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Abstract

The fusion of data from different sensors often requires that an accurate geometric

transformation between the sensors is known. The procedure by which these transfor-

mations is estimated is known as sensor calibration. The vast majority of state of the art

calibration approaches focus on specific pairwise combinations of sensor modalities,

unsuitable to calibrate robotic systems containing multiple sensors of varied modali-

ties. This paper presents a novel calibration methodology which is applicable to multi-

sensor, multi-modal robotic systems. The approach formulates the calibration as an

extended optimization problem, in which the poses of the calibration patterns are also

estimated. It makes use of a topological representation of the coordinates frames in

the system, in order to recalculate the poses of the sensors throughout the optimiza-

tion. Sensor poses are retrieved from the combination of geometric transformations

which are atomic, in the sense that they are indivisible. As such, we refer to this ap-

proach as ATOM - Atomic Transformations Optimization Method. This makes the

approach applicable to different calibration problems, such as sensor to sensor, sensor

in motion, or sensor to coordinate frame. Additionally, the proposed approach provides

advanced functionalities, integrated into ROS, designed to support the several stages of

a complete calibration procedure. Results covering several robotic platforms and a

large spectrum of calibration problems show that the methodology is in fact general,

and achieves calibrations which are as accurate as the ones provided by state of the art
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methods designed to operate only for specific combinations of pairwise modalities.
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1. Introduction

Whenever an intelligent or robotic system is composed of two or more sensors, a15

procedure that estimates the geometric transformations between those sensors is re-

quired. The process is called extrinsic calibration or sensor registration [Kodagoda

et al., 2006].

The vast majority of multi-sensor or multi-modal perceptual systems operate under

the assumption that accurate geometrical transformations between the sensors that col-20

lect the data are known. This is valid for many different robotics or intelligent systems

applications, from the simple design of sensors that collect RGB and depth informa-

tion [Basso et al., 2018], to a stereo camera pairs designed to carry out underwater

3D reconstruction [Pinto and Matos, 2020], to more complex sensor setups such as in-

telligent vehicles [Badue et al., 2021, Mutz et al., 2016, Oliveira et al., 2015] or smart25

camera networks [Calderoni et al., 2014]. Thus, one may argue that an accurate estima-

tion of those transformations, i.e., a good extrinsic calibration, is a critical component

of any data fusion methodology.

Although the problem of extrinsic calibration is well defined, in practice there are

several variants of that problem. As discussed previously, the classical formulation30

seeks to provide an estimate of the transformations between the several sensors in a

system. These will be referred to as sensor to sensor calibration problems. One

variant is the calibration of a single sensor which moves over time. Here, the goal is

to find the geometric transformations between the poses of the sensor at the time each

data was collected. For example, Boucher et al. [2001], Agarwal et al. [2010] propose35

structure from motion methodologies in which the motion of a camera, i.e. the set of

camera poses, is recovered in order to reconstruct the scene. We will refer to these

as sensor in motion calibration problems. Finally, there is another variant of the

extrinsic calibration problem: the calibration of a sensor w.r.t. a particular coordinate
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frame. In these cases, the sensor must move in order to collect data from different40

viewpoints requiring, therefore, that the motion of the system must be known. Thus,

in these cases, one requires a kinematic chain which can be actuated for the purpose

of collecting data from multiple viewpoints. We will refer to these as sensor to frame

calibration problems. One example of a sensor to frame calibration problem was

presented in Lourenço et al. [2020], where the transformation between a 2D Light45

Detection And Ranging (LiDAR) and the pan and tilt unit in which it was mounted

was estimated.

Calibration problems can also be defined based on the number of sensors as well

as their modalities. Common sensor modalities include RGB cameras, depth cameras,

LiDARs, 3D LiDARs, Radio Detection And Rangings (RaDARs), etc. In addition to50

this, some robotic systems sometimes have several sensors, which results in a large

number of possible system configurations, containing single-modality pairwise config-

urations (e.g. camera to camera or 2D LiDAR to 2D LiDAR as in Oliveira et al. [2015],

Huang et al. [2010]), single-modality multi-sensor configurations (e.g. cameras net-

works as in Jiuqing et al. [2018]), multi-modal pairwise configurations (e.g. camera55

to depth camera as in Hanning et al. [2011], or camera to 3D LiDAR as in Huang

and Barth [2009]) and, finally, the general scenario of the calibration of multi-modal,

multi-sensor systems (depth camera and multiple RGB cameras as in Liao et al. [2017],

several cameras and inertial measurement units as in Rehder et al. [2016], calibration

of sensors in the PR2 robot as in Pradeep et al. [2014]). Obviously, it is also possible60

to compound this criteria with the former to get, for example, a single-sensor single

modality, sensor to frame calibration problem (e.g. [Ali et al., 2019]), or a multi-sensor

multi-modality problem (e.g. [Oliveira et al., 2020a]).

The large amount of variants of the extrinsic calibration problem, either due to the

configuration of the system, the number of sensors, or the sensor modalities, have led65

to large efforts from the research community in addressing each and every one of these

variants, as will be detailed in section 2. However, these works have focused mainly

on tackling the many combinations of pairwise configurations of different modalities.

In fact, there are very few works which consider the general case of the calibration of

multi-modal, multi-sensor systems, and even less if one considers systems that may70
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have sensor to sensor, sensor in motion and sensor to coordinate frame configurations.

This paper proposes a novel methodology called Atomic Transformations Opti-

mization Method (ATOM) which generalizes the extrinsic calibration procedure in such

way that it is able to carry out the calibration of all the cases discussed above. Atomic

transformations are geometric transformations which are not aggregated, i.e. they are75

indivisible. Optimizing these transformations fully generalizes the calibration problem,

as will be detailed in section 3.

Robot Operating System (ROS) [Quigley et al., 2009] based architectures are now

the golden standard in the development of robotic systems. There are several ROS

based calibration packages in the public domain, from (Open Source Computer Vision80

Library (OpenCV) [Bradski, 2000] based intrinsic camera1 and stereo camera pair2 cal-

ibrations, to RGB-D camera calibration [Kerl et al., 2013]3 [Fankhauser et al., 2015]4,

to hand-eye calibration [Marchand et al., 2005, Trinh et al., 2018]5. ROS integration

ranges from using input data recorded in rosbag files as in [Furgale et al., 2013], to

using ROS standard messages as in [Marchand et al., 2005]. Despite this, there is no85

available ROS package that provides a complete solution for the calibration of robots

in general.

In addition to a general calibration methodology, ATOM also offers a complete

calibration framework that addresses all the stages of a calibration pipeline: definition

of the initial pose of the sensors, data collection and labelling and, finally, the actual90

optimization procedure. All these tools are seamlessly integrated into ROS.

This document is organized as follows: section 2 will detail existing calibration ap-

proaches and how they relate to our proposal, section 3 describes the proposed method-

ology, section 4 offers a complete description of the framework, available tools and in-

tegration with ROS, and finally section 5 and section 6 provide results and conclusions95

respectively.

1http://wiki.ros.org/openni_launch/Tutorials/IntrinsicCalibration
2http://wiki.ros.org/camera_calibration/Tutorials/StereoCalibration
3http://alexteichman.com/octo/clams
4https://github.com/code-iai/iai_kinect2
5http://wiki.ros.org/rc_visard/Tutorials/HandEyeCalibration
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2. Related Work

In general terms, an extrinsic calibration requires that two or more sets of data are

associated by matching unique key points in those sets. Once these associations are

retrieved, it is possible to formulate a procedure that estimates the parameters of the100

geometric transformations between the sensors using the associations as input. An ex-

trinsic calibration can be designed using closed form solutions [Tsai and Lenz, 1989,

Horaud and Dornaika, 1995a,b, Dornaika and Horaud, 1998, Park and Martin, 1994,

Liz et al., 2010, Shah, 2013] or with iterative procedures [Tabb and Yousef, 2017,

Ali et al., 2019, Malti, 2013, Oliveira et al., 2020b,a]. In the later, an optimization105

problem is formulated with the goal of finding the poses of the sensors, i.e. the config-

uration of optimized parameters, which minimize the distance between the key-point

associations. Since the accuracy of those associations is critical to the estimation pro-

cedure, most calibration approaches make use of calibration patterns, i.e., objects that

are robustly and accurately detected. Moreover, in the case of multi-modal sensor sys-110

tems, a calibration pattern adequate to all existing sensor modalities must be selected.

For camera sensor modalities, the standard calibration patterns are chessboards [Zhang

and Pless, 2004, Zhang et al., 2017] and fiducial markers [Jurado et al., 2016, Ramirez

et al., 2018, Hu et al., 2019]. For range measuring based modalities such as LiDAR or

RaDAR, patterns which contain a distinct physical shape signatures are used, such as115

spherical objects [Ruan and Huber, 2014, Pereira et al., 2016, Rato and Santos, 2020,

Kwon et al., 2018], conic objects [Almeida et al., 2012], or planar cardboards con-

taining circular holes [D. Gao et al., 2010, Guindel et al., 2017]. A minority of works

perform calibration without using a pattern. In these, the features in the scene are used

as input to the calibration. In autonomous driving, for example, lane detection and120

vanishing point tracking are common approaches for online calibration [de Paula et al.,

2014, Álvarez et al., 2014]. Lourenço et al. [2020] propose to make use of planes in

indoor scenes (e.g. walls, floor, etc.) for supporting the calibration of a 2D LiDAR

on a pan and tilt unit system. Patternless calibration approaches have the advantage of

operating continuously if necessary, but loose in accuracy and robustness when com-125

pared to offline, one shot procedures. As such, offline calibrations are still the most
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commonly used.

2.1. Sensor to Sensor calibration problems

As a critical component of intelligent or robotic systems, the topic of extrinsic cal-

ibration has been extensively addressed in the literature over the past decades. The130

large bulk of these works have focused on a particular case of sensor to sensor cal-

ibration problems, which is the case of systems containing a single pair of sensors,

i.e. pairwise calibrations. In this regard, most combinations of modalities have already

been covered: RGB to RGB camera calibration [Mueller and Wuensche, 2017, Wu

and Zhu, 2015, Su et al., 2016, Ling and Shen, 2016, Dinh et al., 2019, Pereira et al.,135

2016], RGB to depth camera calibration [Kwon et al., 2018, Khan et al., 2016, Basso

et al., 2018, Qiao et al., 2013, Zhang and Zhang, 2011, Chen et al., 2019], RGB camera

to 2D LiDAR [Vasconcelos et al., 2012, Pereira et al., 2016, Zhang and Zhang, 2011,

Zhang and Pless, 2004, Häselich et al., 2012, Chen et al., 2016, Velas et al., 2014,

Guindel et al., 2017], 2D LiDAR to 3D LiDAR [Almeida et al., 2012]; RGB camera to140

3D LiDAR [Lee et al., 2017, Guindel et al., 2017, Jeong et al., 2018], RGB camera to

radar [D. Gao et al., 2010], etc.

The problem of RGB to RGB camera calibration has received a great deal of at-

tention from the research community, in particular in the case of two camera stereo

systems [Mueller and Wuensche, 2017, Wu and Zhu, 2015, Su et al., 2016, Ling and145

Shen, 2016, Dinh et al., 2019]. The classic approach is to carry out an optimization

which estimates the transformation between the cameras using the reprojection error as

guidance. The optimization procedure may also include the estimation of the intrinsic

parameters [Wu and Zhu, 2015]. RGB to RGB camera calibration methodologies have

also been proposed to address the problem of online calibration [Mueller and Wuen-150

sche, 2017, Su et al., 2016] and also markerless calibration [Ling and Shen, 2016].

The great majority of the works found in the literature focused on pairwise calibra-

tion between an RGB camera and a 3D LiDAR are based on the work of Huang and

Barth [2009], where the calibration is performed in two stages: first using closed-form

equation; and second, a maximum likelihood estimation refinement. Similarly, Verma155

et al. [2019] use a standard chessboard to calibrate a perspective/fisheye camera and

6



a 3D LiDAR using a Genetic Algorithm. Wang et al. [2017] propose a work where

the corners of the pattern are automatically detected for both a panoramic camera and

a 3D LiDAR so that the calibration can be performed. For the LiDAR case, authors

propose a detection based on the intensity of reflectance of the beams. Fremont and160

Bonnifait [2008], Guindel et al. [2017] use circle-based patterns to perform the extrin-

sic calibration. Mirzaei et al. [2012] propose the estimation of a 3D LiDAR intrinsic

parameters, as well as the extrinsic calibration with a monocular camera, through the

minimization of a non-linear least squares cost function. The calibration is used to

build photo-realistic 3D reconstruction of indoor and outdoor scenes. Pandey et al.165

[2010] calibrate a 3D LiDAR with an omnidirectional camera also using a standard

planar pattern. To calibrate the system, the sensors should observe the pattern from

at least three different points of view. With this input, the extrinsic coefficients are

calculated with a non-linear optimization technique. With the same purpose, Huang

and Grizzle [2020] use a pattern of known dimensions and geometry and estimates the170

pattern to LiDAR pose automatically using a fitting algorithm.

Pairwise calibration approaches consider that the sensors are rigidly attached. As

such, these approaches cannot handle the cases where a sensor moves during the cali-

bration procedure as in the sensor in motion calibration problem and the sensor to

frame calibration problem.175

2.2. Hand-eye calibration problem

Hand-eye calibration is defined as the process of estimating the transformation be-

tween the end-effector, i.e. the hand of a robotic arm, and a camera, the eye, which

is rigidly attached to that end-effector [Tsai and Lenz, 1989]. The formulation of the

problem is expressed as:180

AX = ZB , (1)

where A represents the known geometric transformation from the hand to the robotic

arm base, obtained using forward kinematics, B denotes the known transformation

from the eye to the world object, X specifies the unknown transformation from the

robotic arm base to the world object and Z is the unknown transformation from the

hand to the eye [Dornaika and Horaud, 1998].185

7



Initial works proposed closed form solutions which tackled the rotation and trans-

lation components of (1) separately [Zhuang et al., 1994, Dornaika and Horaud, 1998].

Later on, Liz et al. [2010] propose a close form method to based on dual quaternions

and the Kronecker product that was able to obtain translations and rotations simul-

taneously. Also using the Kronecker product, Shah [2013] introduced a close form190

method that combines the Kronecker product and single value decomposition to find a

simultaneous solution.

In recent years, the formulation in (1) has been tackled using optimization methods

to find the unknown transformations, i.e. X and Z. Tabb and Yousef [2017] introduced

an iterative method based on the minimization of camera reprojection error, which195

solves the rotation and translation components simultaneously. The paper compares

the proposed approach with other solutions in the literature, and shows that the iterative

approach based on the reprojection error offers the best calibration results, which is

later confirmed in Ali et al. [2019].

One shortcoming of hand-eye calibration approaches is that they are not able to200

tackle the multi-sensor case. To address this, Tabb and Yousef [2017] propose a for-

mulation that bundles all cameras into a single optimization procedure, in what they

refer to as hand-eye(s) calibration problem. Another common limitation is that they

are not able to handle both the eye-on-hand and eye-to-base use cases simultaneously.

Because the robotic arm must move in order to collect different views of the cal-205

ibration pattern and what is sought is the transformation from the camera to the end-

effector, the hand-eye calibration is both a sensor in motion calibration problem as well

as a sensor to frame calibration problem. However, the focal aspect of hand-eye cali-

bration approaches is that all of them are specialized in this particular problem, which

means that they are not suited to address sensor to sensor calibration problems, rarely210

tackle the multi-sensor case, and only take into account a single sensor modality (RGB

cameras).

2.3. Extension to the multi-sensor, multi-modal case

The generalization of pairwise calibration approaches to the multi-sensor case, in

which the number of sensors is greater than two, is not straightforward. One reason215
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for this is that most calibration approaches are designed to operate by processing the

data from a sensor tandem. In this way, the inclusion of a third sensor would require

additional pairwise procedures for all pairwise combinations in the system. In fact,

the most common solution for the calibration of multi-sensor systems, to which we

refer to as sequential pairwise approaches, is to run several pairwise calibrations and220

arrange them in a graph-like sequential procedure, in which one sensor calibrates with

another, that then relates to a third sensor, and so forth. Each pairwise calibration

will provide an estimate for the geometric transformation that links two of the sensors

in the system. For example, Zhou et al. [2018] present a system with a 3D LiDAR

and a stereo camera system. However, to calibrate the three sensors (LiDAR and two225

cameras), two calibrations have to be performed: LiDAR to left camera, and LiDAR to

the right camera. In the same way, with the purpose of fusing point clouds of multiple

stereo cameras, Dhall et al. [2017] use a 3D LiDAR to perform pairwise calibration

with all the cameras in the system. Only after obtaining the transformation between

the range sensor and each camera of the stereo system, the transformation between230

the stereo cameras can be found. Similarly, Kim and Park [2019] perform six pairwise

calibrations between a 3D LiDAR and six monocular cameras mounted in an hexagonal

plate that constitute an omnidirectional camera.

In these sequential pairwise approaches, the complete system can be described by

a topological representation where nodes are sensor coordinate systems and the edges235

are the estimated transformations between those coordinate systems. Providing that

the topological representation is not disconnected, it is possible to compute the trans-

formation from any sensor to another by retrieving the topological path between these

sensors, and combining the corresponding transformations that have been estimated by

pairwise calibrations.240

Figure 1 shows an examples of these topological representations considering a sys-

tem with 4 sensors. Naturally, the structure of this topological representation depends

on the pairwise calibrations that were selected. For example, in visual hodometry, a

sensor in motion calibration problem, that structure is of a linear nature, since each

image is connected only to images within its spatio-temporal neighborhood [Whyte245

and Bailey, 2006]. In the case of intelligent vehicles or mobile robotic platforms in
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Figure 1: Some alternative topological structures for a calibration procedure: (a) flat pyramidal configuration

with Sensor 0 as reference; (b) using all possible pairwise combinations in the calibration; (c) the inclusion of

an additional sensor of a previously unknown RaDAR modality. Red lines indicate new pairwise calibrations

which would have to be implemented. Sensors are represented by ellipses, with the modality of each sensor

indicated below its name; solid lines represent pairwise combinations which are used in the calibration

procedure; dashed lines represent additional connections which are not used.

general, one common approach is to establish one sensor as the reference sensor and

calibrate all sensors w.r.t. the reference one, which results in a pyramidal topological

structure (see Figure 1(a)). One example is Pereira et al. [2016], in which a method-

ology for calibrating an intelligent vehicle is proposed, wherein all sensors are paired250

with a reference sensor [Santos et al., 2010].

Sequential pairwise approaches have several shortcomings, which are detailed in

the next lines. As discussed previously, they imply that one must choose which pair-

wise combinations of sensors in the system are used to run pairwise calibrations. Note

that there are many other alternative topological configurations to Figure 1(a). Assume,255

for example, that the RGB to LiDAR calibration is not very accurate: in that case one

could replace the calibration from Sensor 0 to Sensor 3 by a calibration from Sensor 2

to Sensor 3, which has a different combination of modalities, depth and LiDAR. This

would result in a different topological configuration for the same set of sensors. To

ensure that there is only one transformation from any sensor to any other, the topolog-260
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ical structure must be non redundant. That leads to a selection of sensor combinations

that is only a subset of the total pairwise combinations that exist in the system. Thus,

the first shortcoming is that not all available data is used for the calibration of the sys-

tem: transformations are estimated using only data provided from the selected sensor

tandems, despite the fact that data from additional sensors could be available and their265

inclusion prove relevant to the overall accuracy of the calibration procedure. Figure 1

shows these unused connections as dashed lines.

It is also possible to consider all available connections, but that leads to the addi-

tional problem of how to cope with the redundancy in the topology. Santos et al. [2020]

propose a multi-pairwise approach which considers a set of pairwise calibrations. This270

results in a redundant topological structure which is then post-processed by averaging

the redundant transformations. Figure 1(b) shows an example of this configuration.

Because the transformations are computed in sequence, it is quite possible that

errors may accumulate over the sequence of connections. Since the accumulation effect

should be more noticeable for longer sequences, a valid strategy is to reduce the depth275

of the topological graph as much as possible (e.g. a one level pyramidal structure as in

Pereira et al. [2016]). However, this approach is limited to scenarios where the field of

view of all sensors overlap with the field of view of the reference sensor, which is not

always the case.

Another disadvantage is that the topology of the transformations in the system is280

defined by the convenience of the user, rather than because of the constraints or lim-

itations of a calibration procedure. In our view, the need to design a topology that

accomodates the sequential arrangement of the calibration procedure is not ideal. For

example, in Figure 1(a) the decision to connect Sensor 0 to Sensor 3 could be based on

the need to avoid the connection between Sensor 2 to Sensor 3, because the calibration285

of a depth to LiDAR modality pair is less accurate or even non-existent. This kind of

convenience based decision is very common but, instead, it would be much more in-

teresting to be able to define the structure of transformations that best suits the system,

according to more relevant criteria, and then having a calibration procedure that is able

to calibrate the system regardless of its topological configuration.290

Another problem is scalability, because when using pairwise combinations between
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sensors, the number of pairwise combinations will grow considerably with the increase

in the number of sensors. This is notoriously more problematic when attempting to use

redundant topological structures, because the number of paths to go from one sensor

to another explodes very quickly. As a result, sequential calibration approaches using295

sensor pairs do not scale efficiently. Sequential pairwise calibration approaches also

do not scale well for multi-modal systems. The reason is that, since the approach is

designed to evaluate sensor tandems, a specific methodology must be designed for each

combination of modalities, e.g. RGB to RGB camera, RGB camera to 3D LiDAR, 3D

LiDAR to 3D LiDAR etc. The inclusion of a novel modality brings about the need to300

develop a new set of methods to evaluate the novel modality against all those previously

known. Figure 1(c) provides an example of these implications. The inclusion of a

RaDAR sensor would require three novel calibration methodologies to be developed.

There are a few works which address the problem of calibration from a multi-

sensor, simultaneous optimization, perspective. Noel et al. [2019] propose a method305

to estimate the extrinsic calibration between multiple sensors such as LiDARS, depth

cameras and RGB cameras. The calibration procedure is separated in two parts: a

motion-based approach that estimates 2D extrinsic parameters and a method that uses

the observation of the ground plane to estimate the remaining ones. It is worth noting

that this framework requires the robotic platform to be moving. Liao et al. [2017] pro-310

pose a joint objective function to simultaneously calibrate three RGB cameras w.r.t. a

depth camera. Authors report a significant improvement in the accuracy of the calibra-

tion. In Rehder et al. [2016], an approach for joint estimation of both temporal offsets

and spatial transformations between sensors is presented. This approach is one of the

few that are not designed for a particular set of sensors, since its methodology does not315

rely on unique properties of specific sensors. It is able to calibrate systems containing

both cameras and LiDARs. Moreover, the approach does not require the usage of cali-

bration patterns for the LiDARs, using the planes present in the scene for that purpose.

In [Pradeep et al., 2014], a joint calibration of the joint offsets and the sensors locations

for a PR2 robot is proposed. This method takes sensor uncertainty into account and is320

modelled in a similar way to the bundle adjustment problem.

This paper presents a general calibration formulation that comprises sensor to
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Figure 2: The Multi-Modal Test roBot (MMTBot), a simulated robotic system containing, from left to right

in the figure: a RGB camera and a 3D LiDAR mounted on a tripod, and a second RGB camera assembled on

the end effector of a robotic manipulator.

sensor, sensor in motion and sensor to frame calibration problems, as will be de-

tailed next. Our previous works have focused on the calibration of intelligent vehicles

[Oliveira et al., 2020b], agricultural robots [Aguiar et al., 2021], and hand-eye sys-325

tems [Pedrosa et al., 2021]. In all those works, the same baseline method based on the

optimization of Atomic Transformations is used.

3. Proposed Approach

As a case study to better illustrate the concepts that will be detailed ahead, we will

use a robotic system called Multi-Modal Test roBot (MMTBot) 6. This is a simulated,330

conceptual robot, designed to test the performance of advanced calibration method-

ologies. The system contains the following sensors: lidar, a 3D LiDAR mounted on

the left side of a tripod; world camera, an RGB camera mounted on the right side of

that same tripod; and a hand camera, a second RGB camera assembled on the effector

link of a robotic manipulator, which is mounted on a table. The complete system is335

displayed in Figure 2.

MMTBot is a multi-modal robotic system, which combines RGB and LiDAR modal-

ities. Moreover, one of the RGB cameras (hand camera) is assembled on the end ef-

6https://github.com/miguelriemoliveira/mmtbot
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fector of the roboic manipulator, which brings a hand-eye calibration problem into the

system. In fact, because MMTBot is simultaneously a multi-sensor, multi-modal, sen-340

sor to sensor, as well as a sensor to frame calibration problem, there is no solution in

the literature which is able to conduct the complete, simulateneous, calibration of this

system.

3.1. Problem Formulation

From the analysis conducted in section 2, it is clear that most calibration approaches345

operate using a pairwise or set of pairwise evaluations. Thus, a calibration of sensor

s1 w.r.t. a sensor s2 can be generaly denoted as the minimization of the following

expression:

argmin
s1 T s2

∑
c∈C

∑
d∈D

e
(

s1T s2 ,d[c,s1],d[c,s2],{λs1},{λs2}
)
, (2)

where s1T s2 is the 4× 4 homogeneous transformation matrix between sensor s1 and

sensor s2; d is the detection taken from the set of detections D, which are represen-350

tations of the calibration pattern on data from the sensors; {λ} denotes the set of ad-

ditional parameters of the sensor required by the cost or error function e(·). The cost

function e(·) outputs one or more scalar values refered to as residuals, which are to be

minimized by the optimization procedure; and finally, c denotes the collection taken

from the set of collections C. To achieve accurate estimates, calibration procedures355

minimize a cost computed over several views of the calibration pattern and / or robot

pose. We refer to these time stamps in which sensor data is acquired as collections.

Collections store not only sensor data but also the state of the robotic system. As an

example, a collection of the MMTBot includes two images (one from each camera)

plus a point cloud (captured by the 3d lidar), as well as all the transformations between360

coordinate frames. All this data is collected at the same time. Figure 3 shows a set of

collections C, which have different configurations of the robotic arm as well as poses

of the calibration pattern.

An example of the instantiation of (2) would be the following: assume that both

sensors are RGB cameras. Each of the syncronized pair of images acquired by the365

cameras constitutes a collection c, of two images in this case. Then, the corners of

the pattern as detected by a chessboard detector would constitute the set of detections
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Figure 3: A dataset with multiple collections, each with a different configuration of the robotic arm and pose

of the calibration pattern.

d[c,s] for a given image (collection c) and sensor s. Thus, in this case the detections

would be represented as pixel coordinates, i.e., points in Z2, and the cost function

would recompute the distance between the projected pixel coordinates and the detected370

coordinates, often known as reprojection error. Since the computation of the projection

would require the intrinsic parameters of the cameras (and possibly also the distortion

parameters) these would be included in the set of additional parameters {λ}.

A multi-sensor scenario is defined as one in which the number of sensors is greater

than two. Let S : n(S) ≥ 3 denote the set of sensors in the system, and S represent375

the set of pairwise combinations of the elements of S. The extension of this pairwise

approach to the multi-sensor case requires that all, or at least a subset, of the pairwise

combinations in S are evaluated, which extends (2) as follows:

argmin
{si T s j }

∑
{si,s j}∈S

∑
c∈C

∑
d∈D

e
(

siT s j ,d[c,si],d[c,s j ],{λsi},{λs j}
)
,

(3)

where {siT s j} is the set of estimated transformations that correspond to the set of pair-

wise combinations S. The critical issue with the pairwise formulation in (3) is observed380

for multi-modal systems, that is, where the sensors S in the system have diferent modal-

ities. In these cases, a variant of the cost function e(·) must be implemented to cope

with each pair of modalities in the system. If the cost function is symmetric, meaning
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Table 1: Number of cost function variants required as a function of the type of cost function and the number

of sensor modalities in the system.

# modalities

Type of cost function 2 3 4 5 10 20

Sensor Pairwise Symmetric 1 3 6 10 45 190

Sensor Pairwise Assymmetric 2 6 12 20 90 380

Sensor to Pattern (ATOM) 2 3 4 5 10 20

it will provide the same results regardless of the order by which the modalities are eval-

uated, the number of function variants to be implemented is computed by the number385

of pairwise combinations of the modalities in the system. If, on the other hand, the

cost function is assymmetric, e.g. if evaluating a RGB camera w.r.t. a LiDAR is differ-

ent from evaluating a LiDAR w.r.t. a RGB camera, then the pairwise permutations of

the modalities define the number of cost function variants to be implemented. Table 1

provides an analysis of the problem, and clearly shows the scalability issue inherent to390

pairwise formulations.

This paper proposes a formulation which is an alternative to parwise approaches.

Our proposal is to augment the optimization problem, by extending the set of parame-

ters to optimize in order to include an estimate, for each collection, of the transforma-

tions from the world coordinate frame w to the calibration pattern p coordinate frame,395

denoted as wTp. This enables the cost function to be considerably simplified, since it

now may use the estimated pose of the pattern to compute the cost in a sensor to pat-

tern logic. As such, the cost function does not have to evaluate pairs of sensors, which

avoids all the problems discussed above. The proposed formulation is the following:

argmin
{sTw},{wTp}

∑
s∈S

∑
c∈C

∑
d∈D

e
(

sTw,wTp
c ,d[c,s],{λs}

)
, (4)

where {sTw} labelsize=lst of transformations from the world coordinate frame w to400

each sensor s, which must be static in order to be calibrated, reason why they do not

contain collection index c. On the other hand, the transformation wTp
c between the

world w and pattern p coordinate frames contains an index c because the pattern is

placed on different positions for every collection. Table 1 also shows how the proposed
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approach scales well with the inclusion of additional modalities.405

3.2. Atomic Transformations

The proposed calibration framework also requires the definition of a topological

structure which contains information of the relationships between coordinate frames,

often referred to as a transformation tree. The transformation tree for MMTBot is

presented in Figure 4. There, it is possible to observe that the graph of transformations410

is a detailed representation of the robotic system. As such, this representation often

includes portions of the tree which are not relevant for the calibration procedure, as is

the case of the gripper component, which for that reason appears greyed out in Figure 4.

In addition to this, the tree also contains both static as well as dynamic transformations,

marked as black and blue arrows in Figure 4 respectively. A static transformation is415

defined as a transformation that does not change for all collections of data used in the

calibration, i.e. if Tci =Tc j ,∀ci,c j ∈ C. For example, the transformation from the table

to the base of the robotic arm is static, while the transformation between the base and

the shoulder of that robotic arm is dynamic, since it changes according to the motion

of the arm. The transformation tree also displays several branches of variable depth, as420

can be observed by comparing the two cameras, for example. Figure 4 also includes a

pattern coordinate frame, and a transformation from the world to the pattern denoted

as wTp in the previous section.

The vast majority of calibration approaches typically reduce this complexity, with

the goal of simplifying the calibration procedure. This is done by computing aggregate425

transformations or eliminating some coordinate frames. For example, most approaches

designed to tackle hand-eye calibration problems make use of (1), in which the trans-

formations A, X, Z and B are often aggregated transformations.

We argue that, by preserving the complete topological structure of transformations,

it is possible to generalize all calibration problems. The proposal is to include all co-430

ordinate systems in the topological representation, and to store the values of all these

transformations for all collections, so that the complete transformation tree can be re-

computed during the optimization procedure when required, and for any collection. We

refer to the transformations stored in this topological representation as atomic transfor-
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Figure 4: The transformation tree for the Multi-Modal Test roBot (MMTBot), a simulated robot containing

two RGB cameras and a lidar. The presented topology follows the structure of the sensors and arm drivers

as provided by the manufacturers, although some reference frames have been renamed or ommited for better

readability.

mations, in the sense that they are not aggregated, are indivisible. The notation T is435

used to distinguish atomic transformations from the other transformations. The method
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that we propose uses these atomic transformations to formulate the optimization proce-

dure carried out for the calibration. As such, we refer to it as Atomic Transformations

Optimization Method (ATOM).

Having a connected transformation tree, it is possible to retrieve the unique topo-440

logical route from one point in the graph to another, i.e., the path from any coordinate

frame ( fa) to any other ( fb). With this, the transformation between frames can be com-

puted as follows:
faT fb

c = ∏
fn∈ fa_ fb

fnT fn+1
c , (5)

where fnT fn+1
c denotes the atomic transformation from frame fn to frame fn+1, and

fa _ fb is the topological path that constitutes the sequence of coordinate frames trans-445

versed to go from frame fa to frame fb. Note that the collection c appears in (5) to ac-

count for the fact that some of the transformations may be dynamic, i.e., change from

collection to collection.

Since the goal of the cost function is to evaluate the error using a sensor to pattern

approach (see (4)), what is sought is the transformation from the coordinate frame of450

the sensor to the pattern p, denoted as sTp
c , which can be retrieved from (5). This ex-

pression is derived for all the sensors in the system. Also, to configure the calibration

procedure, it is necessary to select, for each sensor, which of the atomic transforma-

tions will be estimated during the process. The selection is arbitrary, provided that the

selected transformation is static and that it is included in the topological path of the455

respective sensor. Also, the number of selected transformations is not limited. Take

the example of Figure 4, which shows the transformations that have been marked to

be calibrated. In the case of the world camera sensor, the selected transformation was

from the tripod right support to the world camera. It is possible to, instead calibrate

the world camera to the world camera optical transformation. Moreover, both trans-460

formations can be selected simultaneously.

In the example of Figure 4 the selection of transformations to be calibrated is the

simplest solution: just a single, the most intuitive transformation per sensor was se-

lected. Sensor world camera has a topological path wco _ p = {wco,wc, trs, tri,w, p},

where wco, wc, trs, tri, w and p, stand for world camera optical, world camera, tri-465
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pod right support, tripod, world and pattern, respectively. Assuming the selections

of transformations to be calibrated shown in Figure 4, (5) becomes for world camera

sensor:
wcoTp

c = ∏
fn∈wco_wc

fnT fn+1
c ·wcT̂ trs · ∏

fn∈trs_w

fnT fn+1
c ·wT̂ p

c , (6)

where the hat notation T̂ is used to signal that these atomic transformations are esti-

mated. Also, note that wcT̂ trs does not have a collection index c because it must be static470

by definition. Sensor 3d lidar has a topological path 3l _ p = {3l,3lb, tls, tri,w, p},

respectively 3d lidar, 3d lidar base, tripod left support, tripod, world and pattern. In

this case, (5) becomes:

3lTp
c = ∏

fn∈3l_3lb

fnT fn+1
c · 3lbT̂ tls · ∏

fn∈tls_w

fnT fn+1
c ·wT̂ p

c , (7)

and sensor hand camera has a topological path hco _ p = {hco,hc,ee, ...,b, tab,w, p},

respectively hand camera optical, hand camera, end effector, base, table, world and475

pattern. In this case, (5) becomes:

hcoTp
c = ∏

fn∈hco_hc

fnT fn+1
c · hcT̂ ee · ∏

fn∈ee_w

fnT fn+1
c ·wT̂ p

c . (8)

Note that (6), (7) and (8) derive the particular expressions of the MMTBot sensors.

These expressions are shown for clarity of presentation alone, because it is the ex-

pression (5) that is actually implemented, which automatically derives into the partic-

ular expression of each sensor. This proves that the proposed formulation successfully480

generalizes any calibration problem, including sensor to sensor, sensor in motion and

sensor to frame calibration problems.

The formulation for extrinsic calibration using a sensor to pattern paradigm, as

proposed in (4), can now be rewritten to accommodate the atomic transformations,

which results in:485

argmin
{T̂ }

∑
s∈S

∑
c∈C

∑
d∈D

e
(

sTp
c ,d[c,s],{λs}

)
, (9)

where {T̂ } denotes the set of atomic transformations marked to be optimized, and sTp
c

is the transformation from the sensor to the pattern, which is computed using the atomic

transformations.
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(a) (b)

Figure 5: Projection of calibration pattern’s corners (a) to the images of world camera (b). Color coding

distinguishes the detections.

3.3. RGB Camera Error Function

The calibration proposed in this paper is formulated in (9). This is a generic ex-490

pression, in which the error function e(·) must be instantiated for each existing sen-

sor modality. For the RGB sensor modality we propose to use the reprojection error,

computed by projecting the known corners of the calibration pattern (x) to the camera

image, and comparing these projected coordinates with the coordinates of the corre-

ponding detections in the image (x):495

e[c,s,d] =
∥∥∥x[c,s,d]−P ([sTp

c ·xd ]xyz , ks,us

)∥∥∥2

F
, (10)

where xd is the three-dimensional homogeneous coordinates of the pattern corner that

corresponds to detection d, defined in the pattern’s local coordinate frame; the operator

[·]xyz is an operator that extracts the x,y and z coordinates (removes the homogeneous

coordinate); k and u are the vector of camera intrinsics and distortion parameters, both

included in the set of additional parameters for the sensor, i.e., ks,us ∈ {λs}; P is the500

projection function; x[c,s,d] denotes the two-dimensional pixel coordinates of detection

d, found in the image acquired by sensor s at collection c; and finnaly ‖·‖2
F denotes the

Frobenius norm.

3.4. 3D LiDAR Error Function

The error function e(·) for 3D LiDAR modality is composed of two distinct evalu-505

ations which compute the orthogonal o(·) and logitudinal l(·) errors for each detection,
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i.e. e(·) = {o(·), l(·)}. In the context of this modality, a detection d is a range measure-

ment performed by the sensor which is labelled to belong to the calibration pattern, and

the set of detections D is a subset of the point cloud provided by the sensor.

The orthogonal error o(·) is computed by evaluating the distance between the esti-510

mated pattern XoY plane and the detection coordinates. One simple way to accomplish

this is to transform the detection coordinates from the LiDAR’s local coordinate frame

to the pattern’s coordinate frame, and evaluate the z coordinate, as follows:

o[c,s,d] =
[
(sTp

c )
−1 ·xd

]
z

(11)

where xd denotes the three dimensional coordinates of the detections in the LiDAR’s

local coordinate frame,
(

sTp
c
)−1 is the transformation from the pattern p to the sensor515

s, and the operator [·]z extracts the z coordinate of the point.

The longitudinal error l(·) makes use of the 3D coordinates of the boundary of the

calibration pattern with measurements labeled as being boundaries in the set of pat-

tern measurements. Let B ∈ D denote the set of measurements labeled as boundaries,

and xb be the 3D coordinates of the boundary point b. The process by which these520

points are identified is called labelling and will be detailed in subsequent sections. By

transforming xb to the pattern’s coordinate frame, it is then possible to compare these

coordinates with the known geometric structure of the calibration pattern. Let Q de-

note the set of 3D coordinates defined in the pattern’s local coordinate frame that are

obtained by the (spatialy periodic) sampling of the lines that delimit the physical body525

of the pattern. Thus, the longitudinal error can be written as follows:

l[c,s,d] = min
q∈Q

(∥∥∥∥[q− (sTp
c )
−1 ·xb

]
xy

∥∥∥∥2

F

)
, (12)

where q denotes a 3D point defined in the pattern’s local coordinate frame and obtained

through sampling as detailed above, and the operator [·]xy extracts the x and y coordi-

nates of the point, which account for the longitudinal component of the error. Figure 6

shows the process of computing the LiDAR modality cost function. The small green530

spheres in Figure 6 (b) represent the range measurements labeled as belonging to the

pattern, i.e., xd in (11)). For the orthogonal evaluation, these are compared against the

estimated pattern XoY plane. The large green spheres in Figure 6 (b) represent the
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(a) (b)

Figure 6: The physical boundaries of the calibration pattern are represented by a set of sampled points Q

(green cubes in (a)). The longitudinal evaluation finds the smallest distance between each of the sensor

measurements labeled as boundaries xb (large green spheres in (b)) and all the points in Q. The orthogonal

evaluation measures the distance between the pattern’s XoY plane and the sensor measurements labeled as

belonging to the pattern, i.e., the detections xd (small green spheres in (b)).

range measurements labeled as boundaries, i.e. xb in (12). In the case of the longitudi-

nal evaluation these points are compared against the points sampled from known model535

of the calibration pattern, denoted as q in (12) and represented as the green cubes of

Figure 6 (b).

We have presented the cost functions for the RGB and 3D LiDAR modalities. Nat-

turally, the inclusion of additional modalities would require the definition of other cost

functions, but their integration in the proposed framework is straightforward.540

3.5. Normalization of Residuals

ATOM proposes the usage of distinct error functions for diferent sensor modalities.

The output of these functions is called residuals. Thus, each function contributes to a

global vector of residuals.

Note that, in the case of RGB cameras (see (10)) the error is measured in pixels.545

On the other hand, errors for LiDAR, defined in (11) and (12) are expressed in meters.

Clearly, 1 pixel is not the same as 1 meter but, to the optimizer, these residuals have the

exact same magnitude. This mismatch in units may lead to differences in the magnitude

of the residuals computed for distinct modalities, which will result in an unbalanced

optimization, where larger residuals from specific modalities may overshadow residu-550

23



als from other modalities.

To address this problem of multi-modal residuals, we propose to compute normal-

ized residuals ẽ using a normalization mechanism as follows:

ẽ[c,s,d] = ηm(s) · e[c,s,d] (13)

where ηm(s) is the normalization factor for a given modality m(s), and m(·) is a function

that retrieves the modality of sensor s. The normalization factors are computed before555

the optimization starts, and are constant throughout the procedure. The normalization

factor for a given modality n, denoted as ηn, is computed by taking into account all of

the residuals of that same modality:

ηn =

∑
s∈S

∑
c∈C

∑
d∈D

δ (n,m(s))

∑
s∈S

∑
c∈C

∑
d∈D

e0
[c,s,d] ·δ (n,m(s))

(14)

where e0
[·] denotes the error computed using the values of the parameters as provided

at the start of the calibration procedure, i.e., the initial estimate, and δ (·) is the delta560

Kronecker function. Note that the normalization factors are constant values during

the optimization, and are calculated once with the residuals that result from the initial

guess.

The proposed framework is general in the sense that any parameter that is used

to compute the error, i.e. that has impact on the residuals, can be estimated. This565

includes not only the parameters that encode the geometric transformations, but also

other additional parameters. The most straightforward example is that of the intrinsic

parameters of RGB cameras, which are used to compute the reprojection error (see

(10)), and can therefore be simultaneously estimated during the calibration procedure.

As such, ATOM is not an exclusively extrinsic calibration methodology. Rather, since570

intrinsic parameters (and others) may also be included in the optimization, we view it

is a general methodology for the calibration of sensors. This leads to the extension of

the problem formulation, from the one proposed in (9), to the following:

argmin
{T̂ },{λ̂}

∑
s∈S

∑
c∈C

∑
d∈D

ẽ
(

sTp
c ,d[c,s],{λ̂s}

)
, (15)

where {λ̂} denotes the set of additional parameters that are also being estimated, along

with the atomic transformations.575
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3.6. Non-linear Least Squares Optimization

By definition, least squares tries to minimize the squared residuals (i.e the predicted

error) of an objective function with respect to its parameters:

argmin
φ

∑‖F(φ)‖2 , (16)

where F is an objective function that returns the residuals vector given the param-

eters φ . Considering (15), we have φ = {{T̂ },{λ̂}} and F = ẽ. While the addi-580

tional parameters {λ̂} are direclty used, the atomic transformations {T̂ } are encoded

as tx, ty, tz,r1,r2,r3, where t are the translation components of the transformation, and

r denote the rotation components of that atomic transformation T̂ , represented thought

the angle-axis parameterization, which is used in order to avoid introducing more sen-

sitivity than the one inherent to the problem itself [Hornegger and Tomasi, 1999].585

Using a non-linear approach, the parameters φ can be estimated using the following

iterative update rule:

φ
u+1 = φ

u +∆φ , (17)

where ∆φ is the update step calculated by an non-linear least squares algorithm. At

each step, the model is linearized by a first-order Taylor expansion about φ u, which

results in the following normal equations (in matrix notation):590

(JᵀJ)∆φ = JᵀF(φ u) , (18)

where J is the Jacobian matrix of F with respect to φ u. The normal equations are the

base for many existing algorithms that solve a non-linear least squares optimization

problem.

The calibration is handled as a sparse problem because the optimization parameters

do not have influence over all of the residuals. For example, the intrinsic parameters of595

a given camera sensor only produce a non-zero gradient for the residuals related to that

specific camera. Also, the parameters that encode a given atomic transformation only

influence the residuals which are computed with a sensor to pattern topological path

(s _ p) that includes that transformation. An example from Figure 4: The residuals

computed by the world camera cost function are not affected by the value of the end600
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effector to hand camera or the tripod left support to 3d lidar base atomic transforma-

tions, as these are not included in the path that goes from frame hand camera optical

to frame pattern. The optimization is solved with the trust region reflective algorithm

[Branch et al., 1999], which is a suitable method for large bounded sparse problems.

The Jacobian matrix is calculated with numerical differentiation which, although not605

the most precise method, provides the necessary flexibility for a general approach.

4. Calibration Framework

A novel approach for conducting the calibration of robotic systems based on the

optimization of atomic transformations was proposed in section 3. In that section, the

focus was striclty on the formulation of the calibration component as an optimization610

problem, i.e., the estimation of the geometric transformations between sensors. The

complete procedure of calibrating a robotic system accommodates additional stages.

In fact, a set of prior steps must be carried out before the actual optimization starts.

The work presented in this paper covers all the procedures required to perform a com-

plete calibration of a robotic system. As such, we view ATOM not only as a novel615

calibration method, but also as a complete calibration framework 7. With the goal of

providing a set of calibration tools that are easily used by the community, ATOM is

integrated into ROS, which is the standard library for the development of robotic sys-

tems [Quigley et al., 2009]. There are several ROS based calibration packages avail-

able, ranging from intrinsic camera calibration, to stereo extrinsic calibration or even620

RGB-D camera calibration 8. There are also some ROS packages dedicated to the

hand-eye calibration problem: the Open source Visual Servoing Platform provides a

solution here [Marchand et al., 2005, Trinh et al., 2018]9, and there is also a commer-

cial solution here10. The solutions described already have a significant integration with

ROS: in particular, they make use of ROS messages to create a calibration eco-system625

7https://github.com/lardemua/atom
8https://github.com/code-iai/iai_kinect2
9http://wiki.ros.org/visp_hand2eye_calibration

10http://wiki.ros.org/rc_visard/Tutorials/HandEyeCalibration
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functioning under the ROS framework. We state an extensive integration with ROS as

a key component of the proposed approach. To this end, ATOM contains ROS based

tools designed to support not just the optimization stage, but for all components of the

calibration procedure.

As discussed in the previous section, ATOM required a graph of transformations630

in order to compute the topological path from one coordinate frame to another. For

this purpose, ROS uses a tree graph referred to as tf tree [Foote, 2013]. In the case of

Marchand et al. [2005], the system is also integrated with the ROS tf library. Many

calibration approaches modify the topology of the tf tree out of convenience for the

calibration procedure. However, this may be problematic, because the tf tree is used635

to support many other functionalities such as robot visualization, colision detection,

interactive joint control, motion planning, etc. All these tools are dependant on the

predefined topology of the tf tree. If the calibration results in modifications to that

topology, those functionalities have to be reconfigured or redesigned, which is often a

cumbersome task.640

Because ATOM is based on the optimization of atomic transformations, only the

values of (some of) the transformations in the tree are modified, not its topology. To

take the topology of the system into account, the cost functions recompute, for each

function call, the transformation between the sensor to the pattern coordinate frames,

i.e., sTp
c in (9) is always recalculated using (5). Therefore, a change in one atomic645

transformation in the chain affects the global sensor pose, and consequently, the error to

minimize. The optimization may target multiple transformations of each sensor chain,

and is agnostic to whether the remaining links are static or dynamic, since all existing

partial transformations are stored for each data collection. This ensures not only that

the reestimated values of selected atomic transformations are taken into account in the650

computation of the error function, but also that (some) transformations in the tf tree may

be dynamic. This is one important aspect as to why ATOM successfully generalizes

sensor to sensor, sensor in motion and sensor to frame calibration problems.

To the best of our knowledge, our approach is one of few which maintains the struc-

ture of the transformation graph before and after optimization, and we consider this as655

a key feature of the proposed framework: from a practical standpoint, since it facilitates
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the integration into ROS, both before and after the optimization; and, moreover, from

a conceptual perspective, since this formulation is general and adequate to handle most

calibration problems.

Figure 7 provides a schematic of the proposed calibration framework. To perform660

a system calibration, ATOM requires data logged from the system’s sensors, provided

in the format of a ROS bag file, and also a description of the configuration of the sys-

tem, as given in ROS xacro11 or urdf 12 formats. Note that these two requirements are

external to ATOM and are not considered a heavy burden, since that the typical con-

figuration of robotic systems in ROS already includes them. In ATOM, the calibration665

procedure is structured in four phases, which occur in sequence: 1) calibration con-

figuration, 2) initial positioning of the sensors, 3) data collection and labelling and 4)

calibration. Each of these will be described in detail in the next sections.

4.1. Calibration configuration

The configuration defines the parameters which will be used throughout the calibra-670

tion procedure, from the definition of the sensors to be calibrated to a description of the

calibration pattern. The proposed approach was detailed in section 3, in particular the

usage of atomic transformations. These transformations are combined through the use

of the topological information contained in a transformation tree, which is generated

in ROS from the information from an urdf or xacro file. For the purpose of calibrating675

the system, additional information must be provided to define which atomic transfor-

mations, will be optimized during the calibration procedure. Also, a description of the

calibration pattern must be provided to ensure a correct detection and labelling. All this

information is defined in a calibration configuration file. An example of the MMTBot

calibration file is provided here13, and a demonstration video here14
680

11http://wiki.ros.org/xacro
12http://wiki.ros.org/urdf
13https://jsonformatter.org/yaml-viewer/a4d145
14https://youtu.be/2RTCUt2cdJY
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Figure 7: The software architecture for the ATOM calibration framework is composed of 4 key components:

configuration of the calibration, setting of the initial estimate of the sensor poses, collecting and labelling of

data, and the actual calibration procedure.

4.2. Initial positioning of sensors

Since the calibration procedure is formulated as an optimization problem, the ini-

tial values of the parameters to be estimated are determinant to the outcome of the

optimization. In fact, when the initial parameter values are far from the optimal pa-

rameter configuration (the solution), it is possible that the optimization converges into685

a local minima, thus failing to find adequate values for the parameters. This problem is

tackled by ensuring that the initial values contain a plausible first guess. As discussed

in section 3, there are several types of parameters to be estimated (see (15)). Different

types of parameters require distinct initialization strategies, which will be detailed in

the following lines.690

The goal of a calibration is to find the position of the sensors, which in our ap-

proach is accomplished through the estimation of atomic transformations, e.g. wcT̂ trs

in (6), 3lbT̂ tls in (7) or hcT̂ ee in (8) for sensors world camera, 3d lidar and hand cam-
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(a) (b)

(c) (d) (e) (f)

(g) (h)

Figure 8: Setting an initial estimate for the sensor poses using RVIZ interactive markers. Top two rows:

Inaccurate (left side) vs accurate (right side) positioning of the 3d lidar sensor. On the left side, the 3D

points from the pattern (the blue green spheres in (a)) do not align well with the pattern the images of the

world camera (c) and the hand camera (d) images. The right side shows how an accurate positioning of

the sensor aligns the projection of the 3D LiDAR measurements (blue spheres in (b)) with the pattern in the

images of the world camera (e) and the hand camera (f). Bottom row: inaccurate (left) vs accurate (right)

positioning of an RGB-D camera. In (g), the point cloud produced by the RGB-D camera (points textured

with real colors) is misaligned with LiDAR point cloud (red to blue spheres). In (h), a correct positioning of

the RGB-D camera produces a good alignment between point clouds.

era, respectively. Hence, the first type of parameters to initialize are these atomic

transformations which account for the position of the sensors. To accomplish this,695

ATOM provides and interactive tool which parses the calibration file and creates a 6-

DOF interactive marker associated with each sensor, which overlays on top of the ROS

based robot visualization in 3D Visualization Tool for ROS (RVIZ). The sensors are

positioned by dragging the interactive markers, which is a simple method to easily gen-

erate plausible first guesses for the poses of the sensors. The process is very intuitive700
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because visual feedback is provided to the user by the observation of the 3D models

of the several components of the robot model and how they are spatially arranged. For

example, despite not knowing the exact metric value of the distance between the world

camera and the 3d lidar, the user will know that both are more or less at the same

height and not more than a meter away from each other. These non-metric, symbolic705

spatial relationships, in which humans are very proficient, are very useful to generate

plausible first guesses. Moreover, the system provides several other visual hints that

make the positioning of the sensors an intuitive process. One of these is the ability to

visualize how well the data from several sensors aligns. Figure 8 shows an example.

On the left side of the figure, an inaccurate positioning of the LiDAR sensor (a) leads710

to a misaligned projection of the blue spheres on the images (c) and (d). Conversely,

an adequate positioning of that same sensor produces a good alignment between the

blue spheres in (b) and the patterns in the images (see (e) and (f)). Also, it is possible

to see that the alignment between the LiDAR measurements and the physical objects

(e.g. table and manipulator) is much better in (b) when compared to (a). The bottom715

row of Figure 8 shows the alignment between two point clouds, the first produced by

the lidar and the second by a RGB-D hand camera (which is used here just for the sake

of example). Here, it is also very intuitive to realize that the alignment between point

clouds is much better when the camera is adequately positioned, the alignment in (h)

is better than in (g).720

This video15 shows an example of setting the initial pose of the sensors using the

ATOM functionalities. In addition to this, we also provide an example of setting the

initial estimate for an intelligent vehicle16.

As discussed in section 3, the proposed approach is to extend the optimization

problem not only to include those transformations that we seek to estimate through the725

calibration (discussed in the previous paragraph), but also the transformations from the

world to the pattern coordinate frames, denoted as wT̂ p
c in (6), (7) and (8). Note that

the pose of the calibration pattern p is different for every collection c. That means that

15https://youtu.be/oJLKTqUtZvQ
16https://youtu.be/zyQF7Goclro
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the pattern moved around in the scenario while the data was being collected, which

makes it difficult for any user to keep track of the pose of the pattern over time. Since730

the user cannot be of assistance in this case, it is not viable to initialize the poses of the

calibration patterns using the same methodology as before. To initialize these particular

transformations, the following expressions is used:

wT̂ p
c = ∏

fn∈w_s

fnT fn+1
c · g

(
{x[c,s,d]},ks,us

)
, (19)

where g(·) denotes a function that solves the perspective-N-point problem ( see Gao

et al. [2003], Sanchez et al. [2013]), given a set of detected pattern corners in the image735

({x[c,s,d]}) and the intrinsic parameters of the camera sensor s, ks, us, and returns the

homogeneous transformation matrix from sensor s to the pattern p, and w _ s is the

topological path from the world w to the sensor s coordinate frames, which of course

must have the RGB modality. If there is more than one RGB sensor in the system, one

is arbitrarily selected to produce the initial estimate.740

The final type of parameters are those referred to as additional parameters, denoted

as {λ̂} in (15). In the case of RGB camera modalities, these additional parameters

are the intrinsic and distortion camera parameters, ks and us which are initialized by

running a prior intrinsic camera calibration procedure. Naturally, additional parameters

of different modalities will require specific initialization strategies.745

4.3. Data collection

The proposed optimization mechanism for achieving the calibration of robotic sys-

tems was described in section 3. To ensure that the residuals that are being computed

from the current state of estimated parameters are representative, and thus that the cal-

ibration is accurate, several views of the calibration pattern should be used. That is750

the reason why (15) considers the set of collections C. A collection is a syncronized

snapshot of the data from all sensors in the system at a given time defined by the user.

The term is used to denote that, for multi-modal robotic systems, the data collected for

each sensor may be different, e.g., images, point clouds, etc. This is a distinction from

uni-modal systems: for example, in intrinsic RGB camera calibration, several images755
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(instead of collections) of different views of the calibration pattern are taken to pro-

duce the intrinsic and distortion parameters. Each collection also contains the values

of all atomic transformations recorded at the corresponding time, so that is possible to

recompute the transformations between any two frames (see (5)).

In the case of systems containing more than one sensor, it is very common that760

the data coming from the sensors is streamed at different frequencies. As such, a

syncronization mechanism is required to ensure that the information contained in the

collection consistent. This is not a trivial problem to address because the data is not

syncronized, i.e., there is never an instant in which all sensors collect data.

This problem is solved through the use of a methodology that ensures the synchro-765

nization, assuming the scene has remained static for a long enough period of time. In

static scenes, the problem of data de-synchronization is not observable, which war-

rants the assumption that for each captured collection the sensor data is adequately

synchronized. Assuming it is possible to establish an upper bound to the maximum

time difference between any data streaming from the robotic system, it is possible to770

assume that all data messages are synchronized, if the scene has remained static for a

period longer than that upper bound. Thus, the methodology establishes that it is the

responsibility of the user to ensure that the scene has remained static for a given time

period, before triggering the saving of a collection.

There are other approaches which use a similar methodology, in particular by hold-775

ing the pattern with a tripod (which ensures it does not move) before collecting each

image. This approach is used in multi sensor calibration frameworks [Rehder et al.,

2016, Furgale et al., 2013], and also in RGB-D camera calibration procedures17.

We refer to the set of collections obtained from a given robotic system as an ATOM

dataset. It contains a copy of the calibration configuration file, and high level informa-780

tion about each sensor, such as the sensor topological transformation chain, extracted

from the transformation tree. In addition, there is also specific information for each

collection, i.e., sensor data and labels, as well as values of atomic transformations. It

is important to note that the set of collections should contain a sufficiently varied set

17https://github.com/code-iai/iai_kinect2
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of pattern poses. As such, collections should preferably have different distances and785

orientations w.r.t. the calibration pattern, so that the calibration returns more accurate

results. Also, if the robotic system contains moving components, the dataset should in-

clude several poses of the system. Empirically we have found that 20 to 30 collections

is a sufficient number to achieve accurate calibrations. One example of a dataset file

for the MMTBot can be found here18.790

4.4. Data labelling

The labelling of data refers to the annotation of the portions of data which view the

calibration pattern. The labelling procedure is executed for the data of each sensor, so

that all collections have the labels that correspond to the raw sensor data. Labelling can

be automatic, semi-automatic or even manual in some cases. The information that is795

stored in a given label depends on the modality of the sensor which is being labelled.

RGB modality labels consist of the pixel coordinates of the pattern corners detected

in the image, and are labelled using one of the many available image-based chessboard

detectors [Zhang et al., 2017]. Our system is also compatible with charuco boards,

which have the advantage of being detected even if they are partially occluded [Jurado800

et al., 2016]. Also in this case we make use of off-the-shelf detectors, e.g., Ramirez

et al. [2018], Hu et al. [2019].

The structure of the labels is more complex in the case of the LiDAR modality.

As discussed in subsection 3.4, two different types cost functions are used: orthogonal

and longitudinal. The range measurements that belong to the pattern is refered to as805

the set of detections D, and the 3D point coordinates of each are denoted in (11) as

xd , ∀d ∈ D. The lidar directly produces 3D point coordinates, so it is straightforward

to obtain the 3D coordinates xd of a given detection d. The difficulty lies in finding

the detections D that belong to the pattern, which is a subset of the complete set of

LiDAR measurements. We propose to achieve this using a semi-automatic approach.810

The intervention of the user is required to set a 3D point which is used as the seed

of a region-growing algorithm. Then, starting at the seed point, and assuming that

18https://jsonformatter.org/json-parser/a06452
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Figure 9: Semi-automatic LiDAR labelling procedure. In a span of about 5 seconds, the user drops the

interactive marker close to the pattern, and the system starts tracking it. Yellow spheres indicate lidar mea-

surements considered as pattern detections.

the pattern is physically separated from the other objects in the scene, the algorithm

searches in the set of lidar measurements for close enough points, and includes these

into the set of pattern detections D which are used as seed points in the next iteration.815

The process is repeated until no propagation occurs. The set of points transversed in

the search constitutes the set of detections D. Figure 9 shows a representation of this

process.

The second component of the LiDAR cost function is the longitudinal evaluation.

For this, it is necessary to retrieve the set of measurements labeled as boundaries, which820

we denote as B ∈ D, in order to recover the 3D coordinates of these points, i.e., xb in

(12). Once again, the challenge is not to find the 3D coordinates but rather which

points, from the set D, are boundary points, meaning they are measuring the physical

boundaries of the pattern board. The solution for this is to use a spherical parameteriza-
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(a) (b)

Figure 10: Labelling of 3D LiDAR data: (a) lidar points labelled as detections; (b) lidar points labelled as

boundary points.

tion to represent the point coordinates of xd∀d ∈ D. Let sd = [ρd ,θd ,ϕd ] represent the825

spherical coordinates of the detection d. A 3D lidar generaly contains a much larger

horizontal angular resolution, i.e., for the θ angle, when compared with the vertical an-

gular resolution, which corresponds to the ϕ angle. In fact, 3D lidars are said to have

scan layers, where the vertical angle is the same for a set of measurements spanning

all available horizontal angles. The set of measurements corresponding to a scan layer830

with angle ϕl , denoted as {s[d,ϕl ]}, are extracted as follows:

{s[d,ϕl ]}=
{

sd : ϕl−
∆ϕ

2
≤ ϕd < ϕl +

∆ϕ

2

}
, ∀d ∈ D, (20)

where ∆ϕ is the vertical angular resolution of the lidar. For each set of detections in a

layer, the left and right boundary points, denoted as {s[b,ϕl ]}, are extracted by searching

for the measurements that have the smallest and largest value of horizontal angle θ :

{s[b,ϕl ]}= {s[d,ϕl ] : θ[d,ϕl ] = max({θ[d,ϕl ]}) ∨

θ[d,ϕl ] = min({θ[d,ϕl ]})}, ∀d ∈ D, (21)

and finally, the complete list of boundary points B of the calibration pattern, is given

by putting together the boundary points detected for each individual scan layer.

Figure 10 shows an example of the LiDAR labelling procedure. The labelled

boundary points are signaled by the large green spheres in (b). A video example of835
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the process of producing an ATOM dataset for MMTBot is provided here19. This la-

belling mechanism also works well for 2D LiDARs, as shown in this example of an

autonomous vehicle20.

4.5. Calibration

The vast majority of calibration approaches do little more than printing some in-840

formation on screen to display the results of the calibration. ATOM provides a great

deal of visual feedback, not only at the end of the calibration but also throughout the

procedure.

To accomplish this goal, the information stored in an ATOM dataset is published

into the ROS ecosystem. The system’s configurations for all collections are simultane-845

ously conveyed to ROS, as if they had occurred all at the same time which, not being

the case, is the framework under which the calibration procedure operates. Collisions

in topic names and reference frames are avoided by adding a collection related prefix to

each designation. Also, the original transformation tree is replicated for each collection

and those subtrees are connected so that it is possible to display them toghether.850

Figure 11 shows an example of the visualization of a calibration procedure. It is

possible to simultaneously visualize the collections that are being used in the calibra-

tion (top row), or to select which collections are displayed (bottom row). The ground

truth poses of the sensor appear in tranparent mode. These are known only because

MMTBot is a simulated robotic system. For real robotic systems there is no ground855

truth information (the transparent mode is used to show the initial pose of the sensors).

It is possible to observe that, as the optimization progresses (from left to right in Fi-

gure 11), the sensors move towards the ground truth pose (transparent mode), which

means that the optimization is converging towards the optimal solution.

The integration with ROS provides straightforward access to many other interesting860

functionalities. For example, it is possible to visualize images with the reprojected

pattern corners, to display the robot meshes, the position of the reference frames, etc.

19www.youtube.com/watch?v=eII_ptyMq5E
20https://youtu.be/9pGXShLIEHw
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Figure 11: Visualizing the evolution of a calibration procedure from the initial estimate (left) to the solution

(right). Top row shows all collections used in this calibration (different color for each collection). Bottom

row shows a single collection and, in transparent mode, ground truth poses of the sensors (known because

this dataset was generated in simulation).

A complete calibration procedure for MMTBot is displayed here21.

5. Results

In section 1, three distinct calibration problems were identified: sensor to sensor,865

sensor in motion and sensor to frame calibration problems. The analysis done in sec-

tion 2 has shown how the vast majority of the state of the art is focused on one of those

problems. Then, in section 3, we described how the proposed approach is able to gen-

eralized all calibration problems into a single, unified famework that optimizes atomic

transformations.870

To show how ATOM may be applied to distinct calibration problems, this section

presents results spanning the calibration of four distinct robotic systems, as listed in

Table 2. The first is the MMTBot, which was presented before since it was used as a

case study in section 3 and section 4. The other three are real robots as displayed in

Figure 12: the AtlasCar2 [Oliveira et al., 2020b, Pereira et al., 2016] is an autonomous875

vehicle designed to collect multi-sensor data from real road scenarios (see Figure 12,

21https://www.youtube.com/watch?v=4B3X_NsX89M
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Table 2: Description of the robotic systems used to train and test ATOM as well as the datasets used for

train and evaluation.
System Description Sensors Dataset Details

MMTBot(a)
Simulation with robotic arm

All calibration problems

RGB cameras (2x)

3D LiDAR

mmtbot-1 29 collections, 9 partial

mmtbot-2 47 collections, 25 incomplete, 16 partial

AtlasCar2(b)
Autonomous vehicle

Sensor to sensor

RGB cameras (3x)

2D LiDARs (2x)

atlascar-1 39 collections, 32 incomplete, 0 partial

atlascar-2 21 collections, 18 incomplete, 0 partial

AgRob V16(c)
AGV for agriculture

Sensor to Sensor

Stereo camera

3D LiDAR

agrob-1 42 collections, 5 incomplete, 38 partial

agrob-2 56 collections, 24 partial

agrob-3 15 collections, 8 partial

Iris ur10e(d)
Hand-eye system

Sensor in motion, sensor to frame
RGB cameras (x2)

iris-1 34 collections, all partial

iris-2 26 collections, all partial

(a) https://github.com/miguelriemoliveira/mmtbot

(b) https://github.com/lardemua/atlascar2

(c) https://github.com/aaguiar96/agrob

(c) https://github.com/iris-ua/iris_ur10e

top); the AgRob V16 is a robotic platform designed for agricultural scenarios in par-

ticular steep slope terraced vineyards (see Figure 12, middle); and the Iris UR10e is

an experimental system assembled to test several variants of the hand-eye calibration

problem (see Figure 12, bottom).880

These systems cover all of the calibration problems discussed above. Also, the

number of sensors and their modalities differ from system to system. The AtlasCar2

platform represents a sensor to sensor calibration. The AgRob V16 provides additional

modalities since it contains a stereo camera and a 3D LiDAR. Finally, the Iris UR10e

represents a hand-eye calibration which is both a sensor in motion as well as a sensor885

to coordinate frame calibration problem. We use three hand-eye problem variants with

the Iris UR10e: eye-in-hand, where the camera is assembled on the end effector; eye-

on-base, where the camera is assembled rigidly to the arm’s base, and a third variant we

refer to as joint-hand-base, where both previous cases are combined simultaneously.

The goal is to compare the performance of ATOM with other calibration methods.890

However, as discussed in section 3, there are very few works which are able to cali-

brate complete robotic systems with multiple sensors and modalities. Rather, the large

majority of the calibration approaches focuses on specific pairwise combinations of

modalities. Because of this, it is not possible to make a direct comparison between
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Figure 12: The three non simulated robotic systems used for evaluating the proposed approach: (top) an

intelligent vehicle, the AtlasCar2; (middle) an agriculture AGV, the AgRob V16; (bottom) an eye in hand

calibration setup, the Iris UR10e. Real image of the robots (left), and the corresponding ROS models (right).

ATOM and other approaches. To address this we propose to conduct a series of pair-895

wise evaluations, which cover the sensors used in the presented systems. In this way

we are able to compare against other methodologies, provided they are able to calibrate

the selected sensor tandem. Note that, while for other approaches we calibrate only the

selected pair of sensors, all results reported for ATOM were collected after a complete

system calibration.900

The next subsections will cover first the metrics used for evaluating the perfor-

mance of the calibrations. Then, performance evaluations for distinct combinations of

modalities are reported for all robotic systems. Finally, to assess the robustness of the
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proposed methodology, studies on the influence of several parameters are presented.

5.1. RGB to RGB camera evaluation905

To evaluate the RGB-to-RGB camera calibration results three metrics are used:

the mean rotation error (in radians), the mean translation error (in meters) and the

reprojection error (in pixels).

The mean rotation and translation errors, εR and εt respectively, measure the differ-

ence in the pattern’s pose as seen from each RGB camera. These errors are estimated910

through the evaluating how similar two transformations are. These transformations are

obtained through the multiplication of the atomic transformations from the world to the

pattern, i.e. w _ p. In the example of Figure 4 a direct route exists between these two

coordinate frames because this transformation is directly estimated by the calibration

procedure. In order to obtain trustworthy results the calibration should be done using915

one dataset, and tested using a different one. As a consequence, the direct route w _ p

does not exist for evaluation datasets, since these have not been calibrated. However,

it is possible to obtain transformation between the world and the pattern coordinate

frames (wTp
s ), as follows:

wTp
s =∏

fn∈w_s

fnT fn+1 · sTp , (22)

where the index s in wTp
s denotes that the transformation is computing using sensor s,920

and sTp is the transformation between the sensor an the pattern, as estimated through

the perspective-N-point [Gao et al., 2003, Sanchez et al., 2013]. Since two camera

sensors, e.g., sa and sb, are used in this evaluation, it is possible to obtain the two

transformations wTp
sa and wTp

sb . The εR and εt metrics are based on measuring the

difference between these transformations, since they should be the same by definition:925

wTp
sa ,

wTp
sb
, (23)

which can be rewritten to show the rotation and translation components:

wRsa wtsa

0 1

saRp sa tp

0 1

=

wRsb wtsb

0 1

sbRp sb tp

0 1

 , (24)
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where R is the rotation matrix and t is the translation vector. Now, we can define the

difference in rotation ∆R:

∆R = (wRsa · saRp)−1 ·wRsb · sbRp (25)

and the difference in translation ∆t:

∆t = wRsa · sa tp +wtsa −wRsb · sb tp +wtsb , (26)

respectively. Finally, for n states captured, we can now define the mean rotation error930

as:

εR =
1
n ∑

i
‖angle(∆Ri)‖ , (27)

where angle(·) is the angle-axis representation of the rotation. The mean translation

error is defined as:

εt =
1
n ∑

i
‖∆ti‖ . (28)

The reprojection error metric is defined by the root-mean-squared error εrms of the

difference between two sets of detected pattern corners. The first set corresponds to935

the projection of the detected corners in the image of the camera sa into the image of

camera sb, and the second set corresponds to the detected pattern corners in the image

of camera sb. The projection of the 3D coordinates of the corners of the pattern xd onto

the image of sensor s is expressed as:

xd = Ks · sTp ·xd , (29)

where x denotes the projected 2D image coordinates of the pattern’s corners, and Ks940

is the intrinsic matrix of camera s. Since the pattern corners are defined in the local

pattern’s reference frame, they all lie in the z = 0 plane. Knowing this, we can simplify

(29) by removing the z related components of (29)

xd = Ks · [sTp]z=0 ·x′d , (30)
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where x′d denotes the 3D coordinates without the z component, i.e. x′d = [x,y,1]ᵀ, and

the operator [·]z=0 extracts the components of the transformation which are not related945

to z, i.e.:

sMp = [sTp]z=0 =


r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz

0 0 0 1


︸ ︷︷ ︸

sTp

, (31)

which is obtained by removing the z rotation component and the homogeneization

components, i.e., removing the highlighted parts of the matrix in (31). Since x′d are the

same for both cameras sa and sb, the following equality can be written:950

x[d,sb] = Ksb ·
sbMp ·

(saMp)−1 ·
(
Ksa

)−1 ·x[d,sa] , (32)

which provides the relationship between the pixel coordinates of the pattern corners

in both camera images. The formulation in (32) makes use of the camera to pattern

transformation for both cameras, which in turn requires the estimation of the camera

to pattern using the perspective-N-point estimation (see (22)). To minimize the error

produced by the pnp estimation, we use the procedure only once for one camera, for955

example, sa, and then compute the sensor to pattern transformation for the other camera

using:

sbTp =
(saTsb

)−1 · saTp , (33)

were saTsb is the transformations between the two cameras. Finally, the root-mean-

squared error is given by

εrms =

√
1

n(D) ∑
d∈D

∥∥u[d,sb]−x[d,sb]

∥∥2
F , (34)

where u[d,sb] denotes the detected pixel coordinates of the pattern’s corners in the image960

of camera sb.
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Table 3: Performance comparison of methods for RGB to RGB camera evaluation. Best values highlighted

in bold.

Dataset Method Sensor pair
εR ε t εrms

(rad) (m) (pix)

mmtbot-1
OpenCV world camera to

hand camera

(a) (a) (a)

ATOM 0.001 0.001 0.531

mmtbot-2
OpenCV world camera to

hand camera

(a) (a) (a)

ATOM 0.001 0.001 0.305

atlascar-1

OpenCV left camera to

right camera

0.018 0.013 1.157

ATOM 0.027 0.032 1.198

OpenCV right camera to

center camera

0.244 0.081 3.336

ATOM 0.096 0.074 2.375

OpenCV center camera to

left camera

0.078 0.490 3.000

ATOM 0.090 0.045 3.283

agrob-1
OpenCV world camera to

hand camera

(b) (b) (b)

ATOM 0.008 0.003 0.974

agrob-2
OpenCV world camera to

hand camera

0.010 0.006 0.863

ATOM 0.008 0.005 0.974

ur10e-1
OpenCV world camera to

hand camera

(c) (c) (c)

ATOM 0.015 0.002 1.093

ur10e-2
OpenCV world camera to

hand camera

(c) (c) (c)

ATOM 0.009 0.001 0.843

(a) OpenCV cannot be used because the hand camera is not static.
(b) OpenCV cannot be used because the dataset contains partial detections.
(c) OpenCV cannot be used because of both (a) and (b).

The results are presented in Table 3, where the performance of ATOM is com-

pared against the stereo calibration algorithm from OpenCV. Not all datasets can be

calibrated using this method, since it mandates that the detections are complete (all cor-

ners of the pattern must be detected), and also that the cameras do not move w.r.t. each965

other. Results demonstrate that ATOM achieves similar accuracies when compared to

OpenCV’s method, despite the fact that ATOM is calibrating the complete systems (all

the sensors simultaneously). Also, ATOM accurately calibrates datasets which cannot

be tackled by OpenCV’s method.
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Figure 13: 3D LiDAR to camera reprojection error metric calculation. In the annotation procedure, the four

sides of the pattern limits are labelled by selecting multiple points in the image for each side. Then, each

side is approximated by a polynomial function as represented by the red curves. The LiDAR reprojected

points (blue dots) are then used to calculate the reprojection error (the yellow lines represent the error for

each projected point).

5.2. 3D LiDAR to RGB camera evaluation970

To evaluate the calibration of 3D LiDARs and RGB cameras, we propose to use

a reprojection error metric that evaluates the error between the labelled boundaries of

the pattern and the projection of the LiDAR boundary points onto the RGB camera

image. To perform this evaluation, we propose a semi-automatic procedure, where the

boundaries of the pattern are manually labelled in the image. This process is divided975

in three main steps: labelling of the pixels belonging to the pattern limits; reprojection

of the pattern’s boundary points from the LiDAR’s coordinate frame to the image; and

calculation of the reprojection error between the labelled and projected points.

The annotation of the pattern’s boundaries in the image i.e., the definition of the

set of labelled boundary points V , is performed manually by clicking on the image on980

several boundary points. Then, the four boundaries of the rectagular pattern are aprox-

imated to a polynomial function represented by the red curves in Figure 13, which is

later sampled to produce the vb ∈ V 2D image coordinates. The reason why a polyno-

mial function is used is that a linear regression is not suitable to fit each pattern side

since that image has distortion which transforms straight lines into curves.985

Now let xb denote the 3D coordinates of a boundary point in the pattern’s local

coordinate frame (see subsection 3.4). The reprojection error εrms between a LiDAR sa
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Table 4: Performance comparison of methods for LiDAR to RGB camera evaluation. Best values high-

lighted in bold.

Dataset Method Sensor pair
εrms

(pix)

mmtbot-1 ATOM
3D lidar to hand camera 4.466

3D lidar to world camera 3.108

mmtbot-2 ATOM
3D lidar to hand camera 4.439

3D lidar to world camera 6.284

agrob-1

ATOM pairwise
3D lidar to right camera 3.869

3D lidar to left camera 4.101

ATOM
3D lidar to right camera 3.811

3D lidar to left camera 3.942

agrob-2

ATOM pairwise
3D lidar to right camera 6.715

3D lidar to left camera 6.432

ATOM
3D lidar to right camera 6.537

3D lidar to left camera 6.765

and a RGB camera sb is computed as:

εrms =

√
1

n(B) ∑
b∈B

min
vbinV

(∥∥vb−Ksb · sTp ·xb
∥∥2

F

)
, (35)

which finds, for each projected point, the smallest distance to all labelled points. Fi-

gure 13 shows the projected points as blue dots, and the yellow lines show the minimum990

distance to the labelled boundaries found for each projected point.

The LiDAR to RGB camera evaluation was performed using the two robotic plat-

forms in Figure 12 that contain LiDARs: MMTBot and AgRob V16. In the case of

MMTBot a complete system calibration was performed, and two evaluations are pre-

sented: 3DLiDAR to hand camera and 3DLiDAR to world camera. In the case of995

AgRob V16, and in order to evaluate the impact of calibrating the entire system simul-

taneously, a the complete system calibration is compared with pairwise calibrations, in

which only the sensors that are evaluated were calibrated. We refer to these calibrations

as ATOM pairwise, and use them to calibrate the right camera and left camera with the

3DLiDAR separately. Two evaluations are presented: 3DLiDAR to left camera and1000

3dLiDAR to world camera.
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Table 4 summarizes the results obtained in these experiments. The first observation

is that the overall magnitude of the reprojection errors is higher when compared with

the reprojection error of RGB to RGB camera evaluations (see Table 3). This is not

an inconsitency, since these two reprojections cannot be directly compared. In fact,1005

LiDARs have a smaller resolution when compared with RGB cameras, which may

explain why the LiDAR to RGB camera reprojection errors are higher.

Results for AgRob V16 show a very similar accuracy between ATOM and ATOM

pairwise, presenting only marginal reprojection error differences. This proves that

ATOM is adequate to perform full system calibrations without significant loss in the1010

accuracy of the procedure. As mentioned before, this is a big advantage since, for

high-dimensional robotic platforms with many sensors, the number of combinations

between sensors can be very high an the procedure of sequential pairwise calibration

tedious and error prone. Thus, having a framework that is able to calibrate the entire

system simultaneously with the same accuracy is very useful.1015

5.3. Impact of the number of partial detections

As discussed in section 4, the ATOM calibration framework is able to use either

chessboard [Zhang et al., 2017] or charuco [Jurado et al., 2016, Ramirez et al., 2018]

calibration patterns. In the case of the later, it is possible to detect the pattern even

when it is partially occluded [Hu et al., 2019], which results in a partial detection of1020

the calibration pattern. Considering this, it is interesting to assess how the presence

of partial detections may impact the accuracy of the calibration. To this end, an ex-

periment was conducted in which a baseline dataset containing 10 collections with no

partial detections is augmented with an increasing number of collections containing

partial detections. In this experiment, only the MMTBot is used.1025

Table 5 shows the results using the RGB to RGB cameras evaluation metrics dis-

cussed in subsection 5.1. Results show that the partial detections have no impact of the

quality of the calibration. Reprojection errors (εrms) are bellow 0.4 pixels in all cases,

which may suggest that ATOM is robust to the presence of partial detections in the

datasets.1030

Table 6 shows the results using the LiDAR to RGB camera evaluation metrics. In
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Table 5: Impact of the number of partial detections on the performance of ATOM - RGB to RGB camera

evaluation. Best values highlighted in bold.

Dataset Sensor pair # Partial
εR εt εrms

(rad) (m) (pix)

mmtbot-1
hand camera to

world camera

0 of 10 0.001 0.002 0.374

1 of 11 0.001 0.002 0.388

3 of 13 0.001 0.002 0.353

6 of 16 0.001 0.002 0.379

9 of 19 0.001 0.002 0.310

Table 6: Impact of the number of partial detections on the performance of ATOM - LiDAR to RGB camera

evaluation. Best values highlighted in bold.

Dataset Sensor pair # Partial
εrms

(pix)

mmtbot-1

3D lidar to hand camera

0 of 10 4.443

1 of 11 4.701

3 of 13 4.735

6 of 14 4.956

9 of 19 5.234

3D lidar to world camera

0 of 10 3.490

1 of 11 3.713

3 of 13 3.866

6 of 16 4.162

9 of 19 4.435

this case, the accuracy of the calibration decreases as more partial detections are in-

cluded, from 4.4 to 5.2 pixels in mmtbot-1, and from 3.4 to 4.4 in the case of mmtbot-

2. Thus, it seems that the LiDAR modality is more sensitive to the presence of partial

detections. This may be related to the design of the cost functions for this modal-1035

ity, or with the lower resolution of range sensors when compared with image sensors.

Nonetheless, note that, in the worst case scenario, 9 of 19 collections are partial, which

makes this a challenging dataset, which is tackled with a small loss of accuracy (ap-

proximately 1 pixel decrease).
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Table 7: Impact of the number of incomplete collections on the performance of ATOM - RGB to RGB

camera evaluation. Best values highlighted in bold.

Dataset Sensor pair # Incomplete
εR εt εrms

(rad) (m) (pix)

mmtbot-1
hand camera to

world camera

0 of 10 0.001 0.002 0.439

2 of 12 0.001 0.001 0.429

3 of 13 0.001 0.001 0.400

5 of 15 0.001 0.001 0.390

agrob-1
right camera to

left camera

0 of 10 0.011 0.011 1.457

2 of 12 0.006 0.003 1.031

4 of 13 0.009 0.006 2.017

5 of 15 0.019 0.005 1.076

Table 8: Impact of the number of incomplete collections on the performance of ATOM - LiDAR to RGB

camera evaluation. Best values highlighted in bold.

Dataset Sensor pair # Incomplete
εrms

(pix)

mmtbot-1

3D lidar to hand camera

0 of 10 4.057

2 of 12 4.067

3 of 13 4.021

5 of 15 4.010

3D lidar to world camera

0 of 10 3.289

2 of 12 3.282

3 of 13 3.200

5 of 15 3.218

agrob-1

3D lidar to right camera

0 of 10 5.496

2 of 12 3.920

4 of 13 3.964

5 of 15 4.069

3D lidar to left camera

0 of 10 5.576

2 of 12 3.930

4 of 13 3.849

5 of 15 4.169

5.4. Impact of the number of incomplete collections1040

As discussed in section 3, ATOM makes use of a calibration pattern to sensor

paradigm in order to design the cost functions. This leads to an optimization frame-

work which is less intricate, where the cost function for each sensor is independant
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from the others. As a consequence, when the calibration pattern is not detected by a

particular sensor, it is still possible to compute, for that collection, the errors associated1045

with the other sensors. We refer these collections where at least one of the sensors did

not detect the pattern as incomplete collections.

To evaluate how the presence of incomplete collections may affect the accuracy

of the calibration produced by ATOM, an experiment was conducted where a baseline

dataset containing 10 collections is gradually augmented with incomplete collections.1050

Table 7 shows the impact on the RGB to RGB cameras evaluation metrics. In the

case of the mmtbot-1 datasets, the number of incomplete collections does not appear to

affect the accuracy of the calibration, which is consistently bellow a very small value of

0.5 pixels. The datasets from agrob-1 have a lower overall accuracy of approximately

1 or 2 pixels. In this case, we also cannot observe evidence that incomplete collections1055

significantly disrupt the calibration, which suggests, as expected, that ATOM copes

well with the presence of incomplete collections.

Table 8 shows the results using the LiDAR to RGB camera metric. Once again,

we cannot observe a clear tendency either way, and the fluctuations are mostly under 1

pixel for all datasets. This reinforces the notion that ATOM is able to tackle the calibra-1060

tions of datasets containing incomplete collections. Conversely, pairwise approaches

required that both sensors detect the calibration pattern or else the collection must be

discarded.

5.5. Impact of the quality of the initial estimate

As discussed in section 4, the proposed framework uses an interactive approach that1065

enables the user to set the pose of the sensor. This is used as the initial estimate of the

sensor poses, i.e., as the initial values of the parameters to be optimized. Since ATOM

uses an optimization mechanism to carry out the calibration, the question of how sen-

sitive the methodology is to the quality of the initial estimates is relevant. Taking into

account that the initial parameter estimates are provided by hand, the methodology1070

should be robust enough to handle less accurate estimates.

To address this, we carried out a study of the impact of the quality of the initial

estimate on the accuracy of the calibration (Figure 14 (a), (b) and (c)). Quality of the
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initial estimate is measured using translation (∆d) and rotation (∆α) deviations from

the correct sensor pose, which we know in the case of the MMTBot system since it is1075

simulated. Figure 14 (a) and (b) show the errors of the hand camera and world camera

sensors, respectively. From these, its possible to observe that the sensitivity to rotation

is higher when compared with the translation. This is expected, since rotation errors

are know to be more critical than translation errors. Also, it is important to note that the

final optimization error (e) is very small for a large range of deviations from the correct1080

initial estimate. In fact, both figures show a flat region of very small error within the

ranges 0≤ ∆d ≤ 0.7 and 0≤ ∆α ≤ 20. In other words, ATOM converges to an optimal

solution even with deviations of 0.7 meters and 20 degrees. Figure 14 (c) shows the

impact of the quality of the initial estimate on the accuracy of the calibration using

the LiDAR to RGB camera evaluation metric. When compared with the RGB to RGB1085

camera evaluations we can observe that the LiDAR modality has a larger baseline error,

which is consistent with the observations of Table 3 and Table 4. Despite this, we can

also see that whithin the ranges of 0≤ ∆d ≤ 0.7 and 0≤ ∆α ≤ 15 ATOM converges to

a minimal error solution. These results show a high degree of robustness to deviations

in the initial estimate. Also, we may reasonably expect a human initial estimate to1090

consistently fall bellow 0.7 meters and 15 degrees, which validates the proposal of

using an interactive approach to produce the initial estimates. Thus, the conclusion

is that ATOM, despite using an optimization mechanism, is sufficiently robust to the

quality of the initial estimate for sensor poses.

Figure 14 (d) shows the impact of the quality of the initial estimate to the time1095

it takes to complete the optimization procedure. As expected, deviations from the

correct initial estimate will require more effort from the optimized and thus more time

to complete the procedure. This is once again notoriously more sensitive to rotation

deviations. Nonetheless, in all cases, the maximum time to complete the calibration of

the MMTBot robotic system is under 200 seconds. Considering that the calibration is1100

a one shot procedure, this is not relevant.
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(a) (b)

(c) (d)

Figure 14: Impact of the quality of the initial sensor pose estimate to the performance of the calibration.

Quality of estimate is measured by the deviation from the correct value of translation (∆d) and rotation (∆α).

Errors (e) provived by the cost functions of the sensors: (a) hand camera, (b) world camera, and (c) 3d lidar;

(d) shows the total optimization time as a function of the initial estimate.

6. Conclusions

This paper proposed a novel general calibration methodology based on the opti-

mization of atomic transformations. Atomic transformations are geometric transfor-

mations that are indivisible, i.e., not aggregated, and the advantage of using them is1105

that the problem formulation is suited to cope with the three distinct calibration prob-

lems: sensor to sensor, sensor in motion and sensor to frame.

52



The calibration is formulated as an extended optimization problem, in which the

pose of the calibration patterns is also included. Although this formulation augments

the problem, since additional parameters are included, it simplifies the definition of cost1110

functions since these are written using the poses of a single sensor and the pattern as

input. This is a large advantage over traditional sequential pairwise approaches, since

the method is easily scalable to complex robotic systems.

The methodology is general, which makes it very flexible: it can handle any number

of sensors of multiple modalities; it handles non static sensors, as in the case of the1115

hand-eye calibration; it does not require that all sensors view the calibration pattern

simultaneously, which opens the door to the calibration of systems in which the field

of view of the sensors does not entirely overlap. Moreover, all these cases may occur

simultaneously.

ATOM is also a calibration framework22, in the sense that software tools are offered1120

for all the different stages of the calibration procedure. The system is well integrated

with ROS, and supports advanced visualization functionalities which are uncommon in

most calibration systems.

Results covered four robotic systems with several combinations in the number of

sensors and their modalities. These show that the proposed approach is able to calibrate1125

several robotic systems, and that it achieves similar levels of accuracy when compared

to other methods, designed to operate only for the sensor tandem that is being evalu-

ated. The robustness of the method is also analysed through several studies that assess

the impact of the number of partial detections, incomplete collections, and the initial

estimate for the sensor poses.1130

Future work should address the inclusion of additional sensor modalities, which

should be straightforward, since the overall structure of the problem is well defined.

We are currently working on the integration of range cameras and 2D LiDARs. In

addition to this, we aim to test the methodology and the framework in other robotic

systems.1135

22https://github.com/lardemua/atom
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● Proposing  a  novel  general  calibration  methodology  based  on  the  optimization  of             

atomic   transformations   -   ATOM;   
● Presentation  of  a  software  package  integrated  in  ROS  that  provides  a  complete              

calibration   framework   -    https://github.com/lardemua/atom ;   
● Formulation  of  a  calibration  method  that  is  is  suitable  for  multi-sensor,  multi-modal              

robotic  systems,  and  is  applicable  to  different  calibration  problems,  such  as  sensor  to               
sensor,   sensor   in   motion,   or   sensor   to   coordinate   frame;   

● Conduction  of  several  experiments  with  several  robotic  systems,  which  show  that  the              

proposed  method  achieves  levels  of  accuracy  of  calibration  that  is  on  par  with  state                
of  the  art  specialized,  non  general  methods,  while  calibrating  complete  robotic             
systems.   
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