
DeepRings: A Concentric-Ring Based Visualization
to Understand Deep Learning Models

João Alves
DETI, IEETA

University of Aveiro
Aveiro, Portugal

Tiago Araújo
PPGCC

Federal University of Pará
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Abstract—Artificial Intelligent (AI) techniques, such as ma-
chine learning (ML), have been making significant progress over
the past decade. Many systems have been applied in sensitive
tasks involving critical infrastructures which affect human well-
being or health. Before deploying an AI system, it is necessary
to validate its behavior and guarantee that it will continue to
perform as expected when deployed in a real-world environment.
For this reason, it is important to comprehend specific aspects of
such systems. For example, understanding how neural networks
produce final predictions remains a fundamental challenge. Exist-
ing work on interpreting neural network predictions for images
via feature visualization often focuses on explaining predictions
for neurons of one single convolutional layer. Not presenting a
global perspective over the features learned by the model leads
the user to miss the bigger picture. In this work we focus on
providing a representation based on the structure of deep neural
networks. It presents a visualization able to give the user a
global perspective over the feature maps of a convolutional neural
network (CNN) in a single image, revealing potential problems
of the learning representations present in the network feature
maps.

Index Terms—Deep Learning Interpretability, Convolutional
Neural Networks Feature Visualization, Concentric Ring Design

I. INTRODUCTION

A great amount of progress in AI techniques, such as
machine learning (ML), has been done in the last decade.
Areas like personal assistants, logistics, surveillance systems,
high-frequency trading, health care, and scientific research
have been impacted by the development of these techniques.
Transferring decision processes to an AI system might lead to
faster and more consistent decisions, freeing human resources
for more creative tasks [1].

While some AI systems have already been deployed, what
remains a truly limiting factor for a broader adoption of AI
technology is the inherent and undeniable risks that come
with giving up human control and oversight to ‘intelligent’
machines [2]. Clearly, for sensitive tasks involving critical
infrastructures and affecting human well-being or health, it
is crucial to limit the possibility of improper, non-robust, and
unsafe decisions and actions [3]. As such, it is of uttermost
importance to validate the behavior of an AI system, before
deploying it. Hence, it is possible to establish guarantees that it
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will continue to perform as expected when deployed in a real-
world environment. With this objective in mind, several ways
for humans to verify the agreement between the AI decision
structure and their own ground-truth knowledge have been
explored [1], [4]–[6].

Simple models such as shallow decision trees or response
curves are readily interpretable, but their predicting capability
is limited [7]. More recent deep learning based neural networks
provide far superior predictive power, but at the price of
behaving as a ‘black-box’ where the underlying reasoning is
much more difficult to extract. Moreover, deep learning is
increasingly used in decision-making tasks, due to its high
performance on previously-thought hard problems and a low
barrier to entry for building, training, and deploying neural
networks [8].

Explainable AI (XAI) has developed as a subfield of AI,
focused on exposing complex AI models to humans in a
systematic and interpretable manner. Interpretability as a way
to explain these AI models does not have a clear definition
centering around human understanding, varying according to
the aspect of the model to be understood: its internals [9],
operations [10], mapping of data [11], or representation [12].
Some XAI techniques have already proven useful by revealing
to the user unsuspected flaws or strategies in commonly used
ML models [8], [13]. However, many questions remain on
whether these explanations are robust, reliable, and sufficiently
comprehensive to fully assess the quality of the AI system.
The case for transparency has been made in many settings,
including government policy, business, charity, and algorithms
[14]. This topic is also given keen interest in laws such as
the General Data Protection Regulation1 (introduced in the
EU in 2018) which seek to provide users with meaningful
information about algorithmic decisions.

Image classification tasks have been heavily influenced by
the deep learning approach. A type of recent approaches in
this domain attempt to identify the parts of a given image
which are most salient, i.e. those parts which in a sense
were most responsible for leading to the system’s prediction
[12], [15]. Another type of approach on interpreting neural
network predictions for images is via feature visualization.
This technique studies what each neuron codes for, or what
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information its firing represents. The intuition behind these
approaches is that inspecting the preferred stimuli of a unit can
shed light into what the neuron is doing [6], [16]. They often
focus on explaining predictions showing feature maps from
one single convolutional layer at a time [6], [17]. As large-
scale model predictions are often computed from a consecutive
number of layers that learn hierarchical representations [6], the
limitation of not presenting all feature maps at once can lead
the user to miss the bigger picture. One of the first works to
explore visualization of complete deep networks is Yosinski’s
work [16]. It uses tabs to keep track of activation of each
layer. It is possible to observe gradient ascent on input, and the
images on the dataset that are most activated by the selected
channels. Recent works [8] use feature maps from layer to
layer to build semantic graphs.

The works of [18] and [19] show that common visualization
solutions on literature do not comprise the features of a Deep
Neural Netork (DNN) representation. A complete state of
the art report [20] on multilayer networks presents a graph
based approach with implicit hierarchies, and even on this
work there is no direction for the DNNs visualization. A new
representation based on the structure of DNN graphs may be
needed as none is found on the literature. Aiming at providing
a representation that considers this structure, a visualization
able to present feature maps from several convolutional layers
at once and able to convey their hierarchical structure is
proposed.

The remaining of this paper is structured as follows: Section
2 presents the visualization proposed, describes the archi-
tecture containing the visualization design and the machine
learning system. In Section 3, we discuss the impact of our
approach. Finally, in Section 4 we draw some conclusions and
present ideas for future work.

II. CONCENTRIC-RING VISUALIZATION

Fig. 1. DeepRings- Concentric-ring based visualization aimed to display the
feature maps of VGG16 [21] layers.

In this section, we propose and describe a visualization
platform and the architecture linking it to a machine learning
engine. The visualization is based on a concentric-ring design,
where the number of rings depend on the number of layers of
a specific model architecture.

Our visualization, depicted in Figure 1, is a concentric-ring
design and each ring has several image placeholders embedded
near its outer border. After computing the feature maps, these
placeholders are replaced by them using the following criteria:
Each ring contains the feature map of one convolutional layer -
inner rings contain the feature maps from the first layers and as
we move away from the center the feature maps correspond to
those computed in deeper layers. The number of placeholders
is static for each layer, but in each transition it increases as we
move towards the final layers. This decision was made because
convolutional neural networks (CNN) have more feature maps
as we get close to the final layers.

Fig. 2. Visualization platform- Concentric-ring based visualization generated
using feature maps ordered by a specific metric is displayed in the center; on
the left- details of the feature map selected and the possible sorting metrics;
on the right- selection of the convolutional layers to visualize.

In this visualization, the user is able to define how many
and which layers s/he wants to visualize and specify what
activation metric is considered more relevant. It is possible to
choose between two metrics defined by the number of neurons
activated or the intensity value of the activated neurons,
respectively. The most relevant filter per layer based on the
user-defined metric is show directly above the visualization
center, and as we rotate clockwise we find with a decreasing
importance degree the remaining filters. To create the visual-
ization shown in Figure 1 the metric used was the intensity
value of the activated neurons and all the layers from the
VGG16 architecture [21] are displayed.

Besides displaying the concentric-ring based visualization,
our platform (Figure 2) is also interactive, allowing the user to
hover over the feature maps presented in the rings to visualize
(on the left) a detailed version of them. Furthermore, the
user has the possibility of selecting the convolutional layers
s/he wishes to visualize by selecting and deselecting each
one of the check box associate with each layer. In Figure
3 the visualization presents only eight out of the thirteen
convolutional layers with the collapsed ones represented by
thin red semi-rings.

A ML engine is required to obtain the feature maps from
a specific image using a prebuilt or an user-defined model.



Fig. 3. DeepRings displaying only the feature maps of the layers selected by
the user.

The ML engine receives an image from the client and using a
preloaded model computes the feature maps. After this oper-
ation, the server sends back this information to be displayed
using the proposed visualization.

Fig. 4. System Architecture and Information Flow. Front-end visualization
uses D3.js to create the visualization. The information required to be displayed
is requested to a Flask server which computes the feature maps using
TensorFlow.

In this project the main focus was on the visualization part,
and the tools were selected as a consequence of this decision.
We used D3.js2 to develop the visualization as is a robust and
well-established framework, robust and flexible library, and
TensorFlow was used as the machine learning platform. To
establish the communication between these two technologies
we used a Flask web server3. The system architecture together
with an example of a possible information exchange between
client and server is depicted in Figure 4.

III. DISCUSSION

The layered hierarchy of DNNs mapped to the visualization
layers with its respective feature maps allows the observation
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of patterns between them. In Figure 3 we can see parts of
the bird body and its contours activated in several layers of
the network, indicating these features are used throughout the
network. In Figure 2 the initial features maps activate almost
in the whole image, but it gets more specific as we move
forward. This shows that general purpose filters are used at
the beginning and get more refined as the image advance.

The proposed visualization design does not scale to very
deep networks, when it is necessary to display every single
layer because the area of each ring tends to become smaller
when the number of layers increase as illustrated in Figure 1.
However, this issue may be alleviated since the user has the
freedom to select what layers are displayed having also the
option of visualizing a detailed version of a specific feature
map. This can be used to further analyze specific layers within
the same representation.

A problem with deploying CNNs in critical domains that
require low latency is the system response time. From Figure
3 we can notice that the activation of several feature maps
in the last layer is very similar between them. This suggests
the existence of redundant filters in the CNN, which leads
to unnecessary computation. Removing these filters would
potentially alleviate the computational burden leading to a
reduction of the system response time.

The visualization layout is also able to show the user that the
learned features are hierarchical. The outer rings (final layers)
are composed by activation patterns from previous layers. The
behavior of learning hierarchical features representations is
present in most modern CNN architectures, and it is easily
visible using this layout.

A. Exploratory Study

We performed an exploratory study with three domain
experts to understand if our system has potential to help end
users and researchers to better understand the ”black box”
underlying model. The domain experts have background on
Computer Vision and use Deep Learning on their work for
more than two years. We asked the participants to explore the
visualization and performed a simplified Thinking Aloud [22]
observation protocol, with no direct tasks to perform, followed
by some questions. The sessions took between one and two
hours. The following questions were asked:

• What do you observe as positive and negative aspects?
• What do you think of the interactions?
• What features do the visualization lack?
• What can be discovered using the visualization?
• What can be better on the representation?
• Is there any conceptual weakness?
While all participants perceived minor bugs and display

errors, they also highlighted some important aspects of lack of
information. The class label and certainty are missing aspects
of the image input. The visualization also needed an indicator
of where the order of feature maps start on the rings. It was
not clear that only a specific number of feature maps per layer
were presented leading the domain experts to assume that they
visualizing all of them.
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Even without the information of missing feature maps, the
domain experts highlighted that filtering by the best on a
specific criteria helps the user find patterns, not overwhelming
the user when it shows only the best ones. The domain
experts praised the overview presentation of the network in
a circular shape, as it also shows the hierarchical structure.
Quoting one of the domain experts: ”With the visualization,
a user starts from the input and observes the abstractions,
observing that it goes from the shape, to background removal
and class abstraction”. They also suggested new features to be
included, and the ones aligned with the application roadmap
are highlighted in the next section on the future works. Another
remark done by one of the domain experts was the fact that
this representation type allows to spot errors during training
as it allows the user to quickly perceive possible erroneous
feature maps while the network is learning. With a pre-trained
network, he also pointed out that the visualization suggests
that pruning some networks layers could be helpful to reduce
inference time as the final layers seem to have less relevant
information.

IV. CONCLUSION AND FUTURE WORK

Deep learning as an AI technique is increasingly used in
decision-making tasks, and for this reason it is important to
understand how neural networks learn their internal represen-
tations. In this work, we presented an interactive visualization
platform able to present a global perspective over the feature
maps of a CNN in a single image, showing what features a
deep learning model has considered to make predictions. This
representation crystallizes the knowledge regarding learning of
hierarchical features, while revealing the existence of redun-
dant filters in CNN models.

As future work, we plan to allow the user to change
dynamically the model architecture as well as the number of
feature maps to be visualized per layer. In addition, we also
aim to let the user define their own metrics for the feature
maps, allowing them to obtain new insights about the model.
Besides displaying feature maps, incorporating other type of
representations like saliency maps in this visualization could
also be a viable path to improve user understanding. A larger
user study can be also conducted to evaluate the potential of
the proposed visualization.
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