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Abstract: Systems composed of multiple sensors for exteroceptive perception are becoming1

increasingly common, such as mobile robots or highly monitored spaces. However, to combine2

and fuse those sensors to create a larger and more robust representation of the perceived scene, the3

sensors need to be properly registered among them, that is, all relative geometric transformations4

must be known. This calibration procedure is challenging since, traditionally, human intervention5

is required in variate extents. This paper proposes a nearly automatic method where the best set of6

geometric transformations among any number of sensors is obtained by processing and combining7

the individual pairwise transformations obtained from an experimental method. Besides eliminating8

some experimental outliers with a standard criterion, the method exploits the possibility of obtaining9

better geometric transformations between all pairs of sensors by combining them within some10

restrictions to obtain a more precise transformation, hence a better calibration. Although other data11

sources are possible, in this approach, 3D point clouds are obtained by each sensor which correspond12

to the successive centers of a moving ball its field of view. The method can be applied to any sensors13

able to detect the ball and the 3D position of its center namely, LIDARs, mono cameras (visual or14

infrared), stereo cameras and TOF cameras. Results demonstrate that calibration is improved when15

compared to methods in previous works that do not address the outliers problem and, depending16

on the context, as explained in the results section, the multi pairwise technique can be used in two17

different methodologies to reduce uncertainty in the calibration process.18

Keywords: calibration, multi-modality, extrinsic parameters, point cloud, transformation path,19

Chauvenet criterion, singular value decomposition, ATLASCAR.20

1. Introduction21

Modern robots count on a wealth of sensors for many essential operations that need perception22

such as representation, obstacle avoidance, planning, guidance, localization and most of the tasks23

generically related to navigation and safety. Sensors now cover a wide scope of principles and24

modalities, hence, it is no longer unexpected to see altogether monocular (both visual and infrared)25

and stereo cameras along with, structured-light based or TOF 3D cameras, and LiDAR (2D and 3D)26

mounted on some more complex systems like autonomous cars.27

One of the first challenges before using such complex robotic systems is to calibrate all these28

sensors so their data or deduced conclusions can be merged and reported to a common coordinate29

frame for the algorithms to apply on a rich set of sensor data. This redundancy is necessary to give30

robustness and also to cover potential variations of data rate that may ultimately jeopardize single31

sensor or single modality based perception.32

Reporting all sensors to a common frame can be simply stated as having the knowledge of where33

(translation and orientation) is each sensor coordinate frame relatively a common reference, normally34
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one associated or easily related to the external world being perceived. These parameters are known,35

for each sensor, as its extrinsic parameters.36

Numerous works exist to calculate the extrinsic parameters of cameras or image based or image37

reducible sensors. External devices such as chessboards, charuco boards, or others are used to create a38

known real world pattern of points or geometric feature which are easily traceable on the respective39

images. Using these real world references and the knowledge of the projection mechanisms (through40

the so-called intrinsic parameters of each device), it is possible to deduce the extrinsic parameters of a41

sensor in relation to the target being scanned.42

In theory, having such a marker (chessboard or similar) shown to all sensors at once would allow43

for the computation of the extrinsic parameters for all sensors and the problem would be solved:44

that marker (chessboard or similar) should only be placed in a known and interesting or convenient45

position to the robot and all sensors would be easily localized relatively to a common reference frame.46

The problem is that not all sensors may be able to perceive the target in ideal conditions and not47

all sensors are able to detect the target with the same representation, or may not even detect the target48

at all. Additionally, there are uncertainties in the process.49

An illustration of a real historical setup that will serve as base for developments ahead is shown in50

Figure 1 where four sensors (three LiDARS and one camera) generate a point cloud each, all obtained51

from the same temporal scenario (the center of a ball in several positions) but on their own coordinate52

frames. It is clear that the relative positions of the sensors must be determined in order to fuse or53

combine the four point clouds.54

Lidar LMS151-A

Lidar LMS151-B

Lidar LDMRS

Camera

Points in the world to be captured from the 4 sensors

PA

PC

PD

PB

Figure 1. Example of four unregistered point clouds in ATLASCAR1 setup (adapted from [1]).

The main contribution of this paper is a technique to perform the extrinsic calibration of55

multiple sensors by eliminating outliers in the experimental process and by combining individual56

pairwise transformations. It improves a previously developed technique based on pairwise geometric57

transformations obtained from different point clouds (one for each sensor) generated with the58

successive center points of a moving ball.59

The paper is divided in the following main sections: the related work, the proposed approach that60

includes the main algorithms described in detail, results from simulated and real data experiments,61

and final conclusions and future perspectives.62
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2. Related Work63

Extrinsic calibration is a basic requirement in multi sensor platforms where data needs to be64

represented in a common reference frame for data fusion and subsequent analysis. This calibration65

procedure estimates the transformation between all sensors to align all data-sets in the same coordinate66

system. Most calibration procedures are based in calibration patterns to ensure a robust and accurate67

detection of points/objects by all sensors. Some examples of calibration patterns are chessboards [2–4],68

fiducial markers [5–7], spherical objects [1,8–10] or cylindrical objects [11].69

Many calibration systems are described in the literature, however there is no general solution70

multiple sensor calibration. Pairwise calibrations between sensor is often used due to its simplicity,71

since the calibration step does not require a global optimization. This pairwise approach must consider72

all possible combinations between sensor modalities in the pair. These sensor combinations have73

been addressed in the literature: RGB to RGB camera calibration [1,12–16]; RGB to depth camera74

(RGB-D cameras) calibration [10,17–21]; camera to 2D LIDAR [1,20,22–27]; 2D LIDAR to 3D LIDAR75

[11]; camera to 3D LIDAR [27–29]; and camera to radar [30].76

To adapt the pairwise approach to the case of complex robotic systems that contain many sensors77

of different modalities, several pairwise calibrations must be combined in a sequential transformation78

procedure based on graphs where one sensor calibrates with another and then relates to a another79

sensor, and successively. Another approach is to define one sensor as the reference and report all the80

remainder to it. In this case, the graph of transformations is a one level pyramid with the reference81

sensor on top and all other sensors below. This methodology is the one adopted in [1] to calibrate all82

the sensors on-board the ATLASCAR autonomous vehicle [31] relatively to a reference sensor.83

The problem of multi-sensor calibration can also be solved using simultaneous optimization as in84

Liao et al. [32] that use a joint objective function to calibrate simultaneously three RGB cameras and a85

RGB-D camera with good results in the calibration accuracy. An approach to estimate simultaneously86

temporal offsets and spatial transformations is presented in [33]. This approach can be used for any set87

of sensors (for example cameras and LIDAR), as its does not consider unique properties of specific88

sensors.It also does not require the usage of calibration patterns for the LIDAR, as the planes present89

in the scene are used for that purpose. Another relevant work occurs in [34] that proposes a calibration90

for the sensors onboard a PR2 robot. The process uses the sensor uncertainty and is based on bundle91

adjustment.92

In [35], an optimization procedure is implemented which, in addition to estimate the poses of93

the sensors, also estimates the poses of the calibration patterns. This enables the definition of errors94

to be formulated using sensor to calibration pattern tandems, rather than the classic sensor to sensor95

pairwise combinations. As a result, the problem of the exploding number of sensor combinations is96

avoided, since the number of combinations do not explode with the increase in the number of sensors,97

which makes it possible to consider all available data during the optimization.98

In most of the mentioned approaches, there is still the need for some sort of user interaction, or99

to provide first guess estimates for optimization based algorithms, which sometimes may be slow to100

converge, despite the fact that that slowness may not be relevant for a offline process, which is the case101

for many calibration procedures.102

Overall, it appears pertinent to devise a solution of a nearly automatic mechanism with very little103

intervention of human operation, desirably with sleek performance. One solution, already exploited104

by other authors ([1]), is to use a simple target that must be easily detectable by all sensors, from a wide105

range of viewpoints and perspectives, be it based on images, range maps, or even simple 2D range106

profiles. Pereira et al. [1] used a large size ball that is easily detected by cameras and LiDARs (including107

TOF and structured light devices). Those works have been later extended ([9]) to monochromatic and108

infrared based images using Deep Learning techniques to detect the ball in the image with greater109

robustness and accuracy. These solutions, however, besides still relying on pairwise approaches and110

do not address the problem of outliers, which this papers addresses by proposing an extended solution111
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that combines the pairwise transformation and also automatically filters out outliers generated in the112

acquisition process.113

The work clearly follows the line of [1] and [9] but it integrates and extends the concepts to multi114

pairwise procedures. Compared to existing works, the proposal that is going to be detailed in the115

paper, shows the following advantages: i) it can be applied to any sensor that is capable of detecting116

the 3D position of a moving target (ball), and not only cameras; ii) it can take all transformation paths117

into account or a subset of paths; iii) it is faster than iterative methods with deterministic duration and118

computational cost; iv) in certain conditions (explained further), it allows to reduce calibration errors119

in a straightforward algorithmic process.120

3. Proposed Approach121

Figure 1 and its associated diagram in Figure 2 illustrate the acquisition of the same scene by four122

different and arbitrarily positioned sensors (A, B, C, D), generating four point clouds corresponding123

to several positions of a known object seen by all sensors at different locations in the scene like the124

center of a ball, for example (PA, PB, PC, PD). For the sake of clarification, these point clouds are not125

actually the usual point clouds that express the geometry of a scene; they are instead a set of points126

that represent the time-lapsed position of a moving object in space, in this case the successive sparsely127

distributed positions of a ball center. But, theoretically, these two types of point clouds have similar128

formats and can be manipulated with common available tools.129

Simple 3D data set matching, or more sophisticated registration techniques readily available in130

many libraries (PCL – Point Cloud Library or open3D, for example), can be used to obtain the position131

of sensors B, C and D relatively to sensor A, which is assumed to be the reference of the system: this132

is translated by the three geometric transformations ATB, ATC, ATD. In summary, for a set of four133

sensors (four point clouds), three matching operations are performed, that is, take one sensor (A) as134

the reference, and determine the position of the remainder three in relation to it.135

PA PB PC PD

ATB

ATC

ATD

Figure 2. Example of four distinct point clouds showing the transformations of B, C and D relative to
frame A. See the setup in Figure 1.

However, there are other transformations that can be obtained among the remainder sensors136

using their own point clouds besides sensor A. Figure 3 rearranges the layout and shows all possible137

transformation paths to obtain ATD; a similar reasoning can be done to obtain any of the other138

transformations in diverse representations of equivalent transformation paths.139

PA

PB

PC

PD

ATD

ATB
BTC

CTD

ATC

BTD

CTB

Figure 3. Rearrangement of example from Figure 2 of four distinct point clouds, but now showing all
the paths for transformations from A to D, passing also through B and C.
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We call a transformation path XTY, from frame X to frame Y, a sequence of geometric140

transformations derived from the transformation graph. An additional superscript k is used to141

distinguish different transformation paths between the same coordinate frames XT k
Y . For example, as142

shown in Figure 3, there are five transformation paths (different ways) to obtain ATD, after ATB, BTC,143

ATC, CTD, BTD and CTB, reminding though that CTB =
(

BTC

)−1
, that are as follows:144

1. the direct measurement of ATD from the data matching algorithm: AT 0
D = ATD145

2. AT 1
D = ATB

BTD;146

3. AT 2
D = ATC

CTD;147

4. AT 3
D = ATB

BTC
CTD;148

5. AT 4
D = ATC

CTB
BTD = ATC

(
BTC

)−1 BTD149

It is certain that these geometric transformations are independent because the point clouds were150

created from the point of view of different sensors. As an hypothetical situation: if for example151

the PD point cloud has poorer quality (due perhaps to more noisy acquisition settings) the ATD152

transformation would exhibit some larger uncertainties; so, combining this transformation with other153

transformations that involve other (expectantly) more precise point clouds will improve a final version154

of ATD, but involving of course the PD point cloud. As described ahead, a better estimate of ATD can155

be obtained by the combination of part or all of the five listed results (AT 0
D ,AT 1

D ,AT 2
D ,AT 3

D ,AT 4
D). The156

0-th transformation path (k = 0) is the actual direct transformation from sensor A to D in the current157

example.158

With these transformation paths it is possible to calculate a geometric transformation that is some159

type of combination of all the transformation paths, expectantly with a smaller uncertainty than the160

single original transformation.161

To ease the interpretation of equations and algorithms, the following nomenclature convention is162

adopted to describe geometric transformations from sensor i to sensor j:163

• iTj - The real transformation (usually unknown)164

• iT̃j - The "measured" transformation (after the common localization of a unique object)165

• iT̂j - The estimated (calculated, hopefully improved) transformation.166

• iT̂k
j - A derived transformation resulting from some transformation path iT k

j .167

The estimated transformation is actually calculated using some sort of mean or combination of168

multiple derived transformations which are the result of their associated transformation paths. It is169

clear then, that the concept of transformation path (which results in derived transformations) is useful170

in a numeric approach because independent transformations can be obtained experimentally with,171

possibly, different levels of uncertainty, and their manipulation can provide an averaging or smoothing172

of those uncertainties. As stated earlier, a derived transformation (as one sample k of a larger set) is173

represented by nT̂k
m, which means the k-th sample of the derived transformations from sensor n to m.174

Each derived transformation, for example between sensor 0 and sensor n, can be obtained in
several ways, depending on how many steps the accumulated concatenation of transformations
(transformation path) is done, like the following example:

0T̂1
n = 0T̃1

1T̃n
0T̂2

n = 0T̃2
2T̃n

0T̂3
n = 0T̃3

3T̃n

· · ·
0T̂k

n = 0T̃p
pT̃q · · · mT̃n.

(1)

Those derived transformations can be combined (averaged) and compared, or even merged, with175

the actual measurement (0T̃n) to provide a result with more confidence than the actual measurement176

itself, and is given in the general case by:177
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0T̂n = COMBINE
(

0T̃n, 0T̂1
n, 0T̂2

n, 0T̂3
n, · · · , 0T̂k

n

)
, (2)

where COMBINE() represents the function to average, merge, weight, or otherwise combine samples178

of a transformation between two sensors, although originated from distinct transformation paths;179

henceforward, the terms "average" and "combine" for geometric transformations will be used180

interchangeably. The algorithm for this multi pairwise approach is detailed further in section 3.2.181

In the process, translations and rotations are expected to be combined separately and outliers are182

to be taken into account, as well as the confidence of each sample, should it be available or known,183

for example, based on the number of points present in each point cloud: assuming that, the more the184

points, the better is the estimation of the geometric transformation, which may be debatable, mainly185

because of poor detections or the presence of outliers.186

Resuming to the example of Figure 3, there are 6 = 4×3
2 direct feed forward transformations187

(pairwise independent relations) that can be obtained from the four measured point clouds. These six188

transformations have more information than only the three related to a single reference frame.189

In summary, the idea is to define one sensor from the set of N sensors to be the reference (usually190

the one easier to place or locate in the overall reference frame of the world), naming it A, whichever it191

might be, and obtain the relative position of the remainder (N − 1) sensors relatively the reference.192

Each of these (N − 1) transformations is now to be obtained as an "averaging" of a number of separate193

geometric transformations that represent the same frame relations.194

This implies that, whenever needed, matching operations have to be done both ways, like CTD195

and DTC; but, as DTC =
(

CTD

)−1
, in principle, inverting a matrix can be performed instead of a196

second point cloud matching; nonetheless, most of the times, point cloud matching algorithms, namely197

when probabilistic approaches are used, can perform differently when source and target point clouds198

are swapped, and therefore, the safest option is to calculate both and pick the best instead of simply199

inverting matrices.200

For a set of N sensors, a global overview of the operations can be summarized as:201

• Acquire N point clouds of a reference object in several positions, one from each sensor;202

• Perform at most N(N − 1) point cloud matching operations or, assuming that nT̃0 will not be203

used, perform (N − 1) + (N − 1)(N − 2) = (N − 1)2 point cloud matching operations;204

– Alternatively, perform only (N − 1) + (N−1)(N−2)
2 = N(N−1)

2 cloud matching operations,205

and (N−1)(N−2)
2 inversions of transformations (in reverse directions of the previous point).206

In this case, less than N(N−1)
2 inversions are necessary because no inverse transformations207

are made to the reference sensor.208

• Each of the N − 1 sensors has a set of transformation paths (connecting to the reference sensor)209

with different lengths (1, 2, 3, ...) where the length of some transformation path L
(XTY

)
is the210

number of transformations that compose it, as enumerated next, where P(n, r) is the permutation211

(arrangements without repetition) of n elements taken in groups of r elements:212

– length 1: P(N − 2, 0) = (N − 2)!/(N − 2)! = 1, one path;213

– length 2: P(N − 2, 1) = (N − 2)!/(N − 3)! = (N − 2) paths;214

– length 3: P(N − 2, 2) = (N − 2)!/(N − 4)! = (N − 2)(N − 3) paths;215

– · · ·216

– length r: P(N − 2, r− 1) paths (for r < N);217

with a total number of paths QN for each of the N − 1 sensors given by:

QN =
N−1

∑
r=1
P(N − 2, r− 1), (3)

where N is the number of sensors, r is the length of transformation path, and P means the218

mathematical permutation, as stated above.219
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• Perform (N − 1) averaging operations of geometric transformations to obtain all 0T̂n.220

For the illustrated case of N = 4, for each sensor relatively to the reference sensor, there is one221

transformation path with length 1, two paths with length 2 and two paths with length 3, yielding a222

total number of transformation paths given by: (4− 1)× (1 + 2 + 2) = 15. Table 1 shows the number223

of transformation paths for all the possible path lengths in a set of several sensors (from 3 to 10).224

Lengths of transformation paths L(T ) for each sensor in the set
N 1 2 3 4 5 6 7 8 9 Full total

3 1 1 4
4 1 2 2 15
5 1 3 6 6 64
6 1 4 12 24 24 325
7 1 5 20 60 120 120 1956
8 1 6 30 120 360 720 720 13699
9 1 7 42 210 840 2520 5040 5040 109600

10 1 8 56 336 1680 6720 20160 40320 40320 986409

Table 1. Number of paths of the several lengths of the transformation paths for a given number of
sensors N, and the full total of transformation paths in each set of sensors. The full total in each row is
obtained by (N − 1)×∑r Lr(T ) or similarly, (N − 1)×QN with QN obtained from (3).

The number of paths grows exponentially with the number of sensors. Just as an indication, 11225

sensors imply a total of nearly a million transformation paths, and 20 sensors would generate more226

than 1016 paths! For those cases where many transformation paths exist, a solution can be to limit the227

number of transformation paths and not use all of them, since the principle applies independently of228

the number of the transformation paths to be "averaged". More transformation paths should reduce229

the uncertainty but it is expected that after a certain number, that reduction may become negligible,230

hence no longer useful. This statement is a generalization of the concept of uncertainty propagation in231

an averaging process of N samples of some variable; if N is large, using N + 1 samples is not expected232

to reduce much further the uncertainty of the averaged result.233

Possible strategies to limit the number of transformation paths to combine, for each sensor, include234

the following:235

1. Use minimum path lengths, but ensuring all combinations of that path length — this require236

path lengths of 2, but all of them are necessary to involve all sensors in the estimations of each237

0T̂n. This would require (N − 2) transformation paths to be combined with 0T̃n for each sensor.238

2. Use a maximum path length which ensures that all sensors are involved as well, but no more239

than one path would be needed to cover all sensors. For each sensor, the estimation (averaging)240

would be done only with 0T̃n and 0T̂kL
n , where kL is the index that corresponds to one of the241

maximum path lengths.242

3. Use a minimum number of transformation paths, but at least as large as the number of sensors in243

the set and, again, ensuring that all sensors are involved. Resorting to Table 1, this would require244

a path length of 3 (or just 2 for three sensors). The number of paths of length 3 to average for245

each sensor would be N, from all the possible available in the 4-th column of Table 1.246

These possibilities are presented as heuristic alternatives to the usage of all transformation paths247

that, besides not being sure to be needed, would be impractical to apply for large values of N. But248

values of N up to 6 are absolutely reasonable to use all transformation paths and keep the fast249

performance. There is no formal demonstration of which is the choice that produces best results, and a250

compromise solution with a large applicability would be to use all the transformation paths of length251

up to 3. Even large number of sensors would require only some hundreds of transformation paths. In252

this approach it is assumed that it is always possible to establish transformation path between any pair253
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of sensor with any viable path lengths. In case that turns out impossible (not all sensors share enough254

overlap of the field of view), a smaller number of paths has to be used.255

3.1. Pairwise Matching Algorithm for Arrays of Points256

To calculate the pairwise best fit transformation [R|t] between two sets of points A and B, the257

classical technique based on [36] is used. These sets of points are sorted and there is a one-to-one258

correspondence between the points, but the expression "point cloud" will be used instinctively as "set259

of points". The point clouds are first relocated around the origin (by subtracting them their respective260

centroids), and Singular Value Decomposition (SVD) is applied to the 3× 3 covariance matrix of the261

coordinates of points (in the format 3× 1), as expressed with equations (4) and (5):262

AC = A− centroidA and BC = B− centroidB; (4)

H = AC · Bᵀ
C and

[
U Σ V

]
= SVD(H). (5)

The rotation matrix and the translation vector between the point clouds are consequently263

calculated using the expressions in (6):264

R = V ·Uᵀ and t = centroidB − R · centroidA. (6)

3.2. The Multi Pairwise Algorithm265

For the sake of simplicity, it is considered from now on that the sensors and their point clouds are266

numbered starting on zero (S0 with P0, S1 with P1, etc.), and that the reference sensor is sensor zero, as267

illustrated in Figure 4, where, as an example, what is sought is the position of sensor 3 (S3) relatively to268

sensor 0 (S0), that is, to obtain 0T̂3. In the figure, reverse transformations to S0 are not shown because269

they are not to be used in practice when calculating the derived transformations, that is, nT̃0 will not270

be part of any transformation path.271

S0, P0

S1, P1

S2, P2

S3, P3

S4, P4

0T̃3

0T̃1

0T̃2

0T̃4

1T̃2 1T̃3

1T̃4

2T̃1

2T̃3

2T̃4 3T̃1

3T̃2

3T̃4

4T̃1

4T̃2
4T̃3

Figure 4. Example of five distinct sensors and their point clouds where all transformation paths from
S0 to S3, passing also through S1, S2 and S4, can be established. In the figure, transformations from
S0 to the other sensors are actually the ones who require improved estimates based on the several
transformation paths and associated derived transformations, that is, calculate 0T̂n using the several
jT̃i present in the diagram and obtained experimentally. Both iT̃j and jT̃i may be obtained using the

same registration technique or, to save time, just by performing algebraic inversion: iT̃j = (jT̃i)
−1.
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The major steps of the algorithm were given earlier, but they can be detailed more specifically as272

follows:273

• Define one sensor as the reference, S0, to which all other sensors will be reported/located.274

• The actual calibration procedure is to obtain the list of N − 1 geometric transformations 0T̂n for275

n ∈ {1, 2, · · · , N − 1}276

• Acquire experimentally N point clouds Pn from the N sensors;277

• Since the reference sensor is not to be part of any transformation path because it is never the278

destination of any transformation, perform (N − 1) + (N − 1)(N − 2) = (N − 1)2 point cloud279

matching operations, that is, obtain all pairs of geometric transformations nT̃m between sensor n280

and sensor m, where n, m ∈ {0, 1, · · · , N − 1} and m /∈ {0, n}. There is a partial alternative to281

this step described earlier but it is omitted here to keep the procedure shorter.282

• Define which strategy is adopted to establish the set of transformation paths to use in the average283

calculation. As example, variant 1 from the list presented earlier is chosen, meaning to pick all284

transformation paths with length 2, which is the minimum length, as proposed.285

• For each sensor, perform the COMBINE calculation of the results obtained in the previous step.286

In terms of pseudo-code, the main procedure could be presented as shown in Algorithm 1.287

Algorithm 1: Multi pairwise sensor calibration

// Nomenclature: tT[n][m]↔ nT̃m, hT[n][m]↔ nT̂m, Tp[0][m][k]↔ 0T̂k
m ⇐ 0T k

m
Input : Sensors S[n], with n ∈ {0, 1, · · · , N − 1}
Output : Estimated geometric transformations hT[0][m], with m ∈ {1, · · · , N − 1}
// Obtain the point clouds from the N sensors

1 for n = 0 to N − 1 do
2 P[n]← AcquirePointCloud (S[n]) // Function that returns a point cloud of ball centers
3 end
// Compute the geometric matching between all pairs of point clouds

4 for n = 0 to N − 1 do
5 for m = 1 to N − 1 do
6 if n == m then

7 tT[n][m]←
[

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

]
// Identity transformation

8 else
// If the reverse has already been matched, no need to repeat: just invert!
// However, a new match could be done if different results are expected.

9 if tT[m][n] already exists then
10 tT[n][m]← invert (tT[m][n]) // Invert geometric transformation
11 else
12 tT[n][m]← MatchPointClouds (S[n],S[m]) // PCL-based or other similar functions
13 end
14 end
15 end
16 end

// For each sensor, create the derived transformations and calculate the mean transformation
17 for m=1 to N-1 do
18 Tp[0][m][0]← tT[0][m]
19 for k = 1 to N − 2 // The limit (N − 2) covers all paths with length 2 (see Table 1)
20 do
21 Tp[0][m][k]← DerivedTransformation (tT, 0, m, k, 2, N)
22 end
23 hT[0][m]← MeanTransformation (Tp[0][m][]) // For all k
24 end
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When ranging the transformation path number from k = 0 to some limit k = kL, an order is288

expected, where k = 0 corresponds to a path with a single transformation (nT 0
m = nT̂m) and the289

following values of k correspond to an increasing amount of accumulated transformations. For290

example, when N = 5, for each of the four sensors relatively to the reference sensor, the following291

number of path lengths correspond to the indicated values of k:292

Path lengths for N = 5→ 1 2 3 4
Number of paths→ 1 3 6 6
Values of index k→ 0 1, 2, 3 4, 5, 6, 7, 8, 9 10, 11, 12, 13, 14, 15

293

Two of the most relevant functions from Algorithm 1 are DerivedTransformations() and294

MeanTransformation(). The latter can have several formulations as described further (being the295

SVD approach the most straightforward to implement), but the first needs a little more explanation.296

The function requires the indices of the transformations from n to m of length L for path k, and use297

those indices to compose (post-multiply) the respective transformations tT[i][j]. The function and298

associate parameters are stated as follows:299

Function T=DerivedTransformation(tT, n, m, k, L, N)300

T The return value: the derived transformation path Tp[0][m][0]301

tT Array of transformation matrices for all pairs of sensors302

n Starting sensor (usually 0, but could be extended to be any)303

m Ending sensor (any, except sensor 0, but could be extended)304

k Number of the transformation path305

L Length of the transformation paths to use306

N Total number of sensors in the problem307

According to what was stated earlier, for this call, the parameters k and L are redundant, but the308

function can be prepared for both approaches in the calling: if k is valid (k ≥ 0) it has priority over L309

(which is then ignored or potentially used to confirm that there is no discrepancy between the desired k310

and the corresponding L); on the other hand (k < 0, which is an invalid index), the first path of length311

L could be used and the appropriate value of k is assumed to perform the operation. For example,312

in the previous case, for N = 5, the following call T=DerivedTransformation(tT, 0, 4, 7, 2, 5) could313

trigger an alert because the value used for k (= 7) corresponds to a path length of L = 3 and not 2 as314

stated in the call! Still, as the path length of 3 remains compatible with the indicated number of sensors315

(= 5), the calculation could be done, and the proper transformation for k = 7, L = 3 and N = 5 would316

be returned.317

To enable all this checking, the function must be able to assess the entire set of values for k for a318

given number of sensors N and for each path length L. That is given generically as shown next, where319

the number of path lengths ranges from 1 to N − 1 and k is indeed function of N and L:320

L 1 2 3 · · · N − 1

k(N, L) 0

1 (N − 2) + 1 · · ·
L−1

∏
r=2

(N − r) + 1

2 (N − 2) + 2 · · ·
L−1

∏
r=2

(N − r) + 2

...
...

...
...

(N − 2) (N − 2) + (N − 2)(N − 3) · · ·
L−1

∏
r=2

(N − r) +
L

∏
r=2

(N − r)

321

In a more compact form, the previous statements can be summarized as:

k(N, L) ∈ {Kmin, · · · , Kmax} =
{

L−1

∏
r=2

(N − r) + 1, · · · ,
L−1

∏
r=2

(N − r) +
L

∏
r=2

(N − r)

}
, (7)
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knowing, of course, that these expressions are applicable for N ≥ 3 and L < N, as is also verifiable in
Table 1. Curiously, and it is simple to demonstrate, the following also holds:

Kmax = (Kmin − 1)(N − L + 1). (8)

To perform the computation of the k-th derived transformation (result of its correspondent322

transformation path), the function DerivedTransformation() needs the list of all permutations323

(arrangements) of (N − 2) sensors taken in groups of L, but only those that end in the target sensor.324

For example, five sensors taken in groups of 2, because path lengths of 2 are required, and325

excluding sensor 0 — the reference, yield the following ordered permutations: (1 2), (1 3), (1 4), (2326

1), (2 3), (2 4), (3 1), (3 2), (3 4), (4 1), (4 2), (4 3), but, when the target sensor to calibrate relatively327

sensor 0 is defined (and using the example of sensor 3), only the sequences that end in 3 are desired328

for further calculation: (1 3), (2 3), (4 3), that is, all the permutations of sensors {1, 2, 4} in groups of 1329

(1 = 2− 1 = L− 1) are needed. So, the numbers of sensors in sequence whose transformations are330

to be obtained and further combined are: 0 B Perm({1, 2, 4}, 1) B 3, where the symbol B denotes a331

transformation between the associated pair of sensors or, more explicitly:332

• k = 1⇒ {S0 B S1 B S3} ⇒ 0T̂1
3 = 0T̃1

1T̃3333

• k = 2⇒ {S0 B S2 B S3} ⇒ 0T̂2
3 = 0T̃2

2T̃3334

• k = 3⇒ {S0 B S4 B S3} ⇒ 0T̂3
3 = 0T̃4

4T̃3335

As another example, if N = 6 and L = 3 starting in S0 and ending on S4 would result in the336

following 12 sensor sequences to use: 0 B Perm({1, 2, 3, 5}, (3− 1)) B 4 or, in expanded form: (1 2 4),337

(1 3 4), (1 5 4), (2 1 4), (2 3 4), (2 5 4), (3 1 4), (3 2 4), (3 5 4), (5 1 4), (5 2 4), (5 3 4), still assuming, of course,338

that sensor 0 starts all sequences.339

In conclusion, when function DerivedTransformation(tT, n, m, k, L, N) is called, for the sake
and application in this paper, it expects the following integers and limits:

n = 0, N > 2, 0 < L < N, 0 < m < N (9)

and tT is an array with all pairs of geometric transformations previously calculated in Algorithm 1.340

The relevant code of the function is described in Algorithm 2.341

However, if the length of the transformation paths is to be restricted to L = 2 (as proposed earlier342

for the chosen solution to limit the number of operations), the procedures are simpler and Algorithm 2343

can be simplified and proposed as in Algorithm 3. Hence, the function GetPathPairSequences(N,m)344

from Algorithm 3 is much simpler than its general variant GetSensorPathSequences(N,L,m) from345

Algorithm 2 and provides the following sequences, being m > 1 and N > 2:346

• 0 B 1 B m347

• 0 B · · · B m348

• 0 B m− 1 B m349

• 0 B m + 1 B m350

• 0 B · · · B m351

• 0 B N − 1 B m352

As mentioned earlier, the reference sensor is named zero and it is always the start of the353

transformation paths for any given target sensor. Should the reference sensor be another, a renaming of354

the sensors would be done to establish the new reference sensor, that is, the new sensor zero. Despite355

that possibility, the methodology remains unchanged, only the sensor numbering is affected.356

3.3. Combination of Geometric Transformations357

Combining or averaging a set of transformations can be considered as averaging translations and

rotation angles. Therefore, for a set of K transformation matrices given by Ti =
[

Ri

∣∣∣ ti

]
, the average
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Algorithm 2: Function to perform the computation of derived transformations
Input : array of transformation pairs tT, starting sensor n, target sensor m, number of the

transformation path k, length of transformation path L, number of sensors N
Output : Derived geometric transformation: Tp

1 Function DerivedTransformation(tT,n,m,k,L,N)
2 if n 6= 0 then
3 return error // Was expecting the starting sensor to be 0
4 end

5 Kmin ←
L−1

∏
r=2

(N − r) + 1 // From equation (7)

6 Kmax ←
L−1

∏
r=2

(N − r) +
L

∏
r=2

(N − r) = (Kmin − 1)(N − L + 1) // From equations (7) and (8)

7 if k ≥ Kmin and k ≤ Kmax then
8 seqs← GetSensorPathSequences(N,L,m) // Get all paths for these parameters
9 else

10 return error // Arguments not consistent
11 end
12 idx← k− Kmin // Normalise index to start in 0
13 seqk← seqs[idx] // Pick the idx-th sequence

14 T←
[

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

]
// Initialise with identity transformation

15 for t = 0 to L− 1 do
16 T← T × tT[ seqk[t] ][ seqk[t + 1] ] // Accumulate transformations by post-multiplication
17 end
18 Tp← T
19 return Tp

Algorithm 3: Simplified function to compute derived transformations with L = 2
Input : array of transformation pairs tT, target sensor m, number of the transformation path

k, number of sensors N
Output : Derived geometric transformation: Tp

1 Function DerivedTransformationSimple(tT,m,k,N)
2 if k ≥ 1 and k ≤ (N − 2) then
3 seqs← GetPathPairSequences(N,m)
4 else
5 return error // Arguments not consistent
6 end
7 seqk← seqs[k− 1] // Pick the (k− 1)-th sequence
8 Tp← tT[ seqk[0] ][ seqk[1] ] × tT[ seqk[1] ][ seqk[2] ]
9 return Tp

transformation matrix has a translation vector which is given by t̂ = 1
K ∑K

i ti and a rotation matrix
R̂ obtained by an operation of "averaging" the various Ri. A few approaches can be considered for
this operation of merging the various Ri: quaternions, Euler angles and single value decomposition
(SVD) are the most likely candidates. Quaternions and Euler angles based approaches both require a
conversion between representations, but SVD does not. On the other hand, the Euler angles technique
allows a true mean value calculation and also a weighted mean (in case it is necessary), making that
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approach very versatile in this context. Adopting the RPY version of Euler angles (but actually any
triple of Euler angles would do), that formulates like this:

M = RPY(φ, θ, ψ) = rotz(φ)× roty(θ)× rotx(ψ)

=

Cφ Cθ Cφ Sψ Sθ −Cψ Sφ Sφ Sψ + Cφ Cψ Sθ

Cθ Sφ Cφ Cψ + Sφ Sψ Sθ Cψ Sφ Sθ −Cφ Sψ

−Sθ Cθ Sψ Cψ Cθ

 =

r11 r12 r13

r21 r22 r23

r31 r32 r33

 ,
(10)

and being θ ∈ ]−π/2,+π/2[, then, the correspondent Euler angles can be expressed as:358 φ

θ

ψ

 = E(M) =

 arctan (r21, r11)

arctan
(
−r31,

√
r2

32 + r2
33

)
arctan (r32, r33)

 . (11)

If θ = ±π/2 (r11 = r21 = r32 = r33 = 0), φ or ψ can be arbitrary (gimbal lock). In that case, we can359

adopt the convention: ψ = 0 and φ = arctan (−r12, r22).360

Formally, the "mean rotation" is obtained using all K samples of φi, θi, ψi in the following manner:

R̂ = RPY

(
1
K

K

∑
i

φi,
1
K

K

∑
i

θi,
1
K

K

∑
i

ψi

)
(12)

If individual transformations have some normalised degree of confidence µi, where ∑K
i µi = 1,361

then rotation and translation "averages" can be obtained in the classic way:362

R̂ = RPY

(
1
K

K

∑
i

µiφi,
1
K

K

∑
i

µiθi,
1
K

K

∑
i

µiψi

)
and t̂ =

1
K

K

∑
i

µiti (13)

An even more compact and straightforward approach, even though with slightly different results
(due to the least square fit technique associated) is to use SVD. First, we calculate the decomposition
using traditional tools: [

U Σ V
]
= SVD

(
∑

i
Ri

)
(14)

and then obtain the "average rotation" R̂ using:

R̂ = VUᵀ. (15)

In case different degrees of confidence in the geometric transformations are available, we can
weight the various transformations Ri using the following:

[
U Σ V

]
= SVD

(
∑

i
µi Ri

)
, (16)

assuming that ∑N
i µi = 1, but not necessarily. Indeed, if a given Ri has a larger confidence (for example363

the double of the remainder) it would be added twice in expression (16). In all cases, the final "average"364

transformation is given, of course, by: T̂ =
[

R̂
∣∣∣ t̂
]
.365

4. Propagation of Uncertainty with a Simulated Experiment366

To test the properties and potential advantages of the approach, we perform a simulation367

considering a set up based on the ATLASCAR2 prototype [37]. Figure 5 shows the car with four368

sensors placed on their own coordinate frames (F0, F1, F2, F3). The geometric transformations between369
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all pairs (0T̃1, 0T̃2, 0T̃3, 1T̃2, 1T̃3, 2T̃3) are measured experimentally, most likely with some errors both370

in translation and rotation.371

F0

F1F2

F3

Figure 5. Example of four sensors in ATLASCAR2 vehicle.

This section will demonstrate with numerical examples and a systematic analysis that using372

combinations of multiple pairwise transformations, within certain conditions, decreases the error that373

occurs in each simple transformation between pairs of sensors in the car.374

For this experiment we use the real relative postures in terms of position (x, y, z), in meters, and
Euler angles (φ, θ, ψ), in degrees, of the remainder three sensors respectively to the reference sensor
(F0), using the notation {x, y, z, φ, θ, ψ}, are defined as follows:

0T̃1 → {−0.05,−1, 0.25, 35, 0, 0}, 0T̃2 → {−0.05, 1, 0.25,−35, 0, 0}, 0T̃3 → {−0.02, 0, 0.50, 0, 0, 0}. (17)

The approximate numerical values of the transformation matrices are then given by:

0T̃1 =


0.8192 −0.5736 0 −0.05
0.5736 0.8192 0 −1

0 0 1 0.25
0 0 0 1

 , 0T̃2 =


0.8192 0.5736 0 −0.05
−0.5736 0.8192 0 1

0 0 1 0.25
0 0 0 1

 , 0T̃3 =


1 0 0 −0.02
0 1 0 0
0 0 1 0.05
0 0 0 1


(18)

We propose to determine 0T̂1 by applying the algorithms described in the previous sections. Since we
have four sensors in the setup (N = 4) we have five (see Table 1) possible transformation paths (19):

0T̂0
1 = 0T̃1

0T̂1
1 = 0T̃2

2T̃1
0T̂2

1 = 0T̃3
3T̃1

0T̂3
1 = 0T̃2

2T̃3
3T̃1

0T̂4
1 = 0T̃3

3T̃2
2T̃1

. (19)

For the purpose of this experiment, we do not use any point clouds and we assume that the
transformations are already available (for example, after using the matching technique mentioned
earlier). To continue the experiment, we need all the multiple pairs of transformations 2T̃1, 3T̃1, 2T̃3,

etc., which are calculated by simple algebraic manipulation: for example, 2T̃1 =
(0T̃2

)−1 0T̃1, and so
on. As it is expected, with these "perfect" geometric transformations, all the procedures presented
earlier, namely the average transformation given by expression (15) and related, produce the perfect
result. In other words, the following operations[

U Σ V
]
= SVD

(
0R̂0

1 +
0R̂1

1 +
0R̂2

1 +
0R̂3

1 +
0R̂4

1

)
with 0R̂1 = UVᵀ, (20)

confirm that 0R̂1 = 0R̃1, and the same for the translation part, which is easier to calculate (a375

simple arithmetic mean). However, the important issue here is to study the effect of errors in the376

transformations and how they propagate through the operations, and the calculation of the average377
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transformation to reduce the error in the final 0T̂1. For this purpose, a systematic test of uncertainty378

propagation was carried out using a Monte Carlo Simulation (MCS) to study the propagation of errors379

when multiplying the geometric transformations given in (19), and their subsequent combination.380

The uncertainty in the transformation matrices may have origin in any of the the six variables:381

φ, θ, ψ, tx, ty, tz. So, to apply the MCS method to study uncertainty propagation, an explicit expression382

for theses variables was derived for all matrix multiplications in (19) using expression (11) for the383

angles, and the three lines of the fourth column of the resulting matrix for the translation.384

To perform this operation, the nominal values presented in (17) are used with an additional term
that represents the uncertainty in each variable for each of the three base matrices, yielding a total
of six sources of uncertainty for each matrix involved. Follows in (21) the example of one of those
transformation matrices with the six uncertainty values:

0T̂∆
1 =


1 0 0 tx1 + ∆x1

0 1 0 ty1 + ∆y1

0 0 1 tz1 + ∆z1

0 0 0 1

× RPY(φ1 + ∆φ1, θ1 + ∆θ1, ψ1 + ∆ψ1). (21)

For the the purpose of MCS, a new notation is introduced to identify a matrix that includes the385

uncertainty terms to study the uncertainty propagation: 0T̂∆
2 .386

However, to fully simulate uncertainty propagation in the expressions of (19), intermediate387

matrices, such as 2T̃1, 3T̃1, 2T̃3, etc., are also needed, but they are not available because in this388

simulation there are no point clouds to extract the matrices from them. So, these matrices have to389

be derived from combinations of the others, but with their own terms of uncertainty and not the390

terms from the others that originate them by multiplication or inversion. This is necessary to have an391

unbiased experience and, of course, the consequence is to add more degrees of freedom for the MCS.392

For example, 2T̂∆
3 can be obtained after (0T̂∆

2 )
−1 × 0T̂∆

3 and if it were to be studied on its own (the393

propagation of uncertainty that reached it), no further manipulations would be required to study this394

uncertainty propagation. The issue is that 2T̂∆
3 is to be used in other expressions and for simulation395

purposes there should not exist unrelated terms of uncertainty with the same name! So, for this396

example and all the others in a similar situation, the terms of uncertainty were renamed to allow true397

independence during the MCS tests. The procedure was to replace the [∆φn, ∆θn, ∆ψn∆txn , ∆tyn , ∆tzn ]398

in 2T̂∆
3 by new terms, namely in this specific case by [∆φn32, ∆θn32, ∆ψn32∆txn32 , ∆tyn32 , ∆tzn32 ].399

For each of the matrix operations from (19), the MCS method was applied to the intricate analytic400

expressions resulting from the application of (11), where the variables depend on many sources of401

uncertainty: for example, matrix 0T̂4∆
1 depends on 30 sources of error from the accumulated operations402

in this simulation. This is actually a worst case scenario not usually occurring with experimental data.403

Both uniform and Gaussian probability density functions (PDF) were used and several uncertainty404

values (standard deviation) were tested for the angles and for the translation components. To ease the405

implementation of the process, in each trial, the same value in radians for angles and in meters for406

translations was used for all parameters. This option was taken for simple simulation convenience;407

hence, an input uncertainty of 0.1 results in 0.1 rad, which is about 5.7°, and 0.1 m for the translation408

parts. The parameters of the full experiment are the following:409

• Number of samples for the MCS: 105 for each transformation path;410

• Standard deviations of input uncertainties:411

– for translations (in meter): {0.01, 0.02, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5};412

– for angles: {0.6°,1.1°, 2.9°, 5.7°, 8.6°, 11.5°, 14.3°, 17.2°, 20.1°, 22.9°, 25.8°, 28.6°};413

• PDF for the samples: Gaussian and uniform distributions;414

The final results are of the same nature for all six functions for the four transformation paths (five415

with the direct 0T̂∆
1 ). This means that the PDF of the uncertainties is preserved to the final output,416

namely for the Gaussian PDF (Figure 6). Curiously, uniform PDF in the input maps also as uniform417
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PDF for the variables in matrix 0T̂∆
1 (shown in the third histogram of Figure 6), but maps to Gaussian418

PDF for all the other (0T̂1∆
1 , 0T̂2∆

1 , etc.).419
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Figure 6. Histogram of variables φ and ty, with mean value marked, and respectively σφ = 4.8° and
σty = 0.08 m when the original Gaussian uncertainty is 5.7° and 0.1 m. The third histogram on the right
shows the final PDF of φ when the uncertainty is uniform, but now with σφ = 1.36° (Cf. Table 6).

The wealth of data generated by the MCS allows the analysis of the properties of this technique420

that is necessary for the multi pairwise based calibration. Two main issues must be observed: how the421

mean value of each variable is preserved amongst the several magnitudes of uncertainty, and how422

uncertainty (the standard deviation around the mean) is propagated on each transformation path.423

Finally, and following the central purpose of this multi pairwise technique, what are the gains in terms424

or error propagation when combining (averaging) the results of all the transformation paths involved.425

Table 2 shows the mean values of the six variables (orientations and translations) at the end of the426

five transformation paths, along with their mean values, including also the real ground truth values427

for easier comparison. This case was for an input uncertainty of 0.1 from a Gaussian PDF.428

Table 2. Mean values of the six variables for the transformation paths using a Gaussian distribution of
errors on all variables with an initial uncertainty of 5.7° for angles and 0.1 m for translations.

Real value 0T̂1
0T̂1

1
0T̂2

1
0T̂3

1
0T̂4

1 Overall mean

φ̄ (°) 35 35.02 34.96 35.03 34.99 35.03 35.01
θ̄ (°) 0 0.01 0.03 0.04 −0.08 −0.03 −0.01
ψ̄ (°) 0 −0.02 0.05 −0.03 −0.02 0.04 0.00
t̄x (m) −0.05 −0.05 −0.05 −0.05 −0.05 −0.05 −0.05
t̄y (m) −1 −1.00 −0.96 −0.98 −0.94 −0.94 −0.96
t̄z (m) 0.25 0.25 0.25 0.24 0.25 0.25 0.25

It can be seen that practically all transformation paths originate mean values very close to the real429

value in spite of all the uncertainties of the operations. Nonetheless, this performance degrades for430

higher values of uncertainty as detailed ahead.431

The other important issue is the propagated uncertainty on each operation, and how is it
compensated by the combination of the multiple results. As stated earlier, the standard deviation is the
central measure and it is used to translate the uncertainty. When averaging multiple random variables,
the standard deviation of the result (σM) is given by (22) where for this case five variables, and their
individual standard deviations, are used:

σM =

√
σ2

0 + σ2
1 + σ2

2 + σ2
3 + σ2

4

5
. (22)

If σM, the final mean propagated standard deviation, is smaller than the individual uncertainty of432

the simple pairwise transformation, then the process reduces the uncertainty present in that single433

geometric transformation. For the same example given in Table 2, Table 3 shows the standard deviation434
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(propagated uncertainty) for each transformation path, along with the mean standard deviation (σM)435

that results from the average of the five transformation paths.436

Table 3. Standard deviations of the several posture variables for the transformation paths assuming a
Gaussian distribution of errors on all variables with an initial uncertainty of 5.7° or 0.1 meters.

0T̂1
0T̂1

1
0T̂2

1
0T̂3

1
0T̂4

1 σM

σφ (°) 5.723 10.031 9.985 12.978 12.952 4.7718
σθ (°) 5.726 9.845 9.822 12.674 12.657 4.6777
σψ (°) 5.734 10.002 10.006 12.968 12.939 4.7692
σtx (m) 0.100 0.328 0.223 0.382 0.380 0.1353
σty (m) 0.100 0.178 0.177 0.232 0.236 0.0854
σtz (m) 0.100 0.328 0.223 0.381 0.380 0.1351

As Table 3 shows, except for tx and tz whose nominal values are too small when compared to the
large input uncertainty, thus not relevant here, the combined propagated uncertainty is notoriously
smaller than the initial uncertainty, even if the individual propagated uncertainty increases in the
majority of the transformation paths. To better analyze and express the results, a concept named gain
of propagated uncertainty, or Gσ, is created and defined as in (23)

Gσ =
σI − σM

σI
= 1− σM

σI
, (23)

where σM if the average propagated uncertainty and σI is the initial uncertainty on the variables (0.1 m437

for translations or 5.7° for rotations in the previous example).438

Table 4 shows more details on the results of the process taking as example one of the angles (φ)439

and one of the translations (ty). This table covers results for several input uncertainties (named σR for440

angles and σt for translations) and, along with the mean values for the angle and the translation (φ̄, t̄y),441

shows both the final deviation of the variables (∆rφ to express the relative deviation for angle φ, and442

∆rty for the relative deviation for translation ty) and the gain in uncertainty reduction (labeled Error443

reduction in the table) showing the gains for φ and ty (respectively Gσφ and Gσty ).444

Table 4. Summary of uncertainty propagation when using 5 paths with Gaussian PDF for input
uncertainties in the MCS analysis. Example for two variables φ and ty. The last two columns in the
table show the gains in error reduction by using the multi pairwise approach.

Input uncertainty Results for φ and ty Error reduction
σR(°) σt(m) φ̄(°) ∆rφ t̄y(m) ∆rty σφ(°) σty (m) Gσφ Gσty

0.6 0.01 35.00 0.0% -1.00 0% 0.47 0.01 17.5% 16.9%
1.1 0.02 35.00 0.0% -1.00 0% 0.95 0.02 17.5% 16.9%
2.9 0.05 35.01 0.0% -0.99 1% 2.37 0.04 17.4% 16.4%
5.7 0.1 34.99 0.0% -0.96 4% 4.77 0.09 16.8% 14.8%
8.6 0.15 34.98 0.1% -0.92 8% 7.24 0.13 15.8% 12.4%

11.5 0.2 35.00 0.0% -0.86 16% 9.92 0.18 13.5% 9.5%
14.3 0.25 34.93 0.2% -0.80 26% 12.95 0.23 9.6% 7.0%
17.2 0.3 34.54 1.3% -0.72 39% 16.39 0.29 4.7% 4.8%

From Table 4 we can conclude that the gains in uncertainty reduction can be as high as 17 %445

for small uncertainties but reduce gradually when the input uncertainty reaches values beyond 10°446

or 0.2 m. Also, the mean values of the variables almost do not degrade, although mean values of447

translation variables degrade faster than for angles for larger input errors.448

Figure 7 plots the gains in uncertainty reduction for the two variables analyzed in detail, and we449

can even observe the case where the gains become negative for input uncertainties after the value 0.35450

(rad for the angles), making the approach theoretically ineffective in terms of uncertainty reduction.451
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Nonetheless, it is worth mention that the mean values of variables (at least those with nominal values452

much larger than the input uncertainty) still hold close to the real value.453

In summary, as long as mean values of variables do not deviate too much and the error reduction is454

positive and meaningful (possibly around 10 % or more), the technique of multi pairwise combinations455

of geometric transformations is valid and useful.456
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Figure 7. Gains in error reduction of the multi pairwise approach for two variables: one rotation (φ)
and one translation (ty). For input uncertainties beyond 0.35 (radians or meters) the gain become loss,
and the process is no longer advantageous, ceasing the usefulness of the technique for this setup.

This MCS testing methodology has shown great reliability because different repetitions yielded457

these same tables of results with occasional fluctuations only in some decimal places, despite the458

random nature of the MCS. Moreover, the tests were performed with other nominal values besides459

those presented in expression (17) and, as would be expected due to the nature of MCS, the results and460

limits of the propagated errors are similar for the same number of geometric transformations.461

For complementary comparison, Table 5 shows something similar to Table 4, but only with462

transformation paths up to length 2; that is, only three transformation paths to combine.463

Table 5. Summary of uncertainty propagation when using 3 paths with Gaussian PDF for input
uncertainties. The last two columns in the table show the gains in error reduction by using the multi
pairwise approach. The results are poorer than those shown in Table 4.

Input uncertainty Results for φ and ty Error reduction
σR(°) σt(m) φ̄(°) ∆rφ t̄y(m) ∆rty σφ(°) σty (m) Gσφ Gσty

0.6 0.01 35.00 0.0% -1.00 0.0% 0.5065 0.0089 11.6% 11.2%
1.1 0.02 35.00 0.0% -1.00 0.1% 1.0117 0.0177 11.7% 11.3%
2.9 0.05 35.00 0.0% -1.00 0.5% 2.5270 0.0446 11.8% 10.8%
5.7 0.1 35.00 0.0% -0.98 2.0% 5.0754 0.0899 11.4% 10.1%
8.6 0.15 34.97 0.1% -0.96 4.6% 7.6610 0.1366 10.9% 8.9%

11.5 0.2 34.99 0.0% -0.92 8.3% 10.3880 0.1859 9.3% 7.1%
14.3 0.25 35.09 0.3% -0.88 13.4% 13.2510 0.2367 7.5% 5.3%
17.2 0.3 34.97 0.1% -0.84 19.6% 16.4970 0.2898 4.0% 3.4%

It can be observed that the results on Table 5, where only three transformation paths are used, and464

not five as earlier, are poorer, especially in the error reduction gain. From these two last tables it can465

be concluded that the most interesting solution is to combine more transformation paths, but shorter466

transformation paths are preferable because they propagate less uncertainty (as Table 3 confirms).467

The previous observation can be used to corroborate one of the heuristic proposals made earlier468

on how to pick which transformation paths to combine. So, a good proposal seems to be use more469

short transformation paths instead of fewer longer transformation paths. For many sensors this would470

require a further study to find the best trade-off of on many transformation paths of length 3, 4 or more471

would be useful to add to the list of all transformation paths of length 2.472
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To conclude this analysis, a last table (Table 6) is presented where the PDF of the input uncertainties473

is taken as uniform and not Gaussian. Here, five transformation paths were used for the same values474

of initial uncertainties as before. The most notorious fact is the large gain in uncertainty reduction475

(more than 75 %) for all tested uncertainties. Indeed, uniform distributions keep the error limited and476

restrict the propagation. Mean values are well preserved for all variables and standard deviations477

kept low (though still larger for translations) but, in the end, showing clear benefits of using the multi478

pairwise technique. The only caveat is that, most likely, the sources of error can not be considered479

uniform, that is, not strictly limited to an interval, and that is why Gaussian approaches, being more480

conservative, appear thus to be safer in performing uncertainty predictions in this context.481

Table 6. Summary of uncertainty propagation when using five paths with uniform PDF for input
uncertainties in the MCS analysis. The last columns in the table show the gains in error reduction by
using the multi pairwise approach.

Input uncertainty Results for φ and ty Error reduction
σR(°) σt(m) φ̄(°) ∆rφ t̄y(m) ∆rty σφ(°) σty (m) Gσφ Gσty

0.6 0.01 35.00 0.00% -1.00 0.01% 0.137 0.002 76.2% 76.1%
1.1 0.02 35.00 0.00% -1.00 0.01% 0.273 0.005 76.2% 76.0%
2.9 0.05 35.00 0.00% -1.00 0.08% 0.682 0.012 76.2% 76.0%
5.7 0.1 35.00 0.00% -1.00 0.30% 1.363 0.024 76.2% 76.0%
8.6 0.15 34.99 0.02% -0.99 0.69% 2.047 0.036 76.2% 75.9%

11.5 0.2 35.00 0.00% -0.99 1.21% 2.739 0.048 76.1% 75.8%
14.3 0.25 35.01 0.03% -0.98 1.92% 3.429 0.061 76.1% 75.7%
17.2 0.3 34.98 0.07% -0.97 2.77% 4.123 0.073 76.0% 75.6%
20.1 0.35 35.00 0.01% -0.96 3.76% 4.814 0.086 76.0% 75.5%
22.9 0.4 35.00 0.00% -0.95 4.94% 5.528 0.099 75.9% 75.3%
25.8 0.45 34.99 0.03% -0.94 6.31% 6.230 0.112 75.8% 75.2%
28.6 0.5 35.03 0.07% -0.93 7.89% 6.976 0.125 75.7% 75.0%

In conclusion, this section demonstrated the viability and advantage of the multi pairwise482

technique to perform sensor calibration within some conditions and limits. For a setup with four483

sensors, the technique is advantageous and viable if initial angular uncertainties are less than about 15°484

and translation uncertainties less than about 0.15 m. If these restrictions are ensured then, statistically,485

and assuming Gaussian uncertainties, the multi pairwise approach improves the accuracy of the486

calibration among multiple sensors.487

In summary, the operation of "averaging" geometric transformations can reduce the error present488

in the relative position of sensors. Nonetheless, although demanding and perhaps too conservative,489

the results of this theoretical approach are harder to compare with those from experiments using real490

data because ground truth is usually not available or not very precise. Hence, in real data experiments,491

either there is an estimate of the ground truth of the sensor relative placements, or some alternative492

metric has to be used, such as the mean square deviations of 3D points recalculated with the estimated493

geometric transformations. Next section, dedicated to results, describes these issues in detail.494

5. Results495

The previous section presented an analysis of uncertainty propagation using a case study for496

more clarity, but demonstrated that, in some conditions, the multi pairwise approach reduces the497

uncertainty in calculating the geometric transformations, by analyzing the propagated uncertainty in498

final orientations and translations of the several sensors relative localization, which is the essence of499

extrinsic calibration.500

This section provides an approach using sets of points (also named point clouds throughout this501

paper) to extract the single pairwise transformations and obtain the multi pairwise transformation and502

compare performance in two perspectives.503
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Indeed, this procedure to obtain results hinders a subtle, but determinant, change since the504

geometric transformations do not exist as before in section 4, but are extracted after the point clouds,505

which will lead to interesting results as discussed further. Experiments were done both with real data506

from sensors and simulated point clouds.507

The experiment used four different sensors. The principle is independent of the nature of the508

sensor, as long as it can detect the center of the ball, so four different types of cameras were used: RGB,509

monochromatic, infrared and Kinect-based (for depth maps).510

An example of simple pairwise based calibration has been previously used for the first three511

cameras [9]. In the current work, we add a depth sensor to enrich the initial setup. Indeed, depth maps512

are obtained and, being 2D images, ball positions are detected with a Deep Learning trained network513

used for RGB, mono and IR images, which are all native, or converted to, simple grayscale intensity514

images.515

The detection of the ball center on all sensors is performed using Detectron2 deep learning516

techniques [38] to detect a ball in successive frames. Figure 8 shows an example for the calibration517

procedure with three point clouds: one obtained from the RGB camera (blue), another from the Mono518

camera (green), and the third (red), which is the calibrated version of the green relatively to the RGB519

camera.520
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Figure 8. Illustration of the results of calibrating a RGB and a Mono cameras. Through the registration
procedure, green points are transformed into red points which match closely the blue point cloud.

In the experiments carried out, the four cameras were placed in several positions ensuring a521

common field of view favorable to capture the ball during its motion. In each frame, the center of522

the ball is detected and saved in a point cloud of all the viewed ball centers for each of the 4 cameras.523

This center can be calculated in the coordinate frame of the camera, in meters, using optics and lenses524
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equations (intrinsic matrix). By using the methods presented earlier for matching point clouds, the525

pairwise transformations between the sensors are estimated, opening the way to the application of the526

multi pairwise method proposed in this paper.527

Contrarily to simulation, no ground truth is available for the experimental data. Hence, the528

metrics to assess the performance of the method is based on the deviation between the point cloud529

from the reference sensor and the point cloud from another sensor after the calibration process. For the530

metric based on distance deviations, we use the relative deviation (in percentage) of the root mean531

square (RMS) of absolute errors which are measured in mm.532

Experiments have shown that outliers occur frequently in the ball detection phase. That can have533

several reasons and depends on the type of sensor used. The deep learning detection algorithm shows534

most of the times very high levels of confidence (98%), but sometimes they are lower. The resolution of535

some cameras (namely the infrared) is much lower than the other sensors, creating uncertainties in536

obtaining the center point of the ball; for some sensors, it is harder to obtain precise intrinsic parameters537

and, again, the infrared camera is the strongest example. Additionally, illumination conditions are not538

always ideal and that too can affect precise detection. All these issues may occur in smaller or larger539

extents and can generate errors in the ball center detection and outliers.540

These outliers can be detected by evaluating the distance between the reference point cloud
and the transformed point clouds of the sensors (using the pairwise transformation). Figure 9 (left)
illustrates the situation for the case of two sensors where several samples (after sample number 40)
exhibit a large disparity when compared to the remainder. The error displayed in the plot is calculated
for each point Pi of point cloud from sensor 0 (reference) to respective point Qi of point cloud from
sensor m, after calibration, in the following way:

ei =
||Pi − 0T̂mQi||
||Pi||

(24)

Clearly, some of the points illustrated are outliers and result possibly from a poor detection of the541

target in one, or both, sensors. Those original samples that do not match a given criteria have to be542

removed from both point clouds to keep the correspondence for the pairwise calculation.543
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Figure 9. Percentage of error between each point of one point cloud with another point cloud before
(left) and after (right) the application of Chauvenet criterion for outliers removal.

The process selected to eliminate outliers is the Chauvenet criterion, first devised by William544

Chauvenet in 1863 [39], but broadly applied and documented in many sources [40]. This technique545

identifies samples that fail to fit a normal distribution with a given probability based on their deviation546

from the mean using also the standard deviation for the calculation. The samples that fail the test are547

considered outliers and the pairwise calculation of transformations is recomputed with the "clean" set548

of samples.549

The Chauvenet test can be applied recursively until no outliers remain. However, if the550

distribution is not Gaussian (or unknown) the process may exaggerate the pruning of the data set551

and can remove too many samples. Hence, in this work, two iterations of the criterion are applied to552

ensure that potential residual outliers from the first iteration are removed. With the point clouds freed553
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from the outliers (as in the right side of Figure 9), the calculation of calibration matrices, both single554

and multi pairwise, can be performed with more confidence.555

To test and analyze the technique proposed, simple experimental setups with the four sensors556

were used as the one illustrated in Figure 10.

Figure 10. Example of setup to collect data with the sensors placed in variate positions and orientations.
A is the depth camera, B the IR camera, C the monochromatic camera and D the RGB camera.

557

Similarly to the setup in Figure 10, other data collections were gathered using other setups and558

sensor arrangements. For example, the setup shown in Figure 11 generated the point clouds illustrated559

on the right, where clearly some of them are defective, compromising the proper illustration of the560

concepts being proposed in this paper. This may have occurred both for the reasons described earlier561

and for other unexpected factors that restricted the data acquisition procedures.562
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Figure 11. Example of another setup to collect data from sensors. On the right an actual collection of
point cloud that shows serious defects making them mostly unusable for calibration. Units are in mm.

To overcome the restrictions encountered in the particular experimental data collection, as the563

one shown in Figure 11, it was also decided to synthesize point clouds on a similar configuration and564

add noise in all coordinates as an attempt to emulate real point clouds. Although these points and565

the results thereof are not from real sensors, they hopefully follow the pattern of a real setup, and the566

noise emulates some of the acquisition errors. The results were analyzed using two different metrics:567

one based on the relative value of the root mean square of the distance between point clouds (from the568

reference sensor and from the calibrated sensor), as given by expression (24), and a second one based569

on the deviation of the calibration matrices, in a line similar to the study performed in section 4, and570

deviation in translations and Euler angles are assessed. The first metric can be applied without having571

any ground truth (compare the results with single versus multi pairwise) and the second one requires572

a ground truth to compare the calibration matrices from single and multi pairwise approaches with573

the correct value. This second metric can be used in simulated data only because only there a ground574

truth is available.575

Multiple experiments were done with simulated point clouds, both encompassing systematic and576

random errors as the one shown in Figure 12 where nominal points follow a grid-like layout for easier577

visual tracking, but other arrangements, even fully random, were tested.578
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Figure 12. Example of synthetic point clouds with systematic and random errors in a sensor
arrangement similar to the one in ATLASCAR2. Units are in mm.

However, almost all results have shown little or no improvement at all of the direct application of579

the multi pairwise (MPW) matrices when compared to the single pairwise (SPW). Figure 13 shows the580

detailed point-to-point relative error for the pairs mono to depth, mono to RGB and mono to IR for581

some other simulated point clouds, and differences between methods are barely noticeable.
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Figure 13. Relative distance errors between every pair of points for the SPW and MPW approaches
after removing the outliers with the Chauvenet method for an input error of about 10 mm in the point
clouds. Both techniques give practically the same results, as shown by the clear overlap of plots.

582

An explanation for what was observed in simulated data is given next. In ideal conditions, the583

SPW and MPW approaches give the same results for multi sensor calibration, making it unnecessary584

to use the later. Additionally, as verified, when using synthetic point clouds, the advantages of MPW585

have shown to be too little to be useful. Indeed, when comparing with the study made in section 4, now586

the geometric transformations are not all truly independent since they are obtained after pairs of point587

clouds, hence, the same point cloud is used multiple times for different geometric transformations.588

These effects are even stronger in simulated data, and that is why the experiments were redirected into589

another point of view. The validity of transformations using MPW still stands but, as it is shown next,590

it will be used in a indirect approach.591

Since the simulated point clouds were not as rich as real data, the experiment presented earlier592

from the setup in Figure 10 was chosen and analyzed from another perspective. Both SPW and MPW593

approaches were tried and, as shown in Figure 14, and also in the Chauvenet polished version in594

Figure 15, there are points in the real point clouds for which the MPW performs better than for the595

SPW, and vice versa. In average, for the entire point cloud, the MPW performs similarly to the SPW,596

but individually in each point it performs either better or worse, which is a hint to exploit further.597
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Figure 14. RMS errors for SPW and MPW for the three sensors relatively to the reference sensor (RGB
camera) for the raw point clouds with 82 points obtained in the setup from Figure 10.

Figure 15 shows the individual point errors after applying the Chauvenet criterion to eliminate598

outliers on the raw point clouds with the results shown in Figure 14.599
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Figure 15. RMS errors for SPW and MPW for the three sensors relatively to reference sensor for the
point clouds whose results are shown in Figure 14 but where outliers have been removed by Chauvenet
criterion. Number of removed outliers varies with the combination of sensors.

After observing the results in Figure 14 or Figure 15, the hypothesis proposed is that poorer600

performance in the MPW in some points can represent situations of points that were captured with601

larger errors and compromised the point clouds and the geometric transformation generated after602

them. So, using the real data, a series of experiments was carried out in order to improve the quality of603

the point clouds using the MPW approach. The workflow is the following for four sensors:604

• Obtain the three SPW transformations after the four point clouds.605

• Obtain the associated MPW transformations using all SPW and all the other inter point cloud606

transformations.607

• Apply the Chauvenet criterion to eliminate points by analyzing the recalculated error using the608

SPW with expression (24).609

• Recalculate SPW and MPW matrices for the three sensors relatively to the reference sensor.610

• Eliminate from the point clouds all points that have a larger error when using the MPW matrix.611

• With the new filtered point cloud, recalculate the SPW matrix and use it as final value for the612

geometric transformation w.r.t. the reference sensor.613

The procedure just described was applied and produced the plots of Figure 16 and results614

summarized in Table 7.615

From Table 7, it is clear that the process of removing outliers decreases the RMS error along with616

its standard deviation, which is equivalent to state that the geometric transformations (calibration617

matrices) are more accurate than the ones calculated with the raw point clouds. The reduction of also618

the standard deviation reinforces the fact that more accurate point clouds are obtained in this process.619

Chauvenet criterion gives a first step in discarding outliers but the analysis of the MPW for each620

point allows the elimination of additional selected points, hence giving smaller mean errors. In the621
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Figure 16. RMS errors for the three sensors relatively to reference sensor for the point clouds whose
results are shown in Figure 15 but with additional points removed by observing the MPW versus the
SPW results. The observable conclusion when comparing to previous figures is that additional outliers
have been removed even after the application of the Chauvenet criterion.

end, as shown in the last column of Table 7 there is a substantial reduction of the RMS error associated622

to the calibration matrix for each sensor relatively to the reference sensor. In the particular case of623

sensor 3, the mean error was already small because sensor 3 and the reference sensor lay attached on624

the same physical structure, but even there occurs an improvement on the point cloud, hence a better625

calibration matrix is obtained.626

The results just presented demonstrate the usefulness of the MPW technique to assist the627

improvement of the point clouds in order to obtain better transformation matrices for the multi628

sensor extrinsic calibration process.629

Table 7. Summary of results for the RMS relative error and its associated standard deviation between
each sensor and the reference sensor upon outlier removal with Chauvenet criterion and using MPW.
Errors are in percent values as well as their respective standard deviations (stdev). The last column
shows the reduction factor (final value/initial value) of mean errors and standard deviations from
original raw point cloud to the final point cloud purged from outliers. Overall mean errors and
standard deviations for SPW and MPW are similar so only one of them is shown.

Target Sensor Raw point
cloud

Chauvenet
removal

MPW based
removal

Reduction
factors

1
Total points 82 75 29
Mean error 7.0 5.4 4.3 61.4%
Stdev 4.9 3.6 2.3 46.9%

2
Total points 82 75 36
Mean error 8.5 6.5 5.8 68.2%
Stdev 6.0 4.0 3.0 50.0%

3
Total points 82 78 36
Mean error 1.2 1.0 0.7 58.3%
Stdev 0.8 0.6 0.5 62.5%

6. Conclusions630

This paper proposes a methodology to perform semi automatic calibration of several sensors.631

The requirement is to detect, simultaneously in all the sensors, corresponding 3D points in space, for632

example, by detecting the center of a moving ball in their field of view. The solution builds upon633

a technique proposed in previous works [1,9], by combining multiple geometric transformations in634

several transformation paths to refine or complement the computation of extrinsic parameters of635

all sensors w.r.t. one sensor defined as the reference. We refer to this approach as a multi pairwise636
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approach for sensor extrinsic calibration, since, instead of considering only transformations between637

pairs of sensors (as is the case of many previous works), this technique takes into account all sensors638

to establish the geometric relation between each pair. The technique also proposes alternatives to639

limit the number of transformation paths to use in order to circumvent the potential explosion in the640

number of paths that can originate from a transformation graph.641

The technique has some advantages and applications, although not all of them always occurring,642

depending on the data and nature of sensors. Indeed, there are two different ways of using the MPW.643

First, if estimations of all geometric transformations between pairs of sensors exist and are obtained644

independently of each other, even if under some conditions, the MPW gives a solution with less error645

than SPW as was demonstrated in section 4. On the other hand, if point clouds are available instead,646

and geometric transformations are obtained using matching techniques, the MPW technique allows647

a refinement of the point clouds by eliminating points that escaped traditional outlier filtering, as648

demonstrated in the experimental results using the Chauvenet criterion.649

More specifically, the technique was demonstrated theoretically to reduce the propagation of650

uncertainty under certain conditions. For a configuration inspired on a real setup with an instrumented651

car, initial uncertainty of values of up to 0.3 rad or 0.3 m on all angles and translations, are reduced by652

the MPW approach, which shows its advantage, as was demonstrated with a Monte Carlo Simulation653

methodology.654

When point clouds are available, as shown in the results section, and that is probably the most655

common situation in the context of this work, the geometric transformations are not all independent656

and the simple replacement of the SPW matrix by the MPW may not result in error reduction. However,657

the MPW results in individual points can be used to filter out points that exhibit errors that degrade the658

calculation of the SPW (and the MPW all along). The outlier removal by Chauvenet criterion produces659

interesting results, but the further elimination of points with the application of the MPW refined the660

point clouds, allowing a new geometric transformation with even less error.661

It was also verified that the uncertainty on the calculated calibration matrix is better for a662

larger number of transformation paths, and preferably using the shortest paths. Indeed, shorter663

transformations paths propagate less uncertainty and more transformation paths reduce the final664

uncertainty. In the cases presented using four sensors, five transformation paths exist, one with665

length 1 (the direct path, the one used for the SPW), two with length 2 and two with length 3. In the666

context of the approach described in section 4, using all the five transformation paths achieves better667

results than using only three of them. This effect would be stronger in setups with more sensors and668

more transformation paths. All this opens a door for future developments by analyzing the several669

transformations paths available and pick only some of them that fit some criteria to be investigated.670

The paper focused mainly on the advantages of the multi pairwise approach in two different671

perspectives and contexts of the available data, but the overall technique using the ball can be672

developed further. Indeed, the technique presented does not yet solve all the challenges of multi-modal673

extrinsic calibration. A door is left open to merge with optimization techniques discussed in the related674

work. Other future developments will continue mainly to overcome limitations inherited from the675

earlier approach, and not yet tackled in the present work, like the ambiguity in the detection of the ball676

hemisphere which occurs in some LIDAR sensors. Solutions for those challenges will possibly count677

with 3D dynamic tracking of the ball put in motion using more elaborate motion patterns.678
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