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Abstract
2D Laser Range Finders (2D-LRFs) are sensors commonly used in the field of robotics
as they provide accurate range measurements with high angular resolution. These sen-
sors can be coupled with mechanical units, which, by granting an additional degree of
freedom to the movement of the LRF, enable the 3D perception of a scene. The recon-
struction procedure consists of the concatenation of several consecutive scans in a single
point cloud representation. To be successful, the extrinsic transformation between the
LRF and the kinematic chain of the actuated mechanism (a Pan-tilt unit for example)
must be estimated with high accuracy, or the quality of the 3D reconstructed point clouds
is compromised. In this work, a calibration procedure to estimate this extrinsic trans-
formation is proposed. The method does not require predefined markers or calibration
patterns since it uses planar features in the acquired point clouds. Qualitative inspections
show that the proposed method significantly reduces the artifacts that typically appear in
point clouds obtained from moving 2D-LRFs due to inaccurate calibrations. Furthermore,
quantitative results and comparisons with a high-resolution laser scanner demonstrate that
the calibrated point cloud represents correctly the existing geometries and generates point
clouds which are very similar to the ones collected by the reference scanner.

Keywords: LRF, calibration, reconstruction, point cloud, registration, optimization

1. Introduction
Laser Range Finder, or LRFs, are among the most used sensors in the field of robotics.
Due to their precision, they are often used in applications such as Simultaneous Localisa-
tion and Mapping (Cadena et al. (2016)) and 3D reconstruction (Saito et al. (2010)). Their
use is even increasing due to several factors, such as decreasing costs, new research and
development, and a fundamental role in some relevant applications such as autonomous
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driving.
In this paper, a 2D-LRF is used as part of a 3D reconstruction system to produce ac-

curate models of real scenes. The use of a 2D-LRF, when compared with a 3D Laser
Scanner, significantly reduces the costs and might help to generalise this kind of applica-
tion (Dias et al. (2006)). To transform a 2D-LRF into a 3D sensor, the common solution
involves the integration of the unit on a turntable (Maurelli et al. (2009)) or a Pan-tilt
unit (PTU) (Klimentjew et al. (2009)), as this enables a full 3D perception. One of the
challenges of this approach is the calibration of the position of the LRF relative to the
coordinate frame of a dynamic kinematic chain, such as a PTU. This process is known as
the LRF-PTU extrinsic calibration.

This calibration is crucial since any error introduces a shift in the position of each
point, which can be seen as deformations on the point cloud resulting from the acquisi-
tion. Such deformation can be observed in Figure 1, which presents multiple misaligned
planes. These deformations have a significant impact on subsequent point cloud pro-
cessing methods, that rely on the accurate representation of the 3D environments, i.e.,
registration (for example, the Iterative Closest Point (ICP) algorithm (Pomerleau et al.
(2015))), segmentation and feature extraction algorithms.

FIGURE 1: Example of a deformed point cloud, product of an inaccurate calibration of
the LRF. The points where this deformation is most visible is marked in red.

A possible solution to perform the LRF-PTU calibration relies on the study of the
geometry of the system, using a precise measuring instrument such as a tactile Coordi-
nate Measuring Machine. However, this approach has several disadvantages: it is time-
consuming, the instruments required are expensive and generally not easily available.

Therefore, reliable and automatic methods for the LRF extrinsic calibration are nec-
essary. In this field, there are two main approaches, depending on which sensor the LRF
is calibrated to. The first and the most studied method is the calibration of the LRF rel-
ative to a camera (Chen et al. (2016); Vasconcelos et al. (2012); Fan et al. (2019)), or
cameras (Häselich et al. (2012); Oliveira et al. (2020)). In this method, the static transfor-
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mation between the two sensors relies on finding correspondences between visual features
captured by the camera and geometric features captured by the LRF. These features might
be pre-defined markers viewed by both sensors, such as a planar chessboard (Kassir and
Peynot (2010)) or a 3d trihedron chessboard (Tian et al. (2020)). However, these methods
present some limitations in the case of LRF mounted on robotic arms: first, they require
the inclusion of an additional camera in the system; secondly, the calibration of the cam-
era has to be performed; and lastly, the error of both calibrations is combined during the
reconstruction, which may increase the errors of the final reconstruction. In Nagy et al.
(2019), the calibration of the LRF 3D sensor is performed online by reducing the distance
between the point cloud obtained from the LRF sensor and one obtained by a Structure
From Motion using a camera.

Another approach is to calibrate the 2D-LRF directly against a moving platform (Zeng
et al. (2018)). Most of these methods rely on the comparison between the structure of
the reconstructed points and an object with a known 3D geometry, such as a plane, a
ball (Pereira et al. (2016)), or a cone (Almeida et al. (2012)). In Kim et al. (2013), a
marker formed by two perpendicular planes is used, and their points are segmented from
the reconstructed point cloud. Afterwards, the relationship between the normals of these
planes is used to evaluate the calibration. Also, in Lembono et al. (2019), the LRF is
positioned at the end-effector of a robotic arm, along with a sharp tool that is used to
measure constraints in a flat plane. The planarity and distance constraints measured by the
sharp tool and the 2D-LRF are enough to formulate a non-linear optimization where the
position of the 2D-LRF can be determined. These methods, while interesting, have a few
downsides: it may prove difficult to ensure that the two planes are perfectly perpendicular
since it requires a very well-built marker; increasing the number of planes is not straight-
forward; and only a small portion of the sensors’ field of view is used, which may lead to
calibration errors.

This paper is an extension of Lourenço et al. (2019), where the approach was origi-
nally proposed. This extension focuses on the comparison of the point-clouds generated,
in the same room, by our moving 2D-LRF and a commercial sensor from FARO (used as
a reference sensor given its high precision and resolution). This is a significant improve-
ment of the evaluation methodology, providing quantitative results by comparing the reg-
istration outcome with a High-Resolution Laser Scanner, and showing that the method
created produced results on par with the point cloud taken with the reference sensor.

2. Problem Formulation
The 2D-LRF is a sensor that outputs several laser scans. Each laser scan is a set of range
measurements taken sequentially along several directions, all coincident with a plane: the
scanning plane. This is in fact why this equipment has a 2D nature. Thus, for each scan,
a 2D slice of the scene is measured. Since the LRF is mounted on top of an actuated
kinematic chain (the PTU), the movement of this chain positions the sensor in different
poses in the 3D space. Through the accumulation of several laser scans acquired at dif-
ferent angles, a dense point cloud of the scene is produced. Note that, theoretically, the
movement of the PTU may influence the measurements of the single scan, as described in
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Pascoal and Santos (2010). However, because the frequency of scanning acquisition is so
high when compared with the velocity of the joints of the PTU, the influence of this effect
is reduced and was not considered in this work.

The process of accumulation is, in essence, based on the concatenation of 3D points
from multiple scans. However, this grouping requires that the points of each laser scan
are transformed into a common, static, reference frame. To correctly perform these trans-
formations, one must apply a geometric transformation to each 3D point q(i) measured
in scan i, represented in the LRF’s local coordinate system l. The transformed point p(i),
defined in the map reference frame, is determined by:

p(i) = mT(i)
e · eTl · q(i), (1)

where mTe
(i) is the transformation between the map and the PTU coordinate frames,

which is dynamic and given by the process that receives a description of the kinematic
chain, the joint values at the scan i, and computes the direct kinematics. In turn, eTl

denotes the position of the LRF w.r.t, the PTU. In the end, the set of all the points p is
denoted as the reconstructed point cloud P .

Note that, although the transformation eTl is static, it influences the coordinates of the
points p(i), therefore being crucial to the accuracy with which three-dimensional objects
are represented in the accumulated point cloud P . Consequently, an accurate estimation
of transformation eTl is paramount to the process of 3D reconstruction. This procedure
that estimates the LRF to PTU transformation is referred to as the LRF-PTU extrinsic
calibration.

In this work, a novel approach to perform LRF-PTU extrinsic calibration is proposed.
The approach is based on an optimization procedure, which computes the transformation
that generates planar point cloud sections in areas marked as planes. To this end, several
existing scene structures may be used, such as walls, ceilings, or pavements. This is an
additional advantage of our proposed method: it does not require dedicated calibration
targets.

3. Proposed Approach
The working principle of this method relies on the following assumption: in a good cal-
ibration, the deviation of a measured point set w.r.t. to the real scene geometry should
be minimal. This method focuses on planar geometries because of two reasons: they are
easily segmented from the full point cloud, and it is straightforward to compute a similar-
ity metric between the point cloud and the expected planar geometry. In other words, the
calibration is correct if the deviation from a point set to the corresponding planar surface
is minimal.

This method can be formulated as an optimization problem as illustrated in Figure 2.
For each extrinsic transformation T, a point cloud P is obtained merging the 2D LRF
scans. Several point clouds are registered using the transformations T(i) (obtained by the
combination of the optimized parameters x and the initial transformations guess mT

(i)
e ),

to produce the point cloud p(i) ∈ P . Several planar clusters segmented from this point
cloud Ci are then compared using a cost function resulting in a the cost f . By reducing
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the cost value f , the optimizer will update the transformation parameter x resulting in a
better calibration. x is defined in the optimization as:

x = argmin
x
{f(P)} , (2)

The optimization process involves several components: the parameterization, the cost
function, and the optimizer. Each component is independent and can be understood sepa-
rately. In the following section, each of the components will be further explained.
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FIGURE 2: Overview of the calibration process. Points q(i) from a scan are registered
with the transformations T(i) (a combination of the parameters x and the transformations
mT

(i)
e ), to produce the point cloud p(i) ∈ P . Several planar clusters Ci from the point

cloud are then optimized to reduce the cost f while updating the parameters x.

3.1. Parametrization
The LRF-PTU extrinsic calibration requires the evaluation of 6 parameters representing
the geometric transformation in space, determined by the transformation matrix T. This
transformation is decomposed into two components: a translation and a rotation. The
translation can be represented as the translation vector t = [tx, ty, tz], and the rotation is
represented as a 3 × 3 rotation matrix R. The rotation matrix has 3 × 3 = 9 elements,
but only 3 degrees of freedom need to be used to represent the rotation. Popular param-
eterizations for rotations are Euler angles, quaternions, and axis-angle. However, not all
representations are suitable for the optimization procedure. Parameterizations should not
introduce more numerical sensibility than the one inherent to the problem itself. These
parameterizations are called fair (Hornegger and Tomasi (1999)). Common parameteriza-
tions, such as the Euler angles and quaternions, are not fair parameterizations because of
the gimbal-lock singularities, introduced by the former, and the unitary length constraint,
in the case of the latter (Schmidt and Niemann (2001)).

The axis-angle representation is the most widely used to represent a rotation in opti-
mization procedures, as it is a fair parameterization and has only three components. Any
rotation can be represented as a rotation around an axis a, by an angle θ. Since a only
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represents the direction of the rotation (hence only having 2 degrees of freedom), it can
be combined with the angle θ into a single rotation vector ω = [ω1, ω2, ω3], as follows:

θ = |ω|

a =
ω

|ω|
(3)

Computing the rotation matrix from ω is done using the Rodrigues’ formula (Schmidt
and Niemann (2001)):

R = I +
sin θ

θ
Ω +

1− cos θ

θ2
Ω, (4)

where I is the 3× 3 identity matrix, and Ω is given by:

Ω =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 . (5)

In conclusion, the parameter vector to be optimized will have six values: three repre-
senting the translation t and three representing the rotation vector ω (using the axis/angle
representation). The parameter vector x to optimize is defined as:

x = [t1, t2, t3, ω1, ω2, ω3] . (6)

3.2. Cost Function
The cost function is used in optimization procedures to evaluate the error between the real
measurements and the expected results from a model. It yields a value that quantitatively
describes the dissimilarity between the two. In this case, the cost function evaluates the
distance of each point p in the point cloud P to their respective plane, assuming that all
surfaces are planar. The greater this value, the larger the deformation of the point cloud,
and conversely, the worse the calibration.

As an initial step, the segmentation of the point cloud is performed. The segmen-
tation is a procedure that divides the point cloud P into multiple clusters Ci, each one
corresponding to different planes of the scene. This segmentation is done before the cal-
ibration procedure, using the initial point cloud reconstructed as a first estimate. This
estimate is based on rough values for the calibration obtained from an estimate of the
translation and rotation of the position of the sensor, by visual inspection.

The segmentation of the plane was performed manually, using the software Cloud-
Compare1. In this case, manual segmentation was the preferred method, as no automatic
method performed adequately, and it did not involve a significant overhead to the user, as
this kind of calibration is performed sparingly. In the future, an automatic method can be
studied to further streamline this process.

At the beginning of the optimization process, the segmentation is loaded into memory
as a lookup table (LUT). At each iteration, the reconstructed point cloud is segmented the
same way, via this lookup table. An example of a segmentation can be seen in Figure 3.

1CloudCompare (https://www.danielgm.net/cc/) is a 3D point cloud and mesh processing software.

https://www.danielgm.net/cc/
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FIGURE 3: Example of a plane segmentation, where each colour represents a cluster.

After the segmentation, the calibration procedure can be performed. The plane equa-
tion for each point cluster is computed using the Principal Component Analysis method,
or PCA. First, the centroid p̄ of each plane is found, which is the same as the mean value
of all the points p : (x, y, z) ∈ R3:

p̄ =

N∑
i

pi. (7)

The co-variance 3× 3 matrix C is then calculated:

C =

N∑
i

(pi − p̄)⊗ (pi − p̄), (8)

where ⊗ is the outer tensor product.
Then, the normal axis of the plane is found by an Eigen decomposition of the covari-

ance matrix. The smallest eigenvalue λ3 will be the variance σ2 of the cluster. In other
words, σ2 is the mean square of the orthogonal distance of all points in the cluster to the
plane. So, σ2 can be a quantitative factor to measure the cost or each cluster. Formally, let
us admit that the σ2 has two components: the statistical error of the laser sensor σ2

sensor,
which is not affected by the calibration, and a second component σ2

calib, that depends on
the calibration error, resulting in σ2 = σ2

calib + σ2
sensor. Thus, the idea is that, by mini-

mizing σ2, we get closer to an exact calibration. Therefore, the loss of each cluster can be
expressed by the value of σ. This is commonly known in the literature as the Root Mean
Square Deviation or RMS.

The principal axes of the plane are found by the eigenvalue decomposition of the
covariance matrix C. According to the PCA method, each eigenvalue represents the sta-
tistical deviation of the points in each principal axis, more specifically, the mean square
error. Therefore, the deviation, or statistical error σi, of each point cluster Ci to the cor-
responding plane is determined by the smallest eigenvalue λ3. The cost function can the
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sum of all σi, of the N clusters, according to:

f =

N∑
i

σi. (9)

3.3. Optimiser
The optimisation algorithm chosen was Powell’s method, described in Powell (1964).
This method finds a local minimum of a multi-dimensional unconstrained function that
fits this particular optimisation, while not requiring the function’s gradient, which is not
known is this problem.

This algorithm performs the optimization using a standard gradient descent method.
However, because the gradients can not be directly computed (the gradient of the objective
function is unknown), the algorithm determines the jacobian by evaluation of the objective
function in every principal direction, at every step. The best direction is then chosen
with the jacobian. This has the advantage of not requiring the value of the gradient of
the function, but at the same time, it demands far more computational power resulting
in a longer optimization time when compared to other methods. For high-dimensional
problems, this algorithm is not appliable, because the number of function evaluations per
step grows quadratically with the number of dimensions to be optimized. However, the
number of dimensions, in this case, is small (6 dimensions) so it does not perform poorly.
The condition for stoping of the optimization can be specified as a maximum number of
iterations, or when the error is below a certain threshold.

The implementation of this optimizer can be found in the Python scientific library
SciPy 2, which was easily integrated into the calibration algorithm.

4. Results
This section presents some results of the calibration method proposed. Firstly, we present
some clouds of points acquired from a real scene after the calibration. Secondly, we
compare quantitatively the point cloud produced by our LRF-PTU calibrated system with
a high-resolution FARO 3D Laser scanner.

4.1. Experimental Set-up
The hardware infrastructure used in this work was the 3D scanner lemonbot, shown in
Figure 4. The principal components of this 3D scanner are the PTU FLIR PTU-D46 and
the 2D laser scanner Hokuyo UTM30LX3. The LRF was mounted on the PTU to have the
scan plane in the vertical direction. The laser scanner can cover 270° with an angular
resolution of 0.25°. The PTU has an angular resolution of 0.0032°, so the error in the
transformation mTe (see Equation 1) is negligible. This 3D scanner was programmed
using the ROS framework, which handles the hardware drivers, the transformation graph,
and the recording of the scanning data.

2https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.fmin_powell.html
3The 3D scanner, as seen in the Figure 4, has two laser scanners: the Hokuyo UTM30LX and the SICK

LMS100. In this work, only the first was used.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.fmin_powell.html
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FIGURE 4: The lemonbot 3D scanner, used in this work. The LRF Hokuyo UTM30 is
marked in red and the FLIR PTU-D46 is marked in green.

4.2. Data acquisition from real scene
For the verification, a dataset was acquired from a single room, which consists of 3 acqui-
sitions4. The acquisitions were performed in different positions in the room. The room
selected to evaluate the calibration process was a laboratory, not very cluttered, with the
ceiling, walls, and floors all perpendicular and known to be planar surfaces. This was
done to facilitate the plane segmentation and minimize calibration errors.

The optimization procedure was run minimizing the objective function in every
dataset, as seen in Figure 5. In the final point clouds, the qualitative improvement is
clear, when compared to the uncalibrated point cloud, as shown in Figure 6. These ex-
amples show the most common defects in poorly calibrated reconstructions. In the first
example, the ceiling surface appears as multiple misaligned surfaces. This effect can be
also seen in a wall, in the third example, which appears duplicated. The second example
shows a deformation that results in a deformed corner structure in the point cloud. These
deformations, found in the uncalibrated point clouds, are almost imperceptible in the
calibrated point cloud.

Empirical studies showed that this calibration is resilient to the initial parameters. This
study was made by testing different initial parameters, and the results were consistent
for all trials. Also, in our extensive testing, we have not observed local minima. The
algorithm, in a laptop with a Intel Core i7-8550U CPU, running in a single core takes
about 1 hour to converge.

Despite the good qualitative result, a further quantitative analysis was performed to
evaluate the method. The results were prepared in the following steps:

• A planar surface was extracted from both the calibrated and uncalibrated point
cloud.

4One acquisition corresponds to a set of laser scans taken from a particular position in the scene. Each
acquisition is processed and results in a point cloud.
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FIGURE 5: Graph of the evolution of the cost function during the optimization process.
As seen, the cost function decreased roughly 50 times.

• A fitting plane was calculated for each surface, and the distance between the points
to the surface was computed.

• The statistic deviation of the distances was calculated.

This method was performed for 3 manually segmented planes, such as the ones seen
in Figure 3, and the segments can be seen in Table 1. As can be observed, the statisti-
cal deviation is, in fact, smaller in the calibrated point cloud. As an alternative view, in
Figure 7, distribution of the signed deviation are shown for both the point clouds. The
deviations of the calibrated point cloud are less scattered than the deviations of the uncal-
ibrated point cloud. These results indicate that this calibration method does improve the
results.

TABLE 1
Comparison between the mean µ and standard deviation σ of the distances of the points
to the plane for both the calibrated and uncalibrated point clouds.

µ(m) σ(m)

Calibrated 0.0495 0.2589
Uncalibrated 0.0025 1.1211
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FIGURE 6: Side-by-side comparison of the un-calibrated (left) and calibrated (right) point
clouds. The most noticeable distortions are marked in the un-calibrated point clouds and
do not appear in the respective calibrated point clouds. This indicates that the method
successfully reduces the distortions in the point clouds.
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FIGURE 7: Distribution of the deviations of the points to the plane. The uncalibrated
points’ deviations are wider than the calibrated points, which indicates that the calibration
improved the reconstructed point cloud.

4.3. FARO scan comparison
To validate our approach, a comparison was performed between the point cloud generated
by the lemonbot after planar calibration, with the point cloud acquired using a FARO
Focus Laser Scanner. Unfortunately, it was not possible to acquire the scene at the same
time with both pieces of equipment. For this reason, some areas of the point cloud cannot
be directly compared (as an example, sofas in the room are not located exactly in the same
position between the two acquisitions). Nonetheless, these results are presented, since
structural information (walls, ground, and ceilings) are common in both acquisitions.

The metric used for this evaluation procedure was the Hausdorff distance. It measures
how far two subsets of a metric space are from each other, and is often used to evaluate
the distance between two point clouds. It is defined as the greatest of all the distances
from a point in one set to the closest point in the other set. This metric evaluates, not only
an absolute distance but also the distance at each point of the cloud. These local values
can be showcased visually through the application of a colormap. This way, large or small
variations can be distinguished, as well as areas in the scene that were physically different
between the acquisitions of either sensor.

Before computing the Hausdorff distance between the point clouds, it is necessary to
align them in the same coordinate frame. ICP was used to perform this step. Afterward,
the Hausdorff distance was calculated between the uncalibrated point cloud and the FARO
point cloud, and also between the calibrated point cloud and the FARO point cloud. A
qualitative colormap was applied, based on the values obtained.

Several views with the computed Hausdorff distance to the FARO laser scan, obtained
from the calibrated and uncalibrated point clouds, are presented in Figure 8,9.

The mean and Root Mean Square (RMS) values (see Table 2) indicate an improvement
of roughly 8 mm, which corresponds to approximately 30%. The maximum distance to
consider a point for Hausdorff distance calculation was empirically set to 50 mm.
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TABLE 2
Hausdorff distance from uncalibrated and calibrated point clouds to the FARO laser scan
point cloud.

µ (m) σ (m) min (m) max (m)

Calibrated 0.0168 0.0200 0.0001 0.0500
Uncalibrated 0.0246 0.0283 0.0001 0.0500

FIGURE 8: Hausdorff distance from captured point clouds to the FARO point cloud (top
view). Calibrated point cloud on the left, uncalibrated point cloud on the right.

FIGURE 9: Hausdorff distance from captured point clouds to the FARO point cloud (side
view). Calibrated point cloud on the top, uncalibrated point cloud on the bottom.
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5. Conclusions
This paper presents a calibration procedure to determine the extrinsic transformation of
2D-LRF and PTU. The accuracy of this transformation is critical for multiple applica-
tions, of which, the most noticeable are 3D reconstruction systems. The incorrect cali-
bration of these systems results in artifacts and deformations of the final reconstructions,
which invalidates any successive work in these point clouds. The proposed method is
based on the measurement of the deformations of reconstructed planar surfaces, and their
minimization, through an optimization procedure. The effectiveness of the method was
confirmed, through visual inspection of the resulting point cloud and statistical evaluation
of the reconstructed geometries. A comparison with a high-resolution 3D Laser scanner
also showed improvements in the reconstructed point cloud after the planar calibration
procedure.

Future work can be done to improve or validate this algorithm further, such as a study
of an automatic segmentation procedure; changing the optimization method to gradient
descent, which would reduce significantly optimization time; the validation of this method
with other dynamic kinematic chains, such as a robotic arm; and studying the impact of
the calibration environment (for example, the number and pose of the planes and size of
the room) in the calibration accuracy.
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