Interac¢do e Concorréncia 2016/17
Bloco de acetatos 8

Alexandre Madeira
(based on Luis S. Barbosa 2014 /15 course Slides)
HASLab INESC TEC, DI UMINHO

Il\

April 26, 2017

Motivation

System's correctness wrt a specification

e equivalence checking (between two designs), through ~ and =

e unsuitable to check properties such as

can the system perform action « followed by 37

Motivation

System's correctness wrt a specification

e equivalence checking (between two designs), through ~ and =
e unsuitable to check properties such as

can the system perform action « followed by 37

which are best answered by exploring the process state space

Which logic?

e Modal logic over transition systems

e The Hennessy-Milner logic (offered in mCRL2)

Motivation

System'’s correctness wrt a specification
e equivalence checking (between two designs), through ~ and =
e unsuitable to check properties such as
can the system perform action « followed by 37

which are best answered by exploring the process state space

Which logic?

e Modal logic over transition systems
e The Hennessy-Milner logic (offered in mCRL2)
e The modal si-calculus (offered in mCRL2)

The language

Signatures

Signatures are pairs (PROP. MOD) where PROP and MOD are
sets of propositional symbols and modality symbols.

The language

Signatures
Signatures are pairs (PROP. MOD) where PROP and MOD are
sets of propositional symbols and modality symbols.

Formulas

pu=p|tt || 20| p1Ad | pr— 2| (Mo | [mo
where p € PROP and m € MOD

The language

Signatures

Signatures are pairs (PROP. MOD) where PROP and MOD are
sets of propositional symbols and modality symbols.

Formulas
¢pu=pltt|[fF|=p| p1Ad | d1—= ¢ | (Mo | [m]o

where p € PROP and m € MOD

Disjunction (V) and equivalence (<) are defined by abbreviation.

The language

Notes

e if there is only one modality in the signature (i.e., MOD is a
singleton), write simply ©¢ and

The language

Notes
e if there is only one modality in the signature (i.e., MOD is a
singleton), write simply ©¢ and

e the language has some redundancy: in particular modal connectives
are dual (as quantifiers are in first-order logic):

[m] ¢ is equivalent to —(m) —¢

The language

Semantics
A model for the language is a pair M = (F, V), where

o F = (W,{Rm}memon) is a Kripke frame, ie,

e |/ is a a non empty set (of states or worlds)
o {Ry}mevon is a family of binary relations R,, C W x W, for
each modality symbol m € MOD.

e V:PROP — P(W) is a valuation.

The language

Satisfaction: for a model M and a point w

M,w = tt
M, w - ff
M,w=p
MaW):_‘d)
M,w = ¢1 A ¢
M,W)=¢1—>¢2
M, w = (m) o
M, w = [m] ¢

iff
iff
iff
iff
iff
iff

w € V(p)

M,w = @

M,wE ¢ and M, w = ¢,

M,w @1 or Myw = ¢

there exists v € W st wR,v and M, v = ¢
for all v € W st wR,,v and M,v |= ¢

The language

Safistaction
A formula ¢ is

satisfiable in a model M if it is satisfied at some point of M
globally satisfied in M (M = ¢) if it is satisfied at all points in M
valid (| ¢) if it is globally satisfied in all models

e a semantic consequence of a set of formulas I (I &= ¢) if for all
models M and all points w, if M,w =T then M,w |= ¢

Examples

Temporal logic

e |V is a set of instants

e there is a unique modality corresponding to the transitive closure
of the next-time relation

e origin: Arthur Prior, an attempt to deal with temporal information
from the inside, capturing the situated nature of our experience and
the context-dependent way we talk about it

Examples: Temporal logics with &/ and S

M,w = oU 1 iff
there exists v € W such that (w,v) € R and M, v = 4, and for all
u € W such that (w,u) € R and (u,v) € R one has M, u = ¢

Examples: Temporal logics with &/ and S

M,w = oU 1 iff

there exists v € W such that (w,v) € R and M, v = 4, and for all

u € W such that (w,u) € R and (u,v) € R one has M, u = ¢

M, w = ¢S iff

there exists a v € W such that (v,w) € R and M, v =% and, for all u
such that (v,u) € R and (u,w) € R one has M,u = ¢

e note the 3V qualification pattern: these operators are neither
diamonds nor boxes.

o helpful to express guarantee properties, e.g., some event will
happen, and a certain condition will hold until then

e ... a plethora of temporal logics: LTL, CTL, CTL*

Examples
Process logic (Hennessy-Milner logic)
e PROP =)

Examples

Process logic (Hennessy-Milner logic)

o PROP = §}

o W =P is a set of states, typically process terms, in a labelled
transition system

Examples

Process logic (Hennessy-Milner logic)

o PROP = §}

o W =P is a set of states, typically process terms, in a labelled
transition system

e each subset K C Act of actions generates a modality corresponding
to transitions labelled by an element of K

Examples

Process logic (Hennessy-Milner logic)

o PROP = §}

o W =P is a set of states, typically process terms, in a labelled
transition system

e each subset K C Act of actions generates a modality corresponding
to transitions labelled by an element of K

Assuming the underlying LTS 7 = (P, {p LR p' | K C Act}) as the
modal frame, satisfaction is abbreviated as

p ': <K>¢ Iff ElqE{PllpiNJ' A aEK} N q): ¢
P): [K]¢ iff qu{pllpih’/ A a€K} " q ': ¢

Examples

Process logic: The taxi network example

e ¢o = In a taxi network, a car can collect a passenger or be allocated
by the Central to a pending service

Examples

Process logic: The taxi network example

e ¢o = In a taxi network, a car can collect a passenger or be allocated
by the Central to a pending service

e o= (rec,alo)tt

Examples

Process logic: The taxi network example

e ¢o = In a taxi network, a car can collect a passenger or be allocated
by the Central to a pending service
e o= (rec,alo)tt

e ¢ = This applies only to cars already on service

Examples

Process logic: The taxi network example
e ¢o = In a taxi network, a car can collect a passenger or be allocated
by the Central to a pending service
e o= (rec,alo)tt
e ¢1 = This applies only to cars already on service

e ¢ = [onservice] (rec, alo) tt or
¢1 = [onservice] ¢

Examples

Process logic: The taxi network example
e ¢o = In a taxi network, a car can collect a passenger or be allocated
by the Central to a pending service
e o= (rec,alo)tt
e ¢1 = This applies only to cars already on service

e ¢ = [onservice] (rec, alo) tt or
¢1 = [onservice] ¢

e ¢, = If a car is allocated to a service, it must first collect the
passenger and then plan the route

Examples

Process logic: The taxi network example
e ¢o = In a taxi network, a car can collect a passenger or be allocated
by the Central to a pending service
e o= (rec,alo)tt
e ¢1 = This applies only to cars already on service

e ¢ = [onservice] (rec, alo) tt or
¢1 = [onservice] ¢

e ¢, = If a car is allocated to a service, it must first collect the
passenger and then plan the route

e ¢, = [alo] (rec) (plan) tt

Examples

Process logic: The taxi network example

e ¢3 = On detecting an emergence the taxi becomes inactive

Examples

Process logic: The taxi network example

e ¢3 = On detecting an emergence the taxi becomes inactive

o 63 = [sos] [-]fF

Examples

Process logic: The taxi network example

e ¢3 = On detecting an emergence the taxi becomes inactive
o ¢3 = [sos][—]ff

e ¢, = A car on service is not inactive

Examples

Process logic: The taxi network example

e ¢3 = On detecting an emergence the taxi becomes inactive
o ¢3 = [sos][—]ff
e ¢, = A car on service is not inactive

o ¢, = [onservice] (—) tt

Process logic: typical properties

e inevitability of a: (—)tt A [—a] ff

Process logic: typical properties

e inevitability of a: (—)tt A [—a] ff

e progress: (—)tt

Process logic: typical properties

inevitability of a: (—)tt A [—a] ff
progress: (—)tt
deadlock or termination: [—]ff

satisfaction decided by unfolding the definition of |=: no need to
compute the transition graph

Hennessy-Milner logic

... propositional logic with action modalities

Syntax
¢ =t [fF| ¢ N2 | 1V | (K)o | [K]o

Semantics: E = ¢

EEtt

E B~ ff

EE ¢ iff EEd1 A EEé
EE¢1V o iff EE¢1 V EE¢
EF(K)d iff 3Fe{E'|Ei>E' A a€K} '’ FE¢

E): [K](b iff VFE{E'\Ei)E’ A a€K} ' F): ¢

Example

Sem =% get.put.Sem

P; =% get.c;.put.pP;

S = (Sem | (jies P)) \ {get, put}
e Sem |= (get) tt

Example

Sem =% get.put.Sem
P; =% get.c;.put.P;
S =9 (Sem | (lies P;)) \ {get, put}

e Sem |= (get) tt holds because

FEtt

EI get .
Fe{Sem’|Sem—>Sem’}

with F = put.Sem.

Example

Sem = get.put.Sem
P; =% get.c;.put.P;
S =9 (Sem | (lies P;)) \ {get, put}

e Sem = (get) tt holds because

FEtt

EIFe{Sem’|Semg—Et)Sem'} ’
with F = put.Sem.
e Sem |= [put] ff

Example

Sem = get.put.Sem
Pi :df a.C/.W.P;
S =% (Sem | (lics P:))\ {get, put}

e Sem = (get) tt holds because

FEtt

3 get .
Fe{Sem’|Sem—>Sem’}
with F = put.Sem.

e Sem |= [put] ff also holds, because
T = {Sem’ | Sem 2 Sem'} = 0.
Hence Vect . F |= ff becomes trivially true.

e The only action initially permmited to S is 7: |= [—7] ff.

Example

Sem =" get.put.Sem
P; =9 get.c;.put.P;
S =" (Sem | (|ics P:)) \ {get, put}

e Afterwards, S can engage in any of the critical events ¢, ¢, ..., ¢;:
[’7’] <C1, o,y C,'> tt

e After the semaphore initial synchronization and the occurrence of ¢;
in P;, a new synchronization becomes inevitable:

S = Ir]lgl ((=) te A [-7] fF)

Verify:

~(a)¢ = [a] ¢

—la]¢ = (a) ¢

(ayff = ff

[a]tt = tt

(@) (oVY) = (a)oV(a)y
[a] (¢ AYp) = [a] o A[a] v
(o Alaly = (a) (o AY)

Exercise

Exercise

Formalise each of the following properties:
@ The occurrence of a and b is impossible.
® The occurrence of a followed by b is impossible.
©® Only the occurrence of a is possible.
O Once a occurred, b or ¢ may occur.
@ After a occurred followed by b, ¢ may occur.
® Once a occurred, b or ¢ may occur but not both.
@ a cannot occur before b.

® There is only an initial transition labelled by a.

Exercise

Consider the following processes and enumerate for each of them
the properties they verify:

0 E1 —df a.b.0

® E =ac0

® E=9"E +E

0 F = a(b.0+c.0)
@ G="E+F

Exercise

Specify a LTS such that the following modal properties hold
simultaneously in its initial state:

e (a) (b) (c)tt A (c) tt
e (a) (b) ([a] fF A [c] fF A [b] fF)
o (a) (b) ((a) tt A [c] fF)

Exercise

Consider the following specification of a CNC program:

Start =% fw.Go + stop.0
Go =9 fw.bk.bk.Start + right.left.bk.Start

Formalise the following properties:
@ After fw another fw is immediately possible
® After fw followed by right, left is possible but bk is not.
© Action fw is the only one initially possible
O The third action of process Start is not fw.

Hennessy-Milner with regular modalities

As in mCRL2, we can enrich modalities with regular expressions of
modal symbols:

a=K|KUK|KNK
for K C A.

Hennessy-Milner with regular modalities

As in mCRL2, we can enrich modalities with regular expressions of
modal symbols:

a=K|KUK|KNK
for K C A. As above we represent
e the set A with —
e the set A\ {a} with —a

Regular modalities

R=¢|la|RR|R+R|R"

Hennessy-Milner with regular modalities

interpretation of regular modalities

e (R1 + Ry)true = (Ry)true V (R>)true
[R1 + Re]true = [Ri]true V [Ro]true

o (R1.Ry)true = (R1)(Ry)true
[Rl.Rg]true = [Rl][RQ]tI’UG

Hennessy-Milner with regular modalities

e As long as no error happens, a deadlock will not occur.

[(—error)*](—)tt

Hennessy-Milner with regular modalities

e As long as no error happens, a deadlock will not occur.

[(—error)*](—)tt

e Whenever an a can happen in any reachable state, a b action
can subsequently be done unless a ¢ happens cancelling the
need to do the b.

[—*.a](—*.(bU c))tt

Hennessy-Milner with regular modalities

As long as no error happens, a deadlock will not occur.

[(—error)*](—)tt

Whenever an a can happen in any reachable state, a b action
can subsequently be done unless a ¢ happens cancelling the
need to do the b.

[—*.al(="(bU)t

Whenever an a action happens, it must always be possible to
do a b after that, although doing the b can infinitely be
postponed.

[~*.a(=b)] (" bjee

A denotational semantics

Idea: associate to each formula ¢ the set of processes that makes it true

A denotational semantics

’ Idea: associate to each formula ¢ the set of processes that makes it true

¢vs || ={E €P|E|=¢}

A denotational semantics

’ Idea: associate to each formula ¢ the set of processes that makes it true

¢vs || ={E €P|E|=¢}

Jtt] =P

|fF| =0
I$1 A d2| = |p1] N |92
Ip1V ¢ =[] U ||

A denotational semantics

’ Idea: associate to each formula ¢ the set of processes that makes it true

¢vs || ={E €P|E|=¢}

Jtt] =P

|fF| =0
I$1 A d2| = |p1] N |92
Ip1V ¢ =[] U ||

IIKT ol = IIKIIC2I)
[{K) ol = KK 2l)

[[K]]l and (KO

Just as A corresponds to N and V to U, modal logic combinators
correspond to unary functions on sets of processes:

IKII(X) = {FEP|IfF3F A acK then F e X}
KK [(X) = {F €P|3pexack - F 2 F}

Note
These combinators perform a reduction to the previous state indexed
by actions in K

[[K]]l and (KO

Example
w2)

[(@){g2, n} = {q1, m}
Ila]l{g2, n} ={a2,q3, m, n}

A denotational semantics

| EEo iff Ec]ol]

Example: 0 = [—] ff

A denotational semantics

| EFo iff Ecdl]

Example: 0 = [—] ff

because

I[=1FF1 = N[=TICIFFD)
= |[-11(0)
={FcP|if FS F' A x€ Act then F' €0}
={0}

A denotational semantics

| EEo iff Ec]ol]

Example: 77 | (—) tt

A denotational semantics

| EFo iff Ecdl]

Example: 77 | (—) tt

because

[(=) et = [{=)[(lee])
= [{(=)I(P)
={FeP|3pecpack - F> F'}
=P\ {0}

A denotational semantics

Complement
Any property ¢ divides P into two disjoint sets:

|o] and P — o]

The characteristic formula of the complement of |¢| is ¢<:

[= P — 19l
where ¢° is defined inductively on the formulae structure:
=ff ffc=tt
(¢1 A §2)" = P71V ¢5
(¢1V $2)" = ¢ A 5
((a) ¢)° = [a] ¢°

. but negation is not explicitly introduced in the logic.

Exercise

Compute
0 [(a) (—)tt|
@ |[a] (—) tt A [b] [-] fF]

-)
© [[a] (—) eV [b] [-]fF|

Modal Equivalence

For each (finite or infinite) set I of formulae,

E~F < V¢€rE'=¢)<=>F':¢

Modal Equivalence

For each (finite or infinite) set I of formulae,
E~F & V¢erE'=¢)<=>F':¢

Examples

a.b.0+a.c.0 ~r a.(b.0+c.0)
for T = {{x1) (x2) ...(xp) tt | x; € Act}

Modal Equivalence

For each (finite or infinite) set [of formulae,

E~F <& E ~r Ffor every set I of well-formed formulae

Modal Equivalence

For each (finite or infinite) set [of formulae,
E~F <& E ~r Ffor every set I of well-formed formulae
Lemma

E~F = E~F

Modal Equivalence

For each (finite or infinite) set [of formulae,
E~F <& E ~r Ffor every set I of well-formed formulae
Lemma

E~F = E~F

Note
the converse of this lemma does not hold, e.g. let

o A=9%" oA where Ag =" 0 and Ay =% a. A
[) A/ :de—f—K, K:a.K

Ax A but A~A

Modal Equivalence

Theorem [Hennessy-Milner, 1985]

E~F & Ex~F

for image-finite processes.

Modal Equivalence

Theorem [Hennessy-Milner, 1985]

E~F & Ex~F

for image-finite processes.

Image-finite processes
E is image-finite iff {F | E 3 F} is finite for every action a € Act

Modal Equivalence

Theorem [Hennessy-Milner, 1985]

E~F & E~F

for image-finite processes.

proof

= : by induction of the formula structure

< : show that ~ is itself a bisimulation, by contradiction

Exercise

S t v
a
a a a
b

S1 a b C tl a V1 ——= Vg b
b b b b

S (%

b

Show that states s, t and v are not bisimilar and determine the
modal properties which distinguish between them.

Exercise

Consider processes £ =9 a.(b.0 + c.0) e F =% 2.b.0 + a.c.0.
Propose a formula ¢ in M valid in E but false in F.

Exercise

Let E be a process. A formula ¢ is said to be characteristic of E iff
Veep . FIE ¢ sse F~E

Note that a process verifies the characteristic formula of E iff it is
strongly bisimilar to E.
Determine the characteristic formula of process x.0.

Exercise

Consider processes below and write down a formula in M valid in
R but not in S.

E =% b.cO+b.d0

F =4 E 4+ b.(c.0+d.0)
R =9 a.E +a.F

S =% 4 F

—~ N —~~
N
~— N~ — ~—

Exercise

In general, parallel composite in process algebra fails to be
idempotent.

® Making E =% a.b.E, formalise a property in M to distinguish
between E and E | E.

® In some cases idempotency holds. Build a bissimulation to
witness equivalence E ~ E | E when E is E =" _, x.E,
for any K C Act — {7}. Would this remain true for Act?

	Modal languages
	Hennessy-Milner logic
	Modal equivalence and bissimulation

