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Stable DFT Codes and Frames
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Abstract—Discrete Fourier transform codes (DFT codes) or real !
number codes have been studied and recognized as useful (as joint a Il Optional b\ Padding to
source-channel codes, for example) but are not stable under bursty transform N samples "'|

]
losses. This letter introduces a two-channel DFT code with an in- :
terleaver and shows that its numerical stability far exceeds that of "
the corresponding single-channel DFT code (the ratio of the frame 1 Inverse
1
1
\

bounds for the two-channel system can be smaller by many orders
of magnitude). This leads to a stable way of dealing with bursts of
errors using DFT codes.

transform
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Index Terms—Concatenated codes, condition number, eigen-
values, error control coding, frame bounds, frames, interpolation, a >@_> x

numerical stability, real codes. |
Permutation
I. INTRODUCTION P
HE BASIC building block in discrete Fourier transform
(DFT) codes is depicted in Fig. 1(a). The original data § - >y
vectora, with K samples, is transformed, and then zero-padded (b)

to obtain a total ofV samples. The inverse DFT (IDFT) of this_. ) .
. . . . Fig. 1. (a) Single-channel coder. (b) Two-channel coder. To obtain the same

N-dimensional vector is the coded vectorThe first transform yequndancy or code rate in both cases, take R* andz € R2" in (a) and

is optional, since the transformed datean be regarded as the: € R, = € RV, y € RY in (b).

original data.

The connection between error control coding and the This work introduces and studies a new DFT code [Fig. 1(b)]
transform methods of signal processing is known [1], [2]. Theapable of handling error bursts without numerical problems. A
problem can be discussed in terms of frames [3], showing th&ucture less sensitive to variations in the error pattern cannot
equivalence (for this particular purpose) of the frame algorithrhe obtained simply by interleaving the coded data, because there
Projections onto Convex Sets, and the Gerchberg—Papoalie patterns that would be mapped by the interleaver into con-
algorithm. Some problems in interpolation, spectrum analystiguous patterns. Two data paths, one in which the data are
error control coding, and fault-tolerant computing can alsgoded normally, and another in which they are interleaved, as
be related [4]. It is possible to deal with errors, rather than Fig. 1(b), lead to more uniform performance with respect to
erasures, in signals and images [5], [6]. Quantized frames [@[jor patterns.
estimates for the frame bounds [8], and sampling with unknownTo compensate for the existence of two data paths and obtain
locations [9] have also been discussed. one-channel and two-channel coders with the same overall de-

Previous work on erasure correction using DFT codes [10]ee of redundancy (or code rate), simply takes RX and
yielded upper and lower error bounds as a function of the € RV in the one-channel case [Fig. 1(a)] amde RX,
number of iterations, the signals for which the bounds arec RY,y € R in the two-channel case [Fig. 1(b)].
attained, the erasure patterns for which the convergence raténother motivation for studying the system of Fig. 1(b) con-
of the frame algorithm is maximum or minimum, and morecerns the performance of finite-field concatenated codes with an
The convergence rate in the lowpass case is minimum foterleaver, discovered by Berra al. in 1993, which comes
contiguous erasures [10], in which case the problem can ¢Jese to the Shannon limit [13]. Due to the importance of the
extremely ill-posed. For more on bursty erasures, see [11] agidbject, it is worthwhile to study it from every possible angle
[12]. Extrapolation and superresolution are problems madecluding DFT codes). Hopefully, this may lead to cross-fertil-
difficult (or interesting) by the contiguous distribution of theézation and further progress.
unknown segments of the data.

Il. BASIC OPERATORS
To simplify the notation, the coded signain Fig. 1(b) will
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DFT of real data, and to tak€ = 2M +1 < N, an odd integer.
The set of all such: is a subspace &” of dimensior2M + 1
(the code subspace). The quanti2y/+1) /N can be identified
with the oversampling ratio, or the code rate, for each channi

The decoding algorithm will use two operatdssandT. The
operatorB is a projection on the code subspace. The outputs
the two-channel coder of Fig. 1(b) satisfy= Bz andy = By,
and

I 0

-1
! O}F .
Now note that
Pa P 0] |a

=[] =[5 o] [

(For brevity, we write zero matrices of different sizesadut
the size of the zero vector in (1) determines the dimensions
all of them.) Therefore, we may write= Tz, with

B::F[ (2)

T::F[g 8} FL (3)
Also
-1
r=F {PO 8} Fly=T"y.

Also note that

I 0

H _ mHmp _
T =T T_F[0 0

}F_I:B

aswellasBT =TB =T.
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Fig. 2. Error evolution for the two-channel system, fér= 128, Al = 30,

apfl 50, 55, 60, and 65 contiguous erasures in each channel.

more on the numerical stability of the problem, see [8],
[10], [14], and [15].
The basic frame algorithm is defined by

o = 0D g s (f - p)

whereS is the frame operator [16], and= 2/(a + ). It can
be used to correct erasures sitcedepends only on the known
samplesf;,i € .J. The convergence is geometric, but the rate
08—«
B+«

In the one-channel case, the signals would be represenig@reases as the ratio of the frame boufigis increases. The

usingn columns of B (circularly shifted copies of the sam-

condition numbers of the matrices for noniterative decoding also

pled Dirichlet kernel), whereas in the two-channel casethejncrease with3 /.

columns can be choosen frathandT'. It will be seen that this
new set of signals leads to much more stable representation

I1l. ONE-CHANNEL CASE

Consider a one-channel coder with € R"™. Let J be a
nonempty subset df0,1,2,..., N — 1}. Consider

X = {B’i}ieJ

where theB; are columns oB. Then, drawing from [3] we have
the following.

1) If X is a frame for the code subspace (the set of alich
thatz = Bx), then cardJ > 2M + 1. If that condition
holds, then there is ne # 0 such thatr = Bz and
x; = 0forall: € J[10].

2) The frame condition

allzl* <> w. B < Bllo)®
ieJ
is satisfied, and the frame bounds d@e= \,.., the
largest eigenvalue of the matriBD B, anda = Apin,
its smalleshonzeroeigenvalue. ThéV x N matrix D is
defined by
1,

Dij = {0.

When.J is contiguousy may be very close to zero, but if
J is more evenly distributed this may not be the case. F

ifi=jandie J
otherwise.

S. IV. Two-CHANNEL CASE

In the two-channel case, we are giveyn = Dqix andyy =
Dy, whereD; and D, are the two sampling matrices asso-
ciated with the setg/; and.J, that define the known data in
each channel. We are in fact considering the frdBg};c 7, U
{T:}:c,, and we need a new reconstruction algorithm and an
estimate for the bounds of the new frame.

To reconstruct andy, we use an alternating projection algo-
rithm [17]. At the end of step, there will be two approxima-
tions tox andy, denoted by:,, andy,,. The next approximations
are computed as follows:

Tn41l =To + (I - Dl)BIn

Yn+1 = Txn—i—l

Ynt2 =Yo + (I — D2)Bypi1

Tny2 =THypio.
The algorithm performs remarkably well even for contiguous
losses, as shown in Fig. 2, for problems well beyond the reach
of the single-channel case. We will see next that the ratio of the
frame bounds in the two-channel case is smaller by several or-

ders of magnitude, a fact that explains the difference in perfor-
mance. Consideration of

> Uz B+ Y e, T)* = ||DyBa||” + || D T)?
Oficr, i€,
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: ) — : . . Fig. 4. (a) One-channel case. The 40 largest eigenvalueB DM, for
Fig. 3. Problem described in Fig. 4 was solved 100 times, each time wuiﬁlcg: 256, M = 10, and 136 contiguous known samples. The ratio of the

new random permutatioR. The figure shows the ratio of the frame bounds for,

: ! frame bounds is> 10%3. (b) Two-channel caseN = 128 samples per
each problem and the rate for the equivalent one-channel problem. channel, M = 10, 136 contiguous known samples (68 per channel). The

ratio of the frame bounds isz 100.

shows that the bounds follow from the eigenvalues of

BDlB + THD2T 1 i icd AN Hna_B‘N X=X 3¢
0.01 ¢ = (a) one channel -
Using (2), (3), and the fact thdt is unitary, we see that this has 0.0001 b e (b) two channels )
the same eigenvalues as &0 % e
. g 1e-06 v : e
I 0 I 0 PT 0 P 0 5 y |
A + A > 1e-08 | ]
[0 0} ! [0 0} |: 0 0] ? |:0 0] é) € <— Channel 1 of 2 —s<— Channel 2
i_l__l 16_10 LA L }.
whered,; = F~'D,F andA; = F~'D,F. Its nonzero eigen- 1ou12 | H”l“ I I ” 1” ”HHH‘
values are those of e Channel 1 of 1
1e-14
X+P'yp 4) 1e-16 .

50 55 60 65 70 75 80 85 90 95
whereX andY areK x K submatrices ofi; andA4,. Assume Rank order k
that the error patterns on both channels are equalYi.e-, X _
(this includes the numerically extreme case of contiguous los 8, (#), 01 channel case. Some of e (sored) sgenvaliasiat o
in both Channels). 1§ is an elgenvector ok, u = PTy will be > 102, (b) Two-channel caséy = 128 samples per channelf = 45, 200
an eigenvector oPTXP, pertaining to the same eigenvalue. ,d_gnown samples (;00_ per channel). The_ratio of the frame bourdsds The
common eigenvectorofX andPTX P pertaining tmmin(X) inset shows the distribution of erasures in both cases.
would have to satisfy = PTv, which is impossible in general
unlessP is a special permutation (such as the identity). Thus, ifonzero eigenvalue) whose energy is almost entirely concen-
general \min (X 4+ PT X P) will increase well above the min- trated outsideJ. In the two-channel case with the same overall
imum value2 i, (X), improving the numerical stability of the degree of redundancy 21/256, the condition numbes is00,
method and the convergence rate. smaller by 11 orders of magnitude. The smallest nonzero

The (minor) impact of the permutation is shown in Fig. 3. Ieigenvalue is still well above the noise level of the theoretically

general, the best permutatiéhdepends on the patterny and  “zero eigenvalues.”
D,. Theoretically, for any given pattern one may compute the If the erasure pattern is contiguous on one-channel, but
condition number of the matriceé+ PTY P, forall (2M +1)!  random in the other, as in the example of Fig. 5, the advantage
possibleP, and select those that lead to better condition nurof the two-channel method can be even greater (the reconstruc-
bers. However, the search is of course impractical, and Figti@n problem corresponding to the channel with random losses
shows that it is also unlikely to lead to major improvements. can be much easier numerically).

Fig. 4 compares the numerical stability of the one-channel
and two-channel systems. Despite the oversampling ratio of
r = 21/256, the ratio of the frame bounds for the one-channel
problem exceedd0'3. The smallest nonzero eigenvalue is We discussed the iterative decoding of a two-channel DFT
already difficult to separate from the “noise floor'—the set ofode in terms of frames and the eigenvalues of certain matrices.
theoretically “zero eigenvalues.” The code subspace contalts performance and numerical stability far exceeds that of
signals (such as the eigenvector corresponding to the smalksgle-channel codes, and works well even for bursty losses.

V. CONCLUSION
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