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Abstract: Three-dimensional (3D) reconstruction methods generate a 3D textured model from the
combination of data from several captures. As such, the geometrical transformations between these
captures are required. The process of computing or refining these transformations is referred to as
alignment. It is often a difficult problem to handle, in particular due to a lack of accuracy in the
matching of features. We propose an optimization framework that takes advantage of fiducial markers
placed in the scene. Since these markers are robustly detected, the problem of incorrect matching
of features is overcome. The proposed procedure is capable of enhancing the 3D models created
using consumer level RGB-D hand-held cameras, reducing visual artefacts caused by misalignments.
One problem inherent to this solution is that the scene is polluted by the markers. Therefore, a tool was
developed to allow their removal from the texture of the scene. Results show that our optimization
framework is able to significantly reduce alignment errors between captures, which results in visually
appealing reconstructions. Furthermore, the markers used to enhance the alignment are seamlessly
removed from the final model texture.

Keywords: computer vision; geometric optimization; camera calibration; 3D reconstruction; texture;
inpainting; fiducial markers; point clouds; projection of 3D points

1. Introduction

Three-dimensional (3D) reconstruction is the creation of 3D models from the captured shape and
appearance of real objects. It is a field that has its roots in several areas within computer vision and
graphics, and has gained high importance in others, such as architecture [1], robotics [2], autonomous
driving [3], medicine [4], agriculture [5], and archaeology [6]. Most of the current model acquisition
technologies are based on LiDAR (Light Detection And Ranging) [7,8], RGB-D cameras [9,10], and
image-based approaches, such as photogrammetry [11,12]. Despite the improvements that have been
achieved, methods that rely on professional instruments and operation result in high costs, both capital
and logistical [13].

The introduction of low-cost RGB-D cameras created an opportunity for 3D reconstruction of
scenes to be performed at consumer-level. The increasing popularity of these sensors promoted
the research of their use to reconstruct 3D indoor scenes [14–16]. Their manoeuvrability, permitting
hand-held operation and allowing the user to get closer to parts of the scene and capturing them from
different angles, proves to be an advantage in indoor environments with high probability of object
occlusion, when compared with fixed high resolution scanners, which usually require more space
and fixed poses to operate. As such, even though they are generally less accurate than fixed scanners
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such as LiDAR, mobile or hand-held scanners are known to be more suitable to perform indoor
scanning [17]. These devices are also compelling for applications such as indoor navigation, since the
way they are operated inherently conveys information about the empty space, which often corresponds
to the navigable space, as the device is carried through it, by a person or a robot for instance.

Indoor 3D models have great potential in object tracking and interaction [18], scene
understanding [19], virtual environment rendering [20], indoor localisation [21] and route planning [22],
amongst others. Given the rapid development of LBS (Location-Based Services) and indoor
applications, fast acquisition and high-fidelity reconstruction of complete indoor 3D scenes has become
an important task [23]. Currently there is extensive research conducted into live 3D reconstruction
techniques, where the final model is built and visualized during the data acquisition process. However,
post-processing techniques show significant potential and need for future research, particularly in
3D reconstruction using RGB-D cameras [24]. As such, it would be interesting to complement the
existing live 3D reconstruction techniques that use low-cost RGB-D hand-held cameras, considering
their advantages and placement at consumer-level in the market, with some automatic post processing,
to see whether their results can be improved, creating significant additional value.

The main objective of this work is to develop an optimization procedure capable of enhancing
the 3D reconstructions created using a hand-held RGB-D camera, through the utilisation of fiducial
markers placed in the environment.

2. Related Work

RGB-D cameras can obtain the depth of an object and the corresponding texture information,
through the combination of a depth image and a standard RGB image. The depth images are
commonly obtained using a ToF (Time-of-Flight) depth sensor measuring system [25] or Structured
Light triangulation [26,27]. ToF works by measuring the round trip time of an artificial light signal,
in this case IR (Infrared Radiation), to resolve the distance between the camera and the target object.
Structured light works by projecting known patterns on to the scene and then measuring the way
they are deformed, allowing for the calculation of depth and surface information. Modern RGB-D
approaches are mostly based on the fundamental research by Curless and Levoy [28] who introduced
the work of volumetric fusion, providing the foundation for the first real-time RGB-D reconstruction
methods [29].

Registration is the process of alignment, in the same coordinate frames, of multiple captures,
with different viewpoints, of the same scene or object. The result may be an extended version of a
two-dimentional (2D) image, such as a panoramic photograph, or a 3D representation of the scene.
Within the context of 3D reconstruction, registration translates to the problem of aligning the multiple
point clouds that make up the 3D model of the scene, see Figure 1. When using RGB-D cameras,
the dual nature of these sensors allows for the setup of the problem using two different approaches:
registration can be computed by aligning several depth images or, conversely, the RGB images.
Although either approach is feasible, in this work the RGB information was used for computing the
alignment, since depth data had several disadvantages: lower resolution, relatively small precision,
and sensitivity to lighting conditions.

Figure 1. Example of registration of several point 3D point clouds to create a complete 3D model.
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Considering the example of an indoor reconstruction performed with a handheld device. This
device would capture information as it travels through multiple positions in the environment, allowing
for the collection of data from various places of the scene in different angles, places that may be
occluded, or too far to be captured from the initial viewpoint of the acquisition. In order to obtain the
completed 3D model, these multiple parts of the scene must be registered together. The alignment of
point clouds is a problem directly tackled by ICP (Iterative Closest Point) [30]. However, this algorithm
works by minimising the difference in a pair of point clouds. In order to align multiple ones, the
algorithm must be applied many times. If this is done in a chain, for example, it creates a very real
possibility of a drift, a cumulative error that grows as each pair is fit together.

In order to perform a registration, distinctive features of the captures, such as blobs, edges,
contours, line intersections, or corners may be used to find correspondences between them. These
features are typically represented in a feature vector. The selected features should be invariant to scale
and rotation [31]. Examples are SIFT (Scale-Invariant Feature Transform) [32], SURF (Speeded Up
Robust Features) [33], and HOG (Histogram of Oriented Gradients) [34]. The most common algorithms
used in feature detection are Canny [35] and Sobel [36] for edge detection, Harris [37] and SUSAN [38]
for edge and corner detection, Shi-Tomasi [39] and level curve curvature [40] for corner detection,
FAST [41], Laplacian of Gaussian [42], and Difference of Gaussians [32] for corner and blob detection,
MSER [43], PCBR [44], and Gray-level blobs [45] for blob detection.

Following the feature detection in a pair of captures, a set of key-points per capture is generated.
Then, the matching of these key-points is performed, that is, identifying corresponding key-points
between captures. There is a vast range of different approaches that tackle the matching problem, from
brute-force matchers [46] and FLANN (Fast Library for Approximate Nearest Neighbours) [47] to
pattern recognition [48], all of them very dependent on the type of scene and the available processing
time. This step is still a challenge and there is always the possibility that a significant number of
detections will be matched incorrectly.

As discussed previously, the feature matching process seldom works perfectly in real case
scenarios. Matching features incorrectly means it is impossible to find a transformation that works for
all matches found. One way to solve this problem is by recursively estimating a model that works for
a subset of feature matches, until the size of that subset is considered large enough, RANSAC [49],
while discarding the remaining matches, or even using the Iterative Closest Point (ICP) algorithm [30],
that does not require individual feature matching in some implementations [50]. While there is still a
matching procedure, it is merely based on distance. Each feature is paired with its closest neighbour of
the reference capture and the transformation model is recursively estimated through a hill climbing
algorithm, so the distance between neighbours approaches zero.

Some specialised software packages can automatically identify matching features in multiple
images, such as Autodesk ReCap [51] or AliceVision Meshroom [52]. The distinctive features used are
often corners or line segments. In the following step, instead of trying to align captures, the matching
of the features is used to produce estimates of the camera positions and orientations (pose) and the 3D
coordinates of these said features, producing a point cloud. It is important to refer that the better these
estimates are, the better alignment of the captures we should expect to see, and as such the registration
becomes an optimization problem.

In the context of this work, Visual Simultaneous Localisation and Mapping (Visual SLAM) [53]
may be used. It utilises 3D vision to perform location and mapping, by solving an optimisation problem
where the goal is to compute the configuration of camera poses and point positions that minimises the
average reprojection error. The method of choice to solve this problem is called bundle adjustment, a
nonlinear least squares algorithm which, given a suitable starting configuration, iteratively approaches
the minimum error for the whole system.

Given a set of measured image feature locations and correspondences between them, the goal of
bundle adjustment is to find 3D point positions and camera parameters that minimise the reprojection
error. This optimization problem is usually formulated as a non-linear least squares problem, where
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the error is the squared `2 norm, or Euclidean norm, of the difference between the observed feature
key-points in the image and the projection of the corresponding 3D points to the image plane of
the camera (reprojection error). The LM (Levenberg-Marquardt) algorithm [54] is the most popular
algorithm for bundle adjustment.

In 2010, Agarwal et. al. [55] presented the design and implementation of a new inexact Newton
type Bundle Adjustment algorithm. Considering the existence of a series of 3D points in the real
world, these points are captured in images by different cameras, each camera being defined by its
orientation and translation relative to a reference frame, its focal length and distortion parameters.
After the desired acquisitions have been completed, the 3D points are projected into the images and
the 2D coordinates are then compared to the ones obtained by feature detection in the images. The
goal being to adjust the initial estimation of the camera parameters and the position of the points in
order to minimise the reprojection errors, that is,

min
P̂i ,X̂j

∑
ij
`2
(

P̂iX̂j, xi
j

)2
, (1)

where `2 is the Euclidean norm, xi
j are the coordinates of the j-th point as seen by the i-th camera, P̂i is

the projection matrix of the i-th camera, and X̂j are the 3D points [56].
Another technique of which a key component is Bundle adjustment is Structure from Motion

(SfM). SfM solves a problem analogous to visual SLAM, the main difference being that SLAM is
usually meant to work in real-time on an ordered sequence of images, while SfM approaches often
work on an unordered set of images as post-processing, many times done in the cloud. It can, using
several images captured by one or multiple cameras, produce point cloud based 3D models, similar to
those obtained by RGB-D cameras or LiDAR. This technique can be used to create models of objects
with consumer-grade digital cameras and has been made possible by advances in computers, digital
cameras, and UAV (Unmanned Aerial Vehicles). Together, these advances have made it feasible for
a wide range of users to be able to generate 3D models, without extensive expertise or expensive
equipment. SfM uses triangulation to calculate the relative 3D positions (X, Y, Z) of objects from pairs
of images, often captured from a single moving camera, or with different cameras, in different locations
and/or angles.

One of the main problems of registration, as discussed previously, is the unreliability of the
detected features between captures. In the case of Bundle Adjustment, the minimisation of the
reprojection may be computed using a wrongly matched feature in a pair of images, causing errors
in the alignment of captures. Our approach uses fiducial markers to improve the feature detection
and matching step. Markers are placed on the environment as visual features to be detected in
post-processing. Aruco markers [57,58] were used (binary square fiducial markers) since existing
software allows for robust and fast detection. Each marker has an identifier (id) (see Figure 2), making
it very hard for false matching to occur: although under poor lighting conditions or in blurred images
some aruco markers may go undetected, it is highly improbable that they will be identified with the
wrong id.

The biggest downside to this approach is the pollution of the acquired scene’s texture with the
fiducial markers. Therefore, along with the optimization procedure, an additional tool was developed,
that allows the automatic removal of aruco markers from the texture of the scene, taking advantage of
the obtained registration between acquisitions.
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Figure 2. Detection and matching of aruco markers in a pair of captures.

3. Optimization of Camera Pose Estimation Using Fiducial Markers

This section focuses on an optimization module developed to improve the registration of
3D reconstructions using fiducial markers. The problem was approached by creating a generic
optimization Application Programming Interface (API) and applying it to the specific case of refining
the pose of each camera with respect to a common reference frame in a 3D reconstruction procedure.

A camera is defined by the sensor’s internal properties and its positioning in space, relative to a
reference frame. The former is represented by the intrinsic camera matrix, which was always consistent
since the same device was used for all captures. It was retrieved using a chessboard based camera
calibration procedure and can be represented as

K =

 fx 0 cx

0 fy cy

0 0 1

 , (2)

where cx, cy are the principal point coordinates, and fx, fy are the focal lengths expressed in pixel units.
The latter is represented by an extrinsic camera matrix, such as

T =

r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz

 , (3)

which may be decomposed into two components, a translation and a rotation. The translation can be
represented as the vector T = (tx, ty, tz), and the rotation can be represented as a 3× 3 rotation matrix R.

The optimization is performed as a bundle adjustment, meaning the objective of the optimization
is to refine the camera poses and the 3D point positions. As such, the set of parameters to be optimized
Φ, is defined as

Φ =
[ Camera poses︷ ︸︸ ︷

xi=1, yi=1, zi=1, r1i=1, r2i=1, r3i=1, . . . , xi=I , yi=I , zi=I , r1i=I , r2i=I , r3i=I ,

Marker translations︷ ︸︸ ︷
xj=1, yj=1, zj=1, . . . , xj=J , yj=J , zj=J

]
, (4)

where i refers to the i-th camera, of the set of I cameras, and j refers to the j-th aruco marker, of the
set of J aruco markers. Notice that, in this vector, the rotation for one camera (r1, r2, r3) is represented
through the axis/angle parameterization, as opposed to the 3× 3 rotation matrix format of the camera’s
extrinsic matrix. Because a rotation matrix has 3× 3 = 9 elements, but only 3 degrees of freedom, a
different parameterization is necessary in order to intrinsically incorporate constraints on the rotations
during the optimization.

Popular parameterization for rotations are Euler angles, quaternions, and axis/angle
representation. However, not all representations are suitable for an optimization. Parameterization
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should not introduce more numerical sensitivity than the one inherent to the problem itself, as this
decreases the chances of convergence in optimizations. When the parameterization formats follow
this rule, they can be referred to as fair parameterization [59]. For example, Euler angles, which
are probably the most used angle parameterization, are not suitable for optimizations [60], because
they do not yield smooth movements, each rotation is non-unique and, most notably, they introduce
singularities, known as Gimbal lock, where one degree of freedom is lost [60]. Because quaternions have
4 components which are norm-1 constrained, and this introduces some complexity in the algorithms,
they are usually not used for optimizations [60], even though they are a fair parameterization. The
axis/angle parameterization is the most widely used to represent a rotation in an optimization. It is a
fair parameterization and has only three components, two values to define a unit vector indicating
the direction of an axis of rotation, and one value to define an angle. In this way, any rotation can be
represented as a rotation around this axis, by an angle θ. To convert between the axis/angle format
and the 3× 3 rotation matrix format (used in the data model to ease implementation) the Rodrigues’
rotation formula was used.

The datasets were obtained using the Google Tango platform, meaning they already contained
information about the poses of the cameras, which was used as a first guess for the optimization
procedure. Thus, in this sense, the proposed approach is a refinement of an initial proposal of camera
pose and corresponding reconstructed digital 3D model. However, if this data is not available, our
system is able to produce one by utilizing the detected markers. In this case, one of the cameras is
considered as the World reference frame and the transformations from each camera to the World
are calculated using chains of transformations between markers and cameras, taking advantage of
common marker detections between cameras. We also needed a first guess for the positions of the 3D
points, which correspond to the aruco marker centers. Their poses must be determined in the world
reference frame. Having an initial guess of the camera poses (transformations from each camera to
the world), for each aruco marker we need only a transformation from its reference frame to one of
the cameras in which it can be detected. Thus, the initial positions for the 3D points are obtained by
calculating the aggregate transformation from each aruco marker to the world reference frame as

Aj TW = Ci TW · Aj TCi
, (5)

where Aj refers to the j-th aruco marker detected, Ci refers to the i-th camera (the first in which the j-th
aruco marker can be detected), and W refers to the world reference frame.

The cost function is based on the reprojection error, that is, the geometric error corresponding to
the distance (in pixels) between a 3D projected point (with the evaluated pose) and a measured one
(computed from the aruco detection), as in Bundle Adjustment. The relationship between a 3D point
in the world and the pixels that correspond to its projection on an image plane can be expressed as

s

u
v
1

 = K T


X
Y
Z
1

 , (6)

where X, Y, Z are the coordinates of a 3D point in the world; u, v are the coordinates of the projection
point in pixels; K is the intrinsic camera matrix and T is the extrinsic camera matrix. T translates
coordinates of a 3D point (X, Y, Z) to a coordinate system fixed with respect to the camera, meaning it
corresponds to the transformation from the world to the camera reference frame.

The optimization is performed using a nonlinear least-squares regression, as indicated for Bundle
Adjustment problems. The function least squares from the SciPy library [61] is used. It requires a
cost function, a vector of parameters, bounds (infinite by default), and a sparse matrix (initializes to
identity if not available) to carry out the optimization. At the end of the optimization, the function
returns a vector with the optimized parameters for the pose of the cameras and the position of the 3D
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points, which minimises the reprojection errors. Because of the wrapper implemented, these values
are automatically converted and copied from this vector to their place in the data models.

The visualisation function for this optimization consists of showing all the images, each with
the aruco markers centers detected, the initial projections connected to the target by a blue line, and
the projections at the current step of the optimization, as seen in Figure 3 on the left. In this case, it
is the end of the optimization, and so the final position is overlapping with the detected one. This is
complemented by a 3D representation of the pose of the cameras and position of the 3D points in the
scene, showcased in Figrue 3 on the right.

Figure 3. Visualisation function: (left) Aruco marker detected position in red (target of optimization),
initial projection in green, current projection in dark blue, drawn over one image; (right) 3D
representation of the position of the cameras and aruco markers in the scene.

The estimated transforms are applied to the point clouds to ensure that the optimized datasets
are in the calibrated reference frame. The applied transformation is

oldWTnewW = Ci TnewW · oldWTCi , (7)

where oldW refers to the world reference frame before optimization, newW refers to the world reference
frame after optimization, and Ci refers to the i-th camera.

In Figure 4, we can see a merged point cloud coloured with the original images. The enhancement
of the registration caused by the optimization improves the texture significantly, as showcased by
Figure 5 in further detail. Figure 6 presents the results of the process in several views, showing clearly
a better alignment of the different point clouds after the optimisation.

Figure 4. Merged point cloud coloured with texture obtained from images: (left) before optimization;
(right) after optimization.
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Figure 5. Merged point cloud coloured with texture obtained from images (detail): (left) before
optimization; (right) after optimization.

Figure 6. Several views of a reconstructed scene: (top) before optimization; (bottom) after optimization.
Point clouds corresponding to each capture are colored differently for better visualization.

4. Texture Refinement and Marker Removal

This section focuses on a module developed to automatically remove fiducial markers from
a scene. In Section 3, a method to improve the registration of a 3D reconstruction using fiducial
markers was presented. The module showcased in the present section was created as an attempt to
avoid the pollution of the acquired scene’s texture with these markers. There are other scenarios,
besides 3D reconstruction, where having fiducial markers in the environment is advantageous, such as
Augmented Reality (AR) applications, and being able to successfully remove them from the texture
may improve the final visualizations significantly.

This module is agnostic to the way the dataset is stored and loaded to memory. By using a
different dataset loader, one may utilise this inpainting tool in a different context. The tool was
programmed to detect and remove aruco markers, since this was the kind of fiducial marker used
in Section 3. However, it could be used for different markers by adapting the detection and pose
estimation functions. All the masks showcased in this section were blended with images to better
showcase where they fit and what regions are the target.
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4.1. Navier-Stokes-Based Inpainting

The Navier-Stokes-based Inpainting algorithm available in the OpenCV library was used in this
work. Its function is to restore a region in an image using the region neighbourhood. To operate,
this algorithm requires a mask representing the region to replace. In a first attempt, the masks of the
fiducial markers were created using the corners provided by the aruco detector. This method was not
valid since these masks did not account for the margin around the markers (see Figure 7 left), resulting
in blank cards scattered through the scene. To solve this issue, the first approach taken was to dilate
the masks. However, this 2D operation in the image plane did not solve the problem for markers that
are close or with large angles relative to the camera (see Figure 7 center). The solution found was
to create a mask as a 3D object, with the same dimensions as the markers (including thickness), and
projecting the 3D masks, corresponding to each detected marker, to the 2D images. This ensures the
whole intended area is masked at any distance and angle (see Figure 7 right).

Figure 7. Methods for mask creation: (left) detection; (center) 2D dilation; (right) 3D projection.

Having an accurate representation of the region covered by the marker, the challenge was to
define the colours that will be used to restore that region. The results of the Navier-Stokes-based
Inpainting from OpenCV were underwhelming, as shown in Figure 8. The examples found online for
the testing of this algorithm are usually about removing lines from the images or restoring damage
from folding photographs. Inpainting in this manner is usually done in small areas, while the size of a
fiducial marker in the scene is substantial.

Figure 8. Example dataset image inpainting: (left) mask used for marker removal; (right) results of
Navier-Stokes-based inpainting from OpenCV.

4.1.1. Inpaiting of Homogeneous Regions through Image Blurring

Given the limitation of the first implementation of the inpainting, and taking into account the
placement of the markers over homogeneous texture regions, the blurring of the area where the
inpainting is applied was performed with high aperture linear size (median blur with kernel size of
201), as seen in Figure 9.
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Figure 9. Example dataset image restoration attempt: (left) mask for the pixels to be replaced;
(right) results with blurring.

The texture obtained after blurring (Figure 9) presents some improvements, when compared to
the inpainting restoration (Figure 8). However, the limits of the inpainted areas are still sharp and
visible. To reduce this effect, blurring is applied once again, this time in a bigger area, defined by
enlarging the 3D masks of the markers and projecting them in the obtained images (Figure 9), now
using a smaller aperture linear size for the blur (median blur with with kernel size of 51), to avoid
mixing colour of the surrounding objects, see (Figure 10).

Figure 10. Example dataset image restoration improvement: (left) mask for the pixels to be replaced
(based on enlarged 3D masks); (right) results with second blurring.

At the end, a bilateral filtering is applied to preserve the edges in the image, avoiding the mixing
of colours, while smoothing over the surfaces, making the grainy pattern of the walls less noticeable
for example, see Figure 11.

Figure 11. Example dataset image restoration: (left) original image; (right) restored image.

The values for the blurring factor, along with the size of the marker objects and patch size around
them, can be modified through command line arguments or assigned easily in the code. These values
were empirically set because they depend on various distinct factors, the characteristics of the scene,
and the sensors used.
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4.1.2. Inpainting Non-Detected Markers: Cross-Inpainting

It is frequent to miss fiducial marker detections in images, when the marker is not fully visible
(for example in the border of the image), or when blurring occurs due to motion, for instance. Since
the transformations from the aruco markers to cameras and from the cameras to the world are known
(see Figure 12), it is possible to evaluate the presence of a marker in a given image, even if the marker
is not detected in that particular image.

Figure 12. Conversion between different reference frames is used to perform cross-inpainting.

The solution implemented, named “Cross-Inpainting”, takes advantage of transformations from
the aruco markers to the world. Every time a new marker is detected in one of the images of the
dataset, the transformation of the marker to the world is known. This transformation is computed
using the transformation of the marker to the camera where it was detected, the i-th camera, and the
transformation from that camera to the world:

Aj TW = Ci TW · Aj TCi
, (8)

where Aj refers to the j-th aruco marker detected, Ci refers to the i-th camera, and W refers to the world
reference frame. Given an image captured by a camera k, when this image is being inpainted, it is
possible to access the information for all markers and check if a marker should be present in the image
even if not detected. This is done by applying the transformation from the aruco marker reference
frame to the world, as in Equation (8), followed by the transformation from the world to camera k:

Aj TCk = WTCk ·
Aj TW , (9)

where Aj refers to the j-th aruco marker, Ck refers to the k-th camera, and W refers to the world
reference frame. A 3D object representing the marker is transformed using Equation (9) and then
projected to the image captured by camera k. This idea was applied to non-detected aruco markers
before optimization (Figure 13 left) and after optimization (Figure 13 right), showing the viability of
this approach after optimization to improve the inpainting of partially visible or non detected aruco
markers, see Figure 14.
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Figure 13. Masks obtained from aruco marker detection in red and masks obtained from projections
from other cameras (cross-Inpainting) in blue: (left) before optimization; (right) after optimization.

Figure 14. Restoration with cross-inpainting result: (left) before optimization; (right) after optimization.

4.1.3. 3D Point Cloud with RGB Visualisation

To better visualise and evaluate the results of the registration and inpainting operations, we
developed operations to allow the visualization of fused RGB coloured 3D point clouds. For each
point cloud, the coordinates of the 3D points are projected into the corresponding colour images to
extract RGB pixel values. Finally, a new .ply file is created with the XYZ-RGB information for the fused
point cloud that can be visualized in any 3D viewer (Meshlab, PCL viewer, PPTK library, etc.). An
example of the registered visualization of 10 coloured point clouds with inpainting, before and after
optimization, is presented in Figure 15.

Figure 15. Point cloud coloured with texture obtained from restored images, using cross-inpainting:
(left) before optimization; (right) after optimization.

For comparison purposes, in Figure 16 a merged point cloud, coloured with images restaured
using only the detected markers can be observed. At first glance, the texture applied before
optimization seems better, this effect is caused by the fact that the points closest to the viewer happen
to correspond to images where more markers were detected. After the optimization, the merged point
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clouds are better aligned and the undetected markers, which in Figure 15 (right) were removed using
cross-inpainting, here show through in Figure 16 (right).

Figure 16. Point cloud coloured with texture obtained from restored images, no cross-inpainting: (left)
before optimization; (right) after optimization.

5. Results

This section contains the evaluation methodology and the description of its process, going over
the collection of datasets and showcasing the results obtained in various ways.

5.1. Evaluation Methodology

Visual comparison of the point clouds may sometimes prove to be somewhat subjective and
inconclusive. Particularly in datasets with a very large number of point clouds. The reporting of
results in a document also means that the changes must be observed in a side by side manner, which
makes them harder to perceive than in a 3D visualization software such as Meshlab, for instance,
where it is possible to instantly switch between point clouds placed in the same exact place. In order to
provide some quantitative results, we performed experiments in a meeting room of the Department of
Mechanical Engineering (DEM) at the University of Aveiro, for which a laser scan was acquired with a
FARO Focus Laser Scanner [62]. Given the high precision of the FARO laser sensor, a point cloud of
the scan was considered as the ground truth to evaluate the proposed process of registration based on
fiducial markers, and compare it to a Google Tango reconstruction [63], as well as a reconstruction
with registration refinement using ICP [30]. As the meeting room was larger than the previously used
datasets, it was also an opportunity to create a more difficult challenge for the optimizer.

5.2. Datasets

The datasets were collected using the ZenFone AR, a Google Tango enabled Android phone,
equipped with an RGB-D camera. The example dataset, used in previous sections, was collected
in office 22.2.18 of DEM: a relatively small dataset with a large density of fiducial markers. Two
additional, more complex datasets were captured: the meeting room mentioned in Section 5.1, and a
lobby, just outside the meeting room. Unfortunately, due to logistic problems, the FARO laser scan
and the RGB-D datasets were not acquired in the same day, resulting in some differences in the scene
(namely some furniture had been moved within the room, such as couches and chairs). Despite this
limitation, it was possible to validate our results using an area of the model with little change and
focusing on walls and ceilings.

5.3. Collecting Ground Truth

The laser scan of the meeting room was acquired with a FARO Focus Laser Scanner [62]. A single
point cloud was obtained from the merging of several scans, in Cloud Compare. However, given its very
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high density (50698121 vertices), unnecessary for the purpose of this study, a downsampled and clipped
version was generated using Cloud Compare. The downsampling of the FARO laser acquisition result
(3722614 vertices) can be observed in Figure 17, and the final result (1777550 vertices) in Figure 18.

Figure 17. FARO laser scanned point cloud after downsampling.

Figure 18. FARO laser scanned point cloud after downsampling and clipping.

5.4. Evaluation Procedure

The key metric used for the evaluation procedure was the Hausdorff distance. It measures how
far one subset of a metric space is from the other, and is often applied to the measurement of distance
between point clouds. It can be thought of as the maximum distance of a set to the nearest point in the
other set [64]. The Hausdorff distance from set A to set B may be defined as

h(A, B) = sup
a∈A

inf
b∈B

d(a, b) , (10)

where sup represents the supremum, inf represents the infimum, and d(a, b) is the Euclidean distance
between a and b.

The tools available in Meshlab, allow us to compute, not only an absolute distance, but also the
distance at each point of the cloud. This distance can then be mapped visually through a colour. ICP
was used in Cloud Compare to align processed point clouds with the FARO laser ground truth point
cloud. Then, Meshlab’s Haudorff distance was used to compute the distance between the given point
cloud and ground truth, providing a coloured visualization of the distance. A red-yellow-green-blue
colourmap was used, where red maps a small distance and blue a large distance. This visualization
allows for the understanding of which areas have significant error compared to the ground truth. It
also enables the identification of areas where the scene had physically changed between the capture of
the ground truth and our datasets (namely furniture movements).

We used Google Tango’s reconstruction as baseline and compare it with a cumulative Iterative
Closest Point (ICP) approach, and our proposal. The cumulative ICP approach was applied in a
pairwise fashion from cloud i to i+1, these captures were then merged and became cloud i for the next
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ICP calculation. The starting point of the reconstruction for the ICP procedure was the same as the one
used for our approach.

5.5. MeetingRoom Dataset

In this subsection, the results obtained using the MeetingRoom dataset are presented. This dataset
takes advantage of the fact that there is the possibility of analysing it in comparison with the FARO
laser scanned point cloud, see Section 5.3. The results are compared with Google Tango and ICP, first
using the texture of the original images in Figures 19–21, then using the Hausdorff distance based
color mapping in Figures 22 and 23, and finally, the fiducial marker removal results are showcased in
Figure 24.

Figure 19. MeetingRoom dataset coloured with texture obtained from original images: (top) Google
Tango; (middle) Iterative Closest Point (ICP); (bottom) Our approach.
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Figure 20. MeetingRoom dataset coloured with texture obtained from original images (detail 1):
(top) Google Tango; (middle) ICP; (bottom) Our approach.

Figure 21. MeetingRoom dataset coloured with texture obtained from original images (detail 2):
(top) Google Tango; (middle) ICP; (bottom) Our approach.
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Figure 22. MeetingRoom dataset colourmapped with Hausdorff distance to FARO laser scanned point
cloud: (top) Google Tango; (middle) ICP; (bottom) Our approach.
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Figure 23. MeetingRoom dataset colourmapped with Hausdorff distance to FARO laser scanned
point cloud (detail): (top-left) Groud truth laser scan; (top-right) Google Tango; (bottom-left) ICP;
(bottom-right) Our approach.

Figure 24. MeetingRoom dataset coloured with texture: (top) obtained from original images; (bottom)
obtained from restored images.
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The MeetingRoom dataset includes 136 RGB-D images and the alignment optimization was
performed in 3m50s on an Ubuntu 18.04 laptop equipped with an Intel Core i7 7500U CPU and
8GB of RAM, see Table 1.

Table 1. 3D alignment processing times for the MeetingRoom dataset.

Time (mm:ss)

ICP 03:02

Our Approach 03:50

The Hausdorff distance was calculated from each of the methods’ produced reconstruction to
the FARO laser generated point cloud. The local values were used to colourmap the point clouds,
see Figures 22 and 23. The mean and Root Mean Square (RMS) values, see Table 2, indicate an
improvement of approximately 27% of our approach over Google Tango. Regarding the comparison of
our approach with ICP, it shows an improvement of approximately 13% in RMS and 5% in mean. The
maximum distance considered for the measurement was empirically set to 15 cm. These values should
be considered with care because they are computed globally for a very large number of points, many
of which were not moved significantly during the optimization since multiple areas are already close
to the ground truth before the optimization. As a result, areas that improved significantly may not
have a very high impact on the value of the mean and RMS. The RMS is usually considered a more
meaningful metric in the context of 3D reconstruction, since it gives a relatively high weight to large
errors, which appear in the form of visual artifacts (see Figure 23).

Table 2. Hausdorff distance from the MeetingRoom dataset to the FARO laser scanned point cloud.

Mean (m) RMS (m) min (m) max (m)

Google Tango 0.0337 0.0442 0.0001 0.1500

ICP 0.0259 0.0372 0.0001 0.1500

Our Approach 0.0247 0.0324 0.0001 0.1500

The main identified limitations of our approach are: the overhead of time and logistics associated
with the marker placement in the scene, when compared with methods that do not require the
preparation of the environment previous to the capturing process, which is very dependent on the
user, nature of the scene, and the density of markers desired; the need for at least one marker to be
detected in a capture, ideally more, to allow for its registration refinement; and the pollution of the
scene’s texture. Some of the observed texture problems in the ICP results may be attributed to the
fact that a number of captures contain points mostly belonging to the same plane, and in a pair of
those captures, an ICP procedure may slide them (within the plane), while maintaining a low distance
between the captures. Our approach does not suffer from this problem.

Table 1 presents the 3D alignment processing times for the MeetingRoom dataset using ICP and
our approach. Google Tango processing times are not included, since it performs bundle adjustment
optimization during the capture process and thus it is not directly comparable with our method that
only executes the optimization after all the data has been captured. It is noteworthy that Google Tango
also requires additional time after data capture to produce the final reconstructed model. Unfortunately,
it is difficult to evaluate precisely tango processing time since the system is not open source and the
time we could evaluate would also include other processes besides the optimization, such as mesh
creation and processing of stored data changes.
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5.6. Lobby Dataset

In this subsection, the results obtained using the Lobby dataset are showcased. This dataset is
analysed through visual comparison with the Google Tango reconstruction, starting with the texture of
the original images in Figures 25 and 26, then showing some detail using a colourmap, see Figure 27,
and finally showcasing the fiducial marker removal results in Figure 28.

Figure 25. Lobby dataset coloured with texture obtained from original images: (top) Google Tango;
(bottom) Our approach.

Figure 26. Lobby dataset coloured with texture obtained from original images (detail): (left) Google
Tango; (right) Our approach.
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Figure 27. Lobby dataset point clouds coloured using a colourmap: (left) Google Tango; (right)
Our approach.

Figure 28. Lobby dataset coloured with texture: (top) obtained from original images; (bottom) obtained
from restored images.

The Lobby dataset includes 84 RGB-D images and the alignment optimization was performed in
1m05s on an Ubuntu 18.04 laptop equipped with an Intel Core i7 7500U CPU and 8GB of RAM.

6. Conclusions

It is possible to observe a significant improvement in the registration of the 3D points clouds
using our marker based optimization approach. Nevertheless, there are some limitations derived from
the fact that this optimization only targets the registration problem, while having no influence on the
geometry of each point cloud. In other words, the alignment of the point clouds may be improved, but
if the point clouds are themselves distorted, which might occur with RGB-D data, the geometry of the
scene may not improve significantly from this optimization.

The optimization implemented attempts to improve the results obtained from a 3D reconstruction
using RGB-D cameras. If the dataset obtained from the reconstruction has poor alignment of the point
clouds, even if only on some areas, then we should expect the optimization to improve the scene’s
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geometry significantly. However, if a particular dataset happens to have very good alignment, the
improvement will probably prove to be minor.

The API developed provides useful abstractions and an environment for future implementation of
optimizations. It facilitates building upon and future work, allowing for the writing of more intuitive
code. It also provides structure for a systematic approach to this kind of problem. We have already
made use of these tools in other projects that require an optimization to be performed, such as the
calibration of a set of sensor in an autonomous vehicle [65] and colour consistency correction in
3D reconstructions.

The removal of the fiducial markers from the texture of the scene was achieved, though it is
important to note that the tool developed was meant for restoring homogeneous texture areas only,
without a recognisable or sharp pattern. This tool allows for the creation of point clouds with texture
free of markers, by utilising RGB-D information. The cross-inpainting technique was successful at
removing non-detected aruco markers from the images, if there is good registration of the point clouds.
For this reason, the technique also serves as a way to confirm that the optimization is working as
intended, since its results, which depend on the good alignment of the point clouds, improve after the
optimization is performed.

Results presented include several qualitative and quantitative assessments in three different datasets.
Thus, we are convinced that the approach is robust and should in principle work for other datasets.

In future work, it would be interesting to generate meshes from the final point clouds, coloured
with the texture free of fiducial markers. These meshes may be created through the utilization of
ROS-based CHISEL [63], for instance.

There are some questions about the ideal density of fiducial markers in the scene, that is, how
many markers should be spread, on average, to be seen in each image, to obtain the best results from
the optimization. In the future, this could be analysed, producing guidelines regarding marker density
and placement to optimize preparation time and alignment results.

Regarding the removal of fiducial markers, it would be interesting to investigate techniques that
would allow the restoration of texture containing distinctive patterns, to enable its use in a wider range
of environments and applications.
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