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ABSTRACT
Spatio-temporal data may be used to represent the evolution of
real world objects and phenomena. Such data can be represented
in discrete time, which associates spatial information (like position
and shape) to time instants, or in continuous time, in which the
representation of the evolution of the phenomena is decomposed
into slices and interpolation functions are used to estimate their
position and shape at any time. The use of the discrete model
is more straightforward in many situations, but the continuous
representation has its own advantages, mostly related to the kinds
of spatio-temporal operations that can be performed and in terms
of data compression.

In this work, we study the use of the continuous model to repre-
sent deformable moving regions captured in discrete snapshots. We
propose strategies to select the observations that should be used to
define the interpolation functions and to transform data acquired
at discrete steps into the continuous model. We also study how the
use of geometry simplification mechanisms impact on interpolation
quality.

We evaluate our proposals using a real world dataset composed
by thousands of discrete representations extracted from a video of a
controlled burn to prevent the spread of forest fires. We apply object
simplification and evaluate the strategies proposed in this work to
decompose the representation of the phenomena into slices. Then,
we use moving region interpolation mechanisms to simulate in-
between observations and compare themwith real ones. The results
prove the effectiveness of proposed method and the importance of
the procedures to define the boundaries of the slices, as it impacts
on the accuracy of interpolation methods.

CCS CONCEPTS
• Information systems → Temporal data; Spatial-temporal sys-
tems.
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1 INTRODUCTION
Spatio-temporal data may be used to represent the evolution of real
world objects and phenomena. Such data is frequently stored in a
discrete format, which associates spatial information (like position
and shape) to time instants. This is a straightforward approach,
specially because real world data is mostly captured in discrete
snapshots. But real world objects can also be modeled in spatio-
temporal databases using a continuous representation, called Mov-
ing Objects representation. In this case, the representation of the
moving objects is decomposed into slices and interpolationmethods
are used to represent their evolution (including changes in shape
and position) during a time slice while maintaining context-specific
constraints [5].

We are particularly interested on using the continuous model
to represent real world data, with application to studies on the
propagation of forest fires. We are using movies of controlled burns
captured by drones to validate moving regions interpolations. An
initial challenge is to select which are the key observations to be
used to generate time slices in a way that in-between observations
can be adequately estimated through the use of interpolation meth-
ods. There are some works on algorithms to simulate the behavior
of moving regions between observations, but the selection of key
observations for continuous representation of spatio-temporal data
in databases is an open problem.

In this work, we propose a dissimilarity distance based model
to select which observations should be used to decompose the rep-
resentation of the moving objects into slices. We experimentally
evaluate such model, using interpolation functions to generate
in-between observations. The results of the interpolations are com-
pared to the original data extracted from the videos. We evaluate
the use of different simplification algorithms and how the distance
between geometries affect the definition of the slices and the quality
of the interpolations.
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https://doi.org/xx.xxx/xxx_x


SAC’20, March 30-April 3, 2020, Brno, Czech Republic Author1, et al.

We also compare the dissimilarity distance approach with the use
of fixed size slices (whose slice boundaries are selected at certain
equidistant time intervals). We compare both approaches in terms
of interpolation quality and data compression rate (i.e. the use of a
few time slices to represent a large number of real observations).
One of the goals to be achieved with this work is to identify the
parameters (in terms of time slice specification, geometry simplifi-
cation and interpolation quality) that should be considered when
simulating the phenomena evolution during time frames with no
real information (i.e. in our case, to simulate the evolution of the
burned area during periods of time that were not filmed by the
drones).

In the next section we present some background and related
work. Then, section 3 presents slice definition algorithms. In section
4, we describe the burned area dataset and alternative representa-
tions obtained through the use of simplification algorithms. Section
5 presents experimental results. Section 6 concludes the paper and
describe future work.

2 BACKGROUND AND RELATEDWORK
In this section, we present some concepts and related work.

2.1 Representing moving regions in
spatio-temporal databases

Moving regions are representations of real-world objects in which
the evolution of their position, shape and extent over time is im-
portant. A common approach to represent such kind of object in a
database is to store its position and shape over time in a discrete
way, i.e., to record the object’s geometry and position at specific
timestamps. This is a straightforward approach, as real world ob-
servations are commonly acquired as discrete snapshots, which is
followed in many works [7, 12, 19, 20]. Although easy, the use of dis-
crete observations may lead to accuracy, storage and performance
issues, depending on the spatial and the temporal resolutions.

As real-world moving objects may change their position and
shape continuously over time, there are applications where it is
also necessary to represent these properties at any time, including
between observations. In [3], the authors propose using Abstract
Data Types (ADT) to represent moving regions in spatio-temporal
databases. Then, Forlizzi et al. [5] define a discrete data model to de-
compose the representation of moving regions into fragments called
slices. Each slice contains the representation of a moving region
at a given time instant and an interpolation function to estimate
its evolution during a time interval. Thus, this data model not only
allows to represent the evolution of real-world moving objects con-
tinuously over time, but it also provides a compact representation
because a single slice can represent many observations.

Although there are several works on modeling and querying
spatio-temporal data using continuous representations [15, 17, 24],
and prototypes that provide such functionalities [2, 6], to the best
of our knowledge there is no detailed work that evaluates the use of
such model over real world data, as well as discussing how to select
the observations to be used to decompose the movement of the
objects into slices and what are the main issues to be considered.

2.2 Moving regions and interpolation
Most spatio-temporal research considers moving objects as points
[17], but there is an increasing demand for applications that must
deal with other types of moving data, such as moving regions [17].
This means that region interpolation methods are needed to repre-
sent the objects evolution within a time interval (slice).

Existing proposals on moving objects interpolation in the spatio-
temporal databases literature include [2, 8, 10, 11, 18], but, there is
no consensus on a method that provides realistic interpolations for
complex geometries. Each method has its own constraints and uses,
and may generate unrealistic interpolations, e.g., in the presence
of noisy data or when dealing with geometries with concavities.
Therefore, the use of a method in a certain context must be validated
(by visual inspection or using metrics) in order to verify the quality
of the geometries generated during an interpolation. In this paper,
we use the interpolation method proposed in [10] to estimate the
position and shape of objects between observations, and we use
geometric similarity functions to evaluate the interpolation results,
based on data extracted from videos.

2.3 Geometry similarity functions
We use two metrics to compare geometries (A and B) and to se-
lect the observations that should be used to create a continuous
representation of a moving region using the sliced representation.

The first metric measures the area similarity. The Jaccard Index
(JI) is defined as the ratio between the intersection and the union
of two polygons, as denoted in Equation 1. The distance used is the
Jaccard Distance, which is the complement to the Jaccard Index, as
denoted in Equation 2. A Jaccard Index near 1 or a Jaccard Distance
near 0 means that the geometries are similar.

J I (A,B) =
|A ∩ B |

|A ∪ B |
(1)

JD(A,B) = 1 − J I (A,B) = 1 −
|A ∩ B |

|A ∪ B |
(2)

The second metric is the Haussdorff Distance, which measures
how far two sets of points are from each other. It is defined as the
maximum distance between any pair of points where one of them
is a member of A and the other is a member of B, as denoted in
Equation 3. We used the Euclidean Distance to measure the distance
between points.

HD(A,B) =max(d(a,b),d(b,a)∀a ∈ A,b ∈ B) (3)
The Jaccard Index allows to assess whether two geometries are

similar as a whole, while the Haussdorf distance is better to de-
tect local outliers, i.e., specific parts of the geometries that differ
significantly.

2.4 Simplification Algorithms
The contours obtained on the raw data are just the coordinates for
the border pixels, and thus are raster data. To convert the contours
into the vector mode, we have used two well-known simplification
algorithms.

The first is the Douglas-Peucker (DP) algorithm [1] that works
as follows. A line segment is defined between two points (refer-
ence vertices) from a polyline (or the contour of a polygon) to be
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simplified. Then, the farthest point from this line is included in
the simplified geometry, as long as the distance of the point to the
line segment is below a given threshold (ξ ). This process is applied
recursively on all resulting sub line segments until there are no
points over ξ distance from the line segment.

The second is the Visvalingam-Whyatt (VW) algorithm [22]. For
every point in a polyline or a polygon a triangle is built between
this point and the previous and next points. Then, the area of each
triangle is calculated, and the middle point of the triangle with
the smallest area is removed. The area of the adjacent triangles is
recalculated, until all triangles have areas above the tolerance level
[16].

We use several simplification methods and configurations to
study how they influence the procedures to select the observations
that should be used in the representation of a moving region, and
thus, the number of slices and the boundary of the time intervals
in a sliced representation. The aim is not to perform a comparative
study on their quality or performance (as there are works dedicated
exclusively to that [23] [21] [16]).

3 IDENTIFYING TIME SLICES
In this section, we deal with identifying which time slices should
be created in order to build a continuous representation from a set
of discrete observations using the sliced representation. We present
two algorithms, the first one is a straightforward approach, based
on fixed size slices. The second one, is our proposal that uses a
dissimilarity function to determine which observations should be
chosen to define the boundaries of the slices.

3.1 Fixed size slices
Let observations be a collection of tuples, containing four proper-
ties: (i) time (which identifies the time when an observation was
made), (ii) obs (which is the actual geometry representation), (iii)
intervalStart (which identifies if the observation opens a time inter-
val) and (iv) intervalEnd (which identifies if the observation closes
a time interval). Such collection is ordered by the time property.

A straightforward approach to choose the observations would
be to use fixed size slices (i.e. uniform sampling). The algorithm 1
presents how to identify the time slices for the observations collec-
tion. The variable δ represents the slice size and numObservations
is the number of tuples in the collection.

Algorithm 1 Fixed size slices
i ← 1
while i ≤ numObservations − δ do

observations(i).beдinInterval ← true
observations(i + δ − 1).endInterval ← true
i ← i + δ

end while
observations(i).beдinInterval ← true
observations(numObservations).endInterval ← true

3.2 Distance-based slices
Let t1 and t2 represent two time instants (t1 < t2) and o1 and o2
represent the position and shape of a moving object at time t1 and

t2, respectively. Let’s call distance for a dissimilarity level between
o1 and o2. The maximum length of the time interval (i.e. time slice)
defined by [t1, t2] is constrained by the existence of a function f
that is able to represent the evolution of a moving object o from o1
to o2 in [t1, t2] [5]. Therefore, there should be an upper bound value
α for the distance between o1 and o2 that a given interpolation
function f can represent. So, whenever the distance between oi
and oj is greater than α , then oi and oj should be in distinct time
slices.

The procedure to define the time slices to be created from the
collection observations is detailed in algorithm 2.

Algorithm 2 Distance based slice identification
i ← 1
j ← i + 1
while j ≤ numObservations do

di, j ← Distance(observations(i).obs,observations(j).obs)
if di, j > α then

observations(i).beдinInterval ← true
observations(j − 1).endInterval ← true
i ← j

end if
j++

end while
obs(i).beдinInterval ← true
obs(j − 1).endInterval ← true

The function Distance is the dissimilarity function and repre-
sents the distance between two observations, and α is the threshold
used to determine when time slices should be created. The function
Distance may be the Jaccard Distance, the Hausdorff Distance, the
Fréchet distance, or any other distance. A combination of two or
more distances is also possible. The choice of the Distance function
and of the threshold value α are application dependent.

4 THE BURNED AREA DATASET
The experimental study uses data about the evolution of the burned
area in a controlled forest fire. This controlled burn was filmed
by drones and the videos are being used in simulations and on
gas emission studies. In this paper, we use one of such videos, of
approximately 15 minutes, recorded using a 25 frames per second
rate. This leads to more than 22,500 observations of burned area
evolution. This video is available for download at [4].

Segmentation and object detection techniques (including color-
specific seeds to represent vegetation and burned areas) were used
to delimit the area of interest in each video frame. After segmen-
tation, a WKT representation of all pixels on the border of the
identified burned area was generated. Then, the dataset with over
than 22,500 WKT representations was loaded into PostgreSQL and
stored using PostGIS’s geometry data type.

Figure 1 presents an example of a video frame, depicting the
segmentation of the burned area and the corresponding geometry
recorded in the database.

Then, anomalies were detected in the dataset due to the presence
of heavy smoke in some video frames.We removed 541 observations
(about 2% of original data), which were considered outliers. An
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Figure 1: Video frame example with corresponding seg-
mented burned area and database representation

observation was considered an outlier if its area was less than 85%
of the area of the first observation or greater than 115% of the area
of the last observation. The first and the last observations were
refined manually. A detailed study on outlier and anomaly detection
is considered future work.

The geometries extracted from the video using segmentation
algorithms had on average almost 2,000 points per geometry, which
could lead to performance issues during the simulations (the entire
dataset is composed of almost 43 million points).

PostGIS has built-in functions that may be used to simplify ge-
ometries. We evaluated the use of ST_SimplifyPreserveTopology
[13] and ST_SimplifyVW [14]. The former generates a simplified
representation of a geometry using the Douglas-Peucker algorithm
and the latter uses the Visvalingam-Whyatt algorithm. These sim-
plification methods allow reducing the number of vertices that
represent a geometry, while maintaining a good approximation of
their shape in most cases.

We applied both algorithms using a tolerance (this parameter is
a distance threshold used during simplification) equal to 1 and 10,
which led us with 5 representations of each observation. From now
on, we call them: Original (i.e. not simplified), DP1 (simplification
using Douglas-Peucker and tolerance 1), DP10 (simplification us-
ing Douglas-Peucker and tolerance 10), VW1 (simplification using

Visvalingam-Whyatt and tolerance 1) and VW10 (simplification
using Visvalingam-Whyatt and tolerance 10). Figure 2 presents the
simplified representations of the geometry displayed in Figure 1.

Figure 2: Simplified geometries - database representation

Table 1 presents some statistics on the number of vertices per
geometry after simplification. For instance, the average number
of vertices per geometry after simplification using DP10 is only
4% of the average number of vertices per geometry in the original
dataset.

Table 1: Number of points per geometry after simplification

DP1 DP10 VW1 VW10

min (% of original) 37 3 79 21
max (% of original) 41 6 79 24
avg (% of original) 40 4 79 22

Tables 2 and 3 present the similarity between each original ge-
ometry and its simplified versions using the Jaccard Index and the
Hausdorff Distance.

The values of the Jaccard index are near 1.0 in all methods, which
means that the similarity between original and simplified geome-
tries is high. The results of the Hausdorff Distance when using the
Visvalingam-Whyatt algorithm are significantly higher for some
observations than those obtained using the Douglas-Peucker algo-
rithm. This means that there are local deformations on the contours
of the simplified geometries in the VW datasets, but these local
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Table 2: Jaccard Index - Simplified dataset x Original dataset

DP1 DP10 VW1 VW10

min 0.992 0.941 0.998 0.996
max 0.998 0.983 0.999 0.987
avg 0.996 0.967 0.999 0.993

Table 3: Hausdorff Distance - Simplified dataset x Original
dataset

DP1 DP10 VW1 VW10

min 1 8 1 3
max 1 10 49 49
avg 1 9 3 7

deformations were not big enough to influence the area similarity
significantly.

5 EXPERIMENTAL EVALUATION
This section presents an experimental evaluation on how to create
moving regions to represent the burned area in a controlled forest
fire, using a sliced representation. The experiments were executed
using PostgreSQL 11, PostGIS 2.5.2 and GEOS 3.6.2.

5.1 Dissimilarity distance-based approach
We experimentally created time slices for all the 5 variations (origi-
nal, DP1, DP10, VW1 and VW10) of our dataset using the dissimi-
larity distance-based algorithm proposed in section 3. We use the
Jaccard Distance as the distance function between two observations
(oi ,oj ), as defined on Section 2.3. We choose to use the Jaccard Dis-
tance as the dissimilarity distance because we want to study how
the burned area evolves (i.e. grows) over time and local deforma-
tions on the geometry contours are not as important as the changes
in the overall geometric area.

The algorithm was evaluated using several values for α . Figure
3 presents the results.

Figure 3: Number of time slices per dataset and value of α

The number of time slices created decreases significantly as the
threshold value α increases. With α = 0.05 most configurations led

to a number of time slices of about 70% of the number of observa-
tions, while when using α = 0.2, the number of time slices datasets
was of about 8% of the number of original observations.

The number of time slices created using the original and the sim-
plified datasets was very similar, with the original dataset leading to
just a few less slices than the simplified ones. This can be explained
as the simplification methods introduced slight modifications that
increased the dissimilarity between observations. As the threshold
value increases, the results obtained over distinct datasets tend to
converge. This indicates that it is possible to use the simplified
geometries to generate time slices and obtain a representation that
is close to the one obtained using the original geometries. Also, as
we will present later, the use of the simplified datasets significantly
reduce the computational costs.

The average of the time slices length of was similar in all con-
figurations, varying from just 1.5 observations for very low values
of α to 12.5 observations (i.e. half a second) when α = 0.2. Also,
when α = 0.2, some large slices were defined, being the largest
one of almost 41 seconds (i.e. 1,015 observations) for the VW10
dataset, and of 25 seconds (more than 600 observations) for the
other datasets.

There also are some time slices with just one observation. That
means those observations are significantly different from their
previous and following ones. Considering that the time interval
between frames in the original video is 0.04 seconds, such abrupt
changes are due to noise or other anomalies in the data, like exem-
plified in Section 5.3.

After identifying the time slices to be created, we used the im-
plementation of PySpatioTemporalGeom [10] algorithm available
at [9] to estimate the shape of the intermediate geometries within
each slice. Then, we computed the Jaccard Index to determine the
similarity between each geometry generated using the interpolation
algorithm and its corresponding one in the original dataset.

Figure 4 presents the average Jaccard Index for all simplified
datasets using two configurations (i.e. two values of α ). The results
show that there is no significant variation on the Jaccard Index
for each value of α , which means that the interpolations for all
simplification methods (and tolerances) are similar.

Figure 4: Jaccard Index - Comparing simplification methods
and tolerance

To evaluate how the dissimilarity distance (i.e. α ) influences the
interpolation, we must use the same dataset. Figure 5 presents the
Jaccard Index for the VW10 dataset and four values of α . For the
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lowest α , the average of the Jaccard Index was 0.83, while for the
largest value of α (0.20), the average of the Jaccard Index was 0.78.
This means that the dissimilarity distance between observations
used to define the time slices influenced the interpolation.

Figure 5: Jaccard Index - simulated geometries x original
ones - VW10 dataset and several values of α

5.2 Using fixed-size slices
We evaluated the use of the fixed-size time slice strategy, consider-
ing 5 distinct sizes: 3 observations, 7 observations, 12 observations
(which are almost 1 observation per half a second in the original
movie), 25 observations (1 per second of the original movie) and
1,500 observations (1 per minute of the original movie).

The shape of the intermediate geometries within a time slice was
generated using the PySpatioTemporalGeom implementation and
the Jaccard Index was used to compare the shapes generated using
that algorithm with the corresponding ones in the original dataset,
in the same way we did for the distance-based approach. Figure 6
presents the Jaccard Index obtained when using the VW10 dataset.
The lowest values of Jaccard Index were obtained for the smallest
and the largest slices. For the three mid-size slices the values of the
Jaccard Index are similar.

Figure 6: Jaccard Index - simulated geometries x original
ones - VW10 dataset and fixed size slices

When using the fixed size strategy with slices of length 7 and
the distance-based strategy with α = 0.85, on the VW10 dataset,
we could remove 60.9% and 67.9% of the samples, respectively, and

so the compression rates are similar. We calculated the Jaccard
Index comparing the interpolated samples with the original frames,
and our dissimilarity distance method is significantly better than
when using the fixed-size strategy (Mann-Whitney U test, p<0.05),
even though we removed slightly more samples. The results of the
Jaccard Index are presented on Figure 7, on the left side.

The fixed sampling interval 12 and the distance-based α = 0.80
removed respectively 74.0% and 75.8% of the samples, again with
similar compression rates. We calculated the Jaccard Index com-
paring the interpolated samples with the original frames, and our
method is again significantly better (Mann-Whitney U test, p<0.05).
The results of the Jaccard Index are presented on Figure 7, on the
right side.

These results show that for a similar amount of samples, the
dissimilarity distance-based strategy proposed in this work are
better than using uniform sampling.

Figure 7: Jaccard Index - simulated geometries x original
ones - VW10 dataset

5.3 Discussion
When using the fixed size (uniform sampling) strategy, the user
is, in fact, specifying a compression rate to be used and defining
the final number of slices to be created. The dissimilarity distance-
based strategy, on the other hand, provides no guarantee on the
compression rate and depending on the value of α , the number of
slices can vary drastically. For instance, analyzing the results of
section 5.1, together with the results of the Jaccard Index (figure 5),
it is possible to identify that an increase of 0.15 (from 0.05 to 0.20)
on the acceptable dissimilarity (i.e. α ) would reduce the number of
slices from 69% to just 8% of the number of original observations,
with a drop off of just 5% (on average) on the similarity between
the original shapes and the generated shapes.

In terms of the overall simulation quality, the dissimilarity distance-
based strategy led to better results than uniform sampling, as the
former considers the geometries similarity to determine the time
slices. By identifying situations where the similarity distance be-
tween two geometries is greater than a given value, it is possible to
create interpolations where the transitions within the time slices is
smooth, which improves the quality of the spatio-temporal data.

In section 5.1, we acknowledge the existence of slices repre-
senting a single observation. That means such observations are
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significantly dissimilar to their previous and following ones, which
indicates that these observations may be outliers. We visually in-
spected some of them and confirmed the existence of inaccurate
geometries (i.e. the object detection failed to recognize the burned
area).

For instance, consider figure 8, which presents 3 sequential ob-
servations: 788, 789 and 790, from top to bottom, respectively. The
one on the middle is clearly different from the other two. By looking
back to the original frame (in figure 9), we confirm that the segmen-
tation technique failed to correctly identify the burned area in this
frame (due to the smoke in the image). Also, observation 788 is part
of an interval with 10 observations and observation 790 is part of
an interval with 22 observations (when using VW10 and α = 0.2).
Both time slices would be merged if observation 789 (the one with
an anomaly) is discarded, and a slice representing 32 observations
would be created.

Figure 8: Sequence of observations with an outlier in the
middle

There also were time instants to which the interpolation method
could not generate simulations. In our experiments, the number of
failures varied according to the number of points in each geometry,
as represented in Figure 10. This does not imply that the inter-
polation method has any limitation on the number of points per
geometry, but geometries with thousands of points are more likely
to have features (like holes or self-intersections) that prevent the
interpolation algorithm from generating simulations. On the other
hand, it is important to notice that each dataset in Figure 10 has its
own simplified version of each original geometry, and that those
simplified representations may remove (or create) self-intersections
and other anomalies. This means that in certain cases, it may be
possible to use interpolation method on some original geometries
and not on the corresponding simplified geometries, or vice-versa.

Figure 9: Smoke leading to inaccurate object detection

Figure 10: Interpolation failure

Therefore, considering the existence of single-observations slices
and of failures on the generation of simulations, we plan to study, as
future work, more sophisticated mechanisms to detect and remove
(or correct) noisy data, outliers and anomalies.

We also measured the execution time in several configurations
and identified it was influenced by the number of points in input
geometries. For instance, when using time slices generated by the
distance-based algorithm (with α = 0.1), the number of simulations
to be done in each dataset was relatively close, but the average
execution time for VW1 and DP1 was almost 10 times greater than
the average execution time for DP10 and VW10. This was expected
due to the algorithmic complexity of the distance functions used.

6 CONCLUSIONS
Most spatio-temporal data currently available is acquired and stored
as a discrete sequence of snapshots. But dealing with such data
discretely may not be the most efficient way in many situations.
The use of the continuous representation, on the other hand, may
represent a challenge, as original (discreetly obtained) observations
should be used to create a sliced representation, which comprises
procedures to select the most adequate observations and defining
interpolation functions that represent well the real world phenom-
ena.

In this work we propose using a dissimilarity distance threshold
between consecutive observations as a mechanism to identify time
slices in the continuous representations. Such threshold aims to
guarantee that there is a smooth transition between all the real
observations contained in a slice. We experimentally evaluated
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the distance based proposal, testing several configurations and dis-
similarity limits. Experimental results prove the dissimilarity limit
improves the quality of in-between observations generated by in-
terpolation algorithms. We also studied how the use of geometry
simplification algorithms may impact on time slice definition, and
identified that the use of simplified objects does not impact nega-
tively on slices, but improves interpolation execution time. We also
compared our distance based proposal with the use of fixed size
time slices, using real world data, and proved the benefits of using
strategies that take into account the evolution of historical data
to define the boundaries of the slices when creating continuous
representations of moving objects in databases.

As future work, we plan to do a more detailed study on how to
detect and remove (or correct) noises, anomalies and outliers in
the discrete observations while generation their continuous rep-
resentations. Outlier detection is a first step to be studied, to re-
move anomalies from the original datasets. We also plan to use
the obtained parameters (in terms of slice specification, geometry
representation and interpolation quality) as part of our study on
burned area evolution, specially to simulate such evolution during
time frames on which there is no real data.

ACKNOWLEDGMENTS
This work was partially funded by REMOVED DUE TO DOUBLE
BLIND REVIEW.

REFERENCES
[1] David H Douglas and Thomas K Peucker. 1973. Algorithms for the reduction of

the number of points required to represent a digitized line or its caricature. Carto-
graphica: the international journal for geographic information and geovisualization
10, 2 (1973), 112–122.

[2] José Duarte, Paulo Dias, and José Moreira. 2018. A Framework for the Man-
agement of Deformable Moving Objects. In Geospatial Technologies for All, Ali
Mansourian, Petter Pilesjö, Lars Harrie, and Ron van Lammeren (Eds.). Springer
International Publishing, Cham, 327–346.

[3] Martin Erwig, Ralf Hartmut Güting, Markus Schneider, and Michalis Vazir-
giannis. 1998. Abstract and Discrete Modeling of Spatio-temporal Data Types.
In Proceedings of the 6th ACM International Symposium on Advances in Ge-
ographic Information Systems (GIS ’98). ACM, New York, NY, USA, 131–136.
https://doi.org/10.1145/288692.288716

[4] Omitted for double-blind review. 2019. Omitted for double-blind review. Re-
trieved Sept, 2019 from https://Omitted_for_double_blind_review

[5] Luca Forlizzi, Ralf Hartmut Güting, Enrico Nardelli, and Markus Schneider. 2000.
ADataModel and Data Structures forMoving Objects Databases. In Proceedings of
the 2000 ACM SIGMOD International Conference on Management of Data (SIGMOD
’00). ACM, New York, NY, USA, 319–330. https://doi.org/10.1145/342009.335426

[6] R. H. Guting, V. Almeida, D. Ansorge, T. Behr, Z. Ding, T. Hose, F. Hoffmann,
M. Spiekermann, and U. Telle. 2005. SECONDO: an extensible DBMS platform
for research prototyping and teaching. In 21st International Conference on Data
Engineering (ICDE’05). 1115–1116. https://doi.org/10.1109/ICDE.2005.129

[7] Hideki Hayashi, Akinori Asahara, Natsuko Sugaya, Yuichi Ogawa, and Hitoshi
Tomita. 2016. Composition of Simulation Data for Large-scale Disaster Estimation.
In Proceedings of the Second ACM SIGSPATIALInternational Workshop on the Use
of GIS in Emergency Management (EM-GIS ’16). ACM, New York, NY, USA, Article
4, 8 pages. https://doi.org/10.1145/3017611.3017615

[8] Florian Heinz and Ralf Hartmut Güting. 2016. Robust high-quality interpolation
of regions to moving regions. GeoInformatica 20, 3 (01 Jul 2016), 385–413. https:
//doi.org/10.1007/s10707-015-0240-z

[9] Mark McKenney. 2019. pyspatiotemporalgeom - PyPI. Retrieved Sept, 2019 from
https://pypi.org/project/pyspatiotemporalgeom/

[10] Mark Mckenney and Roger Frye. 2015. Generating Moving Regions from Snap-
shots of Complex Regions. ACM Trans. Spatial Algorithms Syst. 1, 1, Article 4
(July 2015), 30 pages.

[11] Mark McKenney and James Webb. 2010. Extracting Moving Regions from Spatial
Data. In Proceedings of the 18th SIGSPATIAL International Conference on Advances
in Geographic Information Systems (GIS ’10). ACM, New York, NY, USA, 438–441.
https://doi.org/10.1145/1869790.1869856

[12] Xiaofeng Meng and Jidong Chen. 2011. Moving Objects Management: Models,
Techniques and Applications (1st ed.). Springer Publishing Company, Incorpo-
rated.

[13] PostGis-Team. 2019. ST_SimplifyPreserveTopology - PostGIS dev Manual. Re-
trieved Sept 9, 2019 from https://postgis.net/docs/ST_SimplifyPreserveTopology.
html

[14] PostGis-Team. 2019. ST_SimplifyVW - PostGIS dev Manual. Retrieved Sept 9,
2019 from https://postgis.net/docs/ST_SimplifyVW.html

[15] Maribel Santos and Jorge PeÃśa. 2011. Representing, Storing and Mining Moving
Objects Data. Lecture Notes in Engineering and Computer Science 2192 (07 2011).

[16] Wenzhong Shi and ChuiKwan Cheung. 2006. Performance evaluation of line
simplification algorithms for vector generalization. The Cartographic Journal 43,
1 (2006), 27–44.

[17] Willington Siabato, Christophe Claramunt, Sergio Ilarri, andMiguel AngelManso-
Callejo. 2018. A Survey of Modelling Trends in Temporal GIS. ACM Comput.
Surv. 51, 2, Article 30 (April 2018), 41 pages. https://doi.org/10.1145/3141772

[18] Erlend Tøssebro and Ralf Hartmut Güting. 2001. Creating Representations for
Continuously Moving Regions from Observations. In Advances in Spatial and
Temporal Databases, Christian S. Jensen, Markus Schneider, Bernhard Seeger, and
Vassilis J. Tsotras (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 321–344.

[19] Sebastián Villarroya, José R. Viqueira, Manuel A. Regueiro, José A. Taboada, and
José M. Cotos. 2016. SODA: A Framework for Spatial Observation Data Analysis.
Distrib. Parallel Databases 34, 1 (March 2016), 65–99. https://doi.org/10.1007/
s10619-014-7165-7

[20] Jose R. Rios Viqueira and Nikos A. Lorentzos. 2007. SQL Extension for Spatio-
temporal Data. The VLDB Journal 16, 2 (April 2007), 179–200. https://doi.org/10.
1007/s00778-005-0161-9

[21] Mahes Visvalingam. 2015. Explorations in Digital Cartography. (2015).
[22] Maheswari Visvalingam and James D Whyatt. 1993. Line generalisation by

repeated elimination of points. The cartographic journal 30, 1 (1993), 46–51.
[23] Mahes Visvalingam and Peter J Williamson. 1995. Simplification and general-

ization of large scale data for roads: a comparison of two filtering algorithms.
Cartography and Geographic Information Systems 22, 4 (1995), 264–275.

[24] Jianqiu Xu and Ralf Hartmut Güting. 2012. Manage and Query Generic Moving
Objects in SECONDO. Proc. VLDB Endow. 5, 12 (Aug. 2012), 2002–2005. https:
//doi.org/10.14778/2367502.2367558

https://doi.org/10.1145/288692.288716
https://Omitted_for_double_blind_review
https://doi.org/10.1145/342009.335426
https://doi.org/10.1109/ICDE.2005.129
https://doi.org/10.1145/3017611.3017615
https://doi.org/10.1007/s10707-015-0240-z
https://doi.org/10.1007/s10707-015-0240-z
https://pypi.org/project/pyspatiotemporalgeom/
https://doi.org/10.1145/1869790.1869856
https://postgis.net/docs/ST_SimplifyPreserveTopology.html
https://postgis.net/docs/ST_SimplifyPreserveTopology.html
https://postgis.net/docs/ST_SimplifyVW.html
https://doi.org/10.1145/3141772
https://doi.org/10.1007/s10619-014-7165-7
https://doi.org/10.1007/s10619-014-7165-7
https://doi.org/10.1007/s00778-005-0161-9
https://doi.org/10.1007/s00778-005-0161-9
https://doi.org/10.14778/2367502.2367558
https://doi.org/10.14778/2367502.2367558

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Representing moving regions in spatio-temporal databases
	2.2 Moving regions and interpolation
	2.3 Geometry similarity functions
	2.4 Simplification Algorithms

	3 Identifying time slices
	3.1 Fixed size slices
	3.2 Distance-based slices

	4 The Burned Area dataset
	5 Experimental Evaluation
	5.1 Dissimilarity distance-based approach
	5.2 Using fixed-size slices
	5.3 Discussion

	6 Conclusions
	Acknowledgments
	References

