
RESEARCH ARTICLE

Approximating the evolution of rotating moving regions using bezier

curves

José Duartea, Paulo Diasa,b,c and José Moreiraa,b,c

aInstitute of Electronics and Informatics Engineering of Aveiro (IEETA), bDepartment of
Electronics, Telecommunications and Informatics (DETI), cIntelligent Systems Associate
Laboratory (LASI), University of Aveiro, Campus Universitário de Santiago 3810-193,
Aveiro, Portugal

ARTICLE HISTORY

Compiled November 24, 2022

ABSTRACT
The region interpolation methods proposed in the moving objects databases litera-
ture impose restrictions that can have a significant impact on the representation of
the evolution of moving regions, in particular, when a rotation occurs between two
observations. In this paper, we propose a data model for moving regions that allows
moving segments to rotate and change their length during their evolution between
two observations and uses quadratic Bezier curves to define the trajectories of their
endpoints. This introduces a new class of moving regions called rotating moving
regions (rmregions). We present algorithms for operations involving rmregions and
we propose a strategy to allow different interpolation methods to be used in the
context of moving objects databases by approximating the interpolations they cre-
ate using rmregions. We demonstrate our strategy using a reference implementation
and compare results obtained when using the strategy presented here and the region
interpolation methods and the spatiotemporal operations proposed in the state-of-
the-art. Experimental results show that our strategy can be used to complement the
region interpolation methods proposed in the moving objects databases literature.

KEYWORDS
region interpolation problem; moving regions; moving objects databases;
spatiotemporal operations; interpolation methods

1. Introduction

Moving objects databases (Güting and Schneider 2005) allow representing and query-
ing the evolution of objects whose position, shape and extent can change continuously
over time. These objects are called moving points when only the evolution of the po-
sition is relevant and moving regions when the evolution of the position, shape and
extent are relevant. Moving regions can represent the evolution of real-world phenom-
ena, e.g. an iceberg, a forest fire and biological cells, and are created from observations
of the evolution of the phenomena being represented. The evolution between two ob-
servations is created using a region interpolation method.

CONTACT José Duarte. Email: hfduarte@ua.pt

CONTACT Paulo Dias. Email: paulo.dias@ua.pt

CONTACT José Moreira. Email: jose.moreira@ua.pt

The region interpolation methods proposed in the literature impose the restriction
that moving segments are not allowed to rotate between two observations (Tøssebro
and Güting 2001, McKenney and Webb 2010, McKenney and Frye 2015, Heinz and
Güting 2016), or moving segments are allowed to rotate but moving regions have fixed
shapes during their evolution between two observations (Heinz and Güting 2018). The
restriction imposed in the first case allows known efficient algorithms to be used to de-
velop operations involving moving regions. However, a consequence of this restriction
is that a good representation of the evolution of the phenomena is not always generated
when a rotation occurs between two observations (Heinz and Güting 2018). A possi-
ble solution is to collect observations at sub-intervals between the two observations,
to better approximate the rotation. This, however, can increase the size of the mov-
ing regions and the execution time of spatiotemporal operations considerably (Heinz
and Güting 2018), since a larger number of observations is used to create the mov-
ing regions and spatiotemporal operations have to be performed on all sub-intervals.
The restriction imposed in the second case dictates that rotations can be represented
accurately but the shape of moving regions cannot change between two observations.

Other interpolation methods, e.g. (Alexa et al. 2000, Baxter et al. 2008), have been
proposed in the literature to represent the continuous transformation between two
geometries and their main goal is to obtain a natural transformation of the geometry.
However, in general, these methods create moving regions whose moving segments
are allowed to rotate and change their length during their evolution between two
observations and use different formulas with different levels of complexity to define
the trajectories of the vertices of the moving regions. As a consequence, algorithms to
implement operations involving these moving regions are inefficient.

We would like to be able to use different interpolation methods to create moving
regions, in particular, in cases where the region interpolation methods proposed in the
moving objects databases literature do not give good results and develop algorithms
for spatiotemporal operations that are independent, and have a complexity that is
also independent, of the interpolation method used. To achieve this, we propose a
discrete data model to represent moving regions, based on the data model presented
in (Güting et al. 2000, Forlizzi et al. 2000), that uses quadratic Bezier curves to define
the trajectories of the vertices of the moving regions and allows moving segments to
rotate and change their length during their evolution between two observations. This
introduces a new class of moving regions called Rotating Moving Regions (rmregions).
We develop algorithms for the following fundamental operations involving rmregions:
atinstant gives the value of a rmregion at a specified instant in time, interpolate creates
a rmregion, intersects gives the time intervals where a moving point and a rmregion
and two rmregions intersect. Then, the interpolations created by different interpolation
methods are approximated using (are projected to) rmregions.

Experimental results show that this strategy can be used to complement the region
interpolation methods proposed in the moving objects databases literature in cases
where they do not create a good representation of the evolution of a phenomenon. The
quality of an interpolation and a natural interpolation are, we believe, case (applica-
tion) dependent and providing a definition for these concepts requires the cooperation
of experts and practitioners in various fields. Our goal is to allow various interpolation
methods to be used in the context of moving objects databases and let the user choose
and use the one that provides the best results according to the user’s needs.

This paper is organized as follows. The next two sections present related work, data
types, concepts and an overview relevant for this paper. Then, a discrete data model
for rmregions is introduced. After that, we propose primitives to develop operations

2

involving rmregions and algorithms for some operations. Following that, we introduce
a procedure to create rmregions. Then, we present experimental results obtained using
the strategy and the operations developed. This includes a comparison with results
obtained using the region interpolation methods proposed in the literature. The con-
clusions and guidelines for future work end the paper.

2. Related work

(Güting et al. 2000) and (Forlizzi et al. 2000) propose a data model for moving ob-
jects databases that includes data types and operations to represent and query the
evolution of moving regions. Moving regions are defined using moving segments and
their evolution is represented using the sliced representation (See Section 3 for more
details). This is the most well-known data model for moving objects databases and
was used as a reference for other data models, e.g. the CMR model for moving regions
(McKenney et al. 2014) and the model for moving regions of fixed shape (Heinz and
Güting 2018), and several works presented in the moving objects databases literature.
With the exception of the model for moving regions of fixed shape, these models and
works impose the restriction that moving segments are not allowed to rotate dur-
ing their evolution between two observations. This allows the use of known efficient
algorithms to implement spatiotemporal operations and is a trade-off between the ef-
ficiency of spatiotemporal operations involving moving regions and the representation
of the evolution of the phenomena. Efficient region interpolation methods based on the
rotating plane algorithm (Tøssebro and Güting 2001) exist to create moving regions
from observations, following this restriction: (Tøssebro and Güting 2001), (McKen-
ney and Webb 2010), (McKenney and Frye 2015) and (Heinz and Güting 2016). This
however, can have a significant impact on the representation of the evolution of the
phenomena, in particular, when a rotation occurs between two observations. More
recently, an alternative model for moving regions, called the polyhedra based model,
that uses polyhedra to represent moving regions instead of the sliced representation
was proposed in (Heinz and Güting 2020). In this model, moving regions are created
by considering observations as top and bottom surfaces of a polyhedron and by using
the rotating plane algorithm to create the lateral surface of the corresponding polyhe-
dron. As a consequence, the representation of the evolution of a moving region created
using this model is similar to the representation created when imposing the restriction
that moving segments cannot rotate between two observations. The model for moving
regions of fixed shape allows moving segments to rotate, but imposes the restriction
that their length is fixed during their evolution between two observations.

Other interpolation methods exist that allow moving segments to rotate and change
their length during their evolution between two observations, i.e. during interpolation,
e.g. rigid interpolation methods (Alexa et al. 2000, Baxter et al. 2008, Liu et al. 2011)
and interpolation methods based on physical principles (Yan et al. 2004). These meth-
ods have the potential to create a good or alternative representation of the evolution
of real-world phenomena, but (i) the trajectories of the vertices during interpolation
can be defined using different functions with different levels of complexity, (ii) there is
not a method that creates the best representation in all cases and (iii) the 3D repre-
sentation of the moving regions created using these methods are objects with arbitrary
shape possibly containing curved surfaces. This can make algorithms for spatiotempo-
ral operations involving moving regions created using these methods very inefficient
and demand the use of specific data types.

3

In this work we allow moving segments to rotate and change their length during
their evolution between two observations and present data types and operations to
represent and query the evolution of the corresponding new class of moving regions.

3. Background

This section presents data types used in moving objects databases, proposed in (For-
lizzi et al. 2000), using a discrete model, a more detailed discussion about region
interpolation methods and a discussion on the use of interpolation methods in the
context of moving objects databases. In the following, when presenting snapshots of
an interpolation, snapshots depicted with a blue background color are the observations
or the samples (when using Bezier curves) used to create the interpolation.

3.1. Moving Objects Databases Data Types

Bool, Instant and Interval. A bool can have one of the following values: true, false
and undefined. An instant is a value in the real numbers that represents an instant
in time. An interval is represented by the quadruple (tb, te, l, r) where tb ≤ te, l and r
indicate if tb and te belong to (are included) in the interval, respectively, and tb and
te are instant types.

Point and Region. A point is defined by the tuple (x, y), i.e. its coordinates in
2D-space. A region is defined as a set of disjoint faces that can touch at an isolated
point, but cannot have overlapping boundary segments. A face can have zero or more
holes and a hole can have zero or more faces. A hole must be inside a face. A face
and a hole can touch at an isolated point. Faces and holes are represented by simple
polygons. A point can be inside, on the border (touch) or outside a region.

Sliced Representation. The sliced representation (See Figure 1), proposed in
(Forlizzi et al. 2000), decomposes the evolution of an object into fragments called
slices (or units). A unit has (i) a start and end values, these are usually consecutive
observations of the actual evolution of the object, (ii) a time interval during which
the unit is defined and (iii) a function that describes the evolution of the object
between the start and end values (or observations). A region interpolation method is
a function used to describe the continuous evolution of a region during a unit. These
functions are discussed in more detail in Section 3.2.

Moving Objects. Moving objects represent the continuous evolution of objects
over time and are constructed using the sliced representation. That is, moving
objects are constructed using units defined at disjoint time intervals. In general, a
moving object has several units. The atinstant operation on a moving object gives the
value (the state or the representation) of the moving object at a specific instant in time.

Moving Bool. A moving bool (mbool) is a bool whose value can change over time.
A unit bool (ubool) represents the value of a mbool during a time interval, i.e.
ubool : (bool, i) where i ∈ Interval is the time interval during which the ubool is
defined and bool is the value that it assumes during i.

Moving Point. A unit point (upoint) describes the evolution of the position of a

4

point between two known positions during a time interval, i.e. upoint : (S, v⃗, i), where
S is the starting position, v⃗ is a vector that describes the movement of the point
and i ∈ Interval is the time interval during which the unit is defined. The position
of the point at t ∈ i is given by the parametric functions: x(t) := Sx + tN · v⃗x and
y(t) := Sy + tN · v⃗y, where tN represents t normalized to the interval [0, 1]. A moving
point (mpoint) is a set of upoints with disjoint time intervals.

Moving Region. A moving region (mregion) is a region whose position, shape
and extent can change continuously over time. A unit region (uregion) describes
the evolution of a mregion during a time interval between two observations, i.e.
uregion : (i,F ⊂ MFace), where F is a set of moving faces and i is the time in-
terval during which the uregion is defined. A moving face is represented using closed
moving polygon cycles formed by moving segments, that represent the face and its
holes. A moving segment (mseg) is defined as a tuple mseg : (sb, se), sb, se ∈ Seg,
where Seg is the set of all segments in 2D-space, sb and se are parallel and sb or se
but not both can be degenerated to a point. sb and se represent the initial and final
configurations of the moving segment. The evolution of the moving segment between
sb and se is computed using linear interpolation. As a consequence, all the in-between
configurations of a moving segment at a time instant are segments parallel to sb and
se and a rotating segment has to be simulated using two msegs (See Figure 1 (A)).
This restriction allows the use of efficient algorithms to develop operations involving
mregions. A mregion is a set of uregions with disjoint time intervals.

Figure 1. Evolution of two moving segments between two observations (A) and the trajectories of the end-
points of the moving segments of a moving region during a unit (B), created using the classical model for

moving segments. Trajectories of the endpoints of the moving segments created using the rigid interpolation

method proposed in (Alexa et al. 2000, Baxter et al. 2008) (C) and the strategy presented in this paper (D),
i.e. (D) is an approximation of (C) using quadratic Bezier curves.

3.2. Region Interpolation Methods

Region interpolation methods are used to create the evolution of a region between
two observations. We consider that currently there are two main models for moving
segments, used by the region interpolation methods proposed in the moving objects
databases literature. We call these: the classical model of moving segments, used in
(Tøssebro and Güting 2001, McKenney and Webb 2010, McKenney and Frye 2015,
Heinz and Güting 2016, 2020), and the model for fixed moving segments, used in Heinz
and Güting (2018). When making this distinction we are emphasizing the fact that in
the first and in the latter moving segments are defined with different restrictions.

5

3.2.1. Modeling the Evolution of Moving Segments

A consequence of the restriction imposed in the classical model of moving segments is
that a good representation of the evolution of a region is not always generated (Moreira
et al. 2016, Heinz and Güting 2018).

In (Heinz and Güting 2018) the authors observe that the classical model of moving
segments does not give good results when representing the evolution of regions with
fixed shape, in particular, when the two observations are rotational asymmetric and a
large rotation exists between them (See Figure 2 (top)). However, this also occurs when
representing the evolution of regions with a non-fixed shape (See Figure 2 (bottom)).

Figure 2. 5 snapshots of the evolution of a box with a fixed (top) and a non-fixed (bottom) shape between
two observations, created using the classical model of moving segments.

If more observations of the evolution of the box are taken between the two obser-
vations, then, the interpolation created using the classical model of moving segments
approximates the actual evolution of the box, but this can increase the size (the num-
ber of units) of the moving regions and the execution time of the spatiotemporal
operations considerably (Heinz and Güting 2018).

3.2.2. Modeling the Evolution of Concavities

Region interpolation methods, except the model for fixed moving regions, do not al-
ways create a good representation of the evolution of concavities, i.e. a concavity can
simultaneously disappear to and appear from a point during its evolution between two
observations. In Figure 3, the large concavity on top of the iceberg simultaneously
disappears to and appears from a point. This is because concavities are matched using
matching strategies, e.g. the overlap amount and the distance between the concavities
in the two observations. In (Heinz and Güting 2016) the user can provide customized
matching strategies. However, matching strategies can be case-dependent and it could
even be the case that a matching strategy works for a concavity but not for another
concavity on the same region.

Figure 3. 8 snapshots of the evolution of an iceberg between two consecutive observations, created using the

method proposed in (Heinz and Güting 2016) with an overlap matching strategy.

3.3. Alternative Region Interpolation Methods

The discussion presented in Subsections 3.2.1 and 3.2.2 suggests the use of alternative
region interpolation methods to handle cases where the region interpolation methods
proposed in the moving objects databases literature do not provide a good (or accept-
able) representation of the evolution of moving regions over time. The model for fixed

6

moving regions (Heinz and Güting 2018) is a good example of this argument.
Several interpolation methods have been proposed in the literature to create the

continuous transformation between two geometries. Figure 4 shows snapshots of the
evolution of the box and the iceberg presented in Subsections 3.2.1 and 3.2.2, created
using the rigid interpolation method proposed in (Alexa et al. 2000, Baxter et al.
2008).

Figure 4. Snapshots of the evolution of a box (top) and an iceberg (bottom) between two consecutive
observations, created using the rigid interpolation method proposed in (Alexa et al. 2000, Baxter et al. 2008).

The method used in the examples shown here creates moving regions whose mov-
ing segments are allowed to rotate and change their length during the interpolation
between two observations and can represent rotations > 2π if the user specifies addi-
tional parameters (See Figure 5). A one-to-one correspondence between the vertices
of the source and target geometries must be given.

Figure 5. 10 snapshots of the evolution of an iceberg that rotates 410 degrees between two observations,

created using the rigid interpolation method proposed in (Alexa et al. 2000, Baxter et al. 2008).

However, there isn’t an interpolation method that generates the best representa-
tion in all cases and different interpolation methods can use functions with different
characteristics and complexity to define the trajectories of the vertices of the moving
regions during interpolation. As a consequence of the latter, algorithms developed to
implement spatiotemporal operations involving moving regions may work only with
some interpolation method(s), or may be particularly inefficient when using specific
interpolation methods. Ideally, we would like to be able to use different interpolation
methods and develop algorithms for spatiotemporal operations that are independent,
and have a complexity that is also independent, of the interpolation method used to
create moving regions. Also, some interpolation methods can create a good represen-
tation of the evolution of moving regions, but are too inefficient or complex to be
used directly to develop spatiotemporal operations. In this work we propose a strat-
egy that uses interpolation methods as black boxes to allow different interpolation
methods to be used in the context of moving objects databases. This allows creating a
good approximation of rotations using fewer observations. The strategy uses the sliced
representation to represent the evolution of moving regions.

4. Discrete Model for Rotating Moving Regions

A rmregion is similar to a classical moving region (mregion). The difference is that a
rmregion does not impose the restriction that moving segments cannot rotate during
their evolution between two observations and the trajectories of their endpoints are
defined using quadratic Bezier curves. We start by introducing the type curve.

7

curve : (cp0, cp1, cp2)
where cp0, cp1, cp2 ∈ Point are the control points of the curve that is defined in the
interval [0, 1]. We use a new data type to represent the moving segments of a rmregion,
that we call rotating moving segment (rmseg) and that is defined as:

rmseg : (curve1, curve2), curve1, curve2 ∈ Curve
where Curve is the set of all curve types and curve1 and curve2 are the curves that give
the trajectories of the endpoints of the rmseg. The initial and final configurations of a
rmseg may or may not be parallel and one of them, but not both, can be degenerated
to a point (See Figure 6 (A and C)). The position of an endpoint of a rmseg is given
by the parametric equations:

x(τ) = cp0x(1− τ)(1− τ) + 2cp1x(1− τ)τ + cp2xτ
2

y(τ) = cp0y(1− τ)(1− τ) + 2cp1y(1− τ)τ + cp2yτ
2

(1)

where τ represents a time instant normalized to [0, 1] and cp0, cp1 and cp2 are the
control points of the curve that defines the trajectory of the endpoint. Then, a moving
face is represented using closed moving polygon cycles formed by rmsegs, that represent
the face and its holes. We define the set of all moving cycles and moving faces as:

MCycle = {{rs0, . . . , rsϱ−1} | ϱ ≥ 3,∀χ ∈ {0, . . . , ϱ− 1} : rsχ ∈ RMSseg}
MFace = {(c,H) | c ∈ MCycle,H ⊂ MCycle}

where RMSseg is the set of all rmsegs. A unit rmregion describes the evolution
of a rmregion during a time interval between two observations and is defined as:
urmregion : ([tb, te],F ⊂ MFace), such that ∀t ∈ [tb, te] : evaluate(F, t) ∈ Region,
where F is a set of moving faces, [tb, te] is the time interval during which the urmre-
gion is defined, Region is the set of all regions as defined in (Forlizzi et al. 2000) and
evaluate gives the representation of F at t. A rmregion is a set of urmregions with
disjoint time intervals, i.e. rmregion ⊂ URMRegion, where URMRegion is the set
of all urmregions. rmregions are arbitrary shapes with curved surfaces, when viewed
in 3D-space (See Figure 6 (B)).

Figure 6. Evolution of a rmseg between two configurations (A). Trajectories of the rmsegs of a rmregion

during a urmregion (B) and (C).

The data model for rmregions and the data model for mregions can be combined,
but we chose not to combine them because efficient algorithms for some operations
involving rmregions still have to be developed, e.g. the traversedarea operation, and
our strategy to create rmregions currently does not provide explicit mechanisms to
detect and handle self-intersections. Also, the use of rmregion makes clear that it
refers to a new class of moving regions.

8

Using quadratic Bezier curves is a trade-off between the number of functions needed
to obtain a good approximation of a rotation between two observations and the effi-
ciency of spatiotemporal operations.

5. Implementation of Operations Involving Rotating Moving Regions

This section presents some fundamental operations for rmregions. The algorithms
apply with the following considerations: the moving objects involved have 1 unit and
rmregions have 1 simple face. In the general case the algorithms have to be iterated
for each unit and face.

5.1. Atinstant: rmregion × instant → region

Atinstant gives the representation of a rmregion at a specific instant of time t or ⊥
(undefined) if the rmregion is not defined at t. The representation of a rmregion at
t is obtained by computing the positions of the endpoints of its moving segments at
t using the parametric functions in Equation (1) and constructing the corresponding
region in 2D-space. Considering that the urmregion that contains t can be found in
O(log k), where k is the number of urmregions of the rmregion, using binary search,
the complexity of atinstant is O(log k+m), where m is the number of moving segments
of the rmregion.

5.2. Intersects: mpoint × rmregion → mbool

First, we define a primitive to find the instants of time and the time intervals where a
moving point and a moving segment intersect. Then, this primitive is used to develop
an algorithm for intersects : mpoint× rmregion→ mbool.

5.2.1. Moving Point × Moving Segment

Given Ax(t), Ay(t), Bx(t) and By(t), the quadratic Bezier curves that define the tra-
jectories of the endpoints of a moving segment ms, given by the parametric equations
in Equation (1) and Px(t) and Py(t), the curves that define the trajectory of a moving
point mp in x and y, where, without loss of generality, ms and mp are defined during
an interval of time i = [tb, te], the instants when ms and mp are collinear can be found
using the following polynomial:

G(t) = Ax(t) (By(t) - Py(t)) + Bx(t) (Py(t) - Ay(t)) + Px(t) (Ay(t) - By(t)).

Where t represents real-world time. The trajectory of mp can be linear or quadratic.
As a consequence, G(t) is a quartic polynomial. Then, the instants of time where ms
and mp intersect and touch are given by:

T = {t : G(t) = 0 ∧ t ∈ i ∧ on-segment(atinstant(mp, t), atinstant(ms, t))}.
Where on-segment ensures that the roots found correspond to instants of time where
mp is actually on ms. When using this primitive to develop operations involving a
moving point and a rmregion, a moving segment represents a part of the boundary
of the rmregion. As a consequence, this primitive finds the instants of time where the
moving point touches the rmregion.

9

5.2.2. Reference Implementation

Intersects (See Algorithm 1) is implemented using the primitive defined in Section
5.2.1 and can be easily parallelized. Intersects gives the time intervals where a moving
point and a rmregion intersect (See Figure 7).

Figure 7. 8 snapshots of the intersects operation involving a moving point and a rmregion. Snapshots depicted
in red correspond to instants where the two objects intersect.

Algorithm 1 Generic algorithm to find the time intervals where a moving point and
a rmregion intersect.

Input: A moving point and a rotating moving region.
Output: A moving bool whose value is true when the two moving objects intersect.

1: procedure intersects(mp,mr)
2: mbool← ∅
3: i← deftime(mp) ∩ deftime(mr)
4: it ← []
5: for ms ∈ mr do
6: add(find-intersection-times(ms,mp, i), it)

7: sort(it)
8: µ← length(it)
9: for j = 0 to j < µ− 1 do

10: t← (it j + it j+1)/2
11: if inside(atinstant(mp, t), atinstant(mr, t)) then
12: add(ubool(true, [it j , it j+1]),mbool)
13: else
14: add(ubool(true, [it j , it j]),mbool)
15: add(ubool(false,]it j , it j+1[),mbool)
16: add(ubool(true, [it j+1, it j+1]),mbool)

17: if inside(atinstant(mp,min(i)), atinstant(mr,min(i))) then
18: add(ubool(true, [min(i), it0]),mbool)
19: else
20: add(ubool(false, [min(i), it0[),mbool)

21: if inside(atinstant(mp,max (i)), atinstant(mr,max (i))) then
22: add(ubool(true, [itµ−1,max (i)]),mbool)
23: else
24: add(ubool(false,]itµ−1,max (i)]),mbool)

25: return mbool

intersects(), presented in Algorithm 1, receives a moving point and a rmregion.
We check when the two moving objects are defined simultaneously (line 3). We find
the intersection times between the two moving objects by iterating through all the
moving segments of the rmregion and using the primitive presented in Section 5.2.1
(lines 5 and 6), this has complexity O(m), where m is the number of moving segments,

10

and sort the intersection times found (line 7), this has complexity O(n log n), where
n is the number of intersection times found. Then, we construct the respective mbool
according to the intersection times found and the initial and final states of the two
moving objects w.r.t each other. We consider that the two moving objects intersect
when the moving point is on the boundary and inside the rmregion. Intersects can
be used to implement other operations, e.g. touches, disjoint, inside and operations
involving a rmregion and a region. The semantics of these operations can be different
depending on the application. In practice, finding the intersection times dominates the
execution time since the largest number of intersection times found during an interval
is likely to be a small constant. If the two moving objects have k1 and k2 units then,
we can traverse the units of the two objects in O(k1 + k2). The complexity of the
algorithm is therefore O(k1 + k2 + M), where M is the number of moving segments
in all the units of the rmregion. Efficient algorithms exist to determine if a point is
inside a region, e.g. the partial-scan plumb-line algorithm (Güting and Ding 2004).
Intersects can handle moving points with quadratic trajectories directly.

5.3. Intersects: rmregion × rmregion → mbool

We define a primitive to find the instants of time and the time intervals where two mov-
ing segments intersect, over time. Then, this primitive is used to develop an algorithm
for intersects : rmregion× rmregion→ mbool.

5.3.1. Moving Segment × Moving Segment

Given Ax(t), Ay(t), Bx(t) and By(t) and Cx(t), Cy(t), Dx(t) and Dy(t), the quadratic
Bezier curves that define the trajectories of the endpoints of two moving segments ms1
and ms2 in x and y, respectively, where, without loss of generality, ms1 and ms2 are
defined in an interval of time i = [tb, te], the instants of time when the endpoints of
one moving segment are collinear with the other moving segment can be found using
the following polynomials:

G1(t) = (Bx(t)−Ax(t))(Cy(t)−Ay(t))− (By(t)−Ay(t))(Cx(t)−Ax(t)).

G2(t) = (Bx(t)−Ax(t))(Dy(t)−Ay(t))− (By(t)−Ay(t))(Dx(t)−Ax(t)).

G3(t) = (Dx(t)− Cx(t))(Ay(t)− Cy(t))− (Dy(t)− Cy(t))(Ax(t)− Cx(t)).

G4(t) = (Dx(t)− Cx(t))(By(t)− Cy(t))− (Dy(t)− Cy(t))(Bx(t)− Cx(t)).
Where t represents real-world time and Gα(t) are quartic polynomials. Then, the
instants of time where ms1 and ms2 touch and meet are given by:

T = {t : Gα(t) = 0 ∧ t ∈ i ∧ (
touch(atinstant(ms1, t), atinstant(ms2, t))∨
meet(atinstant(ms1, t), atinstant(ms2, t))), α = 1, . . . , 4}.

Where touch and meet ensure that the roots found correspond to instants of time
where the two moving segments touch or meet. Two segments touch if one endpoint
of one segment is in the interior of the other segment. Two segments meet if they
have a common endpoint. To find the time intervals where the two moving segments
intersect, we sort T to an ordered set TS . Then, for each consecutive pair tσ, tσ+1 ∈ TS

we construct the following tuples: ([tσ], true), Iσ, ([tσ+1], true), where Iσ is given by rule
Rσ and each tuple has an interval and a bool values associated with it. If tb, te ̸∈ TS

we check if the two moving segments intersect at the two instants of time, as needed,
and add the corresponding tuples constructed using rules Rb and Re to the beginning

11

and to the end of the list of tuples constructed from TS , respectively.

TS = sort(T) =
〈
t0, t1, . . . , tµ

〉
.

Rσ =

{
([tσ, tσ+1], true) if intersects(atinstant(ms1, t), atinstant(ms2, t)).

(]tσ, tσ+1[, false) otherwise.

Such that t = (tσ + tσ+1)/2.

Rb =

{
([tb, t0], true) if intersects(atinstant(ms1, tb), atinstant(ms2, tb)).

([tb, t0[, false) otherwise.

Re =

{
([tµ, te], true) if intersects(atinstant(ms1, te), atinstant(ms2, te)).

(]tµ, te], false) otherwise.

We construct the final result by observing that if the bool value associated with ρ
consecutive tuples uι, u(ι+1), . . . , u(ι+δ) does not change, then, the ρ tuples can be
merged. The time intervals where the two moving segments intersect are given by the
tuples with a true value. When using this primitive to develop operations involving
two rmregions, a moving segment represents a part of the boundary of a rmregion. As
a consequence, when two moving segments intersect the two rmregions intersect and
when two moving segments touch the two rmregions can touch or intersect, depending
on how these relationships are defined.

5.3.2. Reference Implementation

Intersects gives the time intervals where two rmregions intersect (See Figure 8). A
generic algorithm to find the intersections between two rmregions is similar to Algo-
rithm 1 presented in Section 5.2. That is, we find the time interval i where the two
rmregions are defined simultaneously. Then, for every moving segment of one rmregion
we find the time intervals where it intersects with the moving segments of the other
rmregion during i, using the primitive defined in Section 5.3.1. This has complexity
O(m1m2 +N log nmax), where m1 and m2 are the number of moving segments of the
two rmregions, respectively, N is the total number of intersections found and nmax

is the maximum number of intersections found between two moving segments. If no
intersections are found we have to check if one of the rmregions is inside the other.
If this is the case the two rmregions intersect during i. If intersections are found, we
sort and merge them. This step has complexity O(n log n), where n is the number of
time intervals (intersections) found. If the endpoints of i are not included in the in-
tersections found we check if one of the rmregions is inside the other at the respective
instants of time, as needed, and update the intersections found accordingly. Finally, we
check if one of the rmregions is inside the other between two time intervals where it is
known that the two rmregions intersect and merge the intervals where this condition
is true. This procedure can be used to develop other operations, e.g. inside, touches
and overlaps. Checking if one rmregion is inside the other has complexity O(ls), where
l is the number of times the operation is performed and s is the number of segments
of the rmregion with the largest number of segments (assuming we check the inside
condition by using a point inside region check). The overall complexity is therefore
O(m1m2 +N log nmax + n log n+ ls). If we change the primitive presented in Section
5.3.1 to consider that the endpoints of one of the moving segments follow linear func-
tions, intersects can also be used to find the time intervals where a rmregion and a
mregion intersect.

12

Figure 8. 8 snapshots of the intersects operation involving two rmregions. Snapshots depicted in red corre-

spond to instants where the two rmregions intersect.

6. A Strategy to Use Different Interpolation Methods in the Context of
Moving Objects Databases

Our goal is to allow the use of different interpolation methods in the context of moving
objects databases. Because these methods can have different characteristics and com-
plexity, as discussed previously, using them as black boxes has advantages. To achieve
this, we project the interpolations created using these methods to a common represen-
tation that is then used. Thus, the algorithms to develop spatiotemporal operations
become independent of the interpolation method used. This is a trade-off. The original
interpolation is approximated, but the algorithms for spatiotemporal operations are,
in general, more efficient than using the interpolation methods directly and work with
different interpolation methods. This common representation is given by a rmregion.
In this section we show how to construct this common representation.

6.1. A Common Representation for Interpolation Methods

We construct a common representation for different interpolation methods, using rm-
regions as follows. Given two observations of the evolution of a region, we choose an
interpolation method H, collect samples from the transformation created using H, with
some granularity and approximate the trajectories of the vertices during interpolation
using quadratic Bezier curves that pass through the sampled vertices, i.e. we construct
the moving segments of the corresponding rmregion. The latter can only be performed
if a correspondence between the vertices of the two geometries being interpolated is
given or found. It makes sense to use the correspondence used by H, so we assume this
correspondence is available. It is important to note that the set of samples collected
always includes the first and the last shape created by H. Figure 9 shows snapshots
of an interpolation and of an approximation of that interpolation created using the
method described.

Figure 9. 11 snapshots of the evolution of a region created using the rigid interpolation method proposed in
(Alexa et al. 2000, Baxter et al. 2008) (top) and our approximation strategy with 1 unit (3 samples) (bottom).

A quadratic Bezier curve has 3 control points and we have the option to choose if
the curve passes through all its control points. Therefore, a curve type can be used to
approximate the trajectory of a vertex between 3 consecutive samples. The rmregion
and the curve types that define the trajectories of its vertices are defined in different
times. Assuming that the sampling process uses a constant step (granularity), time

13

can be transformed to curve time by normalizing it to the range [0, 1]. Different choices
can be made w.r.t the granularity and the type of curve used to define the trajectories
of the vertices. In this work we use quadratic Bezier curves whose control points are
sampled vertices, a curve passes through all its control points, the granularity is defined
by the number of samples to be collected, the samples are collected using a constant
step and in a urmregion the trajectory of a vertex is defined using a single quadratic
Bezier curve. If 2k+1 samples are taken, k ∈ Z+, the corresponding rmregion will have
k urmregions. This means that we need at least 3 samples to create an approximation
of an interpolation, i.e. k = 1. The granularity is case dependent. The objective is to
use the minimum number of samples while obtaining a good approximation w.r.t some
criteria, e.g. the evolution of the area during interpolation. Studying the best strategy
to choose the granularity is left for future work and investigation.

When using this procedure: (i) the rotation of objects with fixed shape is approxi-
mated not exact and (ii) a bad or unacceptable representation can be generated (this
depends largely on the characteristics of the curves being approximated and the num-
ber of Bezier curves used in the approximation) e.g. if a large rotation exists and
few samples are used. This procedure does not provide explicit mechanisms to detect,
handle or avoid self-intersections during interpolation. In the next section, we define
the operation interpolate to construct this common representation.

6.2. Interpolate: region × instant × region × instant × H × P →
rmregion

Given two observations of the evolution of a region oσ and oσ+1, taken at two instants
of time, an interpolation method H, e.g. the rigid interpolation method proposed in
(Alexa et al. 2000, Baxter et al. 2008), and extra parameters P that include (i) param-
eters specific to H, (ii) the correspondence between the vertices of oσ and oσ+1 used
by H and (iii) the granularity of the approximation, interpolate creates a rmregion
according to the procedure presented in Section 6.1 (See Figure 12 (C and D)).

Interpolate has two steps. First H is used to create an interpolation. Then, the
interpolation is approximated to create a rmregion. The complexity of the first step
depends on H. In the second step, in a straightforward implementation, we have to
iterate through the k units of the rmregion that will be created and for each unit we
have to iterate through the s segments of a sample. This is because we can get the
position of the endpoints of a segment in the 3 samples in a unit in constant time.
Therefore, the complexity in this case is O(ks). In practice, k is expected to be a small
number, so k is some constant. We note, however, that it is possible to iterate through
the s segments of a sample only once and construct all the moving segments of the k
units of the rmregion corresponding to the µ samples taken. Thus, the complexity of
interpolate is O(HO + s), where HO is the complexity of H in the first step and s is
the number of segments in oσ or oσ+1 (this includes segments that are degenerated to
a point).

7. Experimental Results

This section presents experimental results obtained when using the data model for
rmregions and the algorithms for spatiotemporal operations proposed in this work.
We start by emphasizing the following points. (i) We use real and synthetic data to

14

perform the experiments presented in this section. (ii) The algorithms for spatiotem-
poral operations and the data model proposed in this work were implemented using
Python 3 in a VMware virtual machine and are a non-optimized reference implemen-
tation. (iii) The region interpolation methods, librip and the polyhedra based model,
and the spatiotemporal operations proposed in the moving objects databases literature
used in this work to obtain results and perform experiments were used via the Sec-
ondo database (Güting et al. 2010) that was executed in a VMware virtual machine.
We use librip as a reference to compare the approximations obtained when using the
region interpolation methods proposed in the literature and our strategy. In the ex-
amples shown, librip provides the best representation that can be obtained using the
region interpolation methods proposed in the literature. We use the polyhedra based
model to compare execution time results, because it is more efficient when handling
objects with a large number of units. (iv) We present and compare execution time
results obtained using our strategy and the methods proposed in the literature, how-
ever, (ii) and (iii), above, should be considered when drawing conclusions from the
results shown. The results obtained using our strategy do not include the execution
time needed to create the interpolation that is approximated. This is because: this
execution time depends on the interpolation method used, the original interpolation is
supposed to be created only once and it seems to make sense to focus the analysis on
the execution time of the strategy. (v) Few of the spatiotemporal operations proposed
in the literature are actually implemented. This makes a more complete comparison
between different methods difficult to perform and had an influence on the methods
we chose to use. (vi) We found some problems when using some region interpolation
methods implementation. Some of these problems had not been resolved in the version
of Secondo that was used. (vii) The solver used to find the roots of the quartic poly-
nomials used to find the intersections between a moving point and a moving segment
and between two moving segments computes approximate solutions. This can cause
numerical problems and make the use of optimizations that rely on exact solutions
harder to use in practice. A video showing some experimental results is available at1.

7.1. Number of Units × Execution Time

To compare the approximations created using the region interpolation methods pro-
posed in the literature and quadratic Bezier curves we use two examples: a simple
region, say sr, that rotates clockwise between two observations of its evolution (See
Figure 12) and the iceberg presented in Section 3.3.

We consider the interpolation created using the rigid interpolation method proposed
in (Alexa et al. 2000, Baxter et al. 2008) as our ground truth. We take different
numbers of samples from the original interpolation using a constant step, create moving
regions from those samples using quadratic Bezier curves and librip (these are moving
regions with a different number of units) and compare the moving regions created,
with the ground truth. We take 500 observations from the original interpolation (our
ground truth) and 500 observations from the moving regions that were created. Then,
we compare the representations obtained, visually, and we compare the evolution of
the area and measure its maximum deviation w.r.t the ground truth (See Figures 10
and 11).

In figures 10 and 11, gt, ku, soa_ku and bz_ku stand for ground truth, moving
region with k units and moving region with k units created using librip and Bezier

1https://drive.google.com/file/d/1_C5yK5BjMpHOyRgO4scV62VwFvekDQDC/view?usp=sharing

15

https://drive.google.com/file/d/1_C5yK5BjMpHOyRgO4scV62VwFvekDQDC/view?usp=sharing

Figure 10. Evolution of the area of sr (top) and the iceberg (bottom) when using librip and Bezier curves.

Figure 11. Maximum area deviation of the moving regions that were created w.r.t the ground truth for sr
(left) and the iceberg (right).

curves, respectively.
When using librip we can observe the following. In the first case (Figure 10 (top

left)) we can see a clear pattern in the evolution of the area of the moving region during
its evolution. In this example, the moving region with 1 unit and the moving regions
with > 1 unit, if we consider that they all represent a rotation, represent the rotation
of the object in opposite directions. This causes an unexpected result, i.e. the moving
regions with 2 and 4 units have a bigger area deviation w.r.t the ground truth than
the moving region with 1 unit (See Figure 12 (A and B)). There is also an effect that
can be seen in the chart, but may not be completely obvious. As the number of units
grows, each unit will be defined in a smaller interval of time. Because of the pattern
of the evolution of the area, and depending on the amount of time in which a unit is
defined, a wave effect will occur on the border of the object until a certain number of
units is reached, in which case such effect cannot be perceived anymore. If the amount
of time is small enough, this effect resembles a heartbeat. See a video demonstrating
this effect here2. In the case of the iceberg, we can observe that even with > 200 units

2https://drive.google.com/file/d/17oMPzE9eLpFPL9ezavk2_xST8d0qTjCi/view?usp=sharing

16

https://drive.google.com/file/d/17oMPzE9eLpFPL9ezavk2_xST8d0qTjCi/view?usp=sharing

moving regions can have units where concavities simultaneously appear and disappear
from/to a point. These cases corresponds to the fluctuations on the curves seen in
Figure 10 (bottom left). The area of the object can shrink during a unit and grow
during another unit, in the same moving region. If the intervals of time where the
units are define correspond to relatively short periods of time these fluctuations will
occur as shown in this video3, where a moving region with 125 units is shown evolving
during a short period of time. Because the rotation of the iceberg is relatively small,
the deviation of the area is mainly caused by the representation of the concavities.

Figure 12. 13 snapshots of the evolution of sr created using: librip with 1 (A) and 2 units (B), the rigid

interpolation method proposed in (Alexa et al. 2000, Baxter et al. 2008) (C) and quadratic Bezier curves with
2 units (D). In (A) and (C), the unit starts and ends at the first and last snapshot shown, respectively. In (B)

and (D), the first and second units begin and end at the first and seventh and at the seventh and thirteenth

snapshot shown, respectively. (D) was created using 5 samples collected from (C).

When using Bezier curves there is also a pattern. However, the pattern is much
more subtle, because the moving regions approximate the ground truth very rapidly.
Also, there are no fluctuations because a correspondence given by the user is used.

In the first case, we can observe that the moving regions created using Bezier curves
approximate the ground truth very rapidly and with only 2 units the maximum area
deviation is around 1.44%. In the case of the moving regions created using librip, a
moving region with 100 units has a maximum area deviation of around 2.72%. It is
important to note that the trajectories of the vertices during interpolation tend to
approximate linear functions as the number of units grows (in which case there is
no advantage in using quadratic bezier curves) (See Figure 11 (left)). We also have
to take into consideration the wave effect that can occur and be more or less severe.
Even if a reasonable number of units provides a reasonable maximum area deviation
the corresponding representation can include this effect. If such effect is desirable, or
to which extent it is acceptable, is, we believe, case and application dependent. In
the second case, a moving region with 1 unit created using Bezier curves has a lower
maximum area deviation w.r.t the ground truth than a moving region with 256 units
created using librip and a moving region with 2 units created using Bezier curves has
a maximum area deviation of 0.02% (See Figure 11 (right)).

Finally, we study the evolution of the execution time when querying when the
iceberg and a moving point and the iceberg and another moving region intersect,
when their evolution is created using quadratic Bezier curves (i.e. using our strategy)
and the polyhedra based model. The iceberg is evolving between 2 observations and
its evolution is represented using 1, 2, 4, 16, 25, 50, 125, 250 and 256 units. The moving
point has a linear trajectory and it is evolving during a unit. The second moving region
is evolving between 2 observations (the first and last observations of mr2, shown in

3https://drive.google.com/file/d/1teCtDexbX4HcsqBJpjbtwk6uVMPxJ2q_/view?usp=sharing

17

https://drive.google.com/file/d/1teCtDexbX4HcsqBJpjbtwk6uVMPxJ2q_/view?usp=sharing

Section 7.2.2, Figure 14), during a unit. Table 1 presents the execution times obtained
for the 2 cases.

Table 1. Execution times obtained when querying the time intervals when a moving
region represented using a different number of units, created using quadratic Bezier

curves and the polyhedra based model, intersects with a moving point with a linear

trajectory (left) and with another moving region (right).

Execution Time Msec Execution Time Msec

Num Units Bezier (AABB) SOA Bezier (AABB) SOA

1 4,00 27,25 331,00 538,00
2 9,00 34,25 604,00 690,80
4 15,00 49,75 981,00 1059,00
16 55,00 138,75 3797,00 3055,20
25 84,00 214,25 5322,00 4709,40
50 182,00 414,00 10606,00 9160,60
125 447,00 1067,00 26318,00 22837,20
250 857,00 2291,25 53282,00 47315,00
256 871,00 2381,75 54296,00 48107,20

In Table 1, Bezier (AABB) and SOA refer to execution time results obtained when
querying when the moving objects intersect, when the evolution of the iceberg is repre-
sented using k units (Num Units) created using our strategy and the polyhedra based
model, respectively. In the first case, the algorithms for spatiotemporal operations use
an Axis-Aligned Bounding Box filter step to improve their performance. The execu-
tion times shown cannot be compared directly, because the polyhedra based model is
running in a database, as mentioned in the beginning of Section 7. This introduces
an overhead on the execution time that we cannot quantify precisely. The results can,
however, be used as a reference. In the first case (Table 1 (left)), i.e. when querying
the time intervals when the iceberg and a moving point intersect, we can observe that
the execution times obtained using our strategy are reasonable. We note that in this
case, when using 2 units we obtain a maximum area deviation of approx. 0.02%. This
corresponds to an execution time of approx. 9 msecs. In the second case (Table 1
(right)), i.e. when querying the time intervals when the iceberg and another moving
region intersect, we observe that the execution times obtained when using our strategy
grow faster as the number of units grows. The execution times are still within rea-
sonable bounds, when compared with the results obtained using the polyhedra based
model. If using 2 units to estimate the evolution of the iceberg we obtain an execution
time of approx. 604 msecs. Although we can expect that the execution time will grow
faster when using our strategy as the number of units used to create the evolution of
a rmregion grows, the key observation is that we need much less units to approximate
the rotation of a region between 2 observations, with a very good quality. This suggest
that our strategy is a reasonable alternative to the methods proposed in the moving
objects databases literature in the cases discussed and presented. It is up to the user
to choose which method to use to create the evolution of a phenomenon or part of its
evolution.

7.2. Spatiotemporal Operations Involving RMRegions

This section presents experimental results obtained using a reference implementation
of the algorithms for spatiotemporal operations proposed in Section 5.

18

7.2.1. Moving Point × Rotating Moving Region

We used 9 cases for testing, created using 3 rotating moving regions, mr1, mr2 and
mr3, with 41, 40 and 850 vertices, respectively, evolving between two observations,
and 9 moving points, mp1, ..., mp9, with linear and quadratic trajectories. Figure 13
shows mr1, mr2 and mr3. The execution time results presented here were obtained
by executing each query 100 times for each case. Intersects uses a simple axis-aligned
bounding boxes (AABBs) filter step to reduce the number of moving point vs moving
segment intersection checks.

Figure 13. mr1 (left), mr2 (middle), mr3 (right) and the samples used to generate their evolution.

Table 2 presents average execution time results for intersects: mpoint × rmregion
→ mbool, AVG ET1, and intersects: mpoint × rmregion → bool, AVG ET2, for the 9
cases considered. AVG ET, NIT, I, NV and MPTT stand for average execution time
in seconds, the number of time intervals where the two moving objects intersect, if the
two moving objects intersect, the number of vertices of the rotating moving region and
the type of trajectory of the moving point (Linear or Quadratic), respectively. In the
case of the first operation: touch, disjoint and inside give similar results. Cases 8 and
9 have the largest average execution time: 0.026 sec and 0.016 sec, in the case of the
first and the second operation, respectively. These are also the cases where the rotating
moving region has the largest number of vertices. The number of vertices of the rotating
moving region, the number of intersections (or not having intersections) and the type
of trajectory of the moving point are important factors, but the number of moving
point vs moving segment intersection checks performed will ultimately determine the
execution time. Among other possible optimizations, a good (an efficient) filter step
is needed to reduce the number of intersection checks.

Table 2. Execution times for intersects: mpoint × rmregion → mbool and intersects: mpoint ×
rmregion → bool for the 9 cases considered.

mp × rmr → mbool mp × rmr → bool

Case M. Objects AVG ET (sec)1 NIT AVG ET (sec)2 I NV MPTT

1 mr1 x mp1 0,00483 1 0,00209 True 41 L
2 mr1 x mp2 0,00460 2 0,00085 True 41 L
3 mr1 x mp3 0,00524 2 0,00088 True 41 Q
4 mr2 x mp4 0,00547 1 0,00258 True 40 Q
5 mr2 x mp5 0,00714 2 0,00170 True 40 Q
6 mr2 x mp6 0,00785 3 0,00105 True 40 Q
7 mr2 x mp7 0,00673 0 0,00664 False 40 Q
8 mr3 x mp8 0,02589 3 0,01549 True 850 Q
9 mr3 x mp9 0,02580 5 0,01541 True 850 Q

7.2.2. Rotating Moving Region × Rotating Moving Region

We used 9 cases for testing, created using 5 rotating moving regions, mr1, ..., mr5,
with 41, 19, 40, 63 and 850 segments, respectively, evolving between two observations,
with different trajectories. Figure 14 shows the 5 rotating moving regions. Intersects
uses a simple axis-aligned bounding boxes (AABBs) filter step to reduce the number
of moving segment vs moving segment intersection checks. Table 3 presents average

19

execution time results for intersects: rmregion × rmregion → mbool, AVG ET1, and
intersects: rmregion × rmregion → bool, AVG ET2, for the 9 cases. NV MR1 and
NV MR2 give the number of vertices of the two rotating moving regions involved,
respectively. In the case of the first operation: touch, disjoint, inside and overlaps
give similar results. Case 9 has clearly the largest average execution time, 6.642 sec.
This is the case involving the two rotating moving regions with the largest number of
vertices. In the case of the second operation, case 7 has the largest average execution
time, 0.078 sec. This is the case where the two rotating moving regions do not intersect.
Case 3 has the smallest average execution time by taking advantage of the fact that
the two rotating moving regions are known to intersect at the end of their evolution.
The results were obtained by executing each query 100 times for each case. Again,
the main factor determining the execution time is the number of moving segment vs
moving segment intersection checks.

Figure 14. From left to right: mr2, mr1, mr3, mr5, mr4 and the samples used to generate their evolution.

Table 3. Execution times for intersects: rmregion × rmregion → mbool and intersects: rmregion × rmregion
→ bool for the 9 cases considered.

rmr × rmr → mbool rmr × rmr → bool

Case M. Objects AVG ET (sec)1 NIT AVG ET (sec)2 I NV MR1 NV MR2

1 mr1 x mr2 0,070 1 0,003 True 41 19
2 mr1 x mr2 0,050 1 0,017 True 41 19
3 mr1 x mr2 0,021 1 0,000 True 41 19
4 mr3 x mr4 0,248 1 0,016 True 40 63
5 mr3 x mr4 0,165 1 0,015 True 40 63
6 mr3 x mr4 0,151 1 0,048 True 40 63
7 mr3 x mr4 0,077 0 0,078 False 40 63
8 mr3 x mr4 0,095 2 0,057 True 40 63
9 mr5 x mr5 6,642 1 0,044 True 850 850

8. Conclusion

In this paper we propose a strategy to estimate and query the evolution of moving
regions whose moving segments are allowed to rotate and change their length between
two observations. This introduces a new class of moving regions called rotating mov-
ing regions. The strategy allows different interpolation methods to be used to create
moving regions and is independent of the interpolation method used and its complex-
ity. This is achieved by creating an approximation of the interpolation (created using
some interpolation method) with a certain granularity using quadratic Bezier curves.
This establishes a common structure for moving regions that is then used to represent
and query their evolution allowing a more realistic representation of the continuous
evolution of real-world phenomena in moving objects databases, in particular, in cases
where a rotation occurs between two observations of the evolution of the phenom-
ena. Another characteristic of this strategy is that moving points can have non-linear
trajectories in a natural way. We present the implementation of a set of operations
involving rotating moving regions and results obtained when using them. We study the

20

use of a different number of units to represent the rotation of a moving region between
two observations and the execution time of spatiotemporal operations using these rep-
resentations. Experimental results show that our strategy is a reasonable alternative to
the region interpolation methods proposed in the moving objects databases literature
when a certain number of units has to be used to approximate the rotation of a region
between two observations, with a certain quality, and can be used to complement these
methods.

We do not consider the case when the trajectory of a moving segment and a moving
point and the trajectory of two moving segments are collinear and studying the best
strategy to choose where or when to collect samples during interpolation to obtain
an approximation with a certain quality using the minimum number of samples, is
left for future work and investigation. The strategy (i) can be applied to complex ge-
ometries, e.g. polygons with holes, (ii) can be used as an interpolation method on its
own, (iii) segments can appear from and disappear to a point during interpolation,
(iv) the rotation of objects with fixed shape can only be approximated, (v) a bad (or
unacceptable) representation can be generated (this depends largely on the character-
istics of the curves being approximated and the number of Bezier curves used in the
approximation) e.g. if a large rotation exists and few samples are used, (vi) a corre-
spondence between the vertices of the geometries being interpolated has to be given
and (vii) the strategy does not provide explicit mechanisms to detect, handle or avoid
self-intersections during interpolation. The primitives used to implement operations
on rmregions can be used as a base to, at least, detect if self-intersections occur during
interpolation.

Data and Codes Availability Statement

The data and codes that support the findings of this study are available at https:

//doi.org/10.6084/m9.figshare.17284877.

Acknowledgement(s)

José Duarte has a research grant awarded by the Portuguese public agency for science,
technology and innovation (FCT) under the reference PD/BD/142879/2018, financed
by the Portuguese State Budget and co-financed by the European Union Budget
through the European Social Fund (ESF) and the Centro Regional Operational Pro-
gram (Centro 2020). This work is partially funded by FCT in the context of the projects
UIDB/00127/2020, POCI-01-0145-FEDER-032636 and MIT-EXPL/ACC/0057/2021.

Disclosure statement

The authors report there are no competing interests to declare.

21

https://doi.org/10.6084/m9.figshare.17284877
https://doi.org/10.6084/m9.figshare.17284877

Notes on contributors

José Duarte is a Ph.D. student at the University of Aveiro with in-
terests in spatiotemporal databases. He earned his MS and BS in
Computer Science from the University of Aveiro.

Paulo Dias is an Assistant Professor at the Department of Electronics,
Telecommunications and Informatics of the Universidade de Aveiro
(Portugal) and a researcher at IEETA, a non-profit R&D institute
affiliated with the same university. His main research interests are vir-
tual and augmented reality, 3D reconstruction, computer vision, com-
puter graphics, visualization, combination and fusion of data from
multiple sensors.

José Moreira is an Assistant Professor at the Department of Elec-
tronics, Telecommunications and Informatics of the Universidade de
Aveiro (Portugal) and a researcher at IEETA, a non-profit R&D in-
stitute affiliated with the same university. His main research interests
are spatiotemporal databases, data provenance and time series.

References

Alexa, M., Cohen-Or, D., and Levin, D., 2000. As-rigid-as-possible shape interpolation. In: J.R.
Brown and K. Akeley, eds. Proceedings of the 27th Annual Conference on Computer Graphics
and Interactive Techniques, SIGGRAPH ’00, 23–28 July 2000, USA. ACM Press/Addison-
Wesley Publishing Co., 157–164.

Baxter, W., Barla, P., and Anjyo, K., 2008. Rigid shape interpolation using normal equations.
In: K. Anjyo and F.X. Sillion, eds. Proceedings of the 6th International Symposium on Non-
Photorealistic Animation and Rendering, NPAR ’08, 9–11 June 2008, New York, NY, USA.
ACM, 59–64.

Forlizzi, L., et al., 2000. A data model and data structures for moving objects databases.
SIGMOD Record, 29 (2), 319–330.

Güting, R.H., Behr, T., and Düntgen, C., 2010. SECONDO: A platform for moving objects
database research and for publishing and integrating research implementations. IEEE Data
Engineering Bulletin, 33 (2), 56–63.

Güting, R.H., et al., 2000. A foundation for representing and querying moving objects. ACM
Transactions on Database Systems, 25 (1), 1–42.

Güting, R.H. and Ding, Z., 2004. A simple but effective improvement to the plumb-line algo-
rithm. Information Processing Letters, 91 (6), 251–257.

Güting, R.H. and Schneider, M., 2005. Moving objects databases. 1st ed. The Morgan Kauf-
mann Series in Data Management Systems. Morgan Kaufmann.

Heinz, F. and Güting, R.H., 2016. Robust high-quality interpolation of regions to moving
regions. GeoInformatica, 20 (3), 385–413.

Heinz, F. and Güting, R.H., 2018. A data model for moving regions of fixed shape in databases.
International Journal of Geographical Information Science, 32 (9), 1737–1769.

Heinz, F. and Güting, R.H., 2020. A polyhedra-based model for moving regions in databases.
International Journal of Geographical Information Science, 34 (1), 41–73.

Liu, Y., Yan, H., and Martin, R., 2011. As-rigid-as-possible surface morphing. Journal of
Computer Science and Technology, 26 (3), 548–557.

22

McKenney, M. and Frye, R., 2015. Generating moving regions from snapshots of complex
regions. ACM Transactions on Spatial Algorithms and Systems, 1 (1), 4:1–4:30.

McKenney, M., Viswanadham, S.C., and Littman, E., 2014. The CMRmodel of moving regions.
In: C. Zhang, A. Basalamah, A.M. Hendawi and P. Nguyen, eds. Proceedings of the 5th ACM
SIGSPATIAL International Workshop on GeoStreaming, IWGS ’14, 4 November 2014, New
York, NY, USA. ACM, 62–71.

McKenney, M. and Webb, J., 2010. Extracting moving regions from spatial data. In:
D. Agrawal, P. Zhang, A.E. Abbadi and M.F. Mokbel, eds. Proceedings of the 18th SIGSPA-
TIAL International Conference on Advances in Geographic Information Systems, GIS ’10,
3–5 November 2010, New York, NY, USA. ACM, 438–441.

Moreira, J., Dias, P., and Amaral, P., 2016. Representation of continuously changing data over
time and space: Modeling the shape of spatiotemporal phenomena. In: 2016 IEEE 12th
International Conference on e-Science (e-Science), 23–27 October 2016. IEEE Computer
Society, 111–119.

Tøssebro, E. and Güting, R.H., 2001. Creating representations for continuously moving regions
from observations. In: C.S. Jensen, M. Schneider, B. Seeger and V.J. Tsotras, eds. Advances
in Spatial and Temporal Databases, 12–15 July 2001, Berlin, Heidelberg. Springer Berlin
Heidelberg, 321–344.

Yan, H., Hu, S., and Martin, R., 2004. Morphing based on strain field interpolation. Computer
Animation and Virtual Worlds, 15 (3-4), 443–452.

23

	Introduction
	Related work
	Background
	Moving Objects Databases Data Types
	Region Interpolation Methods
	Modeling the Evolution of Moving Segments
	Modeling the Evolution of Concavities

	Alternative Region Interpolation Methods

	Discrete Model for Rotating Moving Regions
	Implementation of Operations Involving Rotating Moving Regions
	Atinstant: rmregion instant region
	Intersects: mpoint rmregion mbool
	Moving Point Moving Segment
	Reference Implementation

	Intersects: rmregion rmregion mbool
	Moving Segment Moving Segment
	Reference Implementation

	A Strategy to Use Different Interpolation Methods in the Context of Moving Objects Databases
	A Common Representation for Interpolation Methods
	Interpolate: region instant region instant H P rmregion

	Experimental Results
	
	Spatiotemporal Operations Involving RMRegions
	
	

	Conclusion

