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Stable DFT Codes and Frames
Paulo J. S. G. Ferreira, Member, IEEEand José M. N. Vieira, Member, IEEE

Abstract—Discrete Fourier transform codes (DFT codes) or real
number codes have been studied and recognized as useful (as joint
source-channel codes, for example) but are not stable under bursty
losses. This letter introduces a two-channel DFT code with an in-
terleaver and shows that its numerical stability far exceeds that of
the corresponding single-channel DFT code (the ratio of the frame
bounds for the two-channel system can be smaller by many orders
of magnitude). This leads to a stable way of dealing with bursts of
errors using DFT codes.

Index Terms—Concatenated codes, condition number, eigen-
values, error control coding, frame bounds, frames, interpolation,
numerical stability, real codes.

I. INTRODUCTION

T HE BASIC building block in discrete Fourier transform
(DFT) codes is depicted in Fig. 1(a). The original data

vector , with samples, is transformed, and then zero-padded
to obtain a total of samples. The inverse DFT (IDFT) of this

-dimensional vector is the coded vector. The first transform
is optional, since the transformed datacan be regarded as the
original data.

The connection between error control coding and the
transform methods of signal processing is known [1], [2]. The
problem can be discussed in terms of frames [3], showing the
equivalence (for this particular purpose) of the frame algorithm,
Projections onto Convex Sets, and the Gerchberg–Papoulis
algorithm. Some problems in interpolation, spectrum analysis,
error control coding, and fault-tolerant computing can also
be related [4]. It is possible to deal with errors, rather than
erasures, in signals and images [5], [6]. Quantized frames [7],
estimates for the frame bounds [8], and sampling with unknown
locations [9] have also been discussed.

Previous work on erasure correction using DFT codes [10]
yielded upper and lower error bounds as a function of the
number of iterations, the signals for which the bounds are
attained, the erasure patterns for which the convergence rate
of the frame algorithm is maximum or minimum, and more.
The convergence rate in the lowpass case is minimum for
contiguous erasures [10], in which case the problem can be
extremely ill-posed. For more on bursty erasures, see [11] and
[12]. Extrapolation and superresolution are problems made
difficult (or interesting) by the contiguous distribution of the
unknown segments of the data.
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Fig. 1. (a) Single-channel coder. (b) Two-channel coder. To obtain the same
redundancy or code rate in both cases, takea 2 andx 2 in (a) and
a 2 , x 2 , y 2 in (b).

This work introduces and studies a new DFT code [Fig. 1(b)]
capable of handling error bursts without numerical problems. A
structure less sensitive to variations in the error pattern cannot
be obtained simply by interleaving the coded data, because there
are patterns that would be mapped by the interleaver into con-
tiguous patterns. Two data paths, one in which the data are
coded normally, and another in which they are interleaved, as
in Fig. 1(b), lead to more uniform performance with respect to
error patterns.

To compensate for the existence of two data paths and obtain
one-channel and two-channel coders with the same overall de-
gree of redundancy (or code rate), simply take and

in the one-channel case [Fig. 1(a)] and ,
, in the two-channel case [Fig. 1(b)].

Another motivation for studying the system of Fig. 1(b) con-
cerns the performance of finite-field concatenated codes with an
interleaver, discovered by Berrouet al. in 1993, which comes
close to the Shannon limit [13]. Due to the importance of the
subject, it is worthwhile to study it from every possible angle
(including DFT codes). Hopefully, this may lead to cross-fertil-
ization and further progress.

II. BASIC OPERATORS

To simplify the notation, the coded signalin Fig. 1(b) will
be written

(1)

where denotes a vector of zeros, but it is usually more
convenient to preserve the conjugate symmetry inherent in the
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DFT of real data, and to take , an odd integer.
The set of all such is a subspace of of dimension
(the code subspace). The quantity can be identified
with the oversampling ratio, or the code rate, for each channel.

The decoding algorithm will use two operatorsand . The
operator is a projection on the code subspace. The outputs of
the two-channel coder of Fig. 1(b) satisfy and ,
and

(2)

Now note that

(For brevity, we write zero matrices of different sizes as, but
the size of the zero vector in (1) determines the dimensions of
all of them.) Therefore, we may write , with

(3)

Also

Also note that

as well as .
In the one-channel case, the signals would be represented

using columns of (circularly shifted copies of the sam-
pled Dirichlet kernel), whereas in the two-channel case, the
columns can be choosen fromand . It will be seen that this
new set of signals leads to much more stable representations.

III. ONE-CHANNEL CASE

Consider a one-channel coder with . Let be a
nonempty subset of . Consider

where the are columns of . Then, drawing from [3] we have
the following.

1) If is a frame for the code subspace (the set of allsuch
that ), then card . If that condition
holds, then there is no such that and

for all [10].
2) The frame condition

is satisfied, and the frame bounds are , the
largest eigenvalue of the matrix , and ,
its smallestnonzeroeigenvalue. The matrix is
defined by

if and
otherwise.

When is contiguous may be very close to zero, but if
is more evenly distributed this may not be the case. For

Fig. 2. Error evolution for the two-channel system, forN = 128,M = 30,
and 50, 55, 60, and 65 contiguous erasures in each channel.

more on the numerical stability of the problem, see [8],
[10], [14], and [15].

The basic frame algorithm is defined by

where is the frame operator [16], and . It can
be used to correct erasures sincedepends only on the known
samples . The convergence is geometric, but the rate

decreases as the ratio of the frame bounds increases. The
condition numbers of the matrices for noniterative decoding also
increase with .

IV. TWO-CHANNEL CASE

In the two-channel case, we are given and
, where and are the two sampling matrices asso-

ciated with the sets and that define the known data in
each channel. We are in fact considering the frame

, and we need a new reconstruction algorithm and an
estimate for the bounds of the new frame.

To reconstruct and , we use an alternating projection algo-
rithm [17]. At the end of step , there will be two approxima-
tions to and , denoted by and . The next approximations
are computed as follows:

The algorithm performs remarkably well even for contiguous
losses, as shown in Fig. 2, for problems well beyond the reach
of the single-channel case. We will see next that the ratio of the
frame bounds in the two-channel case is smaller by several or-
ders of magnitude, a fact that explains the difference in perfor-
mance. Consideration of
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Fig. 3. Problem described in Fig. 4 was solved 100 times, each time with a
new random permutationP . The figure shows the ratio of the frame bounds for
each problem and the rate for the equivalent one-channel problem.

shows that the bounds follow from the eigenvalues of

Using (2), (3), and the fact that is unitary, we see that this has
the same eigenvalues as

where and . Its nonzero eigen-
values are those of

(4)

where and are submatrices of and . Assume
that the error patterns on both channels are equal, i.e.,
(this includes the numerically extreme case of contiguous losses
in both channels). If is an eigenvector of , will be
an eigenvector of , pertaining to the same eigenvalue. A
common eigenvectorof and pertaining to
would have to satisfy , which is impossible in general
unless is a special permutation (such as the identity). Thus, in
general, will increase well above the min-
imum value , improving the numerical stability of the
method and the convergence rate.

The (minor) impact of the permutation is shown in Fig. 3. In
general, the best permutationdepends on the patterns and

. Theoretically, for any given pattern one may compute the
condition number of the matrices , for all
possible , and select those that lead to better condition num-
bers. However, the search is of course impractical, and Fig. 3
shows that it is also unlikely to lead to major improvements.

Fig. 4 compares the numerical stability of the one-channel
and two-channel systems. Despite the oversampling ratio of

, the ratio of the frame bounds for the one-channel
problem exceeds . The smallest nonzero eigenvalue is
already difficult to separate from the “noise floor”—the set of
theoretically “zero eigenvalues.” The code subspace contains
signals (such as the eigenvector corresponding to the smallest

Fig. 4. (a) One-channel case. The 40 largest eigenvalues ofBDB, for
N = 256, M = 10, and 136 contiguous known samples. The ratio of the
frame bounds is> 10 . (b) Two-channel case.N = 128 samples per
channel,M = 10, 136 contiguous known samples (68 per channel). The
ratio of the frame bounds is� 100.

Fig. 5. (a) One-channel case. Some of the (sorted) eigenvalues ofBDB, for
N = 256,M = 45, and 200 known samples. The ratio of the frame bounds is
> 10 . (b) Two-channel case.N = 128 samples per channel,M = 45; 200

known samples (100 per channel). The ratio of the frame bounds is� 6. The
inset shows the distribution of erasures in both cases.

nonzero eigenvalue) whose energy is almost entirely concen-
trated outside . In the two-channel case with the same overall
degree of redundancy 21/256, the condition number is ,
smaller by 11 orders of magnitude. The smallest nonzero
eigenvalue is still well above the noise level of the theoretically
“zero eigenvalues.”

If the erasure pattern is contiguous on one-channel, but
random in the other, as in the example of Fig. 5, the advantage
of the two-channel method can be even greater (the reconstruc-
tion problem corresponding to the channel with random losses
can be much easier numerically).

V. CONCLUSION

We discussed the iterative decoding of a two-channel DFT
code in terms of frames and the eigenvalues of certain matrices.
Its performance and numerical stability far exceeds that of
single-channel codes, and works well even for bursty losses.
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