
Evaluating Preprocessing and Interpolation Strategies to
Create Moving Regions from Real-World Observations

Rogério Luís C. Costa, Enrico Miranda, Paulo Dias and José Moreira
IEETA, University of Aveiro

Aveiro, 3810-193
Portugal

{rogeriocosta,enrico.miranda,paulo.dias,jose.moreira}@ua.pt

ABSTRACT
Spatio-temporal data may be used to represent the evolu-
tion of real-world objects and phenomena. Such data can be
represented in discrete time, which associates spatial infor-
mation (like position and shape) to time instants, or in con-
tinuous time, in which the representation of the evolution of
the phenomena is decomposed into slices and interpolation
functions are used to estimate the intermediate position and
shape at any time. The use of a discrete model may seem
more straightforward, but a continuous representation pro-
vides potential gains in terms of data management, including
in compression and spatio-temporal operations.

In this work, we study the use of the continuous model to
represent deformable moving regions captured at discrete
snapshots. We use a dissimilarity distance-based strategy
to select the observations that should be used to define the
time slices of the continuous representation, thus transform-
ing data acquired at discrete steps into a continuous model.
We also study how the use of geometry simplification al-
gorithms and simplification levels may impact on moving
regions interpolation quality.

We evaluate our proposals using a dataset composed by
thousands of aerial bush-fires images. After applying object
simplification and slice decomposition, we use two region in-
terpolation algorithms to generate in-between observations
and compare them with geometries representing real images.
The results prove the effectiveness of our proposals and their
importance in terms of interpolation accuracy.

CCS Concepts
•Information systems→ Temporal data; Spatial-temporal
systems;

Keywords
spatio-temporal data, continuous representation, moving re-
gions

1. INTRODUCTION
Spatio-temporal data may be used to represent the evolu-

Copyright is held by the authors. This work is based on an earlier work: SAC2́0
Proceedings of the 2020 ACM Symposium on Applied Computing, Copyright
2020 ACM 978-1-4503-6866-7. http://doi.org/10.1145/3341105.3374019

tion of real-world objects and phenomena. Such data is fre-
quently stored in a discrete format, which associates spa-
tial information (like position and shape) to time instants.
This is a straightforward approach, specially because real-
world data is mostly captured in discrete snapshots. But
real-world objects can also be modeled in spatio-temporal
databases using a continuous representation, called Moving
Objects representation. In this case, the representation of
the moving objects is decomposed into slices and interpola-
tion methods are used to represent their evolution (includ-
ing changes in shape and position) during a time slice while
maintaining context-specific constraints [8].

We are particularly interested in using the continuous model
to represent real-world entities with application to studies
of the propagation of forest fires. We use real videos of con-
trolled burns captured by drones to validate the potential
of moving regions representation. An initial challenge is to
select the observations that lead to time slices in a way that
in-between observations can be adequately estimated using
interpolation methods. A few existing algorithms already
exist to create representations of the behavior of moving
regions between observations, but the selection of key ob-
servations for continuous representation of spatio-temporal
data in databases is an open issue in this context.

In [1], we propose a dissimilarity distance based model to
select which observations should be used to organize the rep-
resentation of the moving objects in slices. We experimen-
tally evaluate such model, using interpolation functions to
generate in-between observations. The results of the inter-
polations are compared to the original data extracted from
videos. To further validate our approach, we also compare
the dissimilarity distance approach with the use of uniform
sampling (where geometries are selected at equidistant time
intervals) in terms of interpolation quality and data com-
pression ratio (i.e. the number of time slices necessary to
represent a large number of observations).

This work expands our previous work [1] by evaluating how
distinct simplification algorithms affect the quality of mov-
ing regions representations and by comparing the perfor-
mance (in terms of similarity metrics) of two region interpo-
lation methods of the spatio-temporal databases literature.
These interpolation methods are evaluated in various sce-
narios, composed by variations on the observation selection
strategy, as well as on the geometry simplification levels and
algorithms.

APPLIED COMPUTING REVIEW JUN. 2020, VOL. 20, NO. 2 46

As most of existing works use synthetic data and little has
been done in the spatio-temporal databases literature on
representing real-world data as moving regions, there has
been no prior evaluation on how distinct geometry simplifi-
cation methods and sampling strategies affect interpolation.
Also, there is no prior comparison of moving region inter-
polation algorithms in terms of similarity between interpo-
lation results and real-world data.

Hence, another goal we achieve with this work is to identify
the parameters (in terms of time slice specification, geometry
simplification and interpolation algorithm) that should be
considered when simulating the phenomena evolution during
time frames with no real information (i.e. in our case, to
simulate the burned area evolution during periods of time
that were not filmed by the drones).

In the next section we present some background and related
work. Then, section 3 presents slice definition algorithms.
In section 4, we describe the preprocessing steps we take
until we got our burned area dataset and its alternative rep-
resentations (obtained through the use of distinct geome-
try simplification algorithms and levels). Section 5 presents
experimental. Section 6 concludes the paper and describe
future work.

2. BACKGROUND AND RELATED WORK
In this section, we present some concepts and related work.

2.1 Representing moving regions in
spatio-temporal databases

Moving regions are representations of real-world objects in
which the evolution of their position, shape and extent over
time is important. A common approach to represent such
kind of object in a database is to store its position and shape
over time in a discrete way, i.e., to record the object’s geom-
etry and position at specific timestamps. This is a straight-
forward approach, as real-world observations are commonly
acquired as discrete snapshots, which is followed in many
works [25, 11, 17, 24]. Although easy, the use of discrete
observations may lead to accuracy, storage and performance
issues, depending on the spatial and the temporal resolu-
tions.

As real-world moving objects may change their position and
shape continuously over time, there are applications where
it is also necessary to represent these properties at any time,
including between observations. In [6], the authors propose
using Abstract Data Types (ADT) to represent moving re-
gions in spatio-temporal databases. Then, Forlizzi et al. [8]
define a discrete data model to decompose the representa-
tion of moving regions into fragments called slices. Each
slice contains the representation of a moving region at a
given time instant and an interpolation function to estimate
its evolution during a time interval. Thus, this data model
not only allows to represent the evolution of real-world mov-
ing objects continuously over time, but it also provides a
compact representation because a single slice can represent
many observations.

Although there are several works on modeling and querying
spatio-temporal data using continuous representations [29,

20, 22], and prototypes that provide such functionalities [9,
4], to the best of our knowledge there is no in-depth work
that evaluates the use of such model over real-world data, as
well as discussing how to select the observations to be used
to decompose the movement of the objects into slices and
what are the main issues to be considered.

2.2 Moving regions and interpolation
Most spatio-temporal research considers moving objects as
points [22], but there is an increasing demand for applica-
tions that must deal with other types of moving data, such
as moving regions [22]. This means that region interpola-
tion methods are needed to represent the objects evolution
within a time interval (slice).

Existing proposals on moving objects interpolation in the
spatio-temporal databases literature include [23, 16, 15, 12,
4], but, there is no consensus on a method that provides re-
alistic interpolations for complex geometries. Each method
has its own constraints and uses, and may generate unre-
alistic interpolations, e.g., in the presence of noisy data or
when dealing with geometries with concavities. Therefore,
the use of a method in a certain context must be validated
(by visual inspection or using metrics) in order to verify the
quality of the geometries generated during an interpolation.

In this paper, we use two region interpolation methods. The
first one is PySpatioTemporalGeom [15]. This algorithm
deals with complex regions (i.e. regions with multiple faces
and, possibly, holes) and focuses on providing guarantees
of correctness, aiming to generate valid regions (i.e. re-
gions with no-self intersections in the boundaries) for all
input cases, even though generated representations are not
so likely to be a close approximation of input geometries for
all time instants. We use geometric similarity functions to
evaluate interpolation results, comparing them to real data
segmented from videos. The second region interpolation is
the one provided by the Secondo DBMS [9, 10] when using
Secondo’s interpolate2 algebra. These two methods differ
mainly in the way they deal with concavities.

2.3 Geometry similarity functions
We use some metrics to compare geometries (A and B) and
to select the observations that should be used to create a
continuous representation of a moving region using the sliced
representation. The first metric is the Jaccard Index (JI),
which measures the area similarity. It is defined as the ra-
tio between the intersection and the union of two polygons,
as denoted in Equation 1. In the implementation of our
distance-based algorithm, we use the Jaccard Distance. It is
the complement to the Jaccard Index, as denoted in Equa-
tion 2. A Jaccard Index near 1 or a Jaccard Distance near
0 means that the geometries are similar.

JI(A,B) =
|A ∩B|
|A ∪B| (1)

JD(A,B) = 1− JI(A,B) = 1− |A ∩B||A ∪B| (2)

Other metrics we use are the Haussdorff Distance and the

APPLIED COMPUTING REVIEW JUN. 2020, VOL. 20, NO. 2 47

Haussdorff Similarity.

Haussdorff Distance measures the greatest distant between
a pair of closest points where one point belongs to A and
the other to B. This definition can be seen on Equation 3
[13]. We use the Euclidean Distance to measure the distance
between points. The Jaccard Index allows to assess whether
two geometries are similar as a whole, while the Haussdorf
distance is better to detect local outliers, i.e., specific parts
of the geometries that differ significantly.

HD(A,B) = max(supa∈Ainfb∈Bd(a, b),

subb∈Binfa∈Ad(a, b))
(3)

The Haussdorff Similarity between two geometries is com-
puted by dividing the Haussdorff Distance between them
by the diagonal distance across an envelope specified over
the combined geometries. Haussdorff Similarity is a nor-
malization (in the range [0, 1]) of the Haussdorff Distance
and higher values represent higher similarity between the
geometries.

2.4 Simplification Algorithms
The contours obtained on the raw data are just the coor-
dinates for the border pixels, and thus are raster data. To
convert the contours into a vector representation, we have
used two well-known simplification algorithms.

The first is the Douglas-Peucker (DP) algorithm [3] that
works as follows. A line segment is defined between two
points (reference vertices) from a polyline (or the contour
of a polygon) to be simplified. Then, the farthest point
from this line is included in the simplified geometry, as long
as the distance of the point to the line segment is below a
given threshold (ξ). This process is applied recursively on
all resulting sub line segments until there are no points over
ξ distance from the line segment.

The second is the Visvalingam-Whyatt (VW) algorithm [27].
For every point in a polyline, a triangle is built between this
point and the previous and next points. Then, the area of
each triangle is calculated, and the middle point of the tri-
angle with the smallest area is removed. The area of the
adjacent triangles is recalculated, until all triangles have ar-
eas above the tolerance level [21].

Some complete comparative studies on those simplification
methods in terms of quality and performance include [28]
[26] [21].

In this work, we tested DP and VW with different configu-
rations to study how they influence on the selection of ob-
servations used to represent a moving region, and thus, on
the number of slices and on the boundary of time intervals
in a sliced representation. In order to evaluate the impact of
the chosen algorithm over interpolation quality, we also com-
pared interpolation results obtained over geometries gener-
ated using both algorithms.

3. IDENTIFYING TIME SLICES
In this section, we present two methods to create the time
slices necessary to build a continuous representation from

a set of discrete observations. The first one is a straight-
forward approach based on uniform sampling. The second
one is our proposal that uses a dissimilarity function to de-
termine which observations should be chosen to define the
boundaries of the slices.

3.1 Uniform Sampling
Let observations be a collection of geometries ordered by
the observation time. A straightforward approach to choose
the observations is to use uniform sampling (i.e. to select
observations at fixed equidistant time intervals). The algo-
rithm 1 presents how to use uniform sampling. The variable
δ represents the step size and numObservations is the num-
ber of tuples in the collection. This is a simple method that
we use as reference for comparison.

Algorithm 1 Uniform sampling

Input:
observations: set of observations
δ: step size
numObservations: number of observations

Output:
set of selected observations

Method:
i← 1
while i < numObservations do

observations(i).selected← true
i← i+ δ

end while
observations(numObservations).selected← true

3.2 Distance-based slices
Let t1 and t2 represent two time instants (t1 < t2) and o1
and o2 represent the position and shape of a moving object
at time t1 and t2, respectively. Let’s call distance the dis-
similarity level between o1 and o2. The maximum length
of the time interval (i.e. time slice) defined by [t1, t2] is
constrained by the existence of a function f that is able to
represent the evolution of a moving object o from o1 to o2 in
[t1, t2] [8]. Therefore, there should be an upper bound value
α for the distance between o1 and o2 that a given interpo-
lation function f can represent. So, whenever the distance
between oi and oj is greater than α, then oi and oj should
be in distinct time slices.

Let observations be a collection of tuples, containing four
properties: (i) time (which identifies the time when an ob-
servation was made), (ii) obs (which is the actual geometry
representation), (iii) beginInterval (which identifies if the ob-
servation opens a time interval) and (iv) endInterval (which
identifies if the observation closes a time interval). Such col-
lection is ordered by the time property. The procedure to
define which the observations to be selected (to create the
time slices) from the collection observations is detailed in
algorithm 2.

The function Distance is the dissimilarity function and rep-
resents the distance between two observations, and α is the
threshold used to determine when a new time slices should
be created. The function Distance may be the Jaccard Dis-
tance, the Hausdorff Distance, the Fréchet distance, or any

APPLIED COMPUTING REVIEW JUN. 2020, VOL. 20, NO. 2 48

Algorithm 2 Distance based slice identification

Input:
observations: set of observations
Distance: dissimilarity function
α: tolerance threshold
numObservations: number of observations

Output:
time slices identified in the set of observations

Method:
i← 1
j ← i+ 1
while j ≤ numObservations do

di,j ← Distance(observations(i).obs,
observations(j).obs)

if di,j > α then
observations(i).beginInterval← true
observations(j − 1).endInterval← true
i← j

end if
j ← j + 1

end while
obs(i).beginInterval← true
obs(j − 1).endInterval← true

other distance. A combination of two or more distances is
also possible. The choice of the Distance function and of
the threshold value α are application dependent.

4. BURNT AREA REPRESENTATIONS
In this section, we present the preprocessing steps we took
to create alternative discrete representations of the evolution
of a burnt area.

4.1 From aerial images to WKT representa-
tions

Our study is based on videos on fire spread acquired during
a controlled burn by an Unmanned Aerial Vehicle (UAV)
equipped with an RGB camera. The burn took place at
Pinhão Cel, in the north of Portugal, in 2019, and is part of
studies on the estimation of gas emissions to the atmosphere.

In this paper we are interested in the burned area evolution.
The video we use here has approximately 15 minutes and
was recorded using a 25 frames per second rate. Then, it
contains more than 22,500 snapshots on fire spread and on
burnt area.

We applied segmentation techniques to identify the object
of interest (i.e. burnt area) in each video frame. After seg-
mentation, we generated a WKT (Well Known Text) repre-
sentation of all pixels on the contour of the segmented burnt
area for each frame.

Figure 1 presents an example of a video frame and the
corresponding segmented burnt area. The used video and
the WKT representations can be downloaded from [18]) the
source-code of the segmentation software is available at [2]).
We used SPT Data Lab [5] to identify invalid geometries
(mostly related to self-intersections) and to turn them into
valid ones.

Figure 1: Video frame example with corresponding
segmented burned area and database representation

4.2 Creating the simplified representations
Geometries extracted from the video using segmentation al-
gorithms had on average almost 2,000 points, which could
lead to performance issues during the simulations (the en-
tire dataset is composed of almost 43 million points). Also,
not all the vertices are required to represent the geometries’
contours.

Then, we applied the Douglas-Peucker (DP) algorithm and
the Visvalingam-Whyatt (VW) simplification algorithms to
the burnt area representations. In both methods, a tolerance
level can be specified, but such tolerance has distinct mean-
ings and effects on each method (see Section2.4). Therefore,
using the same tolerance in both methods is not a guaran-
tee of achieving the same simplification level. Hence, we
evaluated both methods with several tolerances and verified
the simplification level achieved (i.e. number of points per
geometry after simplification). Results are in figure 2.

We aim to use geometries simplified by both methods and
verify if the simplification method and level influence on in-
terpolation quality. Consider the dash horizontal lines in
figure 2: using DP with a tolerance of 1.2 and VW with a
tolerance of 2 leads to approximate 67% of simplification,
while using DP with a tolerance of 8 and VW with a toler-
ance of 10, leads to a simplification of approximate 94%.

APPLIED COMPUTING REVIEW JUN. 2020, VOL. 20, NO. 2 49

Figure 2: Simplification level evolution - DP and
VW algorithms

Let’s call DP1.2 and DP8 for the geometry sets resulting
from the use of DP simplification with tolerances of 1.2 and
8, respectively, and let VW2 and VW10 be the geometry sets
resulting from the use of VW simplification with tolerances
of 2 and 10, respectively. Figure 3 presents a burnt area
representation with the original WKT data and its simpli-
fied representations in DP1.2, VW2, DP8 and VW10. It is
possible to notice small differences on the contours between
the original geometry and the simplified ones.

Then, we verified the similarity between the simplified ge-
ometries and the original ones in terms of Jaccard Index
and Hausdorff Similarity. Figure 4 and 5 present how the
average Jaccard Index and the average Hausdorff Similarity,
respectively, evolve for several tolerance levels and using the
Douglas-Peucker and the Visvalingam-Whyatt algorithms.

Geometries simplified with Visvalingam-Whyatt algorithm
have a higher similarity with the original ones in terms of
Jaccard Index, while geometries simplified using the Douglas-
Peucker algorithm have a higher similarity with the original
ones in terms of Hausdorff Similarity. But the smallest aver-
age Jaccard Index value was 0.965 and the lowest Hasdorff
Similarity value was 0.984, indicatinge that simplified ge-
ometries were (in average) highly similar to original ones.

The simplification level obtained using DP1.2 and VW2 was
36% and 37%, respectively, while the simplification level ob-
tained using DP8 and VW10 was 6%. Tables 1 and 2 present
the similarity between each original geometries and its sim-
plified versions using the Jaccard Distance and the Hausdorff
Distance for such configurations.

Table 1: Jaccard Distance - Simplified dataset x
Original dataset

DP1.2 VW2 DP8 VW10

min 0.001 0.000 0.001 0.009
max 0.016 0.028 0.107 0.219
avg 0.005 0.004 0.027 0.023

The values of the Jaccard Distance in Table 1 are consider-
ably low. But comparing configurations with similar simpli-
fications levels (i.e. comparing DP1.2 with VW2 and DP8

Figure 3: Original x Simplified geometries for the
same time instant

with VW10), one can notice that the datasets generated
with the Visvalingam-Whyatt had a greater variation (i.e.
max value - min value) in the Jaccard Distance than the
ones generated with the Douglas-Peucker algorithm.

A similar behaviour in terms of metric variation can be ob-
served in Table 2. Also, the average values of Hausdorff
Distance obtained when using the Visvalingam-Whyatt al-
gorithm are significantly higher than those obtained using
Douglas-Peucker algorithm. This means that there are local
deformations on the contours of some simplified geometries
in the Visvalingam-Whyatt datasets.

APPLIED COMPUTING REVIEW JUN. 2020, VOL. 20, NO. 2 50

Figure 4: Average Jaccard Index - original x simpli-
fied geometries - DP and VW algorithms

Figure 5: Average Hausdorff Similarity - original x
simplified geometries - DP and VW algorithms

Hence, the use of Visvalingam-Whyatt led to geometries that
are on average slightly more similar to original ones than the
geometries generated by the Douglas-Peucker algorithm in
terms of Jaccard Distance, but the use of the Visvalingam-
Whyatt generated a greater (min-max) variation in the sim-
ilarity level and also let to more local deformations on the
contours of the geometries.

We also looked for anomalies and inaccurate representations.
Used data represents the evolution of the region burnt in a
controlled fire. Hence, the initial representation of the burnt
area should be contained in its following, that should be con-
tained in the third representation, and so on, until the last
one. As we are dealing with areal images from fire spread,
one can expect that some inconsistencies may happen, due

Table 2: Hausdorff Distance - Simplified dataset x
Original dataset

DP1.2 VW2 DP8 VW10

min 1.2 0.0 6.9 7.8
max 1.2 176.4 8.0 473.2
avg 1.2 4.1 7.9 17.8

to the presence of heavy smoke, for instance. We made sim-
ple consistency checks (i.e. looking for geometries whose
area are less than 85% of the area of the first observation or
greater than 115% of the area of the last observation) and
identified some anomalies. The number of inaccurate geome-
tries in the original and simplified datasets are presented in
table 3. The number of geometries in the simplified datasets
that were considered to have a smaller area than acceptable
is less or equal to the corresponding statistic in the original
dataset, while the number of geometries identified as too
big in the simplified datasets is greater or equal to the same
statistic in the original dataset.

Table 3: Datasets and consistency checks

Dataset
Geometries removed due to Number of

first geometry last geometry remaining
check check geometries

Original 393 147 21992
DP1.2 389 149 21994
VW2 393 147 21992
DP8 377 155 22000

VW10 391 150 21991

We removed the inaccurate geometries from the datasets.
The resulting data is used in the experiments described in
the following section.

5. EXPERIMENTAL EVALUATION
This section presents an experimental evaluation on how to
create moving regions to represent the burned area in a con-
trolled forest fire, using a sliced representation. We evaluate
geometry simplification, key observation selection and region
interpolation methods.

Experiments were executed using the implementation of PyS-
patioTemporalGeom [15] algorithm available at [14], version
4.1.3 of Secondo (using the virtual machine appliance avail-
able at [7]), and SPT Data Lab [5]. The current version
of SPT Data Lab is available at [2] is capable of execut-
ing several geometry and spatio-temporal related operations,
including applying simplification algorithms, selecting key
representations, comparing datasets and generating moving
regions database scripts.

5.1 Selecting the key geometries
We used the distance-based and uniform sampling algorithms
described in Section 3 to select key observations. These
are the observations to be stored in the spatio-temporal
database system and that would be used as input to region
interpolation methods.

5.1.1 Distance-based observation selection
Firstly, we experimentally created time slices for all the five
variations (original, DP1.2, VW2, DP8 and VW10) of our
dataset using the dissimilarity distance-based algorithm. We
use the Jaccard Distance to measure the dissimilarity be-
tween two observations (oi, oj), as defined on Section 2.3,
because we want to study how the region (i.e. geometric
area) evolves (i.e. grows) over time.

APPLIED COMPUTING REVIEW JUN. 2020, VOL. 20, NO. 2 51

The algorithm was evaluated using several values for α. Fig-
ure 6 presents the results.

Figure 6: Number of geometries selected to create
slices per dataset and value of α

The number of selected geometries decreases significantly as
α increases. With α = 0.05, about 90% of original geome-
tries were selected for most configurations, while only 5.5%
of original observations were selected when α = 0.3.

When α is small, the number of geometries selected in the
datasets with high simplification levels (i.e. DP8 and VW10)
was a little greater than the one in the other datasets. This
can be explained as the simplification methods introduced
slight modifications that increased the dissimilarity between
observations. As the threshold value increases, the results
obtained over distinct datasets tend to converge.

Although the number of selected geometries is similar for
each value of α, there is no guarantee that the geometries
selected in a dataset represent the same time instant than
the ones selected in the other datasets. Table 4 presents
some statistics on the the number of slices created on some
of the tested configurations. When α = 0.30, some big slices
were defined, being the biggest one of more than 2 minutes
(i.e. 3,325 observations). But single observation slices are
present in all tested configurations and represent almost all
the slices created when α = 0.05. Also, when comparing
datasets with a similar level of simplification, one can ver-
ify that the number of single geometry slices is greater for
datasets simplified using Douglas-Peucker algorithm than
for those created using the Visvalingam-Whyatt algorithm.
Visvalingam-Whyatt simplification aims to maintain the same
area of the original geometry, but it smooths the contours,
while Douglas-Peucker algorithm aims to maintain a contour
similar to the original one (but that can make, for instance,
the simplified geometry to be contained in the original one,
thus reducing the area of the simplified geometry).

Single slice observations were also generated in all configu-
rations, even when using α = 0.30. That means those ob-
servations are significantly different from their previous and
following ones. Considering that the time interval between
frames in the original video is 0.04 seconds, such abrupt
changes are probably due to noise or other anomalies in the
data, like exemplified in Section 5.4.

Table 4: Sizes of slices x Dataset

α DP1.2 VW2 DP8 VW10

Single geom. 0.05 10336 10199 13519 12147
slices 0.30 109 108 123 121

Average size 0.05 1.5 1.5 1.3 1.4
of slices 0.30 33.9 34.1 32.7 33.6
Size of 0.05 12 12 9 10

biggest slice 0.30 3325 3325 3325 3325

5.1.2 Observation selection using uniform sampling
When selecting the step size to be used in the uniform sam-
pling strategy, the user is, in fact, specifying a compression
ratio to be used and defining the number of slices to be cre-
ated. The dissimilarity distance-based strategy, on the other
hand, provides no guarantee on the compression ratio and
depending on the value of α, the number of slices can vary
drastically.

In order to provide a fair comparison between the two strate-
gies, we considered the average compression ratio (i.e. num-
ber of geometries after applying key selection algorithm di-
vided by the number of geometries in the dataset) obtained
for each value of α and used such ratio to specify the step
size to be used in uniform sampling. For instance, table 5
present of the compression ratio obtained for several values
of α when using the distance-based approach and the cor-
responding values of step size and compression ratio when
using uniform sampling on DP8 and VW10 datasets.

Table 5: Key selection strategies and compression
ratio - DP8 and VW10 datasets

Distance based Uniform sampling

α
DP8 VW10 step DP8 and VW10
ratio ratio size ratio

0.10 1.9 2.0 2 2.0
0.15 3.8 4.0 4 4.0
0.20 6.7 6.9 7 6.9
0.25 10.8 11.0 11 10.8

We use the step sizes presented at table 5 to create the
slices that we use as input to region interpolation functions
(together with the slices created using the distance-based
strategy), as we present in the following sections.

5.2 Evaluating PySpatioTemporalGeom
After identifying the time slices to be created, we used the
implementation of PySpatioTemporalGeom algorithm avail-
able at [14] to estimate the shape of the intermediate ge-
ometries within each slice. Then, we computed the Jaccard
Index and Hausdorff Similarity to determine the similarity
between each geometry generated using the interpolation al-
gorithm and its corresponding one in the original dataset.

5.2.1 Evaluating geometry simplification levels
To evaluate how geometry simplification level affects in-
terpolation results, we compare similarity metrics obtained

APPLIED COMPUTING REVIEW JUN. 2020, VOL. 20, NO. 2 52

when using datasets simplified with the same algorithm, but
with distinct simplification levels. Figure 7 presents the sim-
ilarity results in terms of Jaccard Index for datasets DP1.2
and DP8, while figure 8 presents the similarity results for
datasets VW2 and VW10.

Figure 7: Jaccard Index - simulated geometries x
simplified data - DP1.2 and DP8 - PySpatioTempo-
ralGeom interpolation

Figure 8: Jaccard Index - simulated geometries x
simplified data - VW2 and VW10 - PySpatioTem-
poralGeom interpolation

For both evaluated geometry simplification algorithms and
for the smallest tested value of α, low simplification levels
have worse results (in terms of similarity between simulated
and real data) than higher ones. But for other values of α,
low simplification levels lead to better results than higher
ones.

The results described in figures 7 and 8 represent only the
successfully simulated geometries. In all configurations, there
existed observations that could not be successfully generated
by the use of the interpolation algorithm, mostly because the
interpolation program generated invalid or empty geometries
(validity tests use the IsValid method of the Geometry class
available at the JTS Topology Suite [19], which verifies if a
geometry is topologically valid according to the Open GIS
Consortium Simple Features Specification). The number of
unsuccessfully simulated timestamps increases as the time
slice increases, as represented in figure 9. Also, the num-
ber of unsuccessfully simulated timestamps is significantly

greater for the datasets with smaller simplification levels,
which indicates that the extremely detailed contour with a
great number of points may lead to more invalid geometries.

Figure 9: Unsuccessfully simulated timestamps

The interpolation execution time also varies significantly de-
pending on the geometry simplification level. The average
time to create interpolation results using DP8 was of 21% of
the elapsed time when using DP1.2. When using the VW10
dataset, the average elapsed time to execute all the interpo-
lations was of near 16% of the elapsed time when using the
VW2 dataset.

Note that the existence of unsuccessfully simulated times-
tamps does not indicate that region interpolation methods
cannot be applied to generate in-between observations. Ac-
tually, we were able to get valid geometries for almost all
timestamps using a MakeValid procedure over invalid in-
terpolation results. Also, the average similarity metrics be-
tween turned valid geometries and real ones was similar to
the average value of similarity metrics between valid simu-
lated and real geometries. Hence, considering that the use
of low simplification levels (i.e. datasets DP1.2 and VW2)
led to much higher execution times and number of invalid
geometries than the ones obtained when using higher sim-
plification levels (i.e. datasets DP8 and VW10), and did
not led to remarkable improvements in similarity metrics,
the datasets with higher simplification levels (i.e. DP8 and
VW10) seem to be a better choice for a practical use.

Nevertheless, the statistics we present in the remaining of
this paper were computed considering only the geometries
returned valid from interpolation programs, as we do not
want to add a new (possible) source of error (i.e. the use of
MakeValid over interpolation results) to the analyzes.

5.2.2 Evaluating key observation selection
Figures 10 and 11 present the evolution of the Jaccard In-
dex between simulated geometries and the ones of DP8 and
VW10 datasets, respectively.

The similarity between simulated results and real data de-
creases as the compression ratio increases. Also, distance-
based geometry selection leads to significantly better results
than uniform sampling for the lowest compression rates, but
the similarity levels obtained with both selection strategies
become closer as the compression ratio increases. Such be-

APPLIED COMPUTING REVIEW JUN. 2020, VOL. 20, NO. 2 53

Figure 10: Jaccard Index - simulated geometries x
real data - DP8 - PySpatioTemporalGeom interpo-
lation

Figure 11: Jaccard Index - simulated geometries x
real data - VW10 - PySpatioTemporalGeom inter-
polation

havior can also be observed in terms of Hausdorff Similarity,
as represented in Table 6.

5.2.3 Evaluating geometry simplification algorithms
In order to evaluate the influence of the used geometry sim-
plification algorithm on PySpatioTemporalGeom interpola-
tion quality, we compare the similarity between simulated
geometries and the ones simplified with each considered sim-
plification algorithm. Figure 12 presents the Jaccard In-
dex between simulated and simplified geometries when us-
ing DP8 and VW10 datasets. The values for the Hausdorff
Similarity of both datasets are presented in table 6.

The similarity metrics obtained when using the dataset sim-
plified with Douglas-Peucker algorithm are slightly better
than the ones obtained when using the dataset simplified
with the Visvalingam-Whyatt algorithm.

5.3 Evaluating Secondo Interpolation
We also evaluated the use of the Secondo interpolation to
simulate in-between observations. We used the DP1.2, VW2,
DP8 and VW10 datasets, and the slices created using sev-
eral values of α (for distance-based geometry selection algo-
rithm) and step sizes (for uniform sampling). We evaluated

Table 6: Hausdorff Similarity - Distance-based
geometry selection x uniform sampling - PySpa-
tioTemporalGeom interpolation

Dataset
Observation Comp.

min avg max
selection ratio

DP8

Dist.based
2

0.35 0.91 0.98
Uniform 0.54 0.88 0.97

Dist.based
4

0.65 0.90 0.98
Uniform 0.56 0.89 0.97

Dist.based
6.9

0.63 0.89 0.98
Uniform 0.54 0.89 0.98

VW10

Dist.based
2

0.65 0.91 0.98
Uniform 0.54 0.88 0.97

Dist.based
4

0.65 0.90 0.98
Uniform 0.55 0.89 0.97

Dist.based
6.9

0.65 0.89 0.98
Uniform 0.55 0.89 0.98

Figure 12: Jaccard Index - simulated geometries x
real data - PySpatioTemporalGeom interpolation

the influence of geometry simplification algorithm, of the ge-
ometry simplification level and of the size of the intervals on
the similarity between real data and Secondo interpolation
results, and the overall behaviour was very similar to the
one observed when using PySpatioTemporalGeom.

Figure 13 presents the Jaccard Index between geometries
simulated using the Secondo DBMS and the ones of DP8
and VW10 datasets, when using the distance-based geom-
etry selection strategy with several values of α. Table 7
presents the average Hausdorff Similarity between simulated
geometries and the ones of DP8 and VW10 datasets in the
same configurations.

Table 7: Average Hausdorff Similarity - simulated
geometries x real data - Secondo interpolation

α DP8 VW10

0.05 0.951 0.950
0.10 0.930 0.932
0.15 0.915 0.912
0.20 0.899 0.899
0.25 0.887 0.886

APPLIED COMPUTING REVIEW JUN. 2020, VOL. 20, NO. 2 54

Figure 13: Jaccard Index - simulated geometries x
real data - Secondo interpolation

The similarity between simulated results and original ones
decreases as the size of the intervals increases. Also, using
the DP8 or VW10 geometries as input for Secondo inter-
polation does not impact significantly in terms of similarity
between simulated geometries and real ones.

We may also compare the quality of simulated geometries
obtained using the PySpatioTemporalGeom algorithm with
the quality of geometries generated by Secondo. The Jac-
card Index between simulated geometries and real (simpli-
fied) observations of datasets DP8 and VW10 are repre-
sented in figures 14 and 15, respectively.

Figure 14: Jaccard Index - simulated geometries x
real data - DP8 dataset

Geometries simulated using Secondo were more similar to
the original ones than the geometries simulated using PyS-
patioTemporalGeom, both in terms of Jaccard Index (figures
14 and 15) and in terms of Haudorff Similarity (tables 6 and
7).

Secondo failed to simulate the geometries for some times-
tamps (mostly by generating invalid geometries), but its ra-
tio of failure was close to the one of PySpatioTemporalGeom.

5.4 Discussion
In the dissimilarity distance-based strategy, the number of
slices can vary drastically depending on the value of α. For
instance, analyzing the results of section 5.1, together with

Figure 15: Jaccard Index - simulated geometries x
real data - VW10 dataset

the results for similarity metrics obtained when simulating
geometries with Secondo (e.g. figure 13), it is possible to
identify that an increase of 0.20 (from 0.05 to 0.25) on the
acceptable dissimilarity (i.e. α) would reduce the number of
used geometries from near 90% of the number of observa-
tions in the dataset to less than 7%, with a drop-off of just
12% of similarity (on average) between the original shapes
and the generated shapes.

In terms of the overall simulation quality, the dissimilarity
distance-based strategy led to better results than uniform
sampling, as the former considers the geometries similarity
to determine the time slices. By identifying situations where
the similarity distance between two geometries is greater
than a given value, it is possible to create interpolations
where the transitions within the time slices is smooth, which
improves the quality of the spatio-temporal data.

In section 5.1, we acknowledge the existence of slices com-
posed of a single observation. That means such observations
are significantly dissimilar to their previous and following
ones, which indicates they may be outliers. We visually in-
spected some of them and confirmed the existence of inaccu-
rate geometries (i.e. the object detection failed to recognize
the burned area).

For instance, consider figure 16, which presents three se-
quential observations: 788, 789 and 790, from top to bot-
tom, respectively. The one on the middle is clearly different
from the other two. By looking back to the original frame
(in figure 17), we confirm that the segmentation technique
failed to correctly identify the burned area in this frame (due
to the smoke in the image). Also, observation 788 is part of
an interval with 10 observations and observation 790 is part
of an interval with 22 observations (when using VW10 and
α = 0.2). Both time slices would be merged if observation
789 (the one with an anomaly) is discarded, and a slice rep-
resenting 32 observations would be created. Thus, in this
example, the proposed method was also helpful to identify
an outlier observation generated by a segmentation error.

Therefore, considering the existence of single-observation
slices, we plan to study, as future work, more sophisticated
mechanisms to detect and remove (or correct) noisy data,
outliers and anomalies.

APPLIED COMPUTING REVIEW JUN. 2020, VOL. 20, NO. 2 55

Figure 16: Sequence of observations with an outlier
in the middle

Figure 17: Smoke leading to inaccurate object de-
tection

When using the PySpatioTemporalGeom interpolation al-
gorithm, in-between representations of datasets simplified
with the Douglas-Peucker algorithm were generally better
(in terms of similarity metrics) than the ones simulated using
datasets simplified by the Visvalingam-Whyatt algorithm.
But the geometry simplification method did not significantly
influence on Secondo’s interpolation quality.

The number of points in the geometries influenced the inter-
polation execution time and the number of faults (including
invalid geometries) in the interpolations but did not signifi-
cantly influence the quality of interpolation results in terms
of its similarity to real data.

In the evaluated configurations, Secondo significantly out-
performed PySpatioTemporalGeom in terms of considered
metrics on the similarity between simulated geometries and
original ones.

6. CONCLUSIONS
Most spatio-temporal data currently available is acquired
and stored as a discrete sequence of snapshots. But deal-
ing with such data discretely may not be the most efficient
way in many situations. The use of the continuous repre-
sentation, on the other hand, may represent a challenge, as
discretely obtained observations should be used to create a
sliced representation, which comprises procedures to select
the most adequate observations and defining interpolation
functions that adequately simulate the evolution of the con-
sidered real-world phenomena.

In this work we evaluate the PySpatioTemporalGeom in-
terpolation algorithm and the region interpolation method
available at Secondo DBMS. We use uniform sampling and
a dissimilarity distance threshold between consecutive ob-
servations as mechanisms to identify time slices in the con-
tinuous representations. The threshold in the dissimilarity
distance algorithm aims to guarantee that there is a smooth
transition between all the real observations contained in a
slice, which we experimentally show through the evaluation
over a real-world dataset. Furthermore, we observed that
in some situations the use of the dissimilarity distance may
help identify potentially segmentation errors and outliers.

We also evaluate how the use of geometry simplification al-
gorithms may impact on time slice definition and interpo-
lation quality. We tested distinct geometry simplification
algorithms and geometry simplification levels, and identi-
fied that the use of simplified objects does not impact neg-
atively on slices, but improves slice identification execution
time. Also, in the evaluated configurations, highly simpli-
fied geometries significantly reduced interpolation execution
time and failures, and achieved almost the same interpo-
lation quality (in terms of similarity to real data) than the
one obtained using the geometry representations with higher
number of points in the contours. We identified that Sec-
ondo’s interpolation achieved the best results in terms of
similarity between interpolation results and real-world data.

As future work, we plan to do a more in-depth study on
how to detect and remove (or correct) noise, anomalies and
outliers in the discrete observations for a better generation
of their continuous representations. Outlier detection is a
first step to be studied, to remove anomalies from the orig-
inal datasets. We also plan to use the obtained parameters
(in terms of slice specification, geometry representation and
interpolation method) as part of our study on burned area
evolution, specially to simulate such evolution during time
frames on which there is no real data.

7. ACKNOWLEDGMENTS
This work is partially funded by National Funds through
the FCT (Foundation for Science and Technology) in the
context of the projects UID/CEC/00127/2013 and POCI-
01-0145-FEDER-032636.

8. REFERENCES
[1] R. L. C. Costa, E. Miranda, P. Dias, and J. Moreira.

Sampling strategies to create moving regions from real
world observations. In Proceedings of the 35th Annual

APPLIED COMPUTING REVIEW JUN. 2020, VOL. 20, NO. 2 56

ACM Symposium on Applied Computing, SAC ’20,
page 609–616, 2020.

[2] DETI - IEETA, University of Aveiro. MoST-IEETA -
GitHub, 2020. https://github.com/most-ieeta/ - Last
accessed: 2020-06-06.

[3] D. H. Douglas and T. K. Peucker. Algorithms for the
reduction of the number of points required to
represent a digitized line or its caricature.
Cartographica: the international journal for geographic
information and geovisualization, 10(2):112–122, 1973.

[4] J. Duarte, P. Dias, and J. Moreira. A framework for
the management of deformable moving objects. In
A. Mansourian, P. Pilesjö, L. Harrie, and R. van
Lammeren, editors, Geospatial Technologies for All,
pages 327–346, Cham, 2018. Springer International
Publishing.

[5] J. Duarte, B. Silva, J. Moreira, P. Dias, E. Miranda,
and R. L. C. Costa. Towards a qualitative analysis of
interpolation methods for deformable moving regions.
In Proceedings of the 27th ACM SIGSPATIAL
International Conference on Advances in Geographic
Information Systems, SIGSPATIAL ’19, page 592–595,
2019.

[6] M. Erwig, R. H. Güting, M. Schneider, and
M. Vazirgiannis. Abstract and discrete modeling of
spatio-temporal data types. In Proceedings of the 6th
ACM International Symposium on Advances in
Geographic Information Systems, GIS ’98, pages
131–136, New York, NY, USA, 1998. ACM.

[7] R. H. G. et al. SECONDO: an extensible database
system, 2020. http://dna.fernuni-hagen.de/secondo/ -
Accessed: 2020-06-06.

[8] L. Forlizzi, R. H. Güting, E. Nardelli, and
M. Schneider. A data model and data structures for
moving objects databases. In Proceedings of the 2000
ACM SIGMOD International Conference on
Management of Data, SIGMOD ’00, pages 319–330,
New York, NY, USA, 2000. ACM.

[9] R. H. Guting, V. Almeida, D. Ansorge, T. Behr,
Z. Ding, T. Hose, F. Hoffmann, M. Spiekermann, and
U. Telle. SECONDO: an extensible dbms platform for
research prototyping and teaching. In 21st
International Conference on Data Engineering
(ICDE’05), pages 1115–1116, April 2005.

[10] R. H. Güting, T. Behr, and C. Düntgen. SECONDO:
A platform for moving objects database research and
for publishing and integrating research
implementations. IEEE Data Engineering Bulletin,
33(2):56–63, 2010.

[11] H. Hayashi, A. Asahara, N. Sugaya, Y. Ogawa, and
H. Tomita. Composition of simulation data for
large-scale disaster estimation. In Proceedings of the
Second ACM SIGSPATIALInternational Workshop on
the Use of GIS in Emergency Management, EM-GIS
’16, pages 4:1–4:8, New York, NY, USA, 2016. ACM.

[12] F. Heinz and R. H. Güting. Robust high-quality
interpolation of regions to moving regions.
GeoInformatica, 20(3):385–413, Jul 2016.

[13] J. Henrikson. Completeness and total boundedness of
the hausdorff metric. MIT Undergraduate Journal of

Mathematics, 1:69–80, 1999.

[14] M. McKenney. pyspatiotemporalgeom - pypi, 09 2019.
https://pypi.org/project/pyspatiotemporalgeom/ -
Last accessed: Sept, 2019.

[15] M. Mckenney and R. Frye. Generating moving regions
from snapshots of complex regions. ACM Trans.
Spatial Algorithms Syst., 1(1):4:1–4:30, July 2015.

[16] M. McKenney and J. Webb. Extracting moving
regions from spatial data. In Proceedings of the 18th
SIGSPATIAL International Conference on Advances
in Geographic Information Systems, GIS ’10, pages
438–441. ACM, 2010.

[17] X. Meng and J. Chen. Moving Objects Management:
Models, Techniques and Applications. Springer
Publishing Company, Incorporated, 1st edition, 2011.

[18] MoST Project. Controlled burn dataset - pinhão cel,
portugal, 2020. http://most.web.ua.pt/ - Last
accessed: 2020-06-06.

[19] OSGeo. JTS Topology Suite - OSGeo, 2020.
https://www.osgeo.org/projects/jts/ - Last accessed:
2020-06-06.

[20] M. Santos and J. Peña. Representing, storing and
mining moving objects data. Lecture Notes in
Engineering and Computer Science, 2192, 07 2011.

[21] W. Shi and C. Cheung. Performance evaluation of line
simplification algorithms for vector generalization. The
Cartographic Journal, 43(1):27–44, 2006.

[22] W. Siabato, C. Claramunt, S. Ilarri, and M. A.
Manso-Callejo. A survey of modelling trends in
temporal gis. ACM Comput. Surv., 51(2):30:1–30:41,
Apr. 2018.

[23] E. Tøssebro and R. H. Güting. Creating
representations for continuously moving regions from
observations. In C. S. Jensen, M. Schneider, B. Seeger,
and V. J. Tsotras, editors, Advances in Spatial and
Temporal Databases, pages 321–344, Berlin,
Heidelberg, 2001. Springer Berlin Heidelberg.

[24] S. Villarroya, J. R. Viqueira, M. A. Regueiro, J. A.
Taboada, and J. M. Cotos. Soda: A framework for
spatial observation data analysis. Distrib. Parallel
Databases, 34(1):65–99, Mar. 2016.

[25] J. R. R. Viqueira and N. A. Lorentzos. Sql extension
for spatio-temporal data. The VLDB Journal,
16(2):179–200, Apr. 2007.

[26] M. Visvalingam. Explorations in digital cartography.
2015.

[27] M. Visvalingam and J. D. Whyatt. Line generalisation
by repeated elimination of points. The cartographic
journal, 30(1):46–51, 1993.

[28] M. Visvalingam and P. J. Williamson. Simplification
and generalization of large scale data for roads: a
comparison of two filtering algorithms. Cartography
and Geographic Information Systems, 22(4):264–275,
1995.

[29] J. Xu and R. H. Güting. Manage and query generic
moving objects in secondo. Proc. VLDB Endow.,
5(12):2002–2005, Aug. 2012.

APPLIED COMPUTING REVIEW JUN. 2020, VOL. 20, NO. 2 57

ABOUT THE AUTHORS:

Rogério Costa received his PhD in Computer Engineering from University of
Coimbra in 2011. With more than 15 years of experience in teaching and in industry
projects, and he is currently a researcher at University of Aveiro working on the
project MoST. His research interests include spatiotemporal databases, big data, data
analysis and performance tuning.

Enrico Mirada graduated from the State University of Campinas (Brazil) in 2009 and
started working in the private sector. In 2017, he concluded his Master's degree at
the Federal University of Maranhão Brazil) with the thesis “Meta Learning applied
to the MaxSAT Problem”. He has experience in applied data science, machine
learning and optimization on big scale logistic environments. During 2019, he was
part of Institute of Electronics and Informatics Engineering of Aveiro (IEETA) on
the project "MoST - Modeling, querying and interactive visualization of
spatiotemporal data", focusing on data acquisition and pre-processing.

Paulo Dias graduated from the University of Aveiro Portugal in 1998 and started
working in 3D reconstruction at the European Joint research Centre in Italy. In
September 2003, he concluded his PhD with the thesis “3D Reconstruction of real
World Scenes Using Laser and Intensity Data”. He is currently an assistant professor
within the Department of Electronics Telecommunications and Informatics (DETI)
and is involved in several works and projects within the Institute of Electronics and
Informatics Engineering of Aveiro (IEETA) related to 3D Reconstruction, Virtual
Reality, Computer Vision, Computer Graphics, Visualization and Combination and
Fusion of data from multiple sensors.

José Moreira received his Ph.D. in Computer Science and Networks from the École
Nationale Supérieure des Télécommunications de Paris (France), currently known as
Telecom Paristech, and the Faculdade de Engenharia da Universidade do Porto
(Portugal) in 2001. He is Assistant Professor at the Department of Electronics,
Telecommunications and Informatics of the Universidade de Aveiro and a researcher
at IEETA, a non-profit R&D institute affiliated to the same university. His main
research interests are on spatial and spatiotemporal database systems and GIS
Science.

APPLIED COMPUTING REVIEW JUN. 2020, VOL. 20, NO. 2 58

	Introduction
	Motivation
	Problem Description
	Contributions

	Related Work
	Gender Inference Attack on Social Media
	Emoji Usage Analysis
	Graph Based Method

	Gender Inference Attack
	Graph Generation
	Graph Embedding

	ATTACK EVALUATION
	Dataset
	Metric
	Parameters
	Results

	Conclusion
	Acknowledgments
	References

