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ABSTRACT: This paper discusses signal and image reconstruction in connection with

undergraduate electrical engineering education. It briefly reviews some of the basic signal and

image reconstruction techniques, and presents two Java applets that have been found useful in

the context. The applets have easy-to-use, friendly interfaces, and can be used as tools to teach

reconstruction techniques or as a laboratory to study the applicability of the methods to real

world signals and images. The students can do simulations with their own data (signals or

images) on any computer platform. �2004 Wiley Periodicals, Inc. Comput Appl Eng Educ 12: 242�248,

2004; Published online in Wiley InterScience (www.interscience.wiley.com); DOI 10.1002/cae.20021
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INTRODUCTION

Motivation and Background

Signal and image reconstruction are among the

problems often faced by anyone working in the broad

field of multidimensional signal processing. A

large fraction of the signal processing literature is

devoted to problems which fall in the scope of

multidimensional signal reconstruction, and which

includes sampling theory, interpolation, extrapolation,

signal and image conditioning, interactive image

repair, deconvolution and other inverse problems,

reconstruction in tomography, filter design, and

much more.
Correspondence to M. J. C. S. Reis (mcabral@utad.pt).
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For this reason, an introductory course focusing

on signal reconstruction would be an welcome

addition to the background of Electrical Engineering

students, specially to those interested in telecommu-

nications, information theory, or signal/image proces-

sing in general. In this paper, we report on our

experience in teaching such courses at the Electronics

and Telecommunications Department of the Univer-

sity of Aveiro and at the University of Trás-os-Montes

e Alto Douro.

Solving problems while experimenting and

comparing the available algorithms is of fundamental

importance in the learning process. In this paper, we

present two applets intended as tools to help the

students do that. We felt a need for tools that could be

easily used outside the classroom, easily updated

and/or maintained, and were platform independent.

The applets allow the student to try several algorithms

on their own data, and then compare the results in an

easy-to-use environment that is similar to a laboratory.

We believe that a small introduction to signal

reconstruction will help to clarify the ideas that lead to

the development of the applets. The next sections are

dedicated to this.

Sampling and Finite-Dimensional Problems

One of the most well-known signal reconstruction

problems is the one solved by the classical sampling

theorem (see Ref. 1 for some recent research and a

historical overview). Clearly, the classical sampling

theorem can be interpreted in the context of signal

reconstruction. It expresses the possibility of inter-

polating the band-limited signal f ðtÞ from its samples

f ðkTÞ; k 2 Z, theoretically without error. A signal

f ðtÞ is band-limited to [��, �], if it can be written as

f ðtÞ ¼ 1ffiffiffiffiffiffi
2p

p
Z �

��

f̂f ðwÞejwtdw;

where f̂f denotes the Fourier transform of f,

f̂f ðwÞ ¼ 1ffiffiffiffiffiffi
2p

p
Z 1

�1
f ðtÞe�jwtdt:

For W � ð�=�Þ, the signal can be recovered from its

samples f ðk=WÞ; k 2 Z, as follows:

f ðtÞ ¼
Xþ1

k¼�1
f

k

W

� �
sinc ðWt � kÞ; t 2 R; ð1Þ

where sinc ðtÞ ¼ sin ð�tÞ=�t; t 6¼ 0 and sinc ð0Þ ¼ 1.

If the sampling rate is higher than the minimum

rate (known as the Nyquist’s rate), we say that we are

oversampling the signal. In practical situations this is

often the case. In fact, the reconstruction of signals

sampled at the minimum rate (critically sampled),

although theoretically possible, requires impractical

reconstruction procedures.

A side effect of the oversampling is the

possibility of recovering some of the samples from

the remaining ones [3,14]. The oversampled sampling

representation is

f ðtÞ ¼ r
Xþ1

k¼�1
f

k

W

� �
sinc ½rðWt � kÞ�;

where r ¼ �=ðW�Þ, 0< r< 1, is known as the over-

sampling parameter. It leads [3] to a set of linear

equations for a set of unknown samples. This means

that, in the oversampled case, the loss of a (finite) set

of samples is no obstacle to the total recovery of the

signal.

In practical situations, the need to know all the

samples f ðk=WÞ for k 2 Z raises problems. Computer

simulations require finitely many data, and a way

around this difficulty is to consider n-periodic signals.

These signals are defined by a finite number of

samples (exactly n samples), the remaining samples

being obtained by periodic repetition of the first n.

In the finite-dimensional setting the natural

harmonic analysis tool is the discrete Fourier trans-

form (DFT). The algorithms discussed below are

based on it. They may be further grouped in two

classes: n-dimensional algorithms (or maximum

dimension algorithms), where n is the number of

samples of the signals, and p-dimensional algorithms

(or minimum dimension algorithms), where p denotes

the number of unknown samples (in the time or

frequency domains). Methods such as the Papou-

lis�Gerchberg iteration [11,15], and the method of

alternating projections [20] lead to algorithms belong-

ing to the first class. The formulations proposed in

References 5,10 and 12,19, belong to the second class.

They lead to sets of linear equations that directly

determine the missing time-domain samples, or the

DFT coefficients of the signal.

Papoulis�Gerchberg and Alternating
Projections Algorithms

The Papoulis�Gerchberg algorithm was indepen-

dently proposed in References 15 and 11 to solve

the band-limited continuous-time, finite-energy extra-

polation problem. The finite-dimensional version was

studied in References 13 and 4. This algorithm can be

seen as a particular case of the method of alternating

projections [20]. For a detailed convergence analysis

that includes the effect of the distribution of the

missing samples see Reference 4.
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Regardless of the number of missing samples,

each iteration of the algorithm acts on vectors of

dimension n, where n is the total number of samples of

the signal. If the signals are regarded as n-periodic, n

is the number of samples in one signal period.

The fact that the vectors involved in the recon-

struction process are n-dimensional seems wasteful,

from the viewpoint of memory and computational

needs, particularly when the number of missing

samples is much smaller than n. This remains true

even when simple convergence acceleration techni-

ques are used (such as relaxation).

Minimum Dimension Algorithms

The methods of minimum dimension [5,10] manip-

ulate vectors with dimension determined by the

number of unknown samples. They come in two

flavors: the time-domain methods lead directly to

equations for the unknown samples, whereas the

frequency-domain methods lead to equations for

the unknown DFT samples. Note that by hypothesis,

the signals are band-limited, meaning that a subset of

the DFT samples is known to be zero. The relation

between this way of looking at the problem and the

methods discussed in References 12,19 (which are in

fact of minimum-dimension in the frequency domain)

was discussed in Reference 7.

The size and structure of the time-domain

equations is different from the size and structure of

the frequency-domain equations. They can be solved

noniteratively, using any standard method, or itera-

tively, using stationary methods such as SOR, or semi-

iterative methods such as conjugate gradients. This

leads to a variety of distinct possibilities for the

solution of the decoding problem.

In general, iterative methods have one advantage:

any a priori knowledge concerning the solution can

readily be incorporated in the algorithm. Since an

approximation to the solution is available at each

iteration, it is a very simple matter to incorporate

known and possibly nonlinear constraints in the

algorithm. If the constraint operator is T, and f (i) is

the approximation at the end of iteration i, then f (i)

should simply be replaced with Tf (i).

This usually speeds up the convergence and leads

to better reconstructions. When the constraints define

convex sets, the result is a POCS-like iteration. The

analytical tools include convex and alternating

projections theory, and fixed point theorems.

Incorporating a priori knowledge in a noniterative

algorithm is in general much more difficult, if not

impossible. However, the noniterative methods may

work faster. The situation is far from simple, however,

and one word of caution is necessary. A careful study

of the decoding algorithms shows that there is no

‘‘best algorithm’’ overall [8]. The fastest algorithm is

a function of the problem. It depends on the value of n

(number of samples), on the dimension of the code

subspace 2Mþ 1 (number of non-null harmonics in

the DFT), and also on the number and distribution of

the missing samples. The break-even point that deter-

mines when one of the algorithms starts being pre-

ferable to others may also depend on the architecture

of the computer (cache size, for example, is an

important factor).

It might make more sense to discuss time-domain

versus frequency-domain formulations than iterative

versus noniterative solutions. In fact, both formula-

tions lead to equations that can be solved iteratively or

noniteratively.

Generally speaking, the methods (iterative or

noniterative) that spring from the time-domain formu-

lation tend to be better when the number of missing

samples is relatively small and the oversampling is

moderate. On the other hand, iterative or noniterative

solutions obtained from the frequency-domain formu-

lation may be preferable when the number of missing

samples is relatively large, and the degree of over-

sampling higher.

The error pattern is also a crucial factor and

should be considered. The frequency-domain equa-

tions are always Toeplitz and require complex

arithmetic. The time-domain equations are Toeplitz

only if the pattern of missing samples is regular or

contiguous, and require only real arithmetic.

Weighting all these factors is not easy, but is

crucial to obtain effective numerical algorithms for

the solution of a specific problem or a class of

problems. For specific results concerning the perfor-

mance and choice of the reconstruction algorithm see

Reference [8].

SOLVING THE RECONSTRUCTION
PROBLEM

The minimum-dimension equations in time [3,6] are

of the form

u ¼ Suþ h; ð2Þ

where the set U ¼ fi0; i1; . . . ; ip�1g contains the

indices of the unknown samples. The matrix S and

the vector h are known. In fact,

hj ¼
X
k=2U

f ðkTÞKrðij � kÞ; ð0 � j < pÞ; ð3Þ
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and

Sjk ¼ Krðij � ikÞ; ð0 � j; k < pÞ;

where KrðxÞ ¼ r sinc ðrxÞ, i.e., the usual interpolation
kernel.

It is also possible to replace these kernels by

Kr ¼ r’iðrxÞ; i ¼ 1; 2; 6; 7, (the interpolation kernels

proposed by Butzer et al. in Reference 2), where

’1ðtÞ ¼ M2ðtÞ
’2ðtÞ ¼ 4M3ðtÞ � 3M4ðtÞ

’6ðtÞ ¼ M4ðtÞ þ
1

3
M2ðtÞ �

1

6
fM2ðt þ 1Þ þM2ðt � 1Þg

’7ðtÞ ¼ 4M4ðtÞ þ
1

2
fM4ðt þ 1Þ þM4ðt � 1Þg

� 2

�
M5

�
t þ 1

2

�
þM5

�
t � 1

2

��
:

A study of these functions as interpolation kernels can

be found in Reference 17, where it is shown its

superior behaviour compared to the traditional sinc,

when r � 1.

In the two-dimensional case, these kernels may

be used in the following way:

hij ¼
X
k=2U

X
l=2U

fklK
rR
R ð�i � �kÞKrC

C ð�j � �lÞ;

ð0 � i; j < pÞ;

and

Sij ¼ KrR
R ð�i � �jÞKrC

C ð�i � �jÞ; ð0 � i; j < pÞ;

with

KrR
R ¼ rRsinc ðrRxÞ; or

rR’ðrRxÞ

�
;

KrC
C ¼ rCsinc ðrCxÞ; or

rC’ðrCxÞ

�
;

and

U ¼ fð�0; �0Þ; ð�1; �1Þ; . . . ; ðrp�1; lp�1Þg:

Equation 2 suggests the simple iteration

uðiþ1Þ ¼ SuðiÞ þ h;

but a number of other iteration techniques can be used.

The equation can also be solved noniteratively,

u ¼ ðI� SÞ�1 h;

and it is known that if there are enough data (that is, if

the number of known samples exceeds the dimension

of the subspace of band-limited signals) then the

required inverse exists and the iterative method will

converge.

The method of conjugate gradients is among the

most efficient method for solving these problems.

Among the noniterative methods, the Cholevsky

factorization often leads to good execution times,

and the singular value decomposition (SVD) to

increased precision [16,18]. Definite answers depend

on the details of the problem [9], as discussed before.

All of the assertions and methods mentioned can

be verified with the help of the tools discussed in the

next section.

Filling the Linear Equations System

In practice, h is not found using Equation 3. Instead, a

procedure based on the FFT is used. First, the

unknown samples in the observed signal (clone in

the listing 1) are replaced with zeros. The signal is

then low-pass-filtered to the same bandwidth of the

original signal. The values left at the unknown

locations are the values of h.
To fill the matrix S we use two auxiliary variables

in order to clarify (dummy) and speed up (lbn) the
computations.

The Java code fragment in listing 1 serves this

end. This helps the students to better understand the

problem in hands. Note that the code is not purely

object-oriented, but we think that it is easier to

understand as it stands.

THE APPLETS

The two Java applets are available at http://www.utad.pt/�mcabral.

//find h
//fill with zeros the position of lost samples
for (i=0; i<lostSamples.elementCount; i++)
clone.setValue(0.0f, lostSamples.getElementAt(i));

//low-pass filter the signal
clone.lowPassFilter ();
//these are the values for h
for (i=0; i<lostSamples.elementCount; i++)
h[i]=clone.getValue (lostSamples.getElementAt(i));

//find S
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One is dedicated to image reconstruction pro-

blems, and the other is for one-dimensional signal

reconstruction. They implement the previously dis-

cussed methods, and are intended to be used as signal

and image reconstruction teaching tools. They can be

used inside or outside the classroom, as an experi-

mental laboratory, or as a means to test the methods

with concrete reconstruction problems.

The object-oriented philosophy leads to code that

is easier to maintain, and easier to extend. This is an

important point since it reduces the effort necessary to

include new algorithms. The following sections

describe the applets in more detail.

Signal Reconstruction Applet

The applet has a default signal set that can be used by

the student. However, the student may also export its

own signals simply by filling an appropriate form. The

signal format must be AU or WAVE. These are two of

the most commonly used encoding formats (a great

number of conversion tools between different encod-

ing formats are available as freeware or shareware on

the internet). In addition to this, it is also possible to

select the signal segment that will be used during the

simulations, as well as the oversampling parameter r

(by specifying the number of non-null harmonics of

the DFT of the signal).

A variety of methods for the solution of the linear

equations can be tried, including iterative and non-

iterative methods. The iterative methods stop when a

certain number of iterations has been completed, or

when ui � ui�1k k falls below a certain threshold. The

student may experiment with these parameters, and

may also set the value of a relaxation constant, used by

some of the methods.

Figure 1 Signal applet general aspect. [Color figure can be viewed in the online

issue, which is available at www.interscience.wiley.com.]

lbn=(2*M+1)/N;
for (i=0; i<lostSamples.elementCount; i++)
for (j=0; j<lostSamples.elementCount; j++)
{
dummy=lostSamples.getElementAt(i) �lostSamples.getElementAt(j);
if (i==j)
S[i][i]=lbn;

else

S[i][j]=Math.sin(Math.PI*lbn*dummy)/(N*Math.sin(Math.PI*dummy/N));
}

Listing 1 Java code sample to find h and S.
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The student may also control the number of

lost samples and its distribution, which has a

crucial impact on the numerical stability of the

problem.

The final result may be attained step-by-step or in

a single step. The student may evaluate the recon-

struction result in two ways: by visualizing the inter-

mediate (or final) results on the screen, or by listening

to it on a loudspeaker (this interpretation may be very

valuable when recovering music records). The results

can be saved in an ASCII file that may be imported

from: http://www.utad.pt/˜mcabral/reconstrucao1d/

data/ for post-processing.

A full description of the file format and a comp-

lete user manual are also available. Figure 1 gives a

general view of the applet.

Image Reconstruction Applet

This applet was developed along the same ideas and

roughly possesses the same characteristics. The

student can use its own images for test, by filling in

an appropriate form. The image size (the number of

rows and columns) and the two oversampling

parameters (by rows and by columns) may also be

controlled. The images can be in any format supported

by the Java version.

The number of lost pixels and their locations are

controlled by mask images. These images can be

submitted in the same way as the original ones, that is,

by filling in a form. In these images, the pixels given

non-null values correspond to the unknown pixels in

the original image.

Just as in the one-dimensional case, it is possible to

select the method for solving the linear equations and

the set of associated options. The final result can be

reached step-by-step or in a single step, and the user

may also choose to save the reconstruction quality

results. Figure 2 shows a general aspect of the applet.

CONCLUSIONS

Signal and image reconstruction tasks are among the

problems that an electrical engineer most often faces.

An undergraduate course in the subject not only

provides the student with relevant know-how con-

cerning the problems, but may also be of considerable

value in understanding how a background in Fourier

and numerical analysis can be applied in the field, to

concrete restoration problems.

In this context, we felt a need for platform

independent tools that could be easily used inside or

outside the classroom, and at the same time were easy

Figure 2 Image applet general aspect. [Color figure can be viewed in the online

issue, which is available at www.interscience.wiley.com.]
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to update and maintain. The applets that we have

described allow the student to try several algorithms

on their own data (signals or images), and then

compare the results in an easy-to-use environment that

is similar to a laboratory, from any computer system,

and using their favorite browser.

The applets can be used by the students in their

daily work, inside or outside the classroom, and have

proved to be valuable tools for teaching signal and

image reconstruction and understanding and compar-

ing the very rich variety of associated computational

methods.
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