY)

where (71 is the matrix in (2) below. Alternative expressions are
given in Section II-A [see (4)—(6)]. It will be shown that the
spectrum of P~!T tends to be extremely concentrated around
the unity, leading to very rapid convergence of the precondi-
tioned conjugate gradient method.

II. THE PRECONDITIONER

Any Toeplitz matrix 7" can be embedded in a circulant matrix

of the form
T S
C = <S T) )

where Tij = ti_j, SZJ = Si—j, Si = ti_, for 2 > 0 and
8; = ti4n for i < 0. The element s¢ is arbitrary.

The embedding idea is of interest for at least two reasons.
First, it is possible to solve the Toeplitz equations by using the
larger circulant set [17], effectively trading-off matrix size by
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matrix structure. Second, the eigenvalues of C' can be computed
using the FFT and yield bounds for the eigenvalues of 7'. In
this case, sg can be chosen to make the bounds as tight as pos-
sible [18]. In fact, the connection between the distribution of the
eigenvalues of Toeplitz and circulant matrices is a classic theme
[19]; a recent work on the block multilevel case is [20].

We write C~1, which is also circulant, as

1 (C1 G
Cc = <02 o, 2)
so that
TCy=-5C;, TC;+S5Cy=1, 3)
CoyT'=-CS, CiT+C,8=1"

From this point onwards we assume that 7 is positive definite
(we denote this by T' > 0). The need to identify the conditions
under which 7" > 0 can be embedded in a positive definite C'
has not been adequately recognized in the literature. The usual
condition 7" > 0 does not imply C' > 0 (although, obviously,
C > 0 does imply T" > 0). For example, the condition C' >
0 explicitly mentioned in our Remarks 1 and 2 below cannot
be omitted nor replaced by 7' > 0. We discuss this issue in
Section II-B, which contains necessary and sufficient conditions
for C' > 0 that can be efficiently tested.

We now examine the potential of certain matrices involving
T, C and C~' as preconditioners for T. As in [5], [8], we take
sop = 0 except when otherwise stated.

Remark 1: 1f C is positive definite, then the matrix T+ S'is
a good preconditioner for 7'

The essence of the argument is in [5]: the matrix Ky =T+ S
is circulant, so the problem of inverting it or applying it to a
vector can be solved efficiently using the FFT in O(nlogn)
flops. On the other hand, K, *T = (I + T~'S)~" has eigen-
values clustered around the unity.

Remark 2: 1If C is positive definite, then the matrix C| lisa
good preconditioner for 7T'.

To see that this is true, first note that C is also positive def-
inite and can be computed in O(nlogn) flops using the FFT.
Second, by using Cl_l =T — ST~1S it follows that

707 = T (T - ST™'S) = T — (T7'5)°.

But, as seen in Remark 1, the eigenvalues of (I +T~15)~! are
clustered around the unity, and so those of T-18 are clustered
around zero. The same goes for the eigenvalues of (T‘ls )2,
since they are the squares of the former. Hence, the eigenvalues
of T-1Cy ! are clustered around 1, and it happens the same to
its inverse C', T This shows that C; ! is indeed a preconditioner
for T'.
In fact, Cy ! is one of the preconditioners discussed in [8].

A. The Proposed Preconditioner

The fact that C is already “close” to T~ suggests that fur-
ther corrections to C ! may lead to even better spectral be-
havior. Since Cl_l =T —8T~1Sand T~! ~ C4, we consider
the possibility

M=T-SC,S
=T +TCyS = 2T — TC,T

where the possible preconditioner M was written in three equiv-
alent ways, using (3). To check if M is an adequate precondi-
tioner we need to investigate its spectral properties and the com-
putational procedure. Recalling that C1 7" has eigenvalues clus-
tered around the unity, the expression

T'M=T1+C,S=2I-C,T

shows that the same happens with the eigenvalues of
2] — C1T = T~'M. From the spectral point of view M
is a potential preconditioner, but it has a serious drawback:
M~ is not easily computed. For this reason, we abandon M
and seek an alternative.

The fact that M itself is easier to compute suggests one pos-
sible path. We note that M can be expressed in terms of Toeplitz
matrices as M = T — SC1S. Moreover, the expression

M =2T — TC,T =T (2I — C1T)

involves only 7" (not S) and C, and so the evaluation of Mz =
T (2z — C1Tz) requires only three Toeplitz products.

Exchanging T with C7, and S with C5, and noting that now
T-1=C1—Ch o Ly, we arrive at the following new potential
approximation to the inverse of 7"

N =Cy — CyTCs. 4
Note that, using (3), N can also be written as
N =Cy+ 0850, =2C, — CiTC, =C, (2I = TCy). (5)
This corresponds to the new preconditioner
P=N"1=(C; - C,TCy)™" (6)

which is a correction to the initial preconditioner Cj .

Now, the action of P~! = N is easily computed: it takes
three Toeplitz products to compute Nz = Cy (2z — T'C1z), and
two of the three products involve the same matrix C. As for the
eigenvalues of P~T = NT, note that

NT =2(C,T) — (C1T)? = (C1T) (2] — C1T) .

We have seen that the eigenvalues of CT are clustered around
1, and NT is a deformation (2 — ) of that matrix. So, its
eigenvalues are also clustered around 1.

In fact, NT = C,T — (CoT)* which suggests that N is a
correction to Cy. Before confirming its excellent performance
through numerical simulations, we address one issue that has
been overlooked in the literature: the conditions under which T
can be embedded in a positive definite circulant.

B. When is C' Positive Definite?

Let T be a positive definite Toeplitz n X n matrix. Let C' be
the family of 2n x 2n circulants given by (1), which depend on
the parameter sg.

We write the eigenvalues of C as {);(C)}o<i<2n, Where
A:(C) is the ith element of the FFT of the first row of C; this
establishes an ordering of the eigenvalues. We denote by C
the specific circulant matrix C' obtained by taking sy = 0. The
easily computed quantities
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LO = min /\21‘(00),

Ll = min /\2‘ 1 CO
0<i<n o<i<n 2T (Co)

play the crucial role in the following theorem.
Theorem 1: Let T be a positive definite Toeplitz matrix. Then
T can be embedded in a positive definite circulant C' given by
(1) if and only if Lo + L1 > 0. If this condition holds, C will
be positive definite if and only if sg is chosen in the interval
(_L 05 L 1 ) .
Proof: The elementary equality

c_L(T I\(T+S 0 I I
AV o T-5)\I1 -I

shows that C is unitarily equivalent to a diagonal block matrix
with blocks 7'+ S and T' — S. Hence, its eigenvalues are the
union of those of '+ S and T — S.

The eigenvalues of T' + S are {\2;(C)}o<i<n and those of
T — S are {A2;+1(C)}o<i<n, as can be shown [18] by ex-
pressing the FFT of length 2n as two FFTs of length n.

These eigenvalues are real, since C' is hermitian under the
conditions of the theorem.

The matrix S is Toeplitz and by construction the element in
its main diagonal is s¢. To simplify the notation we set « = s,
so that S = Sy + «, where the main diagonal elements of S
are all zero.

Now, T'+ S and T — S can be written as T' + Sg + ol and
T — So — al, the eigenvalues of which are A\y;(Cp) + a and
X2i11(Co) — a.

Clearly, C will be positive definite if and only if these num-
bers are all positive, that is, if and only if —A2;(Cp) < « and
a < Agi+1(Cy) for all 4, that is, if — Ly < « < Lj. The interval
(— Lo, L) is nonempty if and only if Ly + L > 0, as asserted.
| ]

III. NUMERICAL EXPERIMENTS

We have considered several systems Tx = b where T is a
positive definite Toeplitz matrix, and b = [1,...,1]%. For each
problem, several preconditioners have been applied: Strang’s
and Chan’s [8, Section II], the circulant preconditioner K; [5],

(P(4))71 [6], [8], the Toeplitz preconditioner C]° L (which is

the same as (P(?)) ! in the terminology of [6], [8]), and the
proposed preconditioner P = N~!. Recall that all these pre-
conditioners can be applied in O(nlogn) flops: circulant pre-
conditioners require two FFTs of length n per iteration, Toeplitz
preconditioners require two FFTs of length 2n, and the proposed
preconditioner requires four additional FFTs. In all cases we
have set s = 0, as done in [8]. It would be possible to fur-
ther improve the performance of P by tuning sg, but for brevity
we did not do so.

1) Problem 1: The entries of 1" are t;, = (1 + |k|)~!1. This
problem is also studied in [6]. For n = 100, the eigenvalues of
P~IT are displayed in Fig. 1; we can see that most of them are
clustered around 1. The best preconditioner for the conjugate
gradient method is the proposed preconditioner P = N~1, as
depicted in Fig. 2. Table I shows the results as a function of the
matrix size n.

2) Problem 2: We also considered a random positive definite
Toeplitz matrix 1" of size 100 and studied the behavior of the
considered preconditioners. Fig. 3 displays the corresponding
eigenvalue clusters, and Fig. 4 shows the performance of the
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Fig. 1. Problem 1: eigenvalues A;(P~'T") for each of the considered precon-
ditioners P: Strang’s, Chan’s, K, crl, (P(“))*1 and the proposed precon-
ditioner N1,
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Fig. 2. Problem 1: Convergence of the preconditioned conjugate gradient
method for each of the considered preconditioners.

TABLE 1
PROBLEM 1. PROBLEM SIZE AND NUMBER OF ITERATIONS
FOR EACH OF THE CONSIDERED PRECONDITIONERS

n NoPrecond St Ch K; C7* (P®W)~1 N1
100 18 5 5 4 3 3 3
200 23 5 5 5 4 4 3
300 25 5 5 5 4 4 3
400 26 5 5 5 4 4 3
500 27 5 5 5 4 4 3

1000 30 5 5 5 4 4 3

conjugate gradient algorithm for the problem 7'z = b. As in the
previous case, the best results are obtained with the proposed
preconditioner P = N~!. Very often, a random matrix will
not fulfill the necessary and sufficient condition of Theorem 1.
Hence, it cannot be embedded in a circulant positive definite
matrix. For this reason, neither Remark 1 nor Remark 2 apply,
and nothing can be said about the preconditioners K1 and C La
priori. The matrix in Problem 2 is an example of this. However,
even in this case, the proposed preconditioner P = N ! yields
the best results.

3) Problem 3: The matrix T is defined by the Fourier co-
efficients of 22 in [0, 27]. This matrix is very ill-conditioned,
and the relative performance of each preconditioner varies as
the matrix size grows. Fig. 5 illustrates the performance of the
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Fig. 3. Problem 2: Eigenvalues A; (P ~'T") for each of the considered precon-
ditioners P: Strang’s, Chan’s, K, C; ", (P())~! and the proposed precon-
ditioner N —1.
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Fig. 4. Problem 2: Convergence of the preconditioned conjugate gradient
method for each of the considered preconditioners.
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Fig. 5. Problem 3: Convergence of the preconditioned conjugate gradient
method for each of the considered preconditioners.

preconditioners for n = 50. The proposed preconditioner re-
quired the least number of iterations. However, the design of
an effective preconditioner for very ill-conditioned Toeplitz ma-
trices across a wide range of sizes remains open.

IV. CONCLUSIONS

The principal matrix C; of the circulant extension of a
Toeplitz matrix

_ T S -1 _ Cl 02
o= (53) =(5 &)

is an approximation to the inverse of T and has been used as a
preconditioner. We proposed the alternative approximation

N =Cy — CTCy,
which corresponds to the preconditioner
P=N"1=(C,—CTCy)™".

This preconditioner has excellent spectral properties and when
used with the PCG method it leads to very fast convergence
rate and an overall computational workload of O(nlogn) in
practice. We have confirmed this with numerical experiments.

The new preconditioner, as well as those against which it is
compared, is effective when C' is positive definite. To be able
to test this, we gave a necessary and sufficient condition under
which this holds, which can be efficiently tested.
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