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Abstract: Texture mapping of 3D models using multiple images often results in textured meshes
with unappealing visual artifacts known as texture seams. These artifacts can be more or less visible, 15

depending on the color similarity between the used images. The main goal of this work is to produce
textured meshes free of texture seams through a process of color correcting all images of the scene.
To accomplish this goal, we propose two contributions to the state of the art of color correction: a
pairwise-based methodology, capable of color correcting multiple images from the same scene; the
application of 3D information from the scene, namely meshes and point clouds, to build a filtering 20

procedure, in order to produce a more reliable spatial registration between images, thereby increasing
the robustness of the color correction procedure. We also present a texture mapping pipeline that
receives uncorrected images, an untextured mesh, and point clouds as inputs, producing a final
textured mesh and color corrected images as output. Results include a comparison with four other
color correction approaches. These show that the proposed approach outperforms all others, both in 25

qualitative and quantitative metrics. The proposed approach enhances the visual quality of textured
meshes by eliminating most of the texture seams.

Keywords: color correction, texture mapping, joint image histogram, color mapping function

1. Introduction

The creation of 3D models from the captured shape and appearance of objects is 30

known as 3D reconstruction. It is a widely researched topic in areas such as computer
graphics [1] and computer vision [2], and has recently gained attention in others, namely
robotics [3], autonomous driving [4], medical applications [5], cultural heritage [6] and
agriculture [7].

Texture mapping is the colorization of a 3D mesh using a single image. However, 35

in more recent applications, texture mapping has been applied to cases where several
overlapping images are available to colorize the mesh. The overlap will often occur in
irregular regions, which creates an intricate combination of dependencies. This entails the
existence of a mechanism to handle the redundant photometric information, and is often
referred to as multi-view texture mapping [8–11]. The problem is generally solved in two 40

different ways: by selecting a single image from the set of possible images, or by fusing the
texture from all available images. Several authors have proposed methodologies to carry
out the fusion, based on different forms of weighted average of the contributions of textures
in the image space [12,13]. However, these approaches are highly sensitive to inaccuracies
in camera pose estimation, as even slight misalignments may generate ghost and blurring 45

artefacts in the textures, which are not visually appealing [14]. Still, selecting a single image
to be used for texture mapping raises the problem of choosing the most adequate one
from a discrete set of possibilities and additionally, how to produce a consistent selection
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of images for all the faces in the 3D mesh. Some authors propose to employ a Markov
random field to select the images [15]. Others have used graph optimization mechanisms 50

[16], or optimization procedures that minimize discontinuities between neighbouring faces
[17]. These approaches address the problem of blurring and ghost artefacts. However,
particularly in regions where the borders of the selected images meet, visual seam artefacts
are often noticeable. The seams are more or less visible depending on the similarity of
colors in the images, which is why a proper color correction of the images is crucial to 55

achieve seamless texture mapping. This may be carried out using a form of post-processing
operation. For example, in [18] authors propose to use Poisson image editing techniques to
smooth the texture. Color correction can be defined as the general problem of compensating
the photometrical disparities between two coarsely geometrically registered images. In
other words, color correction consists of transferring the color palette of a reference image, 60

usually called source image (S), to a target image (T) [19].
There are several color correction approaches in the literature, however, the majority

of them focus on correcting a pair of images, whereas our objective is to increase the level
of similarity of multiple images. Color correction approaches, in a general sense, can be
divided into two main classes: model-based parametric and model-less non-parametric. 65

Model-based parametric approaches assume that the color distribution of the images
follows some statistical distribution. In 2001, Reinhard et al. [20] used simple Gaussians to
model the color distributions of images S and T, proposing the following linear transfor-
mation:

f̂ (x) = ȳ+
Vy

Vx
· (x− x̄) , (1)

where (ȳ, Vy) represent the mean and standard variation of the global color distribution of 70

S in the lαβ color space, (x̄, Vx) represent the mean and standard variation of the global
color distribution of T in the lαβ color space, and x corresponds to the color of a pixel in T.
This work was one of the first model-based parametric methods for color correction, and
is commonly used as baseline method for comparing other color correction approaches
[21–23]. Additional research focused on improving the modeling of the color distributions 75

of the images, due to the simplicity of Gaussian distributions. For instance, in [24], the
authors divided the images into regions, then matched the regions of both images, and for
each match of regions applied a similar method to the one proposed in [20]. In addition, the
authors also proposed the usage of Gaussian Mixture Models (GMMs) and the Expectation
Maximization (EM) algorithm to model the color distribution more accurately. In [25], 80

the authors first divided the images into spatially connected regions using the mean shift
algorithm, then each region was modeled as a collection of truncated Gaussians using a
maximum likelihood estimation procedure, in order to model more accurately the local
color distributions. In [22], the authors proposed an extension of [20] to the RGB color
space, by the development of a simple statistic-based method that uses both the mean 85

and covariance matrix. Another problem identified by [20] was the appearance of cross
channel artifacts caused by the modelling and correcting of each channel of the images
independently. In [23], the authors tried to solve this problem by using 3D GMMs to model
the color distribution across the 3 channels of the images. Other model-based parametric
approaches use gain compensation techniques [26–28], only operating in the intensity 90

channel rather than in the full color space.
Model-less non-parametric approaches make no assumptions about the nature of the

color distributions of the images. Usually, in these approaches, a 2D Joint Image Histogram
(JIH) is computed from the overlapped areas of two images [19]. The JIH is then used
to estimate a Color Mapping Function (CMF). In this process, there are two points that 95

deserve to be highlighted: a) robust methods are usually required in order to deal with the
outliers caused by different illumination, camera exposure variation [29], vignetting effect
[30], reflection properties of certain objects, capturing angles, among others [19]; b) the
monotonicity property of the CMF has to be maintained [31]. There are several examples of
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model-less non-parametric approaches, and what differentiates most of the approaches is 100

how they tackle those two. For example, in [31], the authors propose a robust estimation of
the Brightness Transfer Function (BTF) from the JIH of two overlapped images. The authors
also used dynamic programming to enforce the monotonicity constraint in the estimation
of the BTF. In [32,33], the authors solved these two issues in a separated way: first they
used a 2D tensor voting to remove the noise and produce an initial estimation of the CMF; 105

then they used a heuristic local adjustment method to regulate the CMF estimation and
enforce the monotonicity increasing constraint. The same authors, in [34], experimented
the usage of a Bayesian framework to estimate the CMF. In [35], the authors proposed an
energy minimization method in the histogram to estimate a robust CMF, while in [36], high-
dimensional Bezier patches were used to estimate the CMF. In [37], the authors employed 110

the moving least squares framework with spatial constrains to correct images in the RGB
color space. In [29], the authors proposed the usage of a root-polynomial regression that is
invariant to the camera exposure variation and scene irradiance. Another option, as seen in
[38], is to use the Vandermonde matrix to find an interpolating polynomial.

Color correction approaches can also be divided based on whether they are global 115

or local. Global color correction approaches [20,22,39,40] assume that estimating a single
color mapping function for the entire image should be sufficient to perform a proper
color correction. In complex scenes, global color correction approaches are often unable
to accurately model the color distribution in the images due to factors such as color
clusters, differing optics, sensor characteristics, hardware processing employed by video 120

cameras, among others [41]. Local color correction approaches [24,25,31,42,43] go further
by segmenting the image into spatially connected regions or color clusters, and then fitting
a color mapping function to each of the obtained segments. These approaches are able to
model the color distribution more precisely, and, in most cases, this translates to a more
accurate color correction process. However, local approaches usually do not allow a direct 125

mapping of color between pixels for a pair of images because they are limited by the
accuracy of the geometric registration. As a result, there is either a maximum number or
a minimum area of segmented regions for the image [25]. In other words, for very small
regions or, in the degenerate case, single pixel regions, the color correction will fail because
of misalignment in the region mappings, caused by error in the geometric registration. Also, 130

statistical inference over small sample sizes is noisy and there are local color correction
problems such as image clarity reduction and structural inconsistency. To tackle these
issues, [44] proposed the optimization of a residual image between the target image and the
corrected one. There are also authors, such as [33,45], who have tried to combine benefits
of both approaches by taking into consideration global and local color information. 135

The two most complete performance evaluations of color correction approaches were
carried out in [19] and in [25]. In [19], the authors tested nine color correction algorithms
applied to 70 pairs of images. The conclusions of that evaluation state that, in the model-
based parametric approaches, gain compensation [28] and local color transfer [24] were the
approaches that yielded the best results, when considering the color transfer effectiveness 140

metric. In the model-less non-parametric approaches, the best approaches, considering that
same evaluation metric, were the tensor voting in joint image space [33] and brightness
transfer function [31]. Furthermore, the authors claim that, using more evaluation metrics,
such as extendability, stability, and speed, both the model-based parametric approaches
cited above [24,28] achieved the best results. In [25], the authors carried out a performance 145

evaluation of 11 different color correction algorithms, applied to 63 pairs of images and
used three evaluation metrics. They demonstrated that their approach, modeling of regions
using truncated Gaussians, outperforms all other 10 approaches considering the PSNR and
S-CIELAB metrics. Furthermore, the authors show that, with respect to color correction
performances, the RGB and lαβ color spaces achieve similar results. 150

The previous lines have detailed several approaches to cope with the problem of color
correcting a pair of images. Texture mapping applications often have several images of
the scene, and this is one of the shortcomings of the state of the art: most approaches
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are designed to operate using only two images, and it is not straightforward how those
methods could be expanded to accommodate multiple images. 155

Another relevant issue is the usage of spatial information to enhance the color correc-
tion. There are several global approaches [20,22,24], which do not use spatial information
as an input to the color correction procedure. However, since they do not require spa-
tial registration between the images, their effectiveness is limited. Some other proposed
approaches make use of spatial information, but only at the image level, meaning that 160

they require the images to be geometrically registered with respect to each other. As seen
in [19,31], and more recently [25], the usage of this additional information enhances the
effectiveness of the color correction with respect to that of global approaches. However,
there is additional information that could further enhance the color correction procedure,
which has not been used thus far. We refer to the spatial registration, not only between 165

the images in the scene, but also with respect to the range measurements of that scene (the
point clouds) and the mesh that represents the surfaces of the scene. Using this data, it is
possible to detect occlusions and other situations that may lead to poor performance of the
color correction algorithm.

This paper proposes a novel method that attempts to make use of that additional 170

information in order to improve the effectiveness of the color correction procedure. Fur-
thermore, we proposed a pairwise-based methodology that is able to tackle the problem
of color correcting multiple images. The procedure works by color correcting all images
in the dataset against a common source image, referred to as reference image. We have
also implemented two distinct image selection algorithms to assess the performance of the 175

proposed color correction algorithms under the application of different camera selection
criteria.

The remainder of the paper is structured as follows: in Section 2, the proposed ap-
proach is presented, Section 3 discusses the results, and Section 4 presents the conclusions.

2. Proposed Approach 180

The architecture of the proposed approach is depicted in Figure 1. As input, our system
takes RGB images, registered point clouds from different scans, and a 3D mesh obtained
from those point clouds. All RGB images must be geometrically registered with respect
to the 3D model, given that our main objective is to use 3D information to enhance the
similarity between the images. Firstly, the faces present in the 3D mesh are projected onto 185

the images, to create what we call pairwise mappings, i.e., for each of the mesh triangles, we
compute the pixel coordinates of the projection corresponding to the three vertices in each
pair of images. Then, we apply several techniques to filter the noisy pairwise mappings
that would undermine both the color correction process and the texture mapping. After a
successful removal of the noisy pairwise mappings, we compute a Joint Image Histogram 190

(JIH) for every pair of images and estimate a Color Mapping Function (CMF) that best fits
the JIH data. To finish the color correction procedure, we perform pairwise color correction
using the CMFs created in the previous step, effectively correcting all images with respect
to a chosen image that must be carefully selected (reference image). At the end of this step,
we produce the corrected RGB images. To analyze the influence of this 3D-based color 195

correction in 3D meshes, we use the corrected images to colorize each face of the 3D mesh
using 2 different techniques that will be explained later on. Besides using color corrected
images to colorize the 3D mesh, we also make use of the information from the pairwise
mappings filtering component to increase the robustness of the image selection technique.
At the end, we produce the textured mesh. 200

In the remainder of this section, we describe every component of the architecture and
present the intermediate results for each of the components. The dataset (Figure 2) used to
produce the intermediate results was taken from a laboratory, containing 7 images, 9 point
clouds from different scans of the entire room, and a 3D mesh with 46,627 faces and 27,454
vertices from a corner of the room. 205
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Figure 1. Architecture of the proposed approach.

2.1. Computation of Pairwise Mappings

The first step of the 3D-based color correction is the projection of the mesh faces
onto the images. For this purpose, we use the pinhole camera model [46] to compute the
projections of all vertices of the faces. The projection of the 3D coordinates (x f ,v ∈ R3) of

the v-th vertex of the f-th face, of the set of faces F , onto the i-th image (x(i)f ,v ∈ Z2), of the set 210

of images I , can be described as:

x(i)f ,v = K · Ti · x f ,v ,

∀ f ∈ F ∧ ∀v ∈ {1, 2, 3} ∧ ∀i ∈ I ,
(2)

where Ti represents the extrinsic parameters associated with the camera that took the i-th
image (3 x 4 matrix) and K represents the camera’s intrinsic parameters (3 x 3 matrix). Since
all images were taken using the same camera, K will be considered the same for all images.
Throughout the document, we use the [·](i) notation to denote a projection onto the i-th 215

image. It is important to note that, although we are projecting the vertices of the mesh
onto the images, our atomic units are faces and not vertices. Thus, to assess the validity
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Figure 2. Two viewpoints from the dataset. The gray points represent the point cloud, the red surface
represents the 3D mesh, and the red spheres represent the scan locations. The images are also shown,
with frustum in blue.

of the projection of the f-th face onto the i-th image, two conditions must be fulfilled: all
vertices of the f-th face must be projected inside the i-th image and the z component of the
3D coordinates of the f-th face vertices, transformed to the camera’s coordinate reference 220

system, must be greater than 0. This assessment can be formulated as:

F (i) =

{
f ∈ F : 0 ≤

[
x(i)f ,v

]
x
< W ∧ 0 ≤

[
x(i)f ,v

]
y
< H∧

[
TTTi · x f ,v

]
z
> 0

}
,

∀v ∈ {1, 2, 3} ,

(3)

where F (i) is a set that contains the faces with valid projection to the i-th image, W, H
represents the width and height of the image, [·]x, [·]y, and [·]z are operators that extract
the x, y, and z coordinates, respectively.

After the calculation of the valid projections, we compute what we refer to as pairwise 225

mappings. Pairwise mappings are pixel coordinates from a pair of images that correspond
to the same projected vertex. Firstly, we loop through each face for every pair of images, and
evaluate if the projection of that face is valid, considering both images. Then, we create a
pairwise mapping for each vertex that consists of a tuple with two elements

(〈
x(i)f ,v, x(k)f ,v

〉)
:

the pixel coordinates of the vertex projection onto the first image and onto the second 230

image. This procedure can be formulated as:

M⟨i,k⟩ =
{〈

x(i)f ,v, x(k)f ,v

〉
: f ∈ F (i) ∧ f ∈ F (k)

}
, ∀v ∈ {1, 2, 3} , (4)

where M⟨i,k⟩ is the set that contains the pairwise mappings associated with the i-th and
k-th images. In Figure 3, the pairwise mappings are illustrated by using the same color to
showcase correspondence mappings between images.
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(a) (b)

Figure 3. Pairwise mappings. Points are colored to identify the mappings between images. For
instance, in both images, the points in pink belong to the wall.

We believe that the usage of pairwise mappings is more accurate and reliable than 235

the information computed based on the overlapping areas of two images, since it contains
photometrical information between pixels that correspond to the same projected vertex,
instead of containing photometrical information between regions of pixels that may or may
not correspond to the same 3D object. However, the state of the pairwise mappings at this
stage of the pipeline is far from optimal, because they contain noisy data caused by the 240

problems mentioned in Section 1. In the next section, such problems and the proposed
solutions for them will be discussed.

2.2. Filtering of Pairwise Mappings

The pairwise mappings computed as described in Section 2.1 contain a significant
amount of noise, as can be seen in Figure 3. For example, the red colored pixels should 245

correspond to the same projected 3D object, which is untrue because in Figure 3(a) those
pixels are the projection of the ground, while in Figure 3(b) those pixels are the projection
of the table surface. Inaccurate pairwise mappings are caused by two reasons: occluded
faces and registration errors. The most common source of noise in our system are faces
occluded in at least one of the images. This happens when two conditions are met: a) the 250

occluding face intersects the line of sight between the camera and the occluded face; b)
the occluding face is closer to the camera. The usage of pairwise mappings with occluded
faces introduces incorrect photometrical data into the system, which undermines the color
correction procedure. To tackle this problem, we use two filtering methods, as in [14]:
z-buffering and depth consistency. Although these filtering methods aim to tackle the 255

same problem, their scope of work is different, as will be explained below. Regarding the
registration errors, we are using professional equipment that guarantees a low average
registration error, and therefore, we do not propose solutions to reduce it. Still, even though
the average registration error may be low, in situations where the camera viewpoint with
respect to the face is excessively oblique, i.e, the angle between the focal axis of the camera 260

and the normal vector of the face is near 90◦, the error impact on the accuracy of the
pairwise mappings is amplified, potentially leading to inaccurate pairwise mappings. For
this reason, we propose an additional filtering method, which we call camera viewpoint
filtering, that focuses on discarding pairwise mappings of faces that have an excessive
oblique angle with respect to the camera focal axis. 265

In order to eliminate the noisy pairwise mappings, we propose a filtering procedure
composed of a combination of the three filtering methods described above: z-buffering
filtering, depth consistency filtering, and camera viewpoint filtering. Each pairwise map-
ping computed using Equation 4 is submitted to this procedure, and is only considered
valid if it passes the 3 filtering methods. In the next paragraphs, each of the individual 270
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falterings will be analyzed in detail, introducing the equations that allow their computation.
The evolution of the pairwise mappings throughout the filtering procedure is depicted in
Figure 5, where it is possible to visualize which pairwise mappings are affected by each
filtering method.

The z-buffering filtering method can be formulated as: 275

F (i) =

{
f ∈ F : ¬ f (i) ∩ g(i) ∨

(
f (i) ∩ g(i) ∧ max

v

(∥∥∥Ti · x f ,v

∥∥∥) < min
v

(∥∥∥Ti · xg,v

∥∥∥))},

∀g ∈ F \ f , ∀v ∈ {1, 2, 3},

(5)

where F (i) is the set that contains the faces that are not occluded when considering the i-th
image, f (i) and g(i) represent the projections of the f-th and g-th faces onto the i-th image,
respectively, and ∥·∥ denotes the L2 norm. In summary, to assert whether the f-th face is
occluded using the z-buffering filter, a comparison with respect to all other faces must be
carried out. To conclude that the f-th face is not occluded by the g-th face, when considering 280

the i-th image, one of two conditions must be met: the intersection between the projection of
the vertices of the f-th face ( f (i)) and the projection of the vertices of the g-th face (g(i)) must
be the empty set; or, in case the intersection is different than the empty set, the maximum
euclidean distance of the three vertices of the f-th, relative to the camera, must be less than
the minimum euclidean distance of the three vertices of the g-th, face relative to the camera. 285

Figure 5(c) and Figure 5(d) contain the pairwise mappings between the same images shown
in Figure 3, this time with the z-buffering filter applied. It is possible to observe that in
Figure 5(d) the mappings on the right side of the boiler (zone limited by the black rectangle)
were discarded because in Figure 5(c) they are occluded by the boiler itself. Note that the
red colored mappings were not discarded by z-buffering, because this method can only 290

discard pairwise mappings due to occlusions when both the occluded object and occluding
object are represented in the 3D mesh. As detailed previously, we only have the 3D mesh
of the corner of the room, meaning that the table does not exist in the 3D mesh. To tackle
this variant of the occlusion, we propose the second filtering method - depth consistency.
This method aims to discard occlusions due to discrepancies between the mesh and the 295

point cloud. These discrepancies can have multiple sources, such as mesh irregularities,
non-defined mesh, registration issues, among others. The main idea of depth consistency is
to use information both from the 3D mesh and from the point clouds to estimate the depth
of the faces via 2 different paths, and then conclude, based on the difference of those values,
whether depth inconsistency is present. Note that, by depth, we mean distance from the 300

camera to the center of the face. When the depth values are inconsistent, we can assume
that the face considered does not belong to the object that is being viewed by the camera.
Therefore, using this mapping would introduce incorrect photometric mappings into the
system. Our approach can be divided into two parts: a) depth computation of the f-th face
based on the 3D mesh; b) depth computation of the f-th face based on the point cloud. The 305

depth computation based on the 3D mesh is carried out by computing the L2 norm of the
vertices coordinates with respect to the camera, and then selecting the minimum value.
To perform the depth computation based on the point cloud, we first use the partial point
clouds from the setups where the images were taken and create depth images. An example
of these depth images can be seen in Figure 4. Once the depth images are computed, the 310

depth can be directly extracted using the coordinates obtained from vertex projection. The
depth consistency filtering can be represented as:
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(a) (b)

Figure 4. Depth images. The whiter the pixel, the more distant the projected point is relative to the
camera. For visualization purposes, these images are the result of an equalization in order to enhance
the contrast.

F (i) =

{
f ∈ F :

∣∣∣∣
mesh︷ ︸︸ ︷

min
v

(∥∥∥Ti · x f ,v

∥∥∥)−

point cloud︷ ︸︸ ︷
min

v

(
D(i)

([
x(i)f ,v

]
y
,
[
x(i)f ,v

]
x

)) ∣∣∣∣ < tdc

}
,

∀v ∈ {1, 2, 3} ,

(6)

where F (i) is the set that contains the selected faces using the depth consistency filter when
considering the i-th image, D(i) corresponds to the depth image associated with the i-th
image, and tdc is the depth consistency threshold, establishing the maximum admissible 315

discrepancy between the distances computed using these two different methods.
Figure 5(e) and Figure 5(f) contain the pairwise mappings with both the z-buffering

filter and the depth consistency filter applied. By comparing them with Figure 5(c) and Fi-
gure 5(d), two differences should be highlighted: a) the mappings inside the blue rectangle
in Figure 5(f) were discarded because they are occluded by the left leg of the table in Fi- 320

gure 5(e). Although one could expect those mappings to be removed with the z-buffering,
that is not the case, since the leg of the table was not defined on the mesh, due to its reduced
thickness, making z-buffering ineffective in this case. However, since the depth consistency
filter compares the depth between the mesh and the point cloud, it was able to detect the
discrepancy; b) the mappings inside the brown rectangle in Figure 5(f) were discarded 325

because the 3D mesh was not defined in that region, and as we can see, that is not a problem,
since the depth consistency filter can detect and eliminate those false pairwise mappings.

Lastly, we propose a method to remove pairwise mappings in which the face has an
excessively oblique viewpoint relative to the camera. We call this method camera viewpoint
filtering. The assumption behind the removal of these pairwise mappings is that when the 330

camera viewpoint is excessively oblique with respect to the face, the impact the registration
error has on the accuracy of the pairwise mappings is amplified, potentially leading to the
use of incorrect photometric information. Furthermore, this method allows us to discard
mappings between the front and rear surfaces of a face, similarly to what is done in the
back face culling method [47]. Let f⃗i be the unit vector with the direction from the i-th 335

camera to the center of the f-th face, and N⃗ f be the unit vector, normal to that face. The
camera viewpoint filtering can be described as:

F (i) = { f ∈ F : f⃗i · N⃗ f < tcv} , (7)
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where F (i) is the set that contains the faces that passed the camera viewpoint filter when
considering the i-th image and tcv is a threshold that defines the admissible angle between
f⃗i and N⃗ f . 340

Figure 5(g) and Figure 5(h) contain the pairwise mappings with all filtering methods
applied (z-buffering filtering, depth consistency filtering, and camera viewpoint filtering).
Regarding the camera viewpoint filtering, the most significant difference is inside the zone
marked with a black rectangle in Figure 5(h), where the pairwise mappings that belong to
faces that were being captured in an excessively oblique viewpoint were discarded. 345

In the present case study, this filtering procedure led to the removal of 74.23% of
the pairwise mappings, which clearly demonstrates the very large amount of noise in
this dataset. This reinforces the importance of using 3D information to discard incorrect
pairwise mappings. Furthermore, this filtering procedure can have a huge impact in the
image selection, because it allows us to avoid coloring a face with an image in which that 350

face is occluded or with an excessively oblique viewpoint.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5. Pairwise mappings filtering procedure: (a) and (b) pairwise mappings with no filter
applied; (c) and (d) pairwise mappings with z-buffering applied; (e) and (f) pairwise mappings with
z-buffering filter and depth consistency applied; and (g) and (h) pairwise mappings with the entire
filtering procedure applied.
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Figure 6. Example of the green channel of a JIH using the filtered pairwise mappings.

2.3. Joint Image Histogram Computation

In this step we compute a Joint Image Histogram (JIH) for each pair of images, using
the filtered pairwise mappings. Let x(i), y(k) be the pixel coordinates of the mappings in
the target image (T), and source image (S), respectively, and I

(
x(i)

)
, I
(

y(k)
)

denote the 355

the color intensity of the x(i) and y(k) pixel coordinates in the i-th image and k-th image,
respectively. The JIH is built using the following equation:

JIH(x, y) = ∑
⟨x(i),y(k)⟩∈M

δ
(
x, I

(
x(i)

))
· δ
(
y, I

(
y(k)

))
, (8)

where δ(·) is the Kronecker delta function, and x and y represent all possible values of
colors in T and S, being defined in the discrete interval [0, 2n[, where n is the bit depth of the
images. Figure 6 shows an example of a JIH of the green channel. The green dots represent 360

all the observations according to the mappings for that pair of images. A histogram is an
observation count, which is represented by the color intensity of each point. The JIHs are
used to estimate the CMFs, f̂m, which will then be used for producing the color corrected
images.

2.4. Estimation of Color Mapping Functions 365

In this step, the current paper proposes to use the JIH as a base to estimate a Color
Mapping Function (CMF), which are functions that map the colors of a source image S to
a target image T resulting in a color corrected image T̂. In this context, the CMF can be
expressed as:

x̂ = f̂m(x), ∀ x ∈ [0, 2n[ , (9)

where ˆfm is the estimated CMF for each of the pairwise images, according to the mappings 370

created, and x̂ is the resultant color of the color corrected image T̂ for a given color x of the
target image T.

Since the CMF is a function, it cannot map a single element of its domain to multiple
elements of its codomain. For the entire range of values (according to the bit depth of the
image) for each color of the target image (x) there is one and only one resulting corrected 375

value (x̂). However, a typical JIH has several observations of y for each of the values in x,
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Figure 7. Example of the estimation of three Color Mapping Functions, one for each channel.

therefore it must be assumed that the JIH contains a set of considerably noisy observations.
Also, it is important to note that, as there are three JIH for every pair of images, one for
each channel, there are also three CMFs.

The current paper proposes to estimate the CMF using a regression analysis to fit the 380

observations from the JIH. We utilize a regression analysis called Support Vector Regression
(SVR) [48], making use of the Linear Kernel and the Radius Basis Function Kernel to
estimate the single CMF approach used in the pipeline being presented. Figure 7 shows
an example of the CMF estimation for a given JIH of a pair of images. The red, green and
blue curves represent the CMFs estimation. For each channel, the function appears to fit 385

the data of the JIH quite well, following the greater peaks of observations.

2.5. Pairwise Color Correction

In this step, we propose to perform what we call pairwise color correction by choosing
a reference camera and using the CMF estimated previously for that given pair of images
(T, S). The image from the reference camera will be the source image S and will form pairs 390

with all the other images as target images T. Since the selection of the reference camera is
arbitrary, a high quality image should be selected.

Even though the CMF was estimated from a JIH created using only the filtered pairwise
mappings, the current paper proposes the generalization of the CMF to color correct all
pixels of the target image T. This generalization increases the similarity between all the 395

images, not only within the mappings, but in the entire image, showing that our color
correction approach can handle multiple images.

For each pair of images there are three color mapping functions that were estimated
previously, one for each channel. That means that each of the three channels will be color
corrected independently. To perform the color correction, the color value x of each pixel 400

of the target image T will be given as input to the CMF and then replaced by the color
corrected value x̂, according to Equation 9. After performing the color correction for each
channel independently, the channels are merged to generate the corrected image T̂.

Figure 8 shows an example for a pair of images. As we can observe, the target image
T became more similar to the source image S, indicating that the color correction was 405

successful. Figure 9 shows the effectiveness of the proposed approach to handle the color
correction of multiple images and increase their similarity. The objective of the current
paper is to evaluate the quality of the color correction by examining, not only the similarity
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(a)

(b) (c)

Figure 8. Example of the color correction for a pair of images: (a) Chosen reference camera (source
image S); (b) Original target image T; (c) Color corrected target image T̂.

of the images with respect to each other, but by analyzing the success of their use in the
improvement of the textured mesh quality. 410

2.6. Image Selection

The last step to produce the textured mesh is what we refer to as image selection.
The goal is to select, for each face, the image used to colorize that face. This process of
colorization is based on cropping, from the selected image, the projection of the face. We
propose to use, not only the corrected images to create a higher-quality mesh, but also 415

the information associated with the filtering of pairwise mappings (Section 2.2). To select
the image to colorize the f-th face, in addition to the information provided by the filtering
pairwise mappings, we need a criteria to select one image from the available images. We
implemented two different criteria: random selection and selection based on the largest
area of the projection. The random approach selects a random image from the available 420

ones. To analyze the impact of the color correction in the textured mesh, this is the best
approach because it amplifies the perception of the dissimilarities between all images. The
selection based on the largest area of the projection consists of selecting the image where the
area of the face projection is larger. This method produces higher-quality textured meshes,
but it is less suitable to evaluate the impact of the color correction because it produces 425

meshes with less image transitions between adjacent faces.
Figure 10(a) and Figure 10(d) showcase the result of image selection using the random

selection and largest projection area selection, respectively. In Figure 10(a) it is possible to
observe that the random selection appears to be a more suitable image selection technique
to assess the effectiveness of the color correction procedure, since it uses several images 430

to colorize the faces within the same surfaces, leading to the creation of multiple texture
seams artefacts. While the largest projection area selection tries to use the same image to
colorize all faces on a certain surface, the number of zones where a transition of the selected
image exists is reduced, decreasing the likelihood of texture seams artefacts, and with it,
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(a) (b)

Figure 9. Confusion Matrices using PSNR metric which the higher the score, the more similar the
pair of images are: (a) Original images (no color correction); (b) Corrected images with proposed
approach.

the impact of color correction. Figure 10(b) and Figure 10(c) represent the textured mesh 435

produced with the random selection technique, using the original and corrected images,
respectively. The positive impact of the color corrected images on the textured mesh is
considerable, eliminating most of the visual unappealing artefacts, and thus creating a
more visually appealing textured mesh. Figure 10(e) and Figure 10(f) contain the same
structure as Figure 10(b) and Figure 10(c), but showcase the image selection based on the 440

largest area of the projection. We can observe that the quality of the textured mesh using
the color corrected images has improved, but since the number of transitions between
images is smaller, the improvement is less noticeable. Nonetheless, the overall appearance
of the textured mesh is highly affected by the smoothness of transition between images,
and as we can see in Figure 10, our proposed color correction approach produces smoother 445

transitions, leading to higher-quality textured meshes.



Version January 28, 2022 submitted to Sensors 16 of 27

(a) (b) (c)

(d) (e) (f)

Figure 10. Textured meshes produced. (a) and (d) illustrate the result of the random selection and the
selection based on the largest area of the projection, respectively. The color of each face is associated
with the selected image, meaning that faces with the same color have the same selected image. The
resultant textured mesh with random selection as the image selection technique is depicted in (b)
using the original images, and in (c) using the color corrected images. The resultant textured mesh
with image selection based on the largest area of the projection is depicted in (e) using the original
images, and in (f) using the color corrected images

3. Results

Section 2 presented some preliminary results to illustrate each of the stages of the
pipeline; this section contains the complete results, showcasing the color corrected images
and their impact on the visual quality of the meshes from different viewpoints. Firstly, 450

a comparison between the proposed approach and other state-of-the-art color correction
algorithms is presented. This was divided into three sections, in order to analyze images
and textured meshes. Section 3.1 and Section 3.2 present image-based quantitative and
qualitative evaluations, respectively. Section 3.3 presents mesh-based qualitative evalua-
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Table 1. Algorithms compared with the proposed approach.

Algorithm Reference Description
#1 - Baseline (target image)
#2 Reinhard et al. [20] Global Color Transfer
#3 Reinhard et al. adapted [20] Global Color Transfer – Lightness Channel
#4 Finlayson et al. [29] Root-Polynomial Regression Color Correction
#5 De Marchi et al. [38] Vandermonde Matrices for Color Correction
#6 This paper 3D-based Color Correction

tions. In Section 3.4 and Section 3.5 we discuss the impact of the proposed filtering methods, 455

and of the selection of the reference image, on the quality of the color correction process.
Table 1 lists all the evaluated algorithms. Algorithm #1 is the baseline approach,

which means that no color correction is performed. Algorithm #2 is a global approach
proposed in [20], which uses a linear transformation (Equation 1) to impose the global color
distribution of a source image onto a target image, in the lαβ color space. Algorithm #3 is 460

an adaptation of Algorithm #2, in which only the lightness channel of the lαβ color space is
corrected (luminance correction). Algorithm #4 is the approach proposed in [29], which
uses a root-polynomial regression to estimate a CMF. Algorithm #5 uses the Vandermonde
matrix to compute the coefficients of a polynomial [38] that is applied as a CMF. In both #4
and #5, the unfiltered pairwise mappings are used to produce the color correspondence 465

vectors required by these approaches.
Section 2.5 presented the pairwise color correction, where a reference image is selected

as source to form pairs with the remaining images as target images. Since the dataset
contains 7 images, 6 pairs of images are formed to be directly color corrected, and we refer
to those pairs of images as Subset 1. Additionally, in order to analyze the capacity of the 470

approaches to increase the color similarity between all the images, a Subset 2 is formed,
composed by image pairs that were not directly color corrected, meaning neither of the
images was the source in the color correction procedure. Subset 2 is therefore composed of
15 pairs of images, obtained from the combination of the available images, excluding the
reference image. These two subsets combined form the complete dataset, which contains 475

21 pairs of images. These groups of images will be used for the quantitative evaluations.
The quantitative performance evaluation of each color correction algorithm is de-

termined employing two different image similarity metrics over the filtered pairwise
mappings. The usage of the metrics solely with the filtered pairwise mappings is the best
way to fairly compare the robustness of each algorithm because it allows us to analyze the 480

overlapping portions of each pair of images without being influenced by the abundance of
noise present before filtering. The first metric, proposed in [19], is known as peak signal-
to-noise ratio (PSNR). It is a similarity measure, so the higher the score values, the more
similar the pair of images are. The second metric is named CIEDE2000. It is a dissimilarity
metric, meaning that more similar images result in lower score values. This metric is 485

adopted as the most recent color difference metric from the International Commission on
Illumination (CIE), and was improved in [49].

3.1. Image-Based Qualitative Evaluation

A comparison between the approaches (Table 1) is presented by qualitative evaluation
of the color similarity between images. As described in Section 2.5, the pairwise color 490

correction is performed in 6 pairs of images (Subset 1) that were created with the same
reference image. After the procedure, the target images should have become more similar
in color to the reference image (image A in this case) and, as a consequence, more similar
with respect to each other as well. Table 2 shows the color corrected images produced by
each approach. In the first row (algorithm #1), the target images B through G are shown 495

in their initial form (uncorrected). Afterwards, global approaches #2 and #3 seem to have
excessively increased the brightness of the images. Between the two, #3 appears to have
performed a marginally better color correction. For algorithm #4, the corrected images have
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Table 2. Corrected images B, C, D, E, F, G (columns) using image A as reference image (source image).
Each row corresponds to a different color correction algorithm.

Reference Image (A)

Corrected Images
B C D E F G

#1

#2

#3

#4

#5

#6

become more similar to each other. However, the overall color palette obtained appears
quite different from the reference image. The images in #5 are quite degenerated, more 500

noticeably images C, D and F. From the analysis of the obtained results, the most similar
images in color to the reference image were produced by the proposed approach (#6). In
image E (algorithm #6), the reduction of brightness is evident on the left side of the boiler,
which improved the color similarity with both the reference image and the other images. It
is noteworthy that, even though the pairwise mappings were created only for the boiler 505

zone, the generalization of the CMFs in the other parts of the image achieved very good
color correction results as well.
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Table 3. Mean and Standard Deviations of the PSNR and CIEDE2000 (CIED) scores for each algorithm
in Subset 1, Subset 2, and Dataset. Best results highlighted in bold.

Subset 1 Subset 2 Dataset
PSNR CIED PSNR CIED PSNR CIED

Alg. µ σ µ σ µ σ µ σ µ σ µ σ

#1 22.33 5.31 8.42 4.90 21.00 6.20 9.11 5.30 21.38 6.00 8.91 5.19
#2 19.05 5.60 11.10 6.63 16.39 5.09 14.17 6.68 17.15 5.38 13.29 6.81
#3 19.00 5.69 10.83 6.26 16.49 5.31 13.24 6.72 17.21 5.54 12.55 6.68
#4 23.00 4.83 6.97 3.85 21.47 5.31 7.50 3.83 21.90 5.23 7.35 3.84
#5 20.83 3.72 8.83 4.37 19.07 5.54 11.07 6.12 19.57 5.15 10.43 5.77
#6 27.50 5.92 3.48 0.39 26.60 4.08 4.09 1.21 26.86 3.71 3.91 1.08

3.2. Image-Based Quantitative Evaluation

In this section, an evaluation of the similarity between images using the PSNR and
CIEDE2000 quantitative metrics is presented. Table 3 shows the results separately for 510

the following sets: Subset 1, Subset 2, and the complete dataset. Global approaches #2
and #3 could not deal with the distinct color clusters in order to compute a good global
color distribution, even with the slight improvement obtained through the adaptation
made in algorithm #3. Algorithms #4 and #5 were the second and third best approaches,
respectively, considering both image similarity metrics (PSNR and CIEDE2000) in all sets. 515

The proposed approach outperformed all the other algorithms, in all sets, and in both
metrics. Concerning the PSNR similarity metric, the proposed approach achieved averages
scores of 27.50, 26.60, and 26.86 in Subset 1, Subset 2, and Dataset, respectively. For the
CIEDE2000 dissimilarity metric, the proposed approach achieved average scores of 3.48,
4.09, and 3.91 in Subset 1, Subset 2, and Dataset, respectively. 520

As expected, Subset 1 achieved the best overall scores because it contains only pairs of
images that were directly color corrected. It is worth noting that Subset 2 also achieved
very good scores, confirming the capacity of the proposed approach to increase the color
similarity between multiple images. The only algorithm besides the proposed approach
that achieved better overall results than the baseline approach was algorithm #4. These 525

results reinforce the notion that, to accomplish a successful color correction, it is not only
important to estimate better CMFs, with high-level techniques, but also to effectively reduce
the amount of noise in the input data, caused by registration errors, occluded surfaces,
incorrect photometric correspondences, among others.

3.3. Mesh-Based Qualitative Evaluation 530

In this section, a comparison between the approaches (Table 1) is presented by evaluat-
ing the visual quality of textured meshes created using two different image selection criteria:
random selection and largest projection area selection. In order to achieve a fair evaluation,
all the meshes produced by each approach have exactly the same texture mapping for both
images selection techniques. As discussed in Section 2.6, the usage of multiple images to 535

texture a mesh will result in the transition between images to map different areas of the
mesh. The apparent color difference at the limits between neighboring triangles creates
visual artifacts, known as texture seams. Figure 10(a) and Figure 10(d) illustrate where
these transitions are present in the mesh, using representative colors. Table 4 presents
the textured meshes for each approach, using the two image selection techniques, in two 540

different viewpoints. The first viewpoint shows an overview of the entire mesh. The second
viewpoint shows a zoomed-in region of the boiler and the wall.

Since algorithm #1 uses the original images, the visual artifacts created by the changes
in the selected image are noticeable. The random image selection criterion aggravates the
effect of this problem, but it can be mitigated by color correcting the images. The meshes 545

produced by the approaches #2 through #5 appear unable to improve the visual quality
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of the textured mesh, presenting a large amount of very noticeable texture seams. The
proposed approach (algorithm #6) appears to produce the highest quality textured mesh.

Even when using the random image selection criterion, the texture seams are less no-
ticeable, verifying that indeed the images become more similar in color with respect to each 550

other. Moreover, with the largest projection area selection criterion, the visual quality of the
mesh raises even more, displaying almost no texture seams. These results demonstrate the
robustness of the proposed approach by showing a significant improvement in the visual
quality of the textured mesh.
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Table 4. Textured meshes produced by each approach from two different viewpoints and using two
different image selection techniques: random selection and largest projection area selection.

Random Largest Projection Area
View 1 View 2 View 1 View 2

#1

#2

#3

#4

#5

#6
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Table 5. Variants of the proposed approach used to evaluate the impact of the filtering methods.

Algorithm Description
#6a Proposed approach without any filtering method
#6b Proposed approach using only z-buffering
#6c Proposed approach using only depth consistency
#6d Proposed approach using only camera viewpoint
#6 Proposed approach

3.4. Impact of the Proposed 3D-Based Filtering Methods 555

In this section, the objective is to evaluate the impact each filtering method has on the
color correction outcome. For that, we evaluate four variants of the proposed approach,
listed in Table 5.

We propose to evaluate the impact of each filtering method from two perspectives:
assessing the percentage of pairwise mappings removed by analyzing the JIH (Table 6 and 560

Table 7); using image similarity metrics (Table 8).
Table 6 depicts the average percentage of pairwise mappings removed when consid-

ering all available image pairs (Dataset). Algorithm #6 removed 74.23% of the pairwise
mappings, demonstrating the importance of using robust techniques to handle noise.
Through an individual analysis of each filtering method, we can note that algorithm #6d

565

was the component that resulted in the largest reduction of the pairwise mappings. On
the other hand, algorithm #6b, was the one with the least impact on the pairwise mapping
removal. Table 7 illustrates the impact that each approach has on the JIH. As was expected,
due to the 74.23% reduction of the pairwise mappings, algorithm #6 completely transforms
the JIH when compared to the JIH produced using the unfiltered pairwise mappings (al- 570

gorithm #6a). The JIHs produced by algorithm #6 contain less correspondences of colors
in the source image for each color in the target image, which is exactly what we expect
from a noise free JIH. In other words, algorithm #6 is able to produce thinner JIHs, which
enable the estimation of more accurate CMFs, leading to higher levels of color similarity
between images. The JIH depicted in cell (#6, FA), in the green channel, is a very good 575

approximation of a noiseless JIH. Based on the conclusions extracted from Table 6, it was
expected that the individual filtering approach that should have the most impact on the
transformation of the JIH was algorithm #6d, which is not the case. The reason for this
is that the majority of the pairwise mappings removed by algorithm #6d belong to zones
where the JIH is denser, and therefore the difference is not highly noticeable. This is an 580

interesting conclusion because it shows that to evaluate the effectiveness of a filtering
method, in addition to assessing the number of mappings removed, an analysis of the
zones of the JIH where those mappings are must be carried out. The individual filtering
approach that produced thinner JIHs was algorithm #6c, and the cells where that impact is
the most significant are (#6c, FA), in the green channel, and (#6c, FG), in the red channel. 585

Although in this dataset, the most significant filter was algorithm #6c, it is important to
note that the effectiveness of each filter depends on the characteristics of the dataset used.

Table 6. Average percentage of pairwise mappings removed by each algorithm.

Alg. µ σ
#6a 0.00 0.00
#6b 26.27 13.06
#6c 39.71 7.45
#6d 56.41 15.17
#6 74.23 10.81
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Table 7. JIHs produced using the different variants of the proposed approach (rows). Each column
represents one color channel of the JIH between a randomly chosen pair of images. For example, the
first column, C to A, represents the blue channel of the JIH between image C and image A.

Blue Channel Green Channel Red Channel
C to A D to G C to E F to A F to A F to G

#6a

#6b

#6c

#6d

#6

Table 8 shows the quantitative results achieved by all algorithms in the same sets as
in Table 3: Subset 1, Subset 2, and Dataset. As expected, the pairs of images in Subset 1
present a higher level of color similarity than the pairs of images in Subset 2. For the Subset 590

1, algorithm #6 achieved the best results both in the PSNR metric and CIEDE2000 metric,
with average scores of 27.50 and 3.48, respectively. For the Subset 2, when considering the
PSNR metric, algorithm #6b achieved an average score of 26.86, followed by algorithm #6 -
26.60. Regarding the CIEDE2000 metric, algorithm #6 was, once again, the approach that
achieved the best results, with 4.09. Finally, when considering the entire dataset, algorithm 595

#6b achieved an average score of 27.00 in the PSNR metric, and in the CIEDE2000, the best
results belong to algorithm #6, with an average score of 3.91. CIEDE2000 takes into account
the sensibility of human-eye to certain colors [49], making this image similarity metric
more suitable for image-based comparisons, and therefore, we consider that algorithm #6
was the approach that achieved the best results. It is noteworthy that both algorithm #6b

600

and algorithm #6c in all sets achieved remarkable results, being quite close to the score
achieved by algorithm #6.

From these results, we can conclude that the usage of the 3D-based filtering methods
is a significant contribution to the quality of the color correction procedure.

Table 8. Mean and standard deviation of the PSNR and CIEDE2000 (CIED) scores for each algorithm

Subset 1 Subset 2 Dataset
PSNR CIED PSNR CIED PSNR CIED

Alg. µ σ µ σ µ σ µ σ µ σ µ σ

#6a 26.50 2.99 4.27 0.77 26.26 3.97 4.80 1.47 26.33 3.72 4.65 1.33
#6b 27.33 2.49 3.83 0.46 26.86 3.70 4.28 1.28 27.00 3.41 4.16 1.13
#6c 27.00 2.77 3.95 0.53 26.53 4.06 4.35 1.41 26.67 3.75 4.24 1.24
#6d 26.33 3.14 4.22 1.03 26.20 4.02 4.93 1.54 26.24 3.79 4.72 1.45
#6 27.50 5.92 3.48 0.39 26.60 4.08 4.09 1.21 26.86 3.71 3.91 1.08



Version January 28, 2022 submitted to Sensors 24 of 27

Table 9. Mean and standard deviation of the PSNR, CIEDE2000 (CIED) scores for each reference
image selection, using algorithm #6.

Subset 1 Subset 2 Dataset
PSNR CIED PSNR CIED PSNR CIED

Ref. µ σ µ σ µ σ µ σ µ σ µ σ

A 27.50 5.92 3.48 0.39 26.60 4.08 4.09 1.21 26.86 3.71 3.91 1.08
B 23.50 3.25 4.55 1.73 27.40 2.65 4.19 0.81 26.29 3.34 4.29 1.16
C 27.67 3.68 3.48 0.78 25.20 3.58 4.60 1.54 25.90 3.78 4.28 1.46
D 25.33 4.50 4.55 2.06 25.33 3.81 4.91 1.29 25.33 4.02 4.81 1.55
E 21.33 1.97 6.28 0.86 22.27 3.53 7.96 2.76 22.00 3.19 7.48 2.49
F 28.00 3.21 3.38 0.66 25.07 3.66 4.47 1.40 25.90 3.78 4.19 1.36
G 29.00 1.15 4.00 0.55 25.67 3.94 5.20 1.98 26.62 3.71 4.86 1.78

3.5. Impact of the Selection of Reference Image on Image-Based Quantitative Evaluation 605

One of the hyperparameters that must be defined in the proposed approach is the
selection of the reference image from all available images. The goal of this section is to
evaluate the impact that this selection has on the color correction outcome. Table 9 contains
the quantitative results achieved when selecting each image as the reference. Note that,
although the reference image is different, all other configurations are the same. For Subset 610

1, image G achieved the best average score concerning the PSNR metric (29.00), while in
the CIEDE2000 metric, the reference image that attained the best average score was image
F, with a value of 3.38. Regarding Subset 2, the reference image that achieved the best
average score when considering the PSNR metric was image B (27.40), and concerning
the CIEDE2000 metric, image A achieved an average score of 4.09. Finally, regarding the 615

entire Dataset, image A achieved the best results in both the PSNR metric and CIEDE2000
metric, with average scores of 26.86 and 3.91, respectively. These results demonstrate that
the effectiveness of the color correction is not strongly dependent on the selection of the
reference image. The results using image E as the reference image achieved the worst
performance in both evaluation metrics when considering all sets. It is noteworthy that, 620

using this image, the results for the PSNR metric in Subset 1 were subpar to those obtained
in Subset 2. This can be explained by the fact that image E was taken under a table, see
Table 2, which caused a different illumination from the rest of the images, hampering the
color correction process. Still, algorithm #6 using image E as the reference still outperforms
algorithms #2, #3 and #5, achieving equivalent results to algorithm #4, see Table 3. Any 625

other image used as reference for the proposed approach produces results that outperform
the other evaluated algorithms.

4. Conclusions

This paper proposed two main contributions to the state of the art of color correction:
a pairwise-based methodology capable of color correcting multiple images from the same 630

scene; the usage of 3D information to filter out noisy mappings between pairs of images.
The pairwise-based methodology consists of selecting one image as the reference image and
then color correcting all other images with respect to the reference image. This procedure
increases, not only the color similarities of all images with respect to the reference image,
but also the color similarities between all image in the dataset. The usage of 3D informa- 635

tion consists of applying 3D information from the real world, namely point clouds and
meshes, to build a filtering procedure capable of producing more reliable spatial registration
between images, which results in more accurate color correction.

Results demonstrate that the proposed approach outperforms all other approaches,
both using qualitative and quantitative metrics. Furthermore, results show that our color 640

correction procedure enhances the visual quality of the produced textured meshes. We
tested two different image selection criteria, random selection and largest area projection
selection, and demonstrated that even using the most simple one - random selection, the
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proposed approach produces textured meshes virtually free of texture seams. In addition,
we explored how each filtering method affects both the JIH and the color correction outcome, 645

where we demonstrated that all filtering methods play an important role in the color
correction procedure. Using the filtering tools that we propose, it is also possible to
quantify the amount of noise that exists in datasets used for color correction, which in our
case was around 75%. This value is quite large, reinforcing the thesis of our work: robust
filtering techniques are crucial for successful color correction algorithms. In the end, we 650

performed a comparative analysis, where we show that the effectiveness of our proposed
approach is not strongly dependent on the selected reference image.

For future work, we plan to explore several techniques to estimate color mapping
functions in order to take full advantage of the filtered pairwise mappings that we obtain
using the filtering procedure proposed in this paper. In addition, we intend to integrate 655

other color correction algorithms with our filtering procedure and evaluate the impact
that our filtering procedure has on the color correction outcome. We also plan to test our
color correction procedure in scenarios with a wider color range, in order to analyze its
robustness concerning different scenarios.
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