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Spatio-temporal data can be used to study and simulate the movement and behavior of objects and natural
phenomena. However, the use of real-world data raises several challenges related to its acquisition, represen-
tation and quality. This paper presents a data cleaning process based on consistency rules and checks, that
uses geometric operations to detect and remove outliers or inaccurate data in a spatio-temporal series. The
proposal consists of selecting key frames and applying the process iteratively until the data have the desired
quality. The case study consists of extracting and cleaning spatio-temporal data from a video tracking the
propagation of a controlled fire captured using drones. The source data was generated using segmentation
techniques to obtain the regions representing the burnt area across time. The main issues concern noisy data
(e.g., the height of flames is highly variable) and occlusion due to smoke. The results show that the quality
assessment and improvement method proposed in this work can identify and remove inconsistencies from a
dataset of more than 22,500 polygons in just a few iterations. The quality of the corrected dataset is verified
using metrics and graph analysis.
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1 INTRODUCTION
Spatio-temporal data allow the representation of the movement and behavior of objects and natural
phenomena over time. Data models and query languages already exist to represent and analyze the
evolution of spatial data over time, but most of research on modelling and querying spatio-temporal
data uses synthetic datasets and there is little work focusing on transforming real-world data into
spatio-temporal data compatible with existing data models. Also, the transformation of raw data
into spatio-temporal data raises several issues since real-world data are often noisy, incomplete or
invalid.
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(a) Video frame (b) Segmented burnt area (c) Burnt area representation
at database level

Fig. 1. Burnt area representation: from video frames to database representation

We are particularly interested on using moving regions [12] to represent real-world phenomena
that change continuously over time. This allows the execution of operations on the spatio-temporal
behaviour of the phenomena, including the estimation of its evolution in the interval between
observations. Our research includes the use of moving regions to represent the propagation of
forest fires with application to studies on the emission of pollutants to the atmosphere.
The dataset used this work was generated from video sequences of controlled fires acquired

using RGB cameras mounted on drones. The videos have been processed using segmentation
techniques to extract the shape of the burned areas in each frame. The result is a dataset composed
of thousands of shapes (i.e. polygons) with complex geometries, each one representing the burned
area at a certain timestamp. These geometries were used together with region interpolation methods
([10, 20, 23]) to create the moving region representation of the burned area at database system
level. Figure 1 shows an example of a video frame, the burned area obtained using a segmentation
algorithm and its representation at database level (i.e. a polygon stored in a column of the geometry
datatype in PostgreSQL).
The segmentation of real world videos on forest fires may comprise several challenges due to

the number of heterogeneous objects such as lakes, different types of vegetation, roads, fences and
burned area. Also, the erratic behaviour of flames and smoke may hide information from areas
behind them and generate variable occlusion. The main problem here is to find data that does
not reflect the real state of the modeled entity (i.e. burnt area) at the corresponding timestamp.
Accuracy is the data quality dimension we aim to improve and inaccurate data should be removed
from the dataset, as new representations may be generated (if necessary) at database level by
applying region interpolation functions over accurate data.

If one considers each geometry individually, the only way to identify inaccurate representations
is by visual inspection. But if one considers that each geometry is part of a temporal series, then it
is possible to check for consistency problems. For instance, a tree that is inside the burned area at a
given timestamp, should also be inside the burned area at all subsequent timestamps. This means
that it is possible to use domain knowledge and specify rules to identify incorrect representations
(e.g., outliers) in a time series where the values are polygons representing the state of a phenomenon
at a given time. There are several models to detect outliers, but the wide of variations in problem
formulations makes that it is often not possible to use off-the-shelf models in such context [13].
Also, the existence of clusters of outliers (i.e. clusters of inaccurate data in which polygons are
consistent between them) can cause further challenges to outlier detection due to masking and
swamping [8].

In this work, we use specialized methods (based on geometric operations and metrics) as part of
a more traditional approach (with quality assessment and improvement). After defining quality
rules, requirements and checking mechanisms, we start the quality assessment and outliers removal
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procedure. We define time ranges and manually verify (and adjust) the polygons corresponding
to the first and last timestamps in the range. Then, we apply quality verification mechanisms to
identify and remove inaccurate data in the range. Quality metrics are evaluated and, if necessary,
new time ranges are defined and the quality assessment and outliers removal process is restarted
for the new ranges. The rules and methods we present can be extended and adapted to process
other real-world phenomena, like the glaciers retreating or the spreading of lava flows.

The following section presents an overview of the related work. Section 3 describes the dataset, as
well as data acquisition, preparation and quality issues. Section 4 presents quality rules, requirements
and checking mechanisms. Section 5 presents the experimental results. Section 6 concludes the
paper and presents the future work.

2 RELATEDWORK
In the database systems domain, outliers generally refer to data (resulting from anomalies, noise or
unusual events) that are inconsistent with the rest of a dataset [7]. Cheng and Li [7] define a spatio-
temporal outlier in terms of the difference between value in a spatio-temporal neighbourhood.
They can also be viewed as erroneous representations of real-world objects or phenomena that
possibly affect data quality [8].
Most of existing approaches can be classified into distribution-based, depth-based and distance-

based [7]. In the context of temporal data, there are several works on outlier detection in time
series ([4, 15, 19]) and in stream data ([2, 3]). Some examples of commonly used strategies are
autoregressive models ([4, 14, 24]) and clustering ([1, 5, 11, 16]). But several factors impact on
selection of detection strategy to be used, including the nature of the data and the relationship
among data instances, and due to the wide variation of problem formulations, it is often not possible
to use off-the-shelf outlier detection models in new contexts [13].
In [7], authors propose a 4 steps method to detect outliers in spatio-temporal data and use it

to detect outliers in data about coastal changes. First, they use clustering to identify the objects
of interest in the spatio-temporal data. Then, the scale of data is changed to make small objects
disappear. In third step, they compare (using exploratory visualization analysis) the original data
with the data in the changed scaled, looking for objects that disappeared in step 2 (which are them
marked as potential outliers). The last step is to check if the detected objects are outliers, comparing
features of suspected objects with the ones of their temporal neighbours. We identified the presence
of clusters of inaccurate data in our dataset. Then, a simple comparison of an object representation
with its temporal neighbours cannot be used to identify if the considered object is inaccurate. Also,
the change scale strategy cannot be applied to detect outlier-candidates among the geometries in
our dataset, as it has just one geometry per timestamp.
Wu et al. [25] study spatio-temporal outlier detection over precipitation data. Their proposal

is to initially find the top-k outliers for each time period using the Kulldorff’s [17] spatial scan
statistic to evaluate how discrepant a geometry is from the remainder of the data in the considered
period. Then, they use the top-k outliers to divide the data into sequences, organize the sequences
in trees and apply a recursive algorithm to find the outliers in the database. In our work, good
quality data representing the modeled object at distinct timestamps may be considerable different
from each other. On the other hand, clusters of inaccurate data can be considerable similar, and
still be poor quality data we need to detect and remove.
Chandola et al. [6] and Kwon et al. [18] present surveys on anomaly and outlier detection. In a

more recent work, Gupta et al [13] present a survey of outlier detection in the context of temporal
data. In this work, we look for inconsistencies in the spatio-temporal evolution of the modeled
phenomena as a way to detect erroneous and inaccurate data. We analyze its evolution (in terms of
shape and positioning), compare geometries for distinct timestamps and verify series of metrics.
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3 THE FOREST FIRE DATASET
The dataset used in our case study was built using an aerial video tracking the evolution of a
controlled fire that took place at Pinhão Cel, Portugal, in 2019. It has approximately 15 minutes and
was filmed using 25 fps, which leads to more than 22,500 snapshots on fire evolution. This work is
part of a broader study on the estimation of gas emissions to the atmosphere.

We used video segmentation and object detection techniques to identify the burned area in each
frame and generate a WKT (Well-known text) of the polygon representing the boundaries of that
area. The segmented video frame images and the corresponding WKT representations are available
at [21]. Then, the WKT representations of the burned area were loaded into PostgreSQL and stored
using PostGIS’s geometry data type. We used PostgreSQL 11, PostGIS 2.5.3 and GEOS 3.7.2.
The average number of vertices per geometry is 1,938, thus the complete dataset has more

than 43,6 million vertices. While using almost 2 thousand points per geometry may indicate the
objects are being represented in high detail, it may also cause performance issues while executing
interpolation methods and other spatio-temporal operations. Hence, the contours are converted
into vector mode using the PostGIS built-in procedure ST_SimplifyPreserveTopology [22] with a
tolerance of 10. This procedure uses the Douglas-Peucker simplification algorithm [9] to reduce the
number of vertices that represent a geometry, while maintaining a good approximation of their
shape in most cases. The average number of vertices per geometry in the new dataset is only 4%
of the original one, while the Jaccard Index (i.e., the ratio between the intersection and the union
of two polygons: JAC(A,B) = |A∩B |

|A∪B |
) measuring the similarity between each simplified geometry

and the corresponding one in the original dataset was of 0.97 on average. This is a good trade-off
between simplification and representation detail.
A comparison of the polygons and the original images shows that the segmentation algorithm

considered smoke and burnt area as a single object in many cases, i.e., sometimes part of the smoke
was included in the polygon representing the burned area, while in other cases, parts of burned area
were disregarded, as if they were smoke (Figure 2). Figure 2a shows two large parts of the burned
area that were not identified by the segmentation algorithm. Figure 2b displays a multipolygon
representing the parts of the area identified erroneously (either missing or wrongly incorporated as
burned area) for timestamp 120. This represents 23% of the polygon for the considered timestamp.
An in-depth analysis of several consecutive frames unveils the existence of clusters of outliers.

For instance, consider Figure 2c, which presents the polygon for timestamps 120 to 123. The
misrepresentations identified in the polygon of timestamp 120 also happen in the other ones. Hence,
all of them are inaccurate. But they are consistent with each other and a simple comparison between
the polygon of timestamp 121 with the previous and following is not by enough to identify that
polygon as inaccurate.

4 QUALITY RULES, CONSISTENCY CHECKS AND ACCEPTANCE METRICS
As the visual inspection and adjustment of thousands of polygons is unfeasible, we propose a novel
method to identify inaccurate spatial data in a time series using consistency checks and requiring
just a few manually verified reference representations. The workflow has three main steps:
(1) Define consistency rules
(2) Define consistency checks and quality metrics
(3) Apply the quality assessment checks and data improvement
(a) Define the boundaries of a time range to be evaluated
(b) Manually refine the data for the first and last observations (i.e. polygons) on the range
(c) Apply consistency checks to identify outliers (i.e. inaccurate data) and remove them
(d) Check consistency acceptance requirements and go back to step 3a if necessary
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(a) Segmented area in timestamp 120 (b) Multipolygon representation of er-
roneously identified burnt area - times-
tamp 120

(c) Cluster of inaccurate data - timestamps 120 to 123

Fig. 2. Examples of inaccurate data

In the following, we present the consistency rules, the assessment checks and the metrics, and
discuss how to choose the data to be manually refined.

4.1 Data consistency rules
In the representation of a forest fire, we know that the area identified as burned in one observation
should also be burned in all the following observations, while the area identified as not-burned
should also not be considered as not-burned in any of the previous observations. Also, for any
time interval ti , which begins at instant k and ends at instant l (ti = [k, l]), the burned area should
evolve from the geometry observed at k to the one observed at l . So, considering that P(t) is a
polygon representing the burned area at instant t , the following equation should be valid.

∀i;∀j;k ⩽ i ⩽ j ⩽ l ; P(i) ⊆ P(j) (1)
From Equation 1, we can infer that:
(i) The function f (t) = A(P(t)), where A stands for the geometric area of a polygon P at instant

t should increase monotonically, as defined in 2.

∀i;∀j;k ⩽ i ⩽ j ⩽ l ;A(P(i)) ⩽ A(P(j)) (2)
(ii) The function д(t) = JAC(P(t), P(k)), that represents the evolution of the Jaccard Index

between each geometry P in ti and the first geometry in ti should start with 1 and be a
monotonically decreasing function. On the other hand, the function h(t) = JAC(P(t), P(l)),
that represents the evolution of the Jaccard Index between each geometry P in ti and the last
polygon in ti , should be a monotonically increasing function that ends with 1. The lower
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bound for the Jaccard Index is the one computed between the first and the last observations
in ti .

∀i;∀j;k ⩽ i ⩽ j ⩽ l ; JAC(P(i), P(k)) ⩾ JAC(P(j), P(k)) ∧ JAC(P(i), P(l)) ⩽ JAC(P(j), P(l)) (3)

4.2 Consistency checks
While establishing the consistency checks, we should consider that real-world data may have small
variations and noise that don’t necessarily make it invalid for use. For instance, in the segmentation
of real world videos with fire, smoke and wind, there may exist small variations in the contours
of the burned area, which may cause small inconsistencies between P(i) and P(i + 1). Figure 3
illustrates this situation. It presents the polygons which represents burned area at the first and
second observations, and the geometric difference between such polygons (P(1) − P(2)). According
to Equation 1, such difference should be empty. But the result on the real-world data is a set of
small geometries scattered along the contour of P(2). Such small inconsistency may be acceptable
until the total area of the resulting multipolygon is small when compared to the burned area.

Fig. 3. Burnt area polygons for the first and second frames, and the geometric difference between them

Usually, it is possible to formulate more than one consistency check for a given dataset. Some
checks are complementary to each other, Some checks are able to identify more inconsistencies
than others.

Let’s consider that the first (P(k)) and last polygons (P(l)) in a range (ti) are (possibly manually
edited) accurate. From Equations 2 and 3 it is possible to enumerate the following criteria to identify
outliers:
(C1) Any polygon in ti whose area is smaller than the one of P(k) ∗ α or greater than the one of

P(l) ∗ β is an outlier (α and β are threshold values used to deal with real-world data noise, as
illustrated in Figure 3);

(C2) Any polygon in ti whose Jaccard Index with P(k) or P(l) is smaller than the Jaccard Index
between P(k) and P(l) is an outlier.

Although valid, the above checks fail to identify several situations. Consider the four examples
illustrated in Figure 4. Each example displays three polygons: P(k) and P(l), which are the accurate
representations of the burned area at the first and last timestamps in a range (ti), and P(i), which is
an in-between representation, whose consistency must be verified.

The area checks (item (C1)) identify P(i) as an outlier only in the first example. The Jaccard Index
checks (item (C2)) identify P(i) as an outlier in a and b. although, P(t) represents an evolution of
the burned area P(i) that is inaccurate in all the four examples of Figure 4. So, we need another
check to identify the invalid representations in c and d .

From Equation 1, we can infer that the geometric difference between the polygons P(i) and P(j)
(i.e. P(i) − P(j), i ⩽ j) should result in an empty polygon1. Therefore, considering that the first
(P(k)) and last polygons (P(l)) in a range of representations (ti) are accurate, we can define another
consistency check:
1The geometric difference between P (j) and P (i) is the part of the geometry P (j) that does not intersects with P (i)
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Fig. 4. Outlier configurations - Examples

(C3) Any polygon P(i) in ti where the geometric differences P(k) − P(i) or P(i) − P(l) are not
empty, is an outlier.

This geometric check (C3) would identify P(i) as an outlier in all the situations represented in
Figure 4 (grey filled areas represent an P(k) − P(i) in images a-c and P(i) − P(l) in image d). Thus,
to identify if a geometry P(i) is an outlier, we define the relative inconsistency value to the initial
representation (RV I ) and the relative inconsistency value to the final representation (RV F ) as follows
(Equations 4 and 5).

∀i;k ⩽ i ⩽ l ;RV I (i) = (A(P(k) − P(i)))/A(P(k)) (4)

∀i;k ⩽ i ⩽ l ;RV F (i) = (A(P(i) − P(l)))/A(P(l)) (5)
These geometric operations define the the representation any polygon P(i) in the interval [k, l]

is poor when RV I (i) or RV F (i) are greater then a threshold θ .

4.3 Quality Acceptance and Range Definition
After applying consistency checks and outlier removal from a given time range, we execute a
quality acceptance verification derived from Equation 1.
Let’s consider Dump is a function that returns each of the polygons from a multipolygon. We

define the relative estimated error (REE) for a polygon P(i) as:

∀i;∀j;k ⩽ i < j ⩽ l ∧ P(j) is not an outlier;REE(i) =
Max(A(DUMP(P(i) − P(Min(j)))))

A(P(i))
(6)

Figure 3 presents a multipolygon resulting from a geometric difference operation, which is
composed of several small polygons (over the contour of a geometry). This anomaly is distinct from
the one in Figure 2b, which has a large polygon representing an inaccuracy. Then, to define REE,
we consider the polygon with the largest area in the multipolygon resulting from the geometric
difference operation. Also, in Equation 6, we use the lowest value of j (i.e.Min(j)) that is greater
than i and in which P(j) that was not marked as an outlier.

The quality acceptance test (QAT ) proposed in this work considers that a representation in the
interval [k, l] is good if REE is smaller then a threshold δ for all the values of P(i) (k ⩽ i < l ).

If the quality acceptance test satisfies the threshold δ , then no more cleaning is executed for that
range. Otherwise, we should choose a timestampm in [k, l] and validate (and edit, if necessary)
the representation of the burned area manually. After validating P(m), we have two new ranges to
apply the consistency checks: [k,m] and [m, l].
In order to choose the observation P(m) to validate, we look for an instantm (m ∈ [k, l]) near

a peak or valley of functions f , д or h, i.e., near where f ′(m), д′(m) or h′(m) changes its signal
(f ′(t) = df

dt , д
′(t) =

dд
dt , h

′(t) = dh
dt ). This point can be selected by graph analysis, as we present in

the next Section.
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5 EXECUTION RESULTS
The cleaning of our forest fire dataset started with the visual inspection and adjustment of the
polygons for the first and last observations (i.e. first and last frames in the video). Then, we applied
consistency checks C1, C2 and C3.
Figure 5d presents the area of each polygon and the inconsistencies detected using C3 (we

computed RVI(i) and RVF(i) for all observations in the dataset and used θ = 0.05). This check
detected much more problems then C1 (Figure 5a) and C2 (Figures 5b and 5c), as we discussed in
Section 4.2. Hence, in the followings refinements, we apply only check C3.

(a) Area evolution and inconsis-
tencies - C1 and full dataset

(b) Jaccard Index (geometry x
first polygon) and inconsisten-
cies - C2 and full dataset

(c) Jaccard Index (geometry x
final polygon) and inconsisten-
cies - C2 and full dataset

(d) Area evolution and inconsis-
tencies - C3 and full dataset

(e) Area evolution after first
round outlier removal - peak
near the center

(f) Area evolution and moving
median - full dataset

(g) Area evolution and moving
median - clean dataset

(h) Jaccard Index (geometry x
first polygon) and moving me-
dian - full dataset

(i) Jaccard Index (geometry x
first polygon) and moving me-
dian - clean dataset

After removing the inconsistent data detected by check C3, we applied the acceptance check
defined in 4.3. Using δ = 0.1, 3.2% of the acceptance tests failed. It is important to notice that
the tests can only specify that there exists inconsistent data, but cannot specify which polygon is
invalid. Then, we should go back to step 3a in the workflow we defined in Section 4, i.e., we should
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choose a new observation P(m) (m ∈ [k, l]) to validate. The assessment and improvement process
continued with the following range definitions and splits:

(S1) The number of range splits necessary to achieve the required quality level highly depends
on the choice of the instantm. Figure 5e presents the area evolution after applying C3 and
removing outliers. It also highlights a peak in the function near the middle of the interval,
corresponding to good candidates to define the first range split. In the second iteration,
we selected and adjusted manually a new frame (timestamp 11579), and divided the initial
time series into two new ranges (SA1 = [1, 11579], SA2 = [11579, 22532]). Then, we applied
the consistency check C3 (we now use θ = 0.1, since any small error in fire propagation
representation will remain in initial/final boundaries) over these two sets and removed
inconsistent data. The results ofQAT for SA1 and SA2 were 1.1% and 0.05%, respectively, and
so the test fails in both cases.

(S2) We manually adjusted two new images and split each of the intervals into two new ones,
creating the sets: SB1 = [1, 5499]; SB2 = [5499, 11579], SB3 = [11579, 16751] and SB4 =
[16751, 22532]. After applying C3 and removing outliers, the fails rate for QAT was of 0.7%
and 0.9% for SB1 and SB2. In SB3 and SB4, all the values of QAT were acceptable and no
more refinement is required for them;

(S3) To continue cleaning SB1 and SB2, we manually refined two new observations and created
the ranges SC1 = [1, 2763], SC2 = [2763, 5499], SC3 = [5499, 7393] and SC4 = [7393, 11579].
After applying C3 check, only SC1 failed QAT tests. To avoid further splits, we applied C3
check with θ = 0.05 to the points in the range SC1 (removing some more inconsistent data)
and it passed the QAT test.

Then, after manually adjusting 7 polygons, we got a consistent set composed by 3613 polygons
(16% of the original dataset). Figures 5g and 5i present the area evolution and Jaccard Index evolution
for the cleaned dataset. The dashed lines represent the timestamps of the polygons that were visually
inspected. Although there are some local small inconsistencies (whose amplitude relies on the used
values of θ and δ ) in the area and Jaccard Index evolution, the global tendency is totally consistent
(which can be verified by the represented moving means). Also, when comparing such metrics
evolution on the clean dataset with the ones on the original dataset (Figures 5f and 5h), it is possible
to notice the effectiveness of used methods.
Although the final dataset contains just about 16% of original data, such number of polygons

corresponds, in average, to 4 representations of real data per second. This is totally acceptable in
the context of the studied phenomena. Also, as the overall data quality was improved, any required
in-between representation can be obtained using existing region interpolation functions.

6 CONCLUSIONS
Efficient use of real data about moving regions is still an open issue, as real-world data is usually
subject to noise and anomalies that are often difficult to identify and remove. In this work, we
present the Forest Fire dataset, composed of thousands of polygon representations of the evolution
a real world phenonema, and describe our strategy to improve the overall quality of the dataset.

As the actual evaluation of the accuracy of each polygon depends on visual inspection, we created
a set of consistency rules, checks and quality acceptance metrics to guarantee data consistency. We
validate the accuracy of just a few polygons and apply geometric operations on the remaining ones
until desired consistency levels are achieved.

The proposed strategies can be applied to other real-world datasets, specially the ones represent-
ing the evolution of real world phenomena, like the retreat of glaciers and the route of lava flows.
As future work, we plan to apply the strategy to other datasets of our studies on gas emission and
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burned area evolution. We also plan to apply the used workflow to real-world datasets related to
cells’ life cycle.
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