Lecture 03

Concurrent Programming in Java

Conditional synchronization, native library, and implementation of
elementary synchronization mechanisms

Object-Oriented Concurrent Programming, 2019-2020

v2.3, 02-10-2019

Miguel Oliveira e Silva, DETI, Universidade de Aveiro

Contents

(1 Conditional synchronization| 1

2 Basic synchronization mechanisms] 3
2.1 Semaphores| e e e e 3
2.2 Mutual exclusion Mutex)| 4
23 Conditionvariables| e 5
2.4 Readers-writerexclusion] e 5

3 Mutual exclusion and conditional synchronization with Semaphores| 6

4 Concurrency Library| 7
BTT0CK . .« . oo o o e e 7
B2 Condifion] v v et e e e 8
B3TTasks . . oo e 8
BA EXECUlOn o o v v e e e e e e 8
.5 Thread-pools| e 9
H6 AWOMICS o o o 10
M7 Concurrent data structuresl 10
E8Barmiers] o o o o e 11
4.9 Fork/joinexecutor]. e e e e e e 11
.10 Other useful classes|. e e e 12

1 Conditional synchronization

Conditional synchronization

* In the communication between different threads sometimes it is necessary to ensure a certain con-
dition before executing a given code (for example, a thread for printing documents could be sched-
uled to wait for a non-empty queue);

* This communication requirement is called conditional synchronization, and its implementation
can be done in two ways;

* It could actively be waiting for the condition:

while (!condition)
Thread.yield();

* However, if the wait is long, the processor will be actively working on anything relevant (instead
of doing useful work elsewhere);

* Alternatively, a cooperative mechanism could be used, in which some threads voluntarily wait
(without CPU consumption), and threads that might change the condition explicitly notify such
modifications, possibly awakening the former;

¢ This mechanism is called condition variables;

* In Java, this behavior is implemented by methods defined in the Ob ject class: wait, notify,
and notifyAll.

package java.lang;

public class Object {
public void notify ();
public void notifyAll ();
public void wait() throws InterruptedException;
public void wait(long timeout) throws InterruptedException;
public void wait(long timeout, int nanos)
throws InterruptedException;

* There is a very close relationship between synchronized regions and condition variables;

* A conditional wait (wait) has to be done inside a synchronized block (or function) of the
same object (otherwise, a race condition might occur).

» Although condition variables are based on a cooperative wait/notify mechanism, the mechanism
allows waiting threads to be awaken without an explicit notification (spurious wakeups);

* Thus a correct use of this mechanism requires that the invocation of service wait is inside a cycle
checking the waiting condition:

while (!condition)
wait ();

* This requirement also eases the reuse of the same condition variable for several conditions;

* In this case, however: (1) either it is necessary to use the not 1fyAl1 service (which is the safest
and simpler option); (2) or use not i fy, and whenever the wrong thread is awoken, re-notify other
possibly waiting threads:

while (!condition) {
wait ();
if (!'condition)
notify();

Conditional synchronization: the problem of checked exceptions

* One of the practical problems posed by native Java’s conditional synchronization interface, is the
requirement to explicitly deal with InterruptedException exceptions;

* Ifin theory this group of exceptions (named checked) seems to make sense, in practice it has shown
to be a real menace to program quality (arising several correctness and robustness problems);

* In fact, program developers usually do not know what to do to handle exceptions (or, simply, don’t
want to “waste time” on that, delaying that problem to a later time) leaving empty cat ch blocks
(or only with a log registry, which is logically the same thing);

* The possibility to declare within the method’s signature the list of exceptions it may launch (an
obligation when uncatched checked exceptions are involved), is also a very questionable alterna-
tive because, not only may require a lot of bookkeeping code, but also it may break algorithmic
abstraction (which, let us not forget, is the essence of the methods);

2

2.1

 All these problems can be avoided by implementing waiting methods in which such exceptions are
transformed into a proper unchecked exception. Such as: ThreadInterruptedException
(such as the one defined in pt . ua.concurrent library);

* We can also create a new class to be used in place of the Ob ject class where we abstract all this
functionality:

public class SimplerObject {
protected SimplerObject() { super(); }

public void await() {
try { wait(); }
catch(InterruptedException e) {
throw new ThreadInterruptedException(e);

}

}

* The problem with this option is that it is only applicable to classes that do not need to extend other
classes. That is, classes that extend it directly or indirectly.

Basic synchronization mechanisms

Semaphores
* A semaphore is a special shared non-negative integer variable, to which the following operations
are applicable:
— acquire (lock, wait, P, decrement, down)
— release (unlock, signal, V, increment, up)

* The acquire operation ensures a non-negative result, thus it may block until such outcome is pos-
sible.

* In general, a maximum counter value is attached to a semaphore (maximum number of concurrent
accesses to the resource).

* A semaphore is said to be binary if this value is one.

* We can establish a typing relation between different semaphore types:

(semaphore)

CBoundedSemaphore)

@inarySemaphore}

Semaphores: Interface

public class Semaphore {

/##% Creates an unbounded semaphore =/
public Semaphore ();

/##% Creates an unbounded semaphore with

« counter initialized to initialCount.

<P>requires : {@code initialCount >= 0}
%/

public Semaphore(int initialCount);

/#% Decrements counter (waits if counter equals zero) =/
public synchronized void acquire ();

/% Increments counter +*/

public synchronized void release ();

public class BoundedSemaphore extends Semaphore {
/##% Creates a semaphore with maxCount upper limit.
<P>requires : {@code maxCount > 0}
*/
public BoundedSemaphore(int maxCount);

/##% Creates a semaphore with maxCount upper limit
and counter initialized to initialCount.
<P>requires : {@code maxCount > 0}
<P>requires : {@code initialCount >= 0 &%
* initialCount <= maxCount}
#/
public BoundedSemaphore(int maxCount, int initialCount);

}

public class BinarySemaphore extends BoundedSemaphore {
/%% Creates a binary semaphore =/
public BinarySemaphore ();

/## Creates a binary semaphore initialized to initialCount.
<P>requires : {@code initialCount >= 0 &&

P initialCount <= maxCount]}

#/

public BinarySemaphore(int initialCount);

2.2 Mutual exclusion (Mutex)
» Synchronization mechanism that gives a single thread the exclusive access to a shared resource.
* It is characterized for having (at least) the following operations:
- lock
- unlock

» Unlike a binary semaphore, it is also characterized by having lock ownership. Thus, an unlock
operation can only be executed by the owner thread (i.e. the current lock thread).

* A mutex could be defined to be recursive (i.e. the mutex owner thread might perform recursive
locks).

Mutex: Interface

public class Mutex {
/#% Creates a non—recursive Mutex #*/
public Mutex ();

/% Creates a Mutex =/
public Mutex (boolean recursive);

/#% Locks mutex.

<P>requires : {@code !lockIsMine () |l recursive ()}
<P>ensures : {@code lockIsMine ()}

#/

public synchronized void lock ();

/#% Unlocks mutex .

<P>requires : {@code lockIsMine ()}
#/

public synchronized void unlock ();

/## Is mutex locked by current thread? =/
public synchronized boolean lockIsMine ();

/##% Is mutex recursive? =/
public synchronized boolean recursive ();

2.3 Condition variables

* Synchronization mechanism used to safely pass indicative information on the state of the shared
resource.
* Is is characterized by the following operations:
- await (wait)
— signal (notify)
— broadcast (notifyAll)
* A change in the state attached to a condition variable, should be followed by the execution of a
signal or broadcast operation.
* An exclusive access to the resource that does not finds the required (waiting) state should be

followed by the execution of an await operation that atomically waits and releases the resource
(otherwise a race condition could occur).

Condition variables: Interface

public class CVMutex {
/#+#% Creates a condition variable attached to mutex mtx
<P>requires : {@code mtx != null}
#/
CVMutex (Mutex mtx);

/##% Mutex attached to condition variable =/
public final Mutex mtx;

/##% Waits signaling .

<P>requires : {@code mtx.locklIsMine () &&
* mtx.lockCount () == 1}
%/
public synchronized void await ();

/##% Signal one waiting thread =/
public synchronized void signal ();

/#% Signal all waiting thread =/
public synchronized void broadcast();

2.4 Readers-writer exclusion

» Synchronization mechanism that gives exclusive access to a single writer (a thread executing a
method that might change the resource state) at each time, but allows the concurrent execution to
multiple readers (threads execution side-effect free query methods).

* Is is characterized by the following operations:

— lockReader

unlockReader

lockWriter

unlockWriter

Readers-writer exclusion: Interface

public class RWEx {
public enum Priority {WRITER, READERS};

/##% Creates a non—recursive RWEx x/
public RWEx(Priority priority);
/#% Is current lock mine? =/

public synchronized boolean lockIsMine ();
/#% Is current lock mine as a reader? =/
public synchronized boolean readerLockIsMine ();
/##% Is current lock mine as a writer? =/

public synchronized boolean writerLockIsMine ();

/+#% Locks RWEx as a reader.

<P>requires : {@code !lockIsMine ()}

<P>ensures : {@code readerLockIsMine ()} =/
public synchronized void lockReader ();

/+#% Locks RWEx as a writer.

<P>requires : {@code !lockIsMine ()}

% <P>ensures : {@code writerLockIsMine ()} =/
public synchronized void lockWriter ();

/#% Unlocks reader RWEx lock.

<P>requires : {@code readerLockIsMine ()}

<P>ensures : {@code !lockIsMine ()} =/
public synchronized void unlockReader ();

/#% Unlocks writer RWEx lock.

% <P>requires : {@code writerLockIsMine ()}

<P>ensures : {@code !lockIsMine ()} =/
public synchronized void unlockWriter ();

3 Mutual exclusion and conditional synchronization with Semaphores

Mutual exclusion with Semaphores

* The condition variable mechanism is a programming pattern that can easily be applied to any use
of condition synchronization.

* On the other hand, although semaphores are not equivalent to a conditional variable, they are a ba-
sic synchronization mechanism implemented for all types of concurrent systems (UNIX processes,
for instance, have semaphores, but not condition variables).

* Mutual exclusion is easily implemented with a single binary semaphore.

Semaphore mtx = new BinarySemaphore (1);

// lock:
mtx . acquire ();

// unlock:
mtx . release ();

Conditional synchronization with Semaphores

» Semaphores can also be applied to implement general condition variables. Lets see how.

* The first thing to be noted is that a condition variable is required to be attached with a mutual
exclusion mechanism. Hence, an exclusion binary semaphore is also required.

» The second characteristic of condition variables is that a group of threads may be required to wait
for proper signaling. Hence, an integer waiting counter is also necessary.

* Finally, this mechanism requires an atomic behavior joining signaling and mutex acquisition.

» Considering all these requirements, a general solution is the following:

Mutex code:

Semaphore code:

// variables:
Mutex mtx = new Mutex();

MutexCV cvar = mtx.newCV () ;

// wait:

mtx.lock () ;

while (!condition)
cvar.wait () ;

mtx.unlock () ;

// broadcast :
mtx.lock () ;

cvar.broadcast () ;

mtx.unlock () ;

// variables:
Semaphore mtx =
new BinarySemaphore (1) ;
int waitingCounter = 0;
Semaphore waitingCondition =
new Semaphore (0) ;

// wait:

mtx.acquire () ;

while (!condition)

{
waitingCounter++;
mtx.release () ;
waitingCondition.acquire () ;
mtx.acquire () ;

}
mtx.release();

// broadcast :
mtx.acquire () ;

while (waitingCounter > 0)

{
waitingCondition.release () ;
waitingCounter—-;

}

mtx.release();

4 Concurrency Library

41 Lock

Explicit synchronization

* The Java native library contains classes that allow the use of explicit locks: Lock (and Reentrant Lock)

interfaces;

* This classes surpass some limitations of the synchronized blocks:

Provide t ryLock service;

» Usage pattern:

Do not require in association to a structured block;

Allow interruption (method 1lockInterruptibly);

There are different implementations (adapted to each use).

lock .lock ();

try {
// action
}
finally {
lock .unlock ();

}

Lock interface

¢ Interface:

package java.util.concurrent.locks;

interface Lock {
void lock();
void lockInterruptibly ()
throws InterruptedException;

Condition newCondition () ;

boolean tryLock();

boolean tryLock (long time, TimeUnit unit)
throws InterruptedException;

void unlock () ;

}

(See also ReentrantLock)

4.2 Condition

Condition interface

Interface:

package java.util.concurrent.locks;

interface Condition {
void await () throws InterruptedException;
void awaitUninterruptibly () ;
boolean await (long time, TimeUnit unit)
throws InterruptedException;
long awaitNanos (long nanosTimeout)
throws InterruptedException;
boolean awaitUntil (Date deadline)
throws InterruptedException;
void signal();
void signalAll();
}

Allows more than one condition variable in each object.

4.3 Tasks

Tasks, methods, and threads

4.4

A concurrent program organizes itself around the execution of threads;

The creation an execution of threads is clearly based on the message passing communication
model, but in which the communicating active entities do so by the Runnable interface;

In this model, the asynchronous execution of method is desired, in which Thread class binds a
method (run) to a thread;

This direct one-to-one connection between tasks and threads may, sometimes, create problems:

— The overhead involved in the creation/destruction of threads;
— Resource consumption, memory in particular;
— Scalability: there is a practical limit to the number of threads that may coexist.

Concurrency abstractions based on the separation between “task™ and “thread” provides a control-
lable solution to this limitations.

Executor

A scalable alternative that avoids these problems is the usage of a task library;
The package java.util.concurrent provides such a group of functionalities.
The topmost abstraction defined in this package toward such a goal is the Executor:

package java.util.concurrent;

public interface Executor {
void execute (Runnable task);

}

* This abstraction is a direct replacement of the thread’s st art method (or run method of Runnable
class).

e “Under” this interface different thread control schemes can be built:
* Sequential:

public class SegExecutor implements Executor {
public void execute (Runnable task) {
task.run();

}

* One task per thread:

public class ThreadExecutor implements Executor {
public void execute (Runnable task) {
new Thread (task) .start();
}

* Or any other.

4.5 Thread-pools

Creating task managers

* The java.util.concurrent library provide a rich set of Executor modules that covers
the more common needs.
* Executors class provides static methods that give a simple instantiation:

package java.util.concurrent;

public class Executors {
static ExecutorService newSingleThreadExecutor ();
static ExecutorService newFixedThreadPool(int nThreads);
static ExecutorService newCachedThreadPool ();
static ScheduledExecutorService newScheduledThreadPool(int corePoolSize);

Executors

* newSingleThreadExecutor

— Creates a single thread that is reused by the submitted tasks (stored internally in an un-
bounded queue).

* newFixedThreadPool
— Creates a fixed predefined number of threads that are reused by the submitted tasks.
* newCachedThreadPool

— Automatically increases or reduces the number of threads that are reused by the submitted
(the number is adapted by the number of submitted tasks).

* newScheduledThreadPool

— Allows the execution of tasks with a pre-defined time schedule. We can launch tasks to be
performed after a time delay, or launch tasks to be performed periodically (like timers). This
type of thread-pool replaces with many advantages the Timer class.

ExecutorService

* The abstraction ExecutorService allows the management of the Executor lifecycle:

package java.util.concurrent;

public interface ExecutorService extends Executor {
boolean isShutdown () ;
boolean isTerminated();
void shutdown () ;
<T> Future<T> submit (Callable<T> task);
Future<?> submit (Runnable task);
<T> Future<T> submit (Runnable task, T result);

Future, and Callable

package java.util.concurrent;

public interface Future<vV> ({
boolean cancel (boolean mayInterruptIfRunning);

\

get () ;

boolean isCancelled();
boolean isDone();

package java.util.concurrent;

public interface Callable<V> {

Y
}

call();

4.6

4.7

(Later on we will see this type of interfaces in more detail.)

Atomics

Non-blocking transaction like shared data structures.

These modules allow a lock-free (i.e. with non-blocking behavior) handling of shared variables.

Package: java.util.concurrent.atomic
AtomicInteger,AtomicLong,AtomicBoolean,AtomicIntegerArray, AtomicLongArray,
AtomicReference, AtomicReferenceArray.

These modules represent a better and safer alternative to volatile variables.

Concurrent data structures

Blocking Queue

java.util.concurrent.BlockingQueue

A shared queue in which its normal semantics might be ensured by blocking (add/remove element
from a full/empty queue).

Selected interface:

void put(E e)
E take ()

Existing implementations: ArrayBlockingQueue, LinkedBlockingQueue, PriorityBlockingQuet
LinkedBlockingDeque, SynchronousQueue, DelayQueue

10

Non-Blocking Queue

java.util.concurrent.ConcurrentLinkedQueue

Shared lock-free queue.

Defensive approach to queue operations, issuing immediately a failure if an operation is not pos-
sible

Selected interface:

boolean add(E e)

E peek ()

E poll ()

Iterator <E> iterator ()

Concurrent associative array

4.8

4.9

java.util.concurrent.ConcurrentHashMap

Shared (mostly) lock-free associative array.

Defensive approach, issuing immediately a failure if an operation is not possible
Class ConcurrentHashMap<K, V> selected interface:

V get(Object key)

V put(K key, V value) // might be a race condition
V putlfAbsent (K key, V value) // safe

boolean containsKey (Object key)

boolean replace (K key, V oldValue, V newValue)
Enumeration<K> keys ()

Barriers

Synchronizing the execution of multiple threads to a single point:

—

ExcouTion
WAITING EXECUTION
EXECUTION >

Class java.util.concurrent.atomic.CountDownLatch
Selected interface:

3

BARRIER

| EXECUTION

!

CountDownLatch(int count)

void await ()

boolean await(long timeout, TimeUnit unit)
void countDown ()

long getCount ()

Service await waits for get Count invocations of countDown method.

Fork/join executor

Optimized executor for fork/join parallel execution (new in Java 7).
Create the pool:

ForkJoinPool forkJoinPool = new ForkJoinPool ();

Execute with invoke or invokeAll
Possible to define ForkJoinTask (RecursiveAction, RecursiveTask)

11

Fork/join executor: example

import static java.lang.System.x;
import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.RecursiveAction;

public class Fibonacci {
public static void main(String[] args) {
int n = Integer.parselnt(args[0]); // error checking missing!
FibonacciTask fn = new FibonacciTask(n);
ForkJoinPool forkJoinPool = new ForkJoinPool ();
forkJoinPool.invoke(fn);
out.println ("f("+n+")="+fn.result ());
}
static class FibonacciTask extends RecursiveAction {
final int n;
int result = 1;
FibonacciTask (int n) {
this.n = n;
}
int result() {
return result;
}
protected void compute () {
if (n > 2) {
FibonacciTask tl = new FibonacciTask(n—1);
FibonacciTask t2 = new FibonacciTask(n—2);
invokeAll (tl, t2);
result = tl.result + t2.result;

4.10 Other useful classes

* ThreadLocal: variable in which each threads register its own data (a kind of thread local vari-
able accessible through the same object);

* ReadWriteLock (to be presented later on);

» Synchronizers: Semaphore, FairSemaphore, Exchanger,...

* None of these classes uses Design by Contract!

* A library is being developed (since 2010) that solve this serious flaw:

http://sweet.ua.pt/mos/pt.ua.concurrent/index.xhtml

12

http://sweet.ua.pt/mos/pt.ua.concurrent/index.xhtml

	Conditional synchronization
	Basic synchronization mechanisms
	Semaphores
	Mutual exclusion (Mutex)
	Condition variables
	Readers-writer exclusion

	Mutual exclusion and conditional synchronization with Semaphores
	Concurrency Library
	Lock
	Condition
	Tasks
	Executor
	Thread-pools
	Atomics
	Concurrent data structures
	Barriers
	Fork/join executor
	Other useful classes

