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Abstract

The advantages of B-splines for signal representation are well known. This paper explore
that seems to be less well known, namely, the possibility of using linear combinations of B-s
to obtain representations that are more stable than the usual ones. We give the best possib
bounds for these linear combinations and calculate their duals, in a generalized sampling con
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The selection of the interpolating or kernel function is a key step in obtaining ade
signal representations. The advantages and flexibility of B-splines are well known
and its use is compatible with the approximation of non-bandlimited signals.
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Practical implementations are possible up to a certain truncation error, which gen
tends to be more of a concern when the kernel has infinite support and slow decay
as the sinc function). B-splines have compact support, and as a result the value of a
signal sample cannot influence the reconstruction outside a certain finite interval.

The kernel function will often lead to a Riesz sequence or a Riesz basis. Riesz
are a generalization of orthonormal bases, and can be regarded as the result of ap
bounded invertible operator to the elements of an orthonormal basis. A Riesz seque
the other hand is an “incomplete basis,” as it is merely a Riesz basis for the closed
span of the set of functions under consideration.

The numerical stability of the representations is very important in practice, as it di
the magnitude of the effect of dealing with imperfect data. The stability of Riesz base
Riesz sequences can be measured by looking at the size of their Riesz bounds. Orth
bases are perfect from the viewpoint of numerical stability, and their Riesz bounds ar
equal to unity. As the ratio of the upper to the lower bound increases, the numerical st
of the representation decreases. It is well known [3], that the tighter (closer to each
these bounds are the less any small perturbations in the input data will be felt at the

This paper points out that the Riesz bounds associated with bases built using
linear combinations of B-splines are better from the stability point of view than b
directly based on B-splines.

The notation used is standard:L2 is the space of all quadratically Lebesgue integrablef ,
with norm ‖f ‖2 := (

∫ |f |2)1/2 and inner product〈f,g〉 := ∫
fg∗. The space�2 is its

discrete counterpart (quadratically summable sequences), with the usual norm an
product. The Fourier transform̂f of f is

f̂ (w) =
∞∫

−∞
f (t)e−jwt dt,

implying an inverse given by

f (t) = 1

2π

∞∫
−∞

f̂ (w)ejwt dw.

Section 2 provides the necessary background and describes the kernels used, and S
deals with the stability issues. The spacesVϕ generated by the kernels are discusse
Section 4, and the analysis filters are computed in Section 5.

2. The general sampling scheme

It is well known that substitution of the sinc kernel by other functions more adjust
the specific problem considered may lead to better approximations [4–6]. B-splines
possibility, and their advantages are well known [2]. Consider the signal space [7]

Vϕ :=
{
f (t) =

∑
ckϕ(t − k): ck ∈ l2

}
,

k∈Z
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Fig. 1. Typical sampling scheme. Usually, the analysis and synthesis filters are low-pass, i.e.,h(t) = ϕ(t) =
sinc(t), for T = 1. In the general case they must satisfy the bi-orthogonality condition〈ϕ(t −k),ϕ

◦
(t − l)〉 = δk−l .

where we have chosen the sampling stepT = 1. When the functionϕ generates a Ries
basis, the coefficientsck completely characterize the signal. Whenϕ is the sinc function
the coefficientsck are essentially the signal samples, but in the more general case th
given by the inner product betweenf andϕ

◦
k , i.e.,ck = 〈f,ϕ

◦
k〉. See Fig. 1.

The family{ϕ◦ k} is dual to{ϕk} and its Fourier transform is given by [8]

ϕ̂
◦
(w) = ϕ̂(w)∑

k∈Z
|ϕ̂(w + 2πk)|2 . (1)

In the least squares sense this means that

PVϕf =
∑
k∈Z

〈
f,ϕ

◦
k

〉
ϕk,

wherePVϕf denotes the projection off in Vϕ .
Butzer et al. [9] studied interpolation and approximation problems in which the

kernel is replaced by certain interpolation functionsϕi with compact support, among whic
the following will be relevant for us:

ϕ1(t) = M2(t),

ϕ2(t) = 4M3(t) − 3M4(t),

ϕ6(t) = M4(t) + 1

3
M2(t) − 1

6

(
M2(t + 1) + M2(t − 1)

)
,

ϕ7(t) = 4M4(t) + 1

2

(
M4(t + 1) + M4(t − 1)

) − 2
(
M5(t + 1/2) + M5(t − 1/2)

)
.

These interpolating kernels are linear combinations of the B-splines defined by

Mn(t) =
{∑�n/2−|t |	

j=0
(−1)j n(n/2−|t |−j)n−1

j !(n−j)! , |t | � n/2,
0, |t | > n/2,

where�x	 denotes the largest integer less than or equal tox. They can also be represent
in terms of their Fourier transforms

M̂n(w) =
[

sinw/2

w/2

]n

, w ∈ R.

Plots are shown in Fig. 2.
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Fig. 2. Interpolation kernelsϕ1, ϕ2, ϕ6, andϕ7.

Although Butzer et al. have discussed a wider class of functions, here we use only
with the interpolation property (see Ref. [9] for details).

3. Stability and Riesz bounds

The set of integer translations of a B-spline generates a Riesz basis. In fact, the fol
result holds [10].

Theorem 1. For any functionφ ∈ L2(R) and constants0 < α � β < ∞ the following two
statements are equivalent:

(i) {φ(· − k): k ∈ Z} satisfies the Riesz condition with Riesz boundsα andβ; that is, for
any{ck} ∈ l2,

α
∑
k∈Z

|ck|2 �
∥∥∥∥∑

k∈Z

ckφ(· − k)

∥∥∥∥
2

2
� β

∑
k∈Z

|ck|2.

(ii) The Fourier transformφ̂ of φ satisfies

α �
∑
k∈Z

∣∣φ̂(w + 2πk)
∣∣2 � β,

almost everywhere.

The Riesz bounds corresponding to the B-splines and the linear combinations
splines used by Butzer et al. can now be found. Settingw = 2x andφ(w) = Mn(w) we see
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that

∑
k∈Z

∣∣M̂n(2x + 2πk)
∣∣2 =

∑
k∈Z

∣∣∣∣sin[(2x + 2πk)/2]
(2x + 2πk)/2

∣∣∣∣
2n

=
∑
k∈Z

sin2n(x + πk)

(x + πk)2n

= sin2n x
∑
k∈Z

1

(x + πk)2n
,

where we have used sin2n(x + πk) = sin2n x. It is known [11] that

∑
k∈Z

1

(x + πk)2n
= − 1

(2n − 1)!
d2n−1

dx2n−1
cotx,

which immediately yields

∑
k∈Z

∣∣M̂n(2x + 2πk)
∣∣2 = −sin2n x

(2n − 1)!
d2n−1

dx2n−1
cotx. (2)

Now, with the help of (2), we find forM1

f̃1(x) =
∑
k∈Z

∣∣M̂1(2x + 2πk)
∣∣2 = −sin2 x

(2− 1)!
d2−1

dx2−1
cotx = 1, (3)

that is,α = β = 1.
ForM2 we have

f̃2(x) =
∑
k∈Z

∣∣M̂2(2x + 2πk)
∣∣2 = −sin4 x

3!
d3

dx3
cotx = 1

3

(
1+ 2 cos2 x

)
. (4)

This equation has its minimum 1/3 at x = π/2 (or w = π ), and its maximum 1 atx =
w = 0, i.e.,α = 1/3 andβ = 1.

In the same way,

f̃3(x) =
∑
k∈Z

∣∣M̂3(2x + 2πk)
∣∣2 = −sin6 x

5!
d5

dx5
cotx

= 1

15

(
2+ 11 cos2 x + 2 cos4 x

)
. (5)

The minimum isα = 2/15 and the maximum isβ = 1.
As for M4, we see that

f̃4(x) =
∑
k∈Z

∣∣M̂4(2x + 2πk)
∣∣2 = −sin8 x

7!
d7

dx7 cotx

= 1

315

(
17+ 180 cos2 x + 114 cos4 x + 4 cos6 x

)
, (6)

yieldingα = 17/315 andβ = 1.
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),

the
Finally, for M5 we have

f̃5(x) =
∑
k∈Z

∣∣M̂5(2x + 2πk)
∣∣2 = −sin10x

9!
d10

dx10
cotx

= 1

2835

{
62+ 1072 cos2 x + 1452 cos4 x + 247 cos6 x + 7 cos8 x

}
, (7)

showing thatα = 62/2835 andβ = 1.
Figure 3 shows the plots of̃f1, f̃2, f̃3, f̃4, f̃5 defined by (3), (4), (5), (6), and (7

respectively. Table 1 presents a summary of these bounds.

Fig. 3. Plot of the periodic functions̃f1, f̃2, f̃3, f̃4, and f̃5, associated to the Riesz bases generated by
translations sets ofM1, M2, M3, M4, andM5.

Table 1
The Riesz bounds and supports of the kernels considered, and those of the B-splines for comparison

Kernel Support Lower bound(α) Upper bound(β)

M1(t) [− 1
2 , 1

2 ] 1 1
M2(t) [−1,1] 1/3 ≈ 0.333 1
M3(t) [− 3

2 , 3
2 ] 2/15≈ 0.133 1

M4(t) [−2,2] 17/315≈ 0.054 1
M5(t) [− 5

2 , 5
2 ] 62/2835≈ 0.0022 1

ϕ1(t) [−1,1] 1/3 ≈ 0.333 1
ϕ2(t) [−2,2] 41/70≈ 0.586 1
ϕ6(t) [−2,2] 359/945≈ 0.380 1
ϕ7(t) [−3,3] 17/35≈ 0.486 1
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d

Fig. 4. Plot of the periodic functions̃φ1, φ̃2, φ̃6, andφ̃7, associated to the Riesz bases generated by theϕ1, ϕ2,
ϕ6, andϕ7.

To investigate the bounds associated withϕ1, ϕ2, ϕ6, andϕ7 we observe that, for od
integersp andq,∑

k∈Z

sinp(x + πk)

(x + πk)p
= sinp x

{∑
k∈Z

1

(x + 2kπ)p
−

∑
k∈Z

1

[x + (2k + 1)π]p
}
, (8)

and ∑
k∈Z

cosq(x + πk)sinp(x + πk)

(x + πk)p

= cosq x sinp x

{∑
k∈Z

1

(x + 2kπ)p
+

∑
k∈Z

1

[x + (2k + 1)π]p
}
. (9)

The caseϕ1 has been solved, sinceϕ1 = M2. Hence,

φ̃1(x) = 1

3

(
1+ 2 cos2 x

)
, (10)

i.e.,α = 1/3 andβ = 1.
With the help of (8) and (9) we get

φ̃2(x) = 41

70
+ 191

210
cos2 x − 121

210
cos4 x + 17

210
cos6 x, (11)

φ̃6(x) = 359

945
+ 48

35
cos2 x − 278

315
cos4 x + 124

945
cos6 x, (12)

φ̃7(x) = 17

35
+ 4016

2835
cos2 x − 566

405
cos4 x + 116

189
cos6 x

− 368
cos8 x + 32

cos10x. (13)

2835 2835
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Figure 4 shows the plots of̃φ1, φ̃2, φ̃6, and φ̃7 defined by (10), (11), (12), and (13
respectively. Note that the largest variation, 1− α1 ≈ 0.667, occurs for̃φ1 and the smalles
1− α2 ≈ 0.414 for φ̃2.

Table 1 summarizes the bounds, and shows that the linear combinations of B-splinϕ1,
ϕ2, ϕ6, andϕ7, lead to more stable representations than the B-splinesM1, M2, M3, M4,
andM5 for equivalent polynomial spaces. Compare, for example, the bounds asso
with M5 andϕ7, both of the 4th degree.

4. The spaces Vϕ

Suppose that the spacesVa andVb are generated byϕa andϕb, respectively. It is known
[3] that when the Riesz bounds ofVa are tighter than those ofVb, the representations pro
duced inVa are numerically more stable. This statement is clear whenϕa andϕb generate
the same space, i.e.,Va = Vb. In the more general caseVa �= Vb the comparison is les
straightforward. This will now be discussed.

We note that already in [7] the authors considered the spaces generated by intege
lations of a generating functionϕa , and linear combinations of the translations of the sa
generating function (what the authors callequivalent basis functions).

Generally, when the sampling setT approaches zero, the approximation error‖f −
PVT

f ‖ decreases. The Strang–Fix conditions [12] relate the approximation power
representation to the spectral characteristics of the generating function:

‖f − PVT
f ‖ � CLT L‖f (L)‖, ∀f ∈ WL

2 ,

whereCL is a known constant and

‖f (L)‖ =
(

1

2π

∞∫
−∞

w2L
∣∣f̂ (w)

∣∣2)1/2

.

Here,WL
2 denotes the space of functions that areL times differentiable in theL2 or finite-

energy sense, andPVT
f , as before, the orthogonal projection off into VT . The error will

decay likeO(T L), where the order of approximation isL = n + 1, andn the polyno-
mial degree. Spline interpolation gives an identical error of approximation but a largCL

constant [13,14].
In our case, the spacesVϕ ⊂ L2 formed from theMi are all disjoint (the constant func

tion is not in L2). Hence, they do not intersect and are not a subset of each othe
example, we cannot say thatVM1 ⊂ VM2 or vice-versa).

For ϕ1 we have thatϕ1(t) = M1(t), that is, the spaces generated from the translat
set ofϕ1 andM1 are equivalent, i.e.,Vϕ1 ≡ VM1.

Now, suppose thatψ(t) = αM3(t) + βM4(t), for some fixed realsα andβ. Suppose
that for these values ofα andβ the Riesz bounds are better forVψ than forVM3 andVM4.
Consider the projection of a signalf ∈ L2 in VM3, VM4, andVψ . ControllingT leads to
approximations as good as necessary, but the representation inVψ will remain the most
stable. This is also the case whenα = 4 andβ = −3, that is, the approximation of a sign
f ∈ L2 will be numerically better inVϕ2 than inVM3 or VM4.
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l func-
A similar argument can be applied to the representations produced by the proje
into Vϕ6, which are found to be more stable than the ones inVM2 andVM4. The same is
true forVϕ7, in this case with respect toVM4 andVM5.

5. The dual bases

To complete this study, and in reference to Fig. 1, it remains to describe the dua
tions of the interpolation kernelsϕ1, ϕ2, ϕ6, andϕ7.

For the B-splines, and according to (1), we find

M̂
◦

1(w) = 2 sinw
2

w
,

M̂
◦

2(w) = 12(1− cos2 w
2 )

w2(1+ 2 cos2 w
2 )

,

M̂
◦

3(w) = 120 sinw
2 (1− cos2 w

2 )

w3(2+ 11 cos2 w
2 + 2 cos4 w

2 )
,

M̂
◦

4(w) = 5040(1− 2 cos2 w
2 + cos4 w

2 )

w4(17+ 180 cos2 w
2 + 114 cos4 w

2 + 4 cos6 w
2 )

,

M̂
◦

5(w) = 90720 sinw
2 (1− 2 cos2 w

2 + cos4 w
2 )

w5(62+ 1072 cos2 w
2 + 1452 cos4 w

2 + 247 cos6 w
2 + 7 cos8 w

2 )
. (14)

See Fig. 5 for plots. As for the interpolation kernelsϕ1, ϕ2, ϕ6, andϕ7 we find

Fig. 5. The Fourier transforms of the dual functions of the B-splines (a)M1, (b) M2, (c) M3, (d) M4, and (e)M5.
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Fig. 6. The Fourier transforms of the dual functions of the interpolation kernels (a)ϕ1, (b) ϕ2, (c) ϕ6, and (d)ϕ7.

ϕ̂
◦

1(w) = 12(1− cos2 w
2 )

w2(1+ 2 cos2 w
2 )

,

ϕ̂
◦

2(w) = −3360
( − 2w sin w

2 + 2w sin w
2 cos2 w

2 − 1+ 2 cos2 w
2 − cos4 w

2

)
w4

(
123+ 191 cos2 w

2 − 121 cos4 w
2 + 17 cos6 w

2

) ,

ϕ̂
◦

6(w) = 5040
(
3+ w2

2 − 6 cos2 w
2 − w2 cos2 w

2 + 3 cos4 w
2 + w2

2 cos4 w
2

)
w4

(
359+ 1296 cos2 w

2 − 834 cos4 w
2 + 124 cos6 w

2

) ,

ϕ̂
◦

7(w) = 90720 sin4
w

2

(
3w

2
+ w cos2

w

2
− 4 cos

w

2
sin

w

2

)

×
[
w5

(
1377+ 4016 cos2

w

2
− 3962 cos4

w

2
+ 1740 cos6

w

2

− 368 cos8
w

2
+ 32 cos10 w

2

)]−1

. (15)

See Fig. 6. The expressions (14) and (15) define the frequency response of each
filter, or pre-filter, completing the framework of Fig. 1.

6. Conclusions

For all practical purposes, signal representation procedures must be stable unde
perturbations in the input data, and sometimes it is also desirable that the support
interpolating kernel be as small as possible. This limits the truncation error, since
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few coefficients contribute to the representation at any given point. The kernels tha
been discussed meet both conditions. In the context of the sampling scheme de
in [7], certain linear combinations of B-splines, already studied in a different contex
lead to representations with tighter Riesz bounds than those generated by B-spline
Numerically, they therefore lead to more stable representations.
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