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A New Preconditioner for Toeplitz Matrices
María Elena Domínguez-Jiménez and Paulo J. S. G. Ferreira

Abstract—In this paper we introduce and analyze a new precon-
ditioner for Toeplitz matrices that exhibits excellent spectral prop-
erties: the eigenvalues of the preconditioned matrix are highly clus-
tered around the unity. As a result, it yields very rapid convergence
when used to solve Toeplitz equations via the preconditioned con-
jugate gradient method. The new preconditioner can be regarded
as a refinement of preconditioners built by embedding the Toeplitz
matrix in a positive definite circulant. Necessary and sufficient con-
ditions that ensure that the positive definite embedding is possible
are given.

Index Terms—PCG, preconditioners, Toeplitz matrices.

I. INTRODUCTION

T HE stability of direct methods and the convergence rate
of iterative methods for the solution of the linear problem

depend on the condition number of . This suggests
the replacement of by an equivalent problem (for ex-
ample, ) with better spectral properties (that is,
a smaller condition number or a more favorable eigenvalue dis-
tribution) and hence numerically easier to solve. This process
is known as preconditioning, and matrices such as are called
preconditioners [1].

A preconditioner represents a trade-off between contradic-
tory requirements: should be much easier to invert than ,
yet very close to it. The first condition ensures that the compu-
tational demands posed by preconditioning do not significantly
add to the overall workload; as for the second condition, the idea
is that if is somehow “close” to , then will be “close”
to the identity matrix, and therefore well-conditioned.

Among the linear problems , those with a Toeplitz ma-
trix occur in many signal processing applications and have been
the subject of much interest. In addition to methods such
as Levinson’s [2], methods have been described
[3]. However, the conjugate gradient method, introduced over
half a century ago by Hestenes and Stiefel [2], [4], is among the
methods most often used. The required Toeplitz multiplications
can be performed efficiently using the FFT, and preconditioning
can speed up the convergence rate very effectively, yielding a
method that, in practice, is of overall computational complexity

.
The preconditioner should satisfy the following conditions.

1) For any vector , the product should be easily com-
puted (in at most time).
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2) in the sense that almost all the eigenvalues of
should be clustered around the unity.

Several preconditioners have been proposed for Toeplitz equa-
tions [5]–[13]. Their impact on the convergence rate of the pre-
conditioned conjugate gradient method depends on the eigen-
value distribution of . For example, when is positive
definite the error in the -norm is after iterations,
where and is the spectral condition
number of [2], [14]. The error bound decreases as [15,
p. 154] in the Euclidean norm.

In the spectral norm, is the ratio of the largest and smallest
eigenvalues; if the ratio is not too large (that is, if the matrix is
well-conditioned) the method will converge rapidly. Precondi-
tioning, which effectively replaces by , is one way of
achieving that.

The convergence rate may in fact be far more rapid than the
error bounds suggest. If the extremal eigenvalues of the pre-
conditioned matrix are well separated, the method ex-
hibits superlinear convergence [14]. This happens because the
error components in the directions of the eigenvectors associ-
ated with these eigenvalues tends to be eliminated first, and then
the method is able to proceed as if it was dealing with an increas-
ingly well-conditioned matrix. This stands in contrast with the
multilevel case [16], in which superlinear convergence cannot
be achieved with circulant-like preconditioners. The results in
[14] can also be used to show [5] that when the eigenvalues of
the preconditioned matrix lie in except for out-
liers, the error in an appropriate norm will decrease at least by

per iteration after initial iterations.
The goal of this paper is to introduce a new preconditioner

for Toeplitz matrices which improves the performance of the
preconditioned conjugate gradient method due to its excellent
eigenvalue clustering properties. The preconditioner is defined
by

where is the matrix in (2) below. Alternative expressions are
given in Section II-A [see (4)–(6)]. It will be shown that the
spectrum of tends to be extremely concentrated around
the unity, leading to very rapid convergence of the precondi-
tioned conjugate gradient method.

II. THE PRECONDITIONER

Any Toeplitz matrix can be embedded in a circulant matrix
of the form

(1)

where , , for and
for . The element is arbitrary.

The embedding idea is of interest for at least two reasons.
First, it is possible to solve the Toeplitz equations by using the
larger circulant set [17], effectively trading-off matrix size by
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matrix structure. Second, the eigenvalues of can be computed
using the FFT and yield bounds for the eigenvalues of . In
this case, can be chosen to make the bounds as tight as pos-
sible [18]. In fact, the connection between the distribution of the
eigenvalues of Toeplitz and circulant matrices is a classic theme
[19]; a recent work on the block multilevel case is [20].

We write , which is also circulant, as

(2)

so that

(3)

From this point onwards we assume that is positive definite
(we denote this by ). The need to identify the conditions
under which can be embedded in a positive definite
has not been adequately recognized in the literature. The usual
condition does not imply (although, obviously,

does imply ). For example, the condition
explicitly mentioned in our Remarks 1 and 2 below cannot

be omitted nor replaced by . We discuss this issue in
Section II-B, which contains necessary and sufficient conditions
for that can be efficiently tested.

We now examine the potential of certain matrices involving
, and as preconditioners for . As in [5], [8], we take

except when otherwise stated.
Remark 1: If is positive definite, then the matrix is

a good preconditioner for .
The essence of the argument is in [5]: the matrix

is circulant, so the problem of inverting it or applying it to a
vector can be solved efficiently using the FFT in
flops. On the other hand, has eigen-
values clustered around the unity.

Remark 2: If is positive definite, then the matrix is a
good preconditioner for .

To see that this is true, first note that is also positive def-
inite and can be computed in flops using the FFT.
Second, by using it follows that

But, as seen in Remark 1, the eigenvalues of are
clustered around the unity, and so those of are clustered
around zero. The same goes for the eigenvalues of ,
since they are the squares of the former. Hence, the eigenvalues
of are clustered around 1, and it happens the same to
its inverse . This shows that is indeed a preconditioner
for .

In fact, is one of the preconditioners discussed in [8].

A. The Proposed Preconditioner

The fact that is already “close” to suggests that fur-
ther corrections to may lead to even better spectral be-
havior. Since and , we consider
the possibility

where the possible preconditioner was written in three equiv-
alent ways, using (3). To check if is an adequate precondi-
tioner we need to investigate its spectral properties and the com-
putational procedure. Recalling that has eigenvalues clus-
tered around the unity, the expression

shows that the same happens with the eigenvalues of
. From the spectral point of view

is a potential preconditioner, but it has a serious drawback:
is not easily computed. For this reason, we abandon

and seek an alternative.
The fact that itself is easier to compute suggests one pos-

sible path. We note that can be expressed in terms of Toeplitz
matrices as . Moreover, the expression

involves only (not ) and , and so the evaluation of
requires only three Toeplitz products.

Exchanging with , and with , and noting that now
, we arrive at the following new potential

approximation to the inverse of :

(4)

Note that, using (3), can also be written as

(5)

This corresponds to the new preconditioner

(6)

which is a correction to the initial preconditioner .
Now, the action of is easily computed: it takes

three Toeplitz products to compute , and
two of the three products involve the same matrix . As for the
eigenvalues of , note that

We have seen that the eigenvalues of are clustered around
1, and is a deformation of that matrix. So, its
eigenvalues are also clustered around 1.

In fact, which suggests that is a
correction to . Before confirming its excellent performance
through numerical simulations, we address one issue that has
been overlooked in the literature: the conditions under which
can be embedded in a positive definite circulant.

B. When is Positive Definite?

Let be a positive definite Toeplitz matrix. Let be
the family of circulants given by (1), which depend on
the parameter .

We write the eigenvalues of as , where
is the th element of the FFT of the first row of ; this

establishes an ordering of the eigenvalues. We denote by
the specific circulant matrix obtained by taking . The
easily computed quantities
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play the crucial role in the following theorem.
Theorem 1: Let be a positive definite Toeplitz matrix. Then
can be embedded in a positive definite circulant given by

(1) if and only if . If this condition holds, will
be positive definite if and only if is chosen in the interval

.
Proof: The elementary equality

shows that is unitarily equivalent to a diagonal block matrix
with blocks and . Hence, its eigenvalues are the
union of those of and .

The eigenvalues of are and those of
are , as can be shown [18] by ex-

pressing the FFT of length as two FFTs of length .
These eigenvalues are real, since is hermitian under the

conditions of the theorem.
The matrix is Toeplitz and by construction the element in

its main diagonal is . To simplify the notation we set ,
so that , where the main diagonal elements of
are all zero.

Now, and can be written as and
, the eigenvalues of which are and

.
Clearly, will be positive definite if and only if these num-

bers are all positive, that is, if and only if and
for all , that is, if . The interval

is nonempty if and only if , as asserted.

III. NUMERICAL EXPERIMENTS

We have considered several systems where is a
positive definite Toeplitz matrix, and . For each
problem, several preconditioners have been applied: Strang’s
and Chan’s [8, Section II], the circulant preconditioner [5],

[6], [8], the Toeplitz preconditioner (which is

the same as in the terminology of [6], [8]), and the
proposed preconditioner . Recall that all these pre-
conditioners can be applied in flops: circulant pre-
conditioners require two FFTs of length per iteration, Toeplitz
preconditioners require two FFTs of length , and the proposed
preconditioner requires four additional FFTs. In all cases we
have set , as done in [8]. It would be possible to fur-
ther improve the performance of by tuning , but for brevity
we did not do so.

1) Problem 1: The entries of are . This
problem is also studied in [6]. For , the eigenvalues of

are displayed in Fig. 1; we can see that most of them are
clustered around 1. The best preconditioner for the conjugate
gradient method is the proposed preconditioner , as
depicted in Fig. 2. Table I shows the results as a function of the
matrix size .

2) Problem 2: We also considered a random positive definite
Toeplitz matrix of size 100 and studied the behavior of the
considered preconditioners. Fig. 3 displays the corresponding
eigenvalue clusters, and Fig. 4 shows the performance of the

Fig. 1. Problem 1: eigenvalues � �� � � for each of the considered precon-
ditioners � : Strang’s, Chan’s, � , � , �� � and the proposed precon-
ditioner � .

Fig. 2. Problem 1: Convergence of the preconditioned conjugate gradient
method for each of the considered preconditioners.

TABLE I
PROBLEM 1. PROBLEM SIZE AND NUMBER OF ITERATIONS

FOR EACH OF THE CONSIDERED PRECONDITIONERS

conjugate gradient algorithm for the problem . As in the
previous case, the best results are obtained with the proposed
preconditioner . Very often, a random matrix will
not fulfill the necessary and sufficient condition of Theorem 1.
Hence, it cannot be embedded in a circulant positive definite
matrix. For this reason, neither Remark 1 nor Remark 2 apply,
and nothing can be said about the preconditioners and a
priori. The matrix in Problem 2 is an example of this. However,
even in this case, the proposed preconditioner yields
the best results.

3) Problem 3: The matrix is defined by the Fourier co-
efficients of in . This matrix is very ill-conditioned,
and the relative performance of each preconditioner varies as
the matrix size grows. Fig. 5 illustrates the performance of the
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Fig. 3. Problem 2: Eigenvalues � �� � � for each of the considered precon-
ditioners � : Strang’s, Chan’s, � , � , �� � and the proposed precon-
ditioner � .

Fig. 4. Problem 2: Convergence of the preconditioned conjugate gradient
method for each of the considered preconditioners.

Fig. 5. Problem 3: Convergence of the preconditioned conjugate gradient
method for each of the considered preconditioners.

preconditioners for . The proposed preconditioner re-
quired the least number of iterations. However, the design of
an effective preconditioner for very ill-conditioned Toeplitz ma-
trices across a wide range of sizes remains open.

IV. CONCLUSIONS

The principal matrix of the circulant extension of a
Toeplitz matrix

is an approximation to the inverse of and has been used as a
preconditioner. We proposed the alternative approximation

which corresponds to the preconditioner

This preconditioner has excellent spectral properties and when
used with the PCG method it leads to very fast convergence
rate and an overall computational workload of in
practice. We have confirmed this with numerical experiments.

The new preconditioner, as well as those against which it is
compared, is effective when is positive definite. To be able
to test this, we gave a necessary and sufficient condition under
which this holds, which can be efficiently tested.
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