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Abstract

We propose a preprocessing technique which allows stable
interpolation and error correction. It can be regarded as a
parallel concatenated (real) code with an interleaver. We
discuss the relative performance and stability of the tech-
nique, when compared to the single-channel case (band-
limited interpolation, extrapolation, and error-correction).
We give examples that show that the condition numbers
of the linear operators involved can be smaller by many
orders of magnitude, when compared to the usual band-
limited reconstruction. The stability problem can be for-
mulated using the language of frames. Algorithms for re-
covering unknown samples (erasures) and for correcting er-
rors at unknown locations are briefly discussed and demon-
strated.

1 Introduction

This paper addresses a number of closely related issues
that can be viewed from multiple angles. In the language
of sampling and interpolation, we are interested in detect-
ing and even correcting errors in band-limited sampled
data. Using the language of error control coding, we are
interested in channel coding, and in particular in finding
stable real codes. And in the language of frames, we wish
to design redundant signal representations, and the corre-
sponding reconstruction algorithms, while controlling the
ratio of the frame bounds.

The whole paper will be concerned with the two-channel
system depicted in Fig. 1. The signal a is coded and the
result is the signal x, of N samples. The permuted signal
Pa is also coded, using a similar coder, leading to a second
signal y, also of N samples. The system can be regarded as
having two output signals, x and y, or just one output in
a space of higher dimensionality, obtaining by combining
or concatenating x and y.

We were driven to the study of such a structure for
several reasons. First, interleaving is a common way of
protecting against contiguous losses, a form of data cor-
ruption which is particularly difficult to handle (for low-
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Figure 1: The signal a and its permuted version Pa are both
coded, using coders similar to that depicted in Fig. 2, and the
outputs of the coders are concatenated.

pass signals, or other signals with a contiguous spectrum).
In the context of interpolation, contiguous losses lead to
extremely ill-posed problems. Band-limited extrapolation
and superresolution are examples of problems made diffi-
cult (or interesting) by the contiguous distribution of the
unknown segments of the signal (or of its Fourier trans-
form).

Interleaving the data maps contiguous losses to scat-
tered losses, and improves the conditioning of the recon-
struction problem in case of error bursts. Estimates for
the condition numbers in terms of the minimum separa-
tion between errors are given in [1], for example.

However, the interleaver is a one-to-one mapping, and
there will always exist error patterns that will again be
mapped by the interleaver into contiguous, error patterns.
This problem provided the motivation for using two data
paths: one path in which the data are coded in the normal
way, and another in which the data are interleaved before
coding.

There is another reason for studying these structures,
which has its roots in a very different context. We are in-
debted to Prof. J. F. Moura for bringing to our knowledge
the striking similarity between the structure depicted in
Fig. 1 and certain error control codes (concatenated codes
with interleavers). Understanding these codes has been a
priority among the coding theory community ever since
their astonishing performance was reported by Berrou,
Glavieux, and Thitimajshima in 1993. Such codes are ca-
pable of performances very close (a fraction of a dB) to the
Shannon limit, at bit error rates of about 10−5. For a re-
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cent overview of this subject and coding theory in general
see [2]. The framework that we are exploring is distinct
(due to the nature of the underlying fields,

�
or � in our

case, as opposed to the finite, Galois fields, commonly used
in coding theory). But, due to the importance of the sub-
ject, it is worthwhile to study it from every possible angle.
Hopefully, this may lead to cross-fertilization and further
progress.

The building block of the two-channel system is the
coder depicted in Fig. 2. It has been recognized as the
equivalent of error control coding in the complex field by
several researchers, and as a result a number of applica-
tions are known [3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. It shows
how the coded signal x is obtained from the data a. First,
a is zero-padded to create a larger vector, with N samples
(sometimes it can be convenient to work with a transform
of a instead of a itself). The coded signal is the DFT of
the zero-padded vector:

x = F

[
a
0

]
.

Although, to simplify the notation, we appended the zeros
to a, it is possible to insert the zeros in such a way that
x stays real. We will assume that x ∈ � N . It is precisely
because x is confined to a lower dimensional subspace of� N (to which we will call the code subspace) that error
detection and correction becomes a possibility. In the ex-
amples below, a ∈ � 2M+1, and x ∈ � N , obviously with
2M + 1 < N . One may identify with 2M + 1 the band-
width of the data, and with (2M + 1)/N the oversampling
ratio, or the code rate.

Consider the (band-limiting) operator B, which projects
a vector of N samples on the code subspace. Hence, x =
Bx and y = By, and

F

[
a
0

]
= F

[
I 0
0 0

]
F−1F

[
a
0

]

shows that

B := F

[
I 0
0 0

]
F−1.

Note that

y = F

[
Pa
0

]
= F

[
P 0
0 0

] [
a
0

]
.

Hence,

y = F

[
P 0
0 0

]
F−1x =: Tx,

that is, y = Tx, with

T := F

[
P 0
0 0

]
F−1.

which is the starting point for computing T using the FFT.
On the other hand,

x = F

[
a
0

]
= F

[
P−1 0
0 0

] [
Pa
0

]
.

a
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x

Figure 2: The single-channel coder, a reference against which
the two-channel case (described in Fig. 1) is compared.

Hence,

x = F

[
P−1 0
0 0

]
F−1y = THy.

We also note that

TTH = THT = F

[
I 0
0 0

]
F−1 = B,

and
BT = TB = T.

2 Handling erasures and errors

After introducing the basic operators B and T , we are
ready to formulate our first problem. A sampling matrix
is a diagonal matrix of the form

D =




d0 0 · · · 0
0 d1 · · · 0
...

...
. . .

0 0 · · · dn


 , di ⊂ {0, 1}

It is convenient to exclude the trivial cases D = I and
D = 0 from consideration. Assume that instead of x and
y we are given x0 = D1x and y0 = D2y, where D1 and
D2 are sampling matrices. In other words, we do not have
access to x and y, but only to a subset of their samples.
The matrices D1 and D2 can be thought of as the indi-
cator matrices of these subsets. How can x and y, and
consequently a, be recovered?

The simplest possibility is an alternating projection al-
gorithm. At the end of step n, there will be two approxi-
mations to x and y, denoted by xn and yn. The next pair
of approximations can be computed as follows:

xn+1 = x0 + (I −D1)Bxn,

yn+1 = Txn+1,

yn+2 = y0 + (I −D2)Byn+1,

xn+2 = THyn+2.

Any criteria for the convergence of alternating projections
can now be applied [13, 14]. The analysis of the algorithm

xn+1 = x0 + (I −D)Bxn
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Figure 3: Left: the observed signals x0 and y0, consisting of a known segment of x and y, and an unknown segment, replaced
by zeros. Right: the error evolution of the algorithm.
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Figure 4: Left: the signal x and the error added to it e1. Right: the error evolution of the error-correcting algorithm. Due to
space limitations, the signal y and the error e2 is not shown. The error signals e1 and e2 are unknown to the algorithm, and the
task is to recover x and y, from which a follows. In this example, the total number of errors was 90.
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which arises in the one-channel context was presented in
detail in [15]. There is one obvious guiding principle: the
number of known samples must be at least equal to the
dimension of the subspace to which a belongs.

In practice, the algorithm performs remarkably well even
for contiguous losses, a situation that leads to extremely
poor conditioned problems in the one-channel case (and
even in the multiple channel case, provided that the data
are only subject to linear time-invariant filters). See Fig. 3.

The previous algorithm is for correcting erasures, that
is, it can be applied only if D1 and D2 are known, which is
true only if the positions of the errors are known (in both
channels). A more challenging problem is that of error
detection and correction: we are given two signals x0 and
y0, which may differ from x and y at certain samples, and
we wish to recover x, y, and a. We do not know how many
errors occurred, nor their amplitudes or positions.

It turns out that the problem can be solved using an
iterative algorithm, which also estimates D1 and D2. The
idea is to take advantage of the fact that the (unknown)
error signals e1 = x− x0 and e2 = y − y0 are sparse. This
can be achieved using thresholding, as explained in [16].
The result of one such experiment is reported in Fig. 4.

3 Stability and frames

Let J be an index set (a nonempty ordered subset of
{0, 1, . . . , N − 1}, containing no duplicates). The prob-
lem of correcting erasures at {0, 1, . . . , N − 1} \ J can be
rephrased (in this context) using the language of frames.
It is interesting to do so, despite the finite-dimensional
character of the problem.

We begin by considering the one-channel case, as illus-
trated in Fig. 2 . Let Bi denote the ith column of the
matrix B. The question is: can {Bi}i∈J be a frame for the
code subspace, B = {x ∈ � N : x = Bx}, and what are the
frame bounds? The answer is yes, provided of course that
the cardinal of J is sufficiently large. The frame bounds
can be readily related to a certain eigenproblem, by pro-
ceeding as follows. Define D as the indicator matrix asso-
ciated with J , that is, D is diagonal and

Dii =

{
1, i ∈ J,
0, i /∈ J.

Then, ∑

i∈J
| 〈x,Bi〉 |2 = ‖DBx‖2,

and the frame bounds follow from the eigenvalues of BDB:

λmin(BDB) ≤ ‖DBx‖
2

‖x‖2 =
xHBDBx

‖x‖2 ≤ λmax(BDB).

For a tutorial on this issue see [17]. An example, which
shows how difficult contiguous losses can be, is illustrated
in Fig. 7 and Fig. 5. The block size is N = 256, and
M = 10. The known 60 data are distributed along three
contiguous sets of 20 samples each (the set is outlined in
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Figure 7: One-channel case: the 50 largest eigenvalues of
BDB, corresponding to a block size of N = 256. The matrix B
band-limits to 2M + 1 nonzero harmonics, with M = 10. The
60 known samples were distributed along three equal intervals
(as shown in Fig. 5). The condition number (ratio of the frame
bounds) for this problem was > 1014.

Fig. 5). Despite the low oversampling ratio of r = 21/256,
the condition number (ratio of the frame bounds) for the
problem exceeds 1014. Inspecting Fig. 7 we see that it is
already difficult to tell apart the smallest nonzero eigen-
value from the noise floor — the theoretically “zero eigen-
values”. Under such circumstances, there exist signals of
the required bandwidth (belonging to the code subspace)
whose energy is almost entirely contained in the samples
xi, i ∈ J . The same subspace contains signals with energy
concentrated outside J , that is, in the samples xi, i /∈ J .
The signals that maximize and minimize these energy con-
centrations are the eigenvectors depicted in Fig. 5.

In the two-channel case, we have two sets J1 and J2,
since the erasures now occur on both channels. The ques-
tion now is: can {Bi}i∈J1

∪{Ti}i∈J2
be a frame for the code

subspace, and what are the frame bounds? Naturally, the
bounds have to be deduced from a different eigenproblem.
First, define D1 and D2 as the indicator matrices associ-
ated with the sets J1 and J2, respectively. Now, because

∑

i∈J1

| 〈x,Bi〉 |2 +
∑

i∈J2

| 〈x, Ti〉 |2 = ‖D1Bx‖2 + ‖D2Tx‖2,

the bounds follow from the eigenvalues of

C := BD1B + THD2T,

which can be written as C = AHA, with

A =

[
D1B
D2T

]
.

It remains to design an experiment for the two-channel
case which can be compared with the one-channel case,
already described (Fig. 7 and Fig. 5). Recall that, in the
one-channel case, N = 256, M = 10, and there were 60
erasures. Therefore, for the two-channel case we selected
N = 128, M = 10, and 30 erasures per channel. The
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Figure 5: One-channel case: the signals of N = 256 samples, band-limited to 2M + 1 nonzero harmonics, with M = 10 as in
Fig. 7, which assume the maximum and minimum energy concentration in the set J and its complement.
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Figure 6: Two-channel case: the signals of N = 128 samples, band-limited to 2M + 1 nonzero harmonics, with M = 10 as in
Fig. 8, which correspond to the maximum and minimum energy concentration.
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Figure 8: Two-channel case: the 50 largest eigenvalues of the
matrix, for a total block of 256 samples (N = 128 per channel).
The band-limit is M = 10, as in Fig. 7. The 60 known samples
(30 per channel) were distributed along three equal intervals
(as shown in Fig. 6). The condition number (ratio of the frame
bounds) for this problem was ≈ 8 000, 10 orders of magnitude
better than the comparable one-channel experiment.

results are presented in Fig. 8 and Fig. 6. The oversam-
pling rate in each of the channels is now twice as high, and
therefore each channel data has less redundancy. How-
ever, we do have two channels, and therefore the same
overall degree of redundancy. The condition number for
this problem is now close to 8 000, smaller by 10 orders
of magnitude, and the smallest nonzero eigenvalue of C
is still well above the noise level of the theoretically “zero
eigenvalues” (see Fig. 8).

4 Conclusions

The preprocessing method proposed in this work maps a
band-limited signal to another band-limited signal, in such
a way that error detection and correction on the two sig-
nals becomes numerically much more tractable than when
dealing with a single signal, even if the latter is twice as
redundant.

We have seen that the condition numbers of the linear
operators involved in the reconstruction can be many or-
ders of magnitude smaller than the condition numbers of
the operators that occur in the usual band-limited recon-
struction problems.

In the language of frames, we are dealing with a frame
{Bi}i∈J1

∪{Ti}i∈J2
, and the ratio of the frame bounds can

in this case be orders of magnitude smaller than that for
frames {Bi}i∈J , that is, frames formed by translating

B(k) =
sin(π(2M + 1)k/N)

N sin(πk/N)

to all i ∈ J . Algorithms for recovering unknown samples
(erasures) and for correcting errors at unknown locations
were briefly discussed and demonstrated, and show fast
convergence even for contiguous errors.
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