Interacção e Concorrência 2016/17 Bloco de acetatos 8

Alexandre Madeira

(based on Luís S. Barbosa 2014/15 course Slides) HASLab INESC TEC, DI UMINHO

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Motivation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

System's correctness wrt a specification

- equivalence checking (between two designs), through \sim and =
- unsuitable to check properties such as

can the system perform action α followed by β ?

Motivation

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

System's correctness wrt a specification

- equivalence checking (between two designs), through \sim and =
- unsuitable to check properties such as

can the system perform action α followed by β ?

which are best answered by exploring the process state space

Which logic?

- Modal logic over transition systems
- The Hennessy-Milner logic (offered in mCRL2)

Motivation

System's correctness wrt a specification

- equivalence checking (between two designs), through \sim and =
- unsuitable to check properties such as

can the system perform action α followed by β ?

which are best answered by exploring the process state space

Which logic?

- Modal logic over transition systems
- The Hennessy-Milner logic (offered in mCRL2)
- The modal *µ*-calculus (offered in mCRL2)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Signatures

Signatures are pairs (PROP, MOD) where PROP and MOD are sets of **propositional** symbols and **modality** symbols.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Signatures

Signatures are pairs (PROP, MOD) where PROP and MOD are sets of **propositional** symbols and **modality** symbols.

Formulas

$$\phi ::= p \mid \mathbf{tt} \mid \mathbf{ff} \mid \neg \phi \mid \phi_1 \land \phi_2 \mid \phi_1 \to \phi_2 \mid \langle m \rangle \phi \mid [m] \phi$$

where $p \in \mathsf{PROP}$ and $m \in \mathsf{MOD}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Signatures

Signatures are pairs (PROP, MOD) where PROP and MOD are sets of **propositional** symbols and **modality** symbols.

Formulas

$$\phi ::= p \mid \mathsf{tt} \mid \mathsf{ff} \mid \neg \phi \mid \phi_1 \land \phi_2 \mid \phi_1 \to \phi_2 \mid \langle m \rangle \phi \mid [m] \phi$$

where $p \in \mathsf{PROP}$ and $m \in \mathsf{MOD}$

Disjunction (\lor) and equivalence (\leftrightarrow) are defined by abbreviation.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Notes

 if there is only one modality in the signature (i.e., MOD is a singleton), write simply ◊φ and

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Notes

- if there is only one modality in the signature (i.e., MOD is a singleton), write simply ◊ and
- the language has some redundancy: in particular modal connectives are dual (as quantifiers are in first-order logic):
 [m] φ is equivalent to ¬⟨m⟩¬φ

Semantics

A model for the language is a pair $\mathcal{M} = \langle \mathcal{F}, V \rangle$, where

- $\mathcal{F} = \langle W, \{R_m\}_{m \in \text{MOD}} \rangle$ is a Kripke frame, ie,
 - W is a a non empty set (of states or worlds)
 - {*R_m*}_{*m*∈MOD} is a family of binary relations *R_m* ⊆ *W* × *W*, for each modality symbol *m* ∈ MOD.
- $V : \mathsf{PROP} \to \mathcal{P}(W)$ is a valuation.

Satisfaction: for a model \mathcal{M} and a point w

 $\mathcal{M}, w \models \mathsf{tt}$ $\mathcal{M}, w \not\models \mathsf{ff}$ $\mathcal{M}, w \models \rho$ $\mathcal{M}, w \models \neg \phi$ $\mathcal{M}, w \models \phi_1 \land \phi_2$ $\mathcal{M}, w \models \phi_1 \land \phi_2$ $\mathcal{M}, w \models \langle m \rangle \phi$ $\mathcal{M}, w \models [m] \phi$

 $\begin{array}{ll} \text{iff} & w \in V(p) \\ \text{iff} & \mathcal{M}, w \not\models \phi \\ \text{iff} & \mathcal{M}, w \not\models \phi_1 \text{ and } \mathcal{M}, w \not\models \phi_2 \\ \text{iff} & \mathcal{M}, w \not\models \phi_1 \text{ or } \mathcal{M}, w \not\models \phi_2 \\ \text{iff} & \text{there exists } v \in W \text{ st } wR_m v \text{ and } \mathcal{M}, v \not\models \phi \\ \text{iff} & \text{for all } v \in W \text{ st } wR_m v \text{ and } \mathcal{M}, v \models \phi \end{array}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Safistaction A formula ϕ is

- satisfiable in a model ${\mathcal M}$ if it is satisfied at some point of ${\mathcal M}$
- globally satisfied in \mathcal{M} ($\mathcal{M} \models \phi$) if it is satisfied at all points in \mathcal{M}
- valid ($\models \phi$) if it is globally satisfied in all models
- a semantic consequence of a set of formulas Γ (Γ ⊨ φ) if for all models M and all points w, if M, w ⊨ Γ then M, w ⊨ φ

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Temporal logic

- W is a set of instants
- there is a unique modality corresponding to the transitive closure of the next-time relation
- **origin**: Arthur Prior, an attempt to *deal with temporal information from the inside, capturing the situated nature of our experience and the context-dependent way we talk about it*

Examples: Temporal logics with ${\mathcal U}$ and ${\mathcal S}$

$\mathcal{M}, \mathbf{w} \models \phi \mathcal{U} \psi$ iff

there exists $v \in W$ such that $(w, v) \in R$ and $\mathcal{M}, v \models \psi$, and for all $u \in W$ such that $(w, u) \in R$ and $(u, v) \in R$ one has $\mathcal{M}, u \models \phi$

Examples: Temporal logics with ${\mathcal U}$ and ${\mathcal S}$

$\mathcal{M}, \mathbf{w} \models \phi \mathcal{U} \psi$ iff

there exists $v \in W$ such that $(w, v) \in R$ and $\mathcal{M}, v \models \psi$, and for all $u \in W$ such that $(w, u) \in R$ and $(u, v) \in R$ one has $\mathcal{M}, u \models \phi$

$\mathcal{M}, \mathbf{w} \models \phi \mathcal{S} \psi$ iff

there exists a $v \in W$ such that $(v, w) \in R$ and $\mathcal{M}, v \models \psi$ and, for all u such that $(v, u) \in R$ and $(u, w) \in R$ one has $\mathcal{M}, u \models \phi$

- note the ∃∀ qualification pattern: these operators are neither diamonds nor boxes.
- helpful to express guarantee properties, e.g., some event will happen, and a certain condition will hold until then

... a plethora of temporal logics: LTL, CTL, CTL*

Process logic (Hennessy-Milner logic)

• $\mathsf{PROP} = \emptyset$

Process logic (Hennessy-Milner logic)

- $\mathsf{PROP} = \emptyset$
- $W = \mathbb{P}$ is a set of states, typically process terms, in a labelled transition system

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Process logic (Hennessy-Milner logic)

- $\mathsf{PROP} = \emptyset$
- $W = \mathbb{P}$ is a set of states, typically process terms, in a labelled transition system
- each subset K ⊆ Act of actions generates a modality corresponding to transitions labelled by an element of K

Process logic (Hennessy-Milner logic)

- $\mathsf{PROP} = \emptyset$
- $W = \mathbb{P}$ is a set of states, typically process terms, in a labelled transition system
- each subset K ⊆ Act of actions generates a modality corresponding to transitions labelled by an element of K

Assuming the underlying LTS $\mathcal{F} = \langle \mathbb{P}, \{p \xrightarrow{K} p' \mid K \subseteq Act\} \rangle$ as the modal frame, satisfaction is abbreviated as

$$p \models \langle K \rangle \phi \qquad \text{iff} \quad \exists_{q \in \{p' \mid p \xrightarrow{a} p' \land a \in K\}} \cdot q \models \phi$$
$$p \models [K] \phi \qquad \text{iff} \quad \forall_{q \in \{p' \mid p \xrightarrow{a} p' \land a \in K\}} \cdot q \models \phi$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Process logic: The taxi network example

 φ₀ = In a taxi network, a car can collect a passenger or be allocated by the Central to a pending service

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Process logic: The taxi network example

 φ₀ = In a taxi network, a car can collect a passenger or be allocated by the Central to a pending service

•
$$\phi_0 = \langle rec, alo \rangle \mathbf{tt}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Process logic: The taxi network example

- $\phi_0 = \ln a$ taxi network, a car can collect a passenger or be allocated by the Central to a pending service
 - $\phi_0 = \langle \textit{rec}, \textit{alo} \rangle \, \mathbf{tt}$
- $\phi_1 =$ This applies only to cars already on service

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Process logic: The taxi network example

- $\phi_0 = \ln a$ taxi network, a car can collect a passenger or be allocated by the Central to a pending service
 - $\phi_0 = \langle \textit{rec}, \textit{alo} \rangle \, \mathbf{tt}$
- $\phi_1 =$ This applies only to cars already on service
 - $\phi_1 = [onservice] \langle rec, alo \rangle$ **tt** or $\phi_1 = [onservice] \phi_0$

Process logic: The taxi network example

• $\phi_0 = \ln a$ taxi network, a car can collect a passenger or be allocated by the Central to a pending service

• $\phi_0 = \langle \textit{rec}, \textit{alo} \rangle \, \mathbf{tt}$

• $\phi_1 =$ This applies only to cars already on service

- $\phi_1 = [onservice] \langle rec, alo \rangle tt$ or $\phi_1 = [onservice] \phi_0$
- $\phi_2 = If$ a car is allocated to a service, it must first collect the passenger and then plan the route

Process logic: The taxi network example

• $\phi_0 = \ln a$ taxi network, a car can collect a passenger or be allocated by the Central to a pending service

• $\phi_0 = \langle \textit{rec}, \textit{alo} \rangle \mathbf{tt}$

• $\phi_1 =$ This applies only to cars already on service

- $\phi_1 = [onservice] \langle rec, alo \rangle tt$ or $\phi_1 = [onservice] \phi_0$
- $\phi_2 = If$ a car is allocated to a service, it must first collect the passenger and then plan the route
 - $\phi_2 = [alo] \langle rec \rangle \langle plan \rangle tt$

Process logic: The taxi network example

• $\phi_3 = On$ detecting an emergence the taxi becomes inactive

Process logic: The taxi network example

• $\phi_3 = On$ detecting an emergence the taxi becomes inactive

•
$$\phi_3 = [sos][-] ff$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Process logic: The taxi network example

• $\phi_3 = On$ detecting an emergence the taxi becomes inactive

•
$$\phi_3 = [sos][-] ff$$

• $\phi_4 = A$ car on service is not inactive

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Process logic: The taxi network example

• $\phi_3 = On$ detecting an emergence the taxi becomes inactive

•
$$\phi_3 = [sos][-] ff$$

• $\phi_4 = A$ car on service is not inactive

•
$$\phi_4 = [onservice] \langle - \rangle \operatorname{tt}$$

Process logic: typical properties

• inevitability of *a*: $\langle - \rangle$ tt $\wedge [-a]$ ff

Process logic: typical properties

- inevitability of $a: \langle \rangle \operatorname{tt} \wedge [-a] \operatorname{ff}$
- progress: $\langle \rangle$ tt

Process logic: typical properties

- inevitability of a: ⟨−⟩ tt ∧ [−a] ff
- progress: $\langle \rangle$ tt
- deadlock or termination: [-] ff
- satisfaction decided by unfolding the definition of =: no need to compute the transition graph

Hennessy-Milner logic

... propositional logic with action modalities Syntax

 $\phi ::= \mathbf{tt} \mid \mathbf{ff} \mid \phi_1 \land \phi_2 \mid \phi_1 \lor \phi_2 \mid \langle \mathbf{K} \rangle \phi \mid [\mathbf{K}] \phi$

Semantics: $E \models \phi$

$$\begin{split} E &\models \mathbf{tt} \\ E &\not\models \mathbf{ff} \\ E &\models \phi_1 \land \phi_2 & \text{iff} \quad E \models \phi_1 \land E \models \phi_2 \\ E &\models \phi_1 \lor \phi_2 & \text{iff} \quad E \models \phi_1 \lor E \models \phi_2 \\ E &\models \langle K \rangle \phi & \text{iff} \quad \exists_{F \in \{E' \mid E \xrightarrow{a} \in K\}} \cdot F \models \phi \\ E &\models [K] \phi & \text{iff} \quad \forall_{F \in \{E' \mid E \xrightarrow{a} \in K\}} \cdot F \models \phi \end{split}$$

$$Sem = {}^{df} get.put.Sem$$
$$P_i = {}^{df} \overline{get.c_i}.\overline{put}.P_i$$
$$S = {}^{df} (Sem \mid (|_{i \in I} P_i)) \setminus \{get, put\}$$

• Sem $\models \langle get \rangle$ **tt**

<□ > < @ > < E > < E > E のQ @

$$Sem = {}^{df} get.put.Sem$$
$$P_i = {}^{df} \overline{get.c_i.put}.P_i$$
$$S = {}^{df} (Sem \mid (|_{i \in I} P_i)) \setminus \{get, put\}$$

• Sem $\models \langle get \rangle$ **tt** holds because

$$\exists_{F \in \{Sem' \mid Sem \xrightarrow{get} Sem'\}} . F \models \mathsf{tt}$$

with F = put.Sem.

(ロ)、(型)、(E)、(E)、 E) の(の)

$$Sem = {}^{df} get.put.Sem$$
$$P_i = {}^{df} \overline{get.c_i.put}.P_i$$
$$S = {}^{df} (Sem \mid (|_{i \in I} P_i)) \setminus \{get, put\}$$

• Sem $\models \langle get \rangle$ **tt** holds because

$$\exists_{F \in \{Sem' \mid Sem \xrightarrow{get} Sem'\}}$$
 . $F \models \mathbf{tt}$

with F = put.Sem.

• $Sem \models [put] ff$
Example

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$Sem = {}^{df} get.put.Sem$$
$$P_i = {}^{df} \overline{get.c_i.put}.P_i$$
$$S = {}^{df} (Sem \mid (|_{i \in I} P_i)) \setminus \{get, put\}$$

• Sem $\models \langle get \rangle$ tt holds because

$$\exists_{F \in \{Sem' \mid Sem \xrightarrow{get} Sem'\}} . F \models \mathsf{tt}$$

with F = put.Sem.

- $Sem \models [put]$ ff also holds, because $T = \{Sem' \mid Sem \xrightarrow{put} Sem'\} = \emptyset.$ Hence $\forall_{F \in T} . F \models \text{ ff becomes trivially true.}$
- The only action initially permitted to S is τ : $\models [-\tau]$ ff.

Example

$$Sem = {}^{df} get.put.Sem$$
$$P_i = {}^{df} \overline{get.c_i.put}.P_i$$
$$S = {}^{df} (Sem \mid (|_{i \in I} P_i)) \setminus \{get, put\}$$

- Afterwards, S can engage in any of the critical events $c_1, c_2, ..., c_i$: [τ] $\langle c_1, c_2, ..., c_i \rangle$ tt
- After the semaphore initial synchronization and the occurrence of c_j in P_j, a new synchronization becomes inevitable:
 S ⊨ [τ] [c_j] (⟨−⟩ tt ∧ [−τ] ff)

Verify:

$$\neg \langle a \rangle \phi = [a] \neg \phi$$

$$\neg [a] \phi = \langle a \rangle \neg \phi$$

$$\langle a \rangle \mathbf{f} \mathbf{f} = \mathbf{f} \mathbf{f}$$

$$[a] \mathbf{t} \mathbf{t} = \mathbf{t} \mathbf{t}$$

$$\langle a \rangle (\phi \lor \psi) = \langle a \rangle \phi \lor \langle a \rangle \psi$$

$$[a] (\phi \land \psi) = [a] \phi \land [a] \psi$$

$$\langle a \rangle \phi \land [a] \psi \Rightarrow \langle a \rangle (\phi \land \psi)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Formalise each of the following properties:

- 1 The occurrence of a and b is impossible.
- **2** The occurrence of a followed by b is impossible.
- **3** Only the occurrence of a is possible.
- **4** Once *a* occurred, *b* or *c* may occur.
- **5** After *a* occurred followed by *b*, *c* may occur.
- 6 Once *a* occurred, *b* or *c* may occur but not both.
- 7 a cannot occur before b.
- 8 There is only an initial transition labelled by a.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Consider the following processes and enumerate for each of them the properties they verify:

1
$$E_1 = {}^{df} a.b.0$$

2 $E_2 = {}^{df} a.c.0$
3 $E = {}^{df} E_1 + E_2$
4 $F = {}^{df} a.(b.0 + c.0)$
5 $G = {}^{df} E + F$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Specify a LTS such that the following modal properties hold simultaneously in its initial state:

- $\langle a \rangle \langle b \rangle \langle c \rangle \operatorname{tt} \wedge \langle c \rangle \operatorname{tt}$
- $\langle a \rangle \langle b \rangle ([a] \mathbf{f} \mathbf{f} \wedge [c] \mathbf{f} \mathbf{f} \wedge [b] \mathbf{f} \mathbf{f})$
- $\langle a \rangle \langle b \rangle (\langle a \rangle \operatorname{tt} \wedge [c] \operatorname{ff})$

Consider the following specification of a CNC program:

Formalise the following properties:

- 1 After fw another fw is immediately possible
- 2 After fw followed by right, left is possible but bk is not.
- 3 Action fw is the only one initially possible
- **4** The third action of process *Start* is not *fw*.

As in mCRL2, we can enrich modalities with regular expressions of modal symbols:

$$\alpha := \mathbf{K} \mid \mathbf{K} \cup \mathbf{K} \mid \mathbf{K} \cap \mathbf{K}$$

for $K \subseteq A$.

As in mCRL2, we can enrich modalities with regular expressions of modal symbols:

$$\alpha := \mathbf{K} \mid \mathbf{K} \cup \mathbf{K} \mid \mathbf{K} \cap \mathbf{K}$$

for $K \subseteq A$. As above we represent

- the set A with -
- the set $A \setminus \{a\}$ with -a

Regular modalities

 $R := \epsilon \mid \alpha \mid R.R \mid R + R \mid R^*$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

(ロ)、(型)、(E)、(E)、 E) の(の)

interpretation of regular modalities

•
$$\langle R_1 + R_2 \rangle true = \langle R_1 \rangle true \lor \langle R_2 \rangle true$$

 $[R_1 + R_2]true = [R_1]true \lor [R_2]true$

•
$$\langle R_1.R_2 \rangle$$
true = $\langle R_1 \rangle \langle R_2 \rangle$ true
[$R_1.R_2$]true = [R_1][R_2]true

• As long as no error happens, a deadlock will not occur.

 $[(-error)^*]\langle -
angle tt$

・ロト・日本・モト・モート ヨー うへで

• As long as no error happens, a deadlock will not occur.

 $[(-error)^*]\langle -
angle tt$

• Whenever an *a* can happen in any reachable state, a *b* action can subsequently be done unless a *c* happens cancelling the need to do the *b*.

 $[-^*.a]\langle -^*.(b\cup c)\rangle$ tt

• As long as no error happens, a deadlock will not occur.

 $[(-error)^*]\langle - \rangle$ tt

• Whenever an *a* can happen in any reachable state, a *b* action can subsequently be done unless a *c* happens cancelling the need to do the *b*.

 $[-^*.a]\langle -^*.(b\cup c)\rangle$ tt

• Whenever an a action happens, it must always be possible to do a *b* after that, although doing the *b* can infinitely be postponed.

$$[-^*.a.(-b)^*]\langle -^*.b\rangle$$
tt

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Idea: associate to each formula ϕ the set of processes that makes it true

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Idea: associate to each formula ϕ the set of processes that makes it true

 $\phi \text{ vs } \|\phi\| = \{E \in \mathbb{P} \mid E \models \phi\}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Idea: associate to each formula ϕ the set of processes that makes it true

 $\phi \text{ vs } \|\phi\| = \{E \in \mathbb{P} \mid E \models \phi\}$

$$\|\mathbf{tt}\| = \mathbb{P}$$
$$\|\mathbf{ff}\| = \emptyset$$
$$\|\phi_1 \wedge \phi_2\| = \|\phi_1\| \cap \|\phi_2\|$$
$$\|\phi_1 \vee \phi_2\| = \|\phi_1\| \cup \|\phi_2\|$$

Idea: associate to each formula ϕ the set of processes that makes it true

 $\phi \text{ vs } \|\phi\| = \{E \in \mathbb{P} \mid E \models \phi\}$

$$\|\mathbf{tt}\| = \mathbb{P}$$
$$\|\mathbf{ff}\| = \emptyset$$
$$\|\phi_1 \land \phi_2\| = \|\phi_1\| \cap \|\phi_2|$$
$$\|\phi_1 \lor \phi_2\| = \|\phi_1\| \cup \|\phi_2|$$

 $\|[K] \phi\| = \|[K]\|(\|\phi\|)$ $\|\langle K \rangle \phi\| = \|\langle K \rangle\|(\|\phi\|)$

$\|[K]\|$ and $\|\langle K \rangle\|$

Just as \land corresponds to \cap and \lor to \cup , modal logic combinators correspond to **unary functions** on sets of processes:

$$\llbracket [K] \rrbracket (X) = \{ F \in \mathbb{P} \mid \text{if } F \xrightarrow{a} F' \land a \in K \text{ then } F' \in X \}$$

$$\|\langle K \rangle\|(X) = \{F \in \mathbb{P} \mid \exists_{F' \in X, a \in K} : F \xrightarrow{a} F'\}$$

Note

These combinators perform a reduction to the previous state indexed by actions in K

$\|[K]\|$ and $\|\langle K \rangle\|$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Example

$$\|\langle a \rangle \| \{q_2, n\} = \{q_1, m\} \\ \|[a]\| \{q_2, n\} = \{q_2, q_3, m, n\}$$

$$E \models \phi$$
 iff $E \in \|\phi\|$

Example: $\mathbf{0} \models [-] \mathbf{f} \mathbf{f}$

$$E \models \phi$$
 iff $E \in \|\phi\|$

Example:
$$\mathbf{0} \models [-] \mathbf{f} \mathbf{f}$$

because

$$\begin{split} \|[-] \mathbf{ff}\| &= \|[-]\|(\|\mathbf{ff}\|) \\ &= \|[-]\|(\emptyset) \\ &= \{F \in \mathbb{P} \mid \text{if } F \xrightarrow{x} F' \land x \in Act \text{ then } F' \in \emptyset\} \\ &= \{\mathbf{0}\} \end{split}$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

$$E \models \phi$$
 iff $E \in ||\phi||$

Example: $?? \models \langle - \rangle \mathbf{tt}$

$$E \models \phi$$
 iff $E \in ||\phi||$

Example:
$$?? \models \langle - \rangle \mathbf{tt}$$

because

$$\begin{split} \|\langle -\rangle \operatorname{tt}\| &= \|\langle -\rangle \|(\|\operatorname{tt}\|) \\ &= \|\langle -\rangle \|(\mathbb{P}) \\ &= \{F \in \mathbb{P} \mid \exists_{F' \in \mathbb{P}, a \in K} : F \xrightarrow{a} F'\} \\ &= \mathbb{P} \setminus \{\mathbf{0}\} \end{split}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Complement

Any property ϕ divides $\mathbb P$ into two disjoint sets:

```
\|\phi\| and \mathbb{P} - \|\phi\|
```

The characteristic formula of the complement of $\|\phi\|$ is ϕ^{c} :

 $\|\phi^{\mathsf{c}}\| \ = \ \mathbb{P} - \|\phi\|$

where ϕ^{c} is defined inductively on the formulae structure:

```
\mathbf{tt}^{c} = \mathbf{ff} \quad \mathbf{ff}^{c} = \mathbf{tt}(\phi_{1} \land \phi_{2})^{c} = \phi_{1}^{c} \lor \phi_{2}^{c}(\phi_{1} \lor \phi_{2})^{c} = \phi_{1}^{c} \land \phi_{2}^{c}(\langle \mathbf{a} \rangle \phi)^{c} = [\mathbf{a}] \phi^{c}
```

... but negation is not explicitly introduced in the logic.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Compute

1
$$\|\langle a \rangle \langle - \rangle \operatorname{tt} \|$$

2 $\|[a] \langle - \rangle \operatorname{tt} \wedge [b] [-] \operatorname{ff} \|$
3 $\|[a] \langle - \rangle \operatorname{tt} \vee [b] [-] \operatorname{ff} \|$

For each (finite or infinite) set Γ of formulae,

 $E \simeq_{\Gamma} F \quad \Leftrightarrow \quad \forall_{\phi \in \Gamma} \; . \; E \models \phi \Leftrightarrow F \models \phi$

・ロト・日本・モト・モート ヨー うへで

For each (finite or infinite) set Γ of formulae,

$$E \simeq_{\Gamma} F \quad \Leftrightarrow \quad \forall_{\phi \in \Gamma} \; . \; E \models \phi \Leftrightarrow F \models \phi$$

Examples

$$a.b.\mathbf{0} + a.c.\mathbf{0} \simeq_{\Gamma} a.(b.\mathbf{0} + c.\mathbf{0})$$

for $\Gamma = \{ \langle x_1 \rangle \langle x_2 \rangle ... \langle x_n \rangle \mathbf{tt} \mid x_i \in Act \}$

For each (finite or infinite) set Γ of formulae,

 $E \simeq F \quad \Leftrightarrow \quad E \simeq_{\Gamma} F$ for every set Γ of well-formed formulae

For each (finite or infinite) set Γ of formulae,

 $E \simeq F \iff E \simeq_{\Gamma} F$ for every set Γ of well-formed formulae Lemma

 $E \sim F \Rightarrow E \simeq F$

For each (finite or infinite) set Γ of formulae,

 $E \simeq F \quad \Leftrightarrow \quad E \simeq_{\Gamma} F$ for every set Γ of well-formed formulae

Lemma

 $E \sim F \Rightarrow E \simeq F$

Note

the converse of this lemma does not hold, e.g. let

•
$$A = {}^{df} \sum_{i \ge 0} A_i$$
, where $A_0 = {}^{df} \mathbf{0}$ and $A_{i+1} = {}^{df} a.A_i$

•
$$A' = {}^{df} A + K$$
, $K = a.K$

$$A \not\sim A'$$
 but $A \simeq A'$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Theorem [Hennessy-Milner, 1985]

$E \sim F \Leftrightarrow E \simeq F$

for image-finite processes.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem [Hennessy-Milner, 1985]

$E \sim F \Leftrightarrow E \simeq F$

for image-finite processes.

Image-finite processes *E* is image-finite iff $\{F \mid E \xrightarrow{a} F\}$ is finite for every action $a \in Act$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem [Hennessy-Milner, 1985]

 $E \sim F \Leftrightarrow E \simeq F$

for image-finite processes.

proof

- \Rightarrow : by induction of the formula structure
- \Leftarrow : show that \simeq is itself a bisimulation, by contradiction

Show that states s, t and v are not bisimilar and determine the modal properties which distinguish between them.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Consider processes $E = {}^{df} a.(b.\mathbf{0} + c.\mathbf{0}) \in F = {}^{df} a.b.\mathbf{0} + a.c.\mathbf{0}$. Propose a formula ϕ in \mathcal{M} valid in E but false in F.

Let *E* be a process. A formula ϕ is said to be *characteristic* of *E* iff

$$\forall_{F\in\mathbb{P}} . F \models \phi \text{ sse } F \sim E$$

Note that a process verifies the characteristic formula of E iff it is strongly bisimilar to E.

Determine the *characteristic* formula of process x.0.
Exercise

Consider processes below and write down a formula in \mathcal{M} valid in R but not in S.

$$E = {}^{df} b.c.\mathbf{0} + b.d.\mathbf{0} \tag{1}$$

$$F = {}^{df} E + b.(c.\mathbf{0} + d.\mathbf{0})$$
(2)

$$R = {}^{df} a.E + a.F \tag{3}$$

$$S = {}^{df} a.F$$
 (4)

Exercise

In general, parallel composite in process algebra fails to be idempotent.

- **1** Making $E = {}^{df} a.b.E$, formalise a property in \mathcal{M} to distinguish between E and $E \mid E$.
- In some cases idempotency holds. Build a bissimulation to witness equivalence E ~ E | E when E is E =^{df} ∑_{x∈K} x.E, for any K ⊆ Act {τ}. Would this remain true for Act?