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Abstract

The advantages of B-splines for signal representation are well known. This paper explores a fact
that seems to be less well known, namely, the possibility of using linear combinations of B-splines
to obtain representations that are more stable than the usual ones. We give the best possible Riesz
bounds for these linear combinations and calculate their duals, in a generalized sampling context.
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1. Introduction

The selection of the interpolating or kernel function is a key step in obtaining adequate
signal representations. The advantages and flexibility of B-splines are well known [1,2],
and its use is compatible with the approximation of non-bandlimited signals.
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Practical implementations are possible up to a certain truncation error, which generally
tends to be more of a concern when the kernel has infinite support and slow decay (such
as the sinc function). B-splines have compact support, and as a result the value of a certain
signal sample cannot influence the reconstruction outside a certain finite interval.

The kernel function will often lead to a Riesz sequence or a Riesz basis. Riesz bases
are a generalization of orthonormal bases, and can be regarded as the result of applying a
bounded invertible operator to the elements of an orthonormal basis. A Riesz sequence, on
the other hand is an “incomplete basis,” as it is merely a Riesz basis for the closed linear
span of the set of functions under consideration.

The numerical stability of the representations is very important in practice, as it dictates
the magnitude of the effect of dealing with imperfect data. The stability of Riesz bases and
Riesz sequences can be measured by looking at the size of their Riesz bounds. Orthonormal
bases are perfect from the viewpoint of numerical stability, and their Riesz bounds are both
equal to unity. As the ratio of the upper to the lower bound increases, the numerical stability
of the representation decreases. It is well known [3], that the tighter (closer to each other)
these bounds are the less any small perturbations in the input data will be felt at the output.

This paper points out that the Riesz bounds associated with bases built using certain
linear combinations of B-splines are better from the stability point of view than bases
directly based on B-splines.

The notation used is standaid; is the space of all quadratically Lebesgue integrahle
with norm || f|12 := ([ |.£1)Y2 and inner productf, g) := [ fg*. The spaces is its
discrete counterpart (quadratically summable sequences), with the usual nhorm and inner
product. The Fourier transforrfi of f is

o
fr= [ roetvar,
—0o0
implying an inverse given by
o
1 A .
=5 [ Fae " aw.
2
—00

Section 2 provides the necessary background and describes the kernels used, and Section 3
deals with the stability issues. The spadgsgenerated by the kernels are discussed in
Section 4, and the analysis filters are computed in Section 5.

2. Thegeneral sampling scheme
It is well known that substitution of the sinc kernel by other functions more adjusted to

the specific problem considered may lead to better approximations [4—6]. B-splines are a
possibility, and their advantages are well known [2]. Consider the signal space [7]

Vo = {f(l‘) = ch(p(t — k) ck € lz},

keZ
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Fig. 1. Typical sampling scheme. Usually, the analysis and synthesis filters are low-padsy).e¢(1) =
sindt), for T = 1. In the general case they must satisfy the bi-orthogonality condigion- k), O{p(l‘ 1)) =8k_;.

where we have chosen the sampling sfep: 1. When the functiorp generates a Riesz
basis, the coefficients, completely characterize the signal. Whetis the sinc function,
the coefficients; are essentially the signal samples, but in the more general case they are
given by the inner product betweghandgy, i.e.,cx = (f, ¢x). See Fig. 1.
The family {¢} is dual to{¢;} and its Fourier transform is given by [8]
P(w)
Y kez 1w +2mk)|?
In the least squares sense this means that
PVq;f = Z<fv &k)ﬁ”k,
keZ

where Py, f denotes the projection of in V.

Butzer et al. [9] studied interpolation and approximation problems in which the sinc
kernel is replaced by certain interpolation functignsvith compact support, among which
the following will be relevant for us:

p1(1) = M2(1),
@2(1) = 4M3(1) — 3Ma4(1),

1 1
¢6(1) = Ma(t) + 3 M2(t) — E(MZ(t +1) + M2t — 1)),

d(w) = (1)

1
¢7(1) = 4Ma(1) + 5 (Ma(t + 1) + Ma(t = 1)) — 2(Ms(i +1/2) + Ms(t — 1/2)).

These interpolating kernels are linear combinations of the B-splines defined by

Jj= Jin—j)!
0, lt| >n/2,

where[x] denotes the largest integer less than or equal ithey can also be represented
in terms of their Fourier transforms

nt)= w/2
Plots are shown in Fig. 2.

/2=t (=1)/n(n/2—|t]—j)"1
Mn(t)z{z' 0 .t <n/2,

n
:| , weR.
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Fig. 2. Interpolation kernelg1, ¢2, g, andyz.

Although Butzer et al. have discussed a wider class of functions, here we use only those
with the interpolation property (see Ref. [9] for details).

3. Stability and Riesz bounds

The set of integer translations of a B-spline generates a Riesz basis. In fact, the following
result holds [10].

Theorem 1. For any functionp € L2(R) and constant® < « < 8 < oo the following two
statements are equivalent

(i) {¢(-—k): k € Z} satisfies the Riesz condition with Riesz boun@sd §; that is, for
any{c} € 12,

o Z lek|? <
keZ
(i) The Fourier transformp of ¢ satisfies
@ <Y |pw+2rh) P < B,
keZ
almost everywhere.

D ad(-—h

keZ

2

2

<BY lal®.
2

keZ

The Riesz bounds corresponding to the B-splines and the linear combinations of B-
splines used by Butzer et al. can now be found. Settirg2x and¢ (w) = M, (w) we see
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that
. sin[(2x + 27k) /2] |* Sin? (x + k)
Z|Mn(2x+2nk)|2=2 —y ATy
P = (2x + 21k)/2 = (x + k)2
1
=si? x Z S
keZ (x+ nk)Zn

where we have used $it(x + k) = sir?” x. It is known [11] that

3 1 1 g1 cot
20 (D _ -1 “O
= (x + k) (2n — ! dx?
which immediately yields
~ 2 — sinZ” x d&-1
> | M 2x + 27k) | = G =T 2yo 1 SOt @)
keZ
Now, with the help of (2), we find foM1
~ ~ 2 —sinzx dz_l
fl(x)=Z|M1(2x+27[k)‘ mecotx:l, (3)
keZ
thatis,a =8 =1.
For M> we have
y . —sintx a3 1
fz(x)=Z|M2(2x+2nk)|2=%ﬁcom:§(1+ 2cogx). (4)

keZ
This equation has its minimum/3 atx = 7/2 (or w = ), and its maximum 1 at =
w=0,i.e,0a=1/3andg =1.
In the same way,

6 5
- . 2 —sSinPx d
f3(x)= E |M3(2x+27'[k)| =?ﬁcotx
keZ
1
=E(2+1lco§x+2coé‘x). (5)

The minimum isx = 2/15 and the maximum i§ = 1.
As for M4, we see that

- N —sirPx d’
fa) = | Ma2x + 27| = o cotx
keZ
1
= Es(17+ 180co$ x + 114coéx +4cofx), (6)

yieldingae = 17/315 andg = 1.
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Finally, for M5 we have

—sint0x 410

x - 2
fo(x) =" |Ms(2x + 27k)|" = — o 7710 %0t
keZ
1
= ﬁ{au 1072co8x + 1452 co8x + 247 co8x + 7 cod x}, (7)

showing thatr = 62/2835andg =1.
Figure 3 shows the plots of1, f2, f3, f4, f5 defined by (3), (4), (5), (6), and (7),
respectively. Table 1 presents a summary of these bounds.

Fig. 3. Plot of the periodic functiong, f2, fa, fa, and f5, associated to the Riesz bases generated by the
translations sets a¥/1, M5, M3, M4, andMs,.

Table 1

The Riesz bounds and supports of the kernels considered, and those of the B-splines for comparison
Kernel Support Lower boung) Upper bound8)
M1(1) [-3. 3] 1 1

Ma(1) [-1,1] 1/3~0.333 1

M3(t) 3.3 2/15~0.133 1

My(t) [—2,2] 17/315~ 0.054 1

Ms(1) [-3.31 62/2835~ 0.0022 1

¥1(1) [-1,1] 1/3~0.333 1

@2(1) [-2,2] 41/70~ 0.586 1

v6(1) [-2.2] 359/945~ 0.380 1

@7(1) [-3,3] 17/35~ 0.486 1
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Fig. 4. Plot of the periodic functiongy, ¢, ¢g, andé7, associated to the Riesz bases generated byithe,,
@6, andez.

To investigate the bounds associated with @2, ¢, andgp; we observe that, for odd
integersp andgq,

Si?(x + k) 1 1

SN H70) _ iy S o N S— 8
,2 Gty X{kEZZ(Hz,m),, k%[x+<2k+1>n]ﬁ} ®)

and
Z cod (x + k) sin’ (x + k)
keZ (x +mk)P
. 1 1

=co§xsm”x{kezz(x+2kﬂ)p+kezz[x+(2k+1)n]p}. (9)

The casaol has been solved, singg = M>. Hence,

P1(x) = (1+ 2cog ), (10)

i.e.,a=1/3 andﬁ =1.
With the help of (8) and (9) we get

M 191, 121
359 278 124
¢6(x) 9754-3—5 SZX—3—15CO§1X+9745C0 X, (12)
17 , 4016 566 116
9700 = 35 + 553508 ¥ ~ 20508 ¥ + 75508
368 32
cox + —— cos%x. (13)

2835 2835
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Figure 4 shows the plots af1, ¢», ¢s, and¢7 defined by (10), (11), (12), and (13),
respectively. Note that the largest variation; &1 2 0.667, occurs forp; and the smallest
1—ap ~ 0.414 for .

Table 1 summarizes the bounds, and shows that the linear combinations of B-gplines
v2, s, ande7, lead to more stable representations than the B-splifigsMy, M3, My,
and M5 for equivalent polynomial spaces. Compare, for example, the bounds associated
with M5 andg7, both of the 4th degree.

4. ThespacesV,

Suppose that the spacBsandV,, are generated by, andy;, respectively. It is known
[3] that when the Riesz bounds & are tighter than those df,, the representations pro-
duced inV,, are numerically more stable. This statement is clear whesndg;, generate
the same space, i.e/, = V,,. In the more general casg, # V;, the comparison is less
straightforward. This will now be discussed.

We note that already in [7] the authors considered the spaces generated by integer trans-
lations of a generating functigp,, and linear combinations of the translations of the same
generating function (what the authors aadjuivalent basis functiops

Generally, when the sampling sétapproaches zero, the approximation enfgr—
Py, f| decreases. The Strang—Fix conditions [12] relate the approximation power of the
representation to the spectral characteristics of the generating function:

If = Py FIl <CLTHI PN, Vfews,

whereC; is a known constant and

00 1/2
w2L|f<w)|2> .

1
1F® = (5 /

—00

Here,WZL denotes the space of functions that Aremes differentiable in thé.» or finite-
energy sense, anBly, f, as before, the orthogonal projection pinto V. The error will
decay likeO(T%), where the order of approximation is=n + 1, andn the polyno-
mial degree. Spline interpolation gives an identical error of approximation but a l&fger
constant [13,14].

In our case, the spacé$ C L, formed from theM; are all disjoint (the constant func-
tion is not in Ly). Hence, they do not intersect and are not a subset of each other (for
example, we cannot say thej,, C Vs, or vice-versa

For ¢1 we have that;(r) = M1(z), that is, the spaces generated from the translations
set ofp; and My are equivalent, i.eV,, = V.

Now, suppose thal (1) = aM3(t) + BM4(t), for some fixed realg and 8. Suppose
that for these values of and$ the Riesz bounds are better fidy, than forVy,, andVyy,.
Consider the projection of a signgle Ly in Vy,, Vi, andVy,. Controlling T leads to
approximations as good as necessary, but the representatignwill remain the most
stable. This is also the case wher= 4 andB = —3, that is, the approximation of a signal
f € Lo will be numerically better irV/,, than inVys, or Vy,.
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A similar argument can be applied to the representations produced by the projections
into Vs, which are found to be more stable than the onegjg andV,,. The same is
true forV,,,, in this case with respect 6, and V.

5. Thedual bases

To complete this study, and in reference to Fig. 1, it remains to describe the dual func-
tions of the interpolation kernels, ¢2, g6, andesz.
For the B-splines, and according to (1), we find

3 2sinz
Mi(w) = ,
w

& ) 12(1—cos %)

2= w?(1+2cog )’
5 120sin% (1 —cos %)
Mz(w) = ,

w3(2+11co8 % +2cod %)

Ae/l( - 50401 — 2co$ % +cos' %)

AW = 417+ 18008 % +114coé % +4cod %)’
5 90720sin2 (1 — 2cof ¥ + codt &)
Ms(w) = 2 : 2 (14)

w5(62+ 1072c08 % + 1452c08 % +247co§ %y + 7co$ %)’
See Fig. 5 for plots. As for the interpolation kernels ¢2, ¢s, andg; we find

-20 -15 -10 -5 0 5 10 15 20

Fig. 5. The Fourier transforms of the dual functions of the B-splines#g)(b) M2, (c) M3, (d) M4, and (e)Ms.
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-20 -15 -10 -5 0 5 10 15 20

Fig. 6. The Fourier transforms of the dual functions of the interpolation kernefg (&) ¢», (¢) g, and (d)e7.

P 12(1—cog %)
Pr(w) = ———F 5,
w?(1+2co8 %
—3360( — 2wsin% +2wsin% cod % — 1+ 2cog % —cost %)
w*(1234+191cod % —121cod % + 17co$ %)
5 504((3+w72—6003"’%—w2c052%+3coé‘%+w7zco§‘%)
w*(359+ 1296 co8y — 834 cod & + 124co8 y)

bl

éz(w) =

’

pe(w) =

3 w (3w w w w
g =90720sift = =— co€ — — 4C0S— Sin—
¢7(w) I 5 < > +w > > I 2)

x [w5<1377+ 4016 cod % — 3962 cod % +1740co8 %

1
— 368c08 % +32c0d0 %)} . (15)

See Fig. 6. The expressions (14) and (15) define the frequency response of each analysis
filter, or pre-filter, completing the framework of Fig. 1.
6. Conclusions

For all practical purposes, signal representation procedures must be stable under small

perturbations in the input data, and sometimes it is also desirable that the support of the
interpolating kernel be as small as possible. This limits the truncation error, since only a
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few coefficients contribute to the representation at any given point. The kernels that have
been discussed meet both conditions. In the context of the sampling scheme described
in [7], certain linear combinations of B-splines, already studied in a different context [9],
lead to representations with tighter Riesz bounds than those generated by B-splines alone.
Numerically, they therefore lead to more stable representations.
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