Interacção e Concorrência 2016/17 Bloco de acetatos 8

Alexandre Madeira
(based on Luís S. Barbosa 2014/15 course Slides) HASLab INESC TEC, DI UMINHO

April 26, 2017

Motivation

System's correctness wrt a specification

- equivalence checking (between two designs), through \sim and $=$
- unsuitable to check properties such as
can the system perform action α followed by β ?

Motivation

System's correctness wrt a specification

- equivalence checking (between two designs), through \sim and $=$
- unsuitable to check properties such as

can the system perform action α followed by β ?

which are best answered by exploring the process state space

Which logic?

- Modal logic over transition systems
- The Hennessy-Milner logic (offered in mCRL2)

Motivation

System's correctness wrt a specification

- equivalence checking (between two designs), through \sim and $=$
- unsuitable to check properties such as

can the system perform action α followed by β ?

which are best answered by exploring the process state space

Which logic?

- Modal logic over transition systems
- The Hennessy-Milner logic (offered in mCRL2)
- The modal μ-calculus (offered in mCRL2)

The language

Signatures
Signatures are pairs (PROP, MOD) where PROP and MOD are sets of propositional symbols and modality symbols.

The language

Signatures
Signatures are pairs (PROP, MOD) where PROP and MOD are sets of propositional symbols and modality symbols.

Formulas

$$
\phi::=p|\mathbf{t t}| \mathbf{f f}|\neg \phi| \phi_{1} \wedge \phi_{2}\left|\phi_{1} \rightarrow \phi_{2}\right|\langle m\rangle \phi \mid[m] \phi
$$

where $p \in \mathrm{PROP}$ and $m \in \mathrm{MOD}$

The language

Signatures
Signatures are pairs (PROP, MOD) where PROP and MOD are sets of propositional symbols and modality symbols.

Formulas

$$
\phi::=p|\mathbf{t t}| \mathbf{f f}|\neg \phi| \phi_{1} \wedge \phi_{2}\left|\phi_{1} \rightarrow \phi_{2}\right|\langle m\rangle \phi \mid[m] \phi
$$

where $p \in \mathrm{PROP}$ and $m \in \mathrm{MOD}$
Disjunction (\vee) and equivalence (\leftrightarrow) are defined by abbreviation.

The language

Notes

- if there is only one modality in the signature (i.e., MOD is a singleton), write simply $\diamond \phi$ and

The language

Notes

- if there is only one modality in the signature (i.e., MOD is a singleton), write simply $\diamond \phi$ and
- the language has some redundancy: in particular modal connectives are dual (as quantifiers are in first-order logic):
[m] ϕ is equivalent to $\neg\langle m\rangle \neg \phi$

The language

Semantics

A model for the language is a pair $\mathcal{M}=\langle\mathcal{F}, V\rangle$, where

- $\mathcal{F}=\left\langle W,\left\{R_{m}\right\}_{m \in \operatorname{MOD}}\right\rangle$ is a Kripke frame, ie,
- W is a a non empty set (of states or worlds)
- $\left\{R_{m}\right\}_{m \in \text { MOD }}$ is a family of binary relations $R_{m} \subseteq W \times W$, for each modality symbol $m \in$ MOD.
- $V: \mathrm{PROP} \rightarrow \mathcal{P}(W)$ is a valuation.

The language

Satisfaction: for a model \mathcal{M} and a point w

$$
\begin{array}{llrl}
\mathcal{M}, w & \models \mathbf{t t} & & \\
\mathcal{M}, w \not \models \mathbf{f f} & & \\
\mathcal{M}, w \models p & & \text { iff } & w \in V(p) \\
\mathcal{M}, w \models \neg \phi & & \text { iff } & \mathcal{M}, w \not \models \phi \\
\mathcal{M}, w \models \phi_{1} \wedge \phi_{2} & & \text { iff } & \mathcal{M}, w \models \phi_{1} \text { and } \mathcal{M}, w \models \phi_{2} \\
\mathcal{M}, w \models \phi_{1} \rightarrow \phi_{2} & & \text { iff } & \mathcal{M}, w \not \models \phi_{1} \text { or } \mathcal{M}, w \models \phi_{2} \\
\mathcal{M}, w \models\langle m\rangle \phi & & \text { iff } & \text { there exists } v \in W \text { st } w R_{m} v \text { and } \mathcal{M}, v \models \phi \\
\mathcal{M}, w \models[m] \phi & & \text { iff } & \quad \text { for all } v \in W \text { st } w R_{m} v \text { and } \mathcal{M}, v \models \phi
\end{array}
$$

The language

Safistaction

A formula ϕ is

- satisfiable in a model \mathcal{M} if it is satisfied at some point of \mathcal{M}
- globally satisfied in $\mathcal{M}(\mathcal{M} \models \phi)$ if it is satisfied at all points in \mathcal{M}
- valid $(\models \phi)$ if it is globally satisfied in all models
- a semantic consequence of a set of formulas $\Gamma(\Gamma \models \phi)$ if for all models \mathcal{M} and all points w, if $\mathcal{M}, w \models \Gamma$ then $\mathcal{M}, w \models \phi$

Examples

Temporal logic

- W is a set of instants
- there is a unique modality corresponding to the transitive closure of the next-time relation
- origin: Arthur Prior, an attempt to deal with temporal information from the inside, capturing the situated nature of our experience and the context-dependent way we talk about it

Examples: Temporal logics with \mathcal{U} and \mathcal{S}

$\mathcal{M}, w \models \phi \mathcal{U} \psi$ iff
there exists $v \in W$ such that $(w, v) \in R$ and $\mathcal{M}, v \vDash \psi$, and for all $u \in W$ such that $(w, u) \in R$ and $(u, v) \in R$ one has $\mathcal{M}, u \models \phi$

Examples: Temporal logics with \mathcal{U} and \mathcal{S}

$\mathcal{M}, w \models \phi \mathcal{U} \psi$ iff
there exists $v \in W$ such that $(w, v) \in R$ and $\mathcal{M}, v \vDash \psi$, and for all $u \in W$ such that $(w, u) \in R$ and $(u, v) \in R$ one has $\mathcal{M}, u \models \phi$
$\mathcal{M}, w \models \phi \mathcal{S} \psi$ iff
there exists a $v \in W$ such that $(v, w) \in R$ and $\mathcal{M}, v \models \psi$ and, for all u such that $(v, u) \in R$ and $(u, w) \in R$ one has $\mathcal{M}, u \neq \phi$

- note the $\exists \forall$ qualification pattern: these operators are neither diamonds nor boxes.
- helpful to express guarantee properties, e.g., some event will happen, and a certain condition will hold until then
- ... a plethora of temporal logics: LTL, CTL, CTL*

Examples

Process logic (Hennessy-Milner logic)

- $\operatorname{PROP}=\emptyset$

Examples

Process logic (Hennessy-Milner logic)

- $\operatorname{PROP}=\emptyset$
- $W=\mathbb{P}$ is a set of states, typically process terms, in a labelled transition system

Examples

Process logic (Hennessy-Milner logic)

- $\operatorname{PROP}=\emptyset$
- $W=\mathbb{P}$ is a set of states, typically process terms, in a labelled transition system
- each subset $K \subseteq A c t$ of actions generates a modality corresponding to transitions labelled by an element of K

Examples

Process logic (Hennessy-Milner logic)

- $\operatorname{PROP}=\emptyset$
- $W=\mathbb{P}$ is a set of states, typically process terms, in a labelled transition system
- each subset $K \subseteq$ Act of actions generates a modality corresponding to transitions labelled by an element of K

Assuming the underlying LTS $\mathcal{F}=\left\langle\mathbb{P},\left\{p \xrightarrow{K} p^{\prime} \mid K \subseteq A c t\right\}\right\rangle$ as the modal frame, satisfaction is abbreviated as

$$
\begin{array}{lll}
p \models\langle K\rangle \phi & \text { iff } & \exists_{q \in\left\{p^{\prime} \mid p \xrightarrow{a} p^{\prime} \wedge a \in K\right\}} \cdot q=\phi \\
p \models[K] \phi & \text { iff } & \forall_{q \in\left\{p^{\prime} \mid p^{a} \rightarrow p^{\prime} \wedge a \in K\right\}} \cdot q \models \phi
\end{array}
$$

Examples

Process logic: The taxi network example

- $\phi_{0}=$ In a taxi network, a car can collect a passenger or be allocated by the Central to a pending service

Examples

Process logic: The taxi network example

- $\phi_{0}=$ In a taxi network, a car can collect a passenger or be allocated by the Central to a pending service
- $\phi_{0}=\langle r e c, a l o\rangle \mathbf{t t}$

Examples

Process logic: The taxi network example

- $\phi_{0}=$ In a taxi network, a car can collect a passenger or be allocated by the Central to a pending service
- $\phi_{0}=\langle r e c, a l o\rangle \mathbf{t t}$
- $\phi_{1}=$ This applies only to cars already on service

Examples

Process logic: The taxi network example

- $\phi_{0}=$ In a taxi network, a car can collect a passenger or be allocated by the Central to a pending service
- $\phi_{0}=\langle r e c, a l o\rangle \mathbf{t t}$
- $\phi_{1}=$ This applies only to cars already on service
- $\phi_{1}=[$ onservice $]\langle r e c$, alo \rangle tt or
$\phi_{1}=\left[\right.$ onservice ϕ_{0}

Examples

Process logic: The taxi network example

- $\phi_{0}=$ In a taxi network, a car can collect a passenger or be allocated by the Central to a pending service
- $\phi_{0}=\langle r e c$, alo $\rangle \mathbf{t t}$
- $\phi_{1}=$ This applies only to cars already on service
- $\phi_{1}=$ [onservice] $\langle r e c$, alo \rangle tt or
$\phi_{1}=$ [onservice] ϕ_{0}
- $\phi_{2}=$ If a car is allocated to a service, it must first collect the passenger and then plan the route

Examples

Process logic: The taxi network example

- $\phi_{0}=$ In a taxi network, a car can collect a passenger or be allocated by the Central to a pending service
- $\phi_{0}=\langle r e c, a l o\rangle \mathbf{t t}$
- $\phi_{1}=$ This applies only to cars already on service
- $\phi_{1}=[$ onservice] $\langle r e c$, alo \rangle tt or $\phi_{1}=$ [onservice] ϕ_{0}
- $\phi_{2}=$ If a car is allocated to a service, it must first collect the passenger and then plan the route
- $\phi_{2}=[a l o]\langle r e c\rangle\langle p l a n\rangle$ tt

Examples

Process logic: The taxi network example

- $\phi_{3}=$ On detecting an emergence the taxi becomes inactive

Examples

Process logic: The taxi network example

- $\phi_{3}=$ On detecting an emergence the taxi becomes inactive
- $\phi_{3}=[s o s][-] \mathbf{f f}$

Examples

Process logic: The taxi network example

- $\phi_{3}=$ On detecting an emergence the taxi becomes inactive
- $\phi_{3}=[s o s][-] \mathbf{f f}$
- $\phi_{4}=A$ car on service is not inactive

Examples

Process logic: The taxi network example

- $\phi_{3}=$ On detecting an emergence the taxi becomes inactive
- $\phi_{3}=[s o s][-] \mathbf{f f}$
- $\phi_{4}=A$ car on service is not inactive
- $\phi_{4}=[$ onservice $]\langle-\rangle \mathbf{t t}$

Process logic: typical properties

- inevitability of $a:\langle-\rangle \mathbf{t t} \wedge[-a]$ ff

Process logic: typical properties

- inevitability of $a:\langle-\rangle \mathbf{t t} \wedge[-a] \mathbf{f f}$
- progress: $\langle-\rangle$ tt

Process logic: typical properties

- inevitability of $a:\langle-\rangle \mathbf{t t} \wedge[-a] \mathbf{f f}$
- progress: $\langle-\rangle$ tt
- deadlock or termination: [-] ff
- satisfaction decided by unfolding the definition of \models : no need to compute the transition graph

Hennessy-Milner logic

... propositional logic with action modalities
Syntax

$$
\phi::=\mathbf{t t}|\mathbf{f f}| \phi_{1} \wedge \phi_{2}\left|\phi_{1} \vee \phi_{2}\right|\langle K\rangle \phi \mid[K] \phi
$$

Semantics: $E \models \phi$

$$
\begin{aligned}
& E \models \mathbf{t t} \\
& E \not \vDash \mathbf{f f} \\
& E \models \phi_{1} \wedge \phi_{2} \quad \text { iff } \quad E \models \phi_{1} \wedge E \models \phi_{2} \\
& E \models \phi_{1} \vee \phi_{2} \quad \text { iff } \quad E=\phi_{1} \vee E=\phi_{2} \\
& E \models\langle K\rangle \phi \quad \text { iff } \quad \exists_{F \in\left\{E^{\prime} \mid E^{3} \rightarrow E^{\prime} \wedge a \in K\right\}} . F \models \phi \\
& E \models[K] \phi \quad \text { iff } \quad \forall_{F \in\left\{E^{\prime} \mid E^{a} \rightarrow E^{\prime} \wedge a \in K\right\}} . F \models \phi
\end{aligned}
$$

Example

$$
\begin{aligned}
\text { Sem } & ={ }^{d f} \text { get.put.Sem } \\
P_{i} & ={ }^{d f} \overline{\text { get. }} \cdot c_{i} \cdot \overline{\text { put }} \cdot P_{i} \\
S & ={ }^{d f}\left(\text { Sem } \mid\left(\left.\right|_{i \in I} P_{i}\right)\right) \backslash\{\text { get, put }\}
\end{aligned}
$$

- Sem $\models\langle$ get \rangle tt

Example

$$
\begin{aligned}
\text { Sem } & ={ }^{d f} \text { get.put.Sem } \\
P_{i} & ={ }^{d f} \overline{\text { get. }} \cdot c_{i} \cdot \overline{\text { put }} . P_{i} \\
S & ={ }^{d f}\left(\text { Sem } \mid\left(\left.\right|_{i \in I} P_{i}\right)\right) \backslash\{\text { get, put }\}
\end{aligned}
$$

- Sem $\models\langle$ get \rangle tt holds because

$$
\left.\exists_{F \in\left\{\text { Sem }^{\prime} \mid\right. \text { Sem }} \xrightarrow{\text { get }} \text { Sem }^{\prime}\right\}, F=\mathbf{t t}
$$

with $F=$ put.Sem.

Example

$$
\begin{aligned}
\text { Sem } & ={ }^{d f} \text { get.put.Sem } \\
P_{i} & ={ }^{d f} \frac{\overline{g e t} \cdot c_{i} \cdot \overline{p u t} . P_{i}}{} \\
S & ={ }^{d f}\left(\text { Sem } \mid\left(\left.\right|_{i \in I} P_{i}\right)\right) \backslash\{\text { get, put }\}
\end{aligned}
$$

- Sem $\models\langle$ get \rangle tt holds because

$$
\left.\exists_{F \in\left\{\text { Sem }^{\prime} \mid\right. \text { Sem }} \xrightarrow{\text { get }} \text { Sem }^{\prime}\right\}, F=\mathbf{t t}
$$

with $F=$ put.Sem.

- Sem \vDash [put] $\mathbf{f f}$

Example

$$
\begin{aligned}
\text { Sem } & ={ }^{d f} \text { get.put.Sem } \\
P_{i} & ={ }^{d f} \overline{\text { get. }} \cdot c_{i} \cdot \overline{\text { put }} . P_{i} \\
S & ={ }^{d f}\left(\text { Sem } \mid\left(\left.\right|_{i \in I} P_{i}\right)\right) \backslash\{\text { get, put }\}
\end{aligned}
$$

- Sem $\models\langle$ get \rangle tt holds because

$$
\exists_{F \in\left\{S_{e m^{\prime} \mid S e m} \xrightarrow{\text { get }} \text { Sem }^{\prime}\right\}} . F=\mathbf{t t}
$$

with $F=$ put.Sem.

- Sem $\models[p u t] \mathbf{f f}$ also holds, because
$T=\left\{\right.$ Sem $^{\prime} \mid$ Sem $\xrightarrow{\text { put }}$ Sem $\left.^{\prime}\right\}=\emptyset$.
Hence $\forall_{F \in T} . F \models \mathbf{f f}$ becomes trivially true.
- The only action initially permmited to S is $\tau: \models[-\tau] \mathbf{f f}$.

Example

$$
\begin{aligned}
& \text { Sem }=\text { df } \text { get.put.Sem } \\
& P_{i}={ }^{d f} \overline{\text { get. } . c_{i} . \text { put. } P_{i}} \\
& S \text { df }^{\text {df }}(\text { Sem } \mid(|i \in| \\
&\left.\left.P_{i}\right)\right) \backslash\{\text { get, put }\}
\end{aligned}
$$

- Afterwards, S can engage in any of the critical events $c_{1}, c_{2}, \ldots, c_{i}$: $[\tau]\left\langle c_{1}, c_{2}, \ldots, c_{i}\right\rangle \mathbf{t t}$
- After the semaphore initial synchronization and the occurrence of c_{j} in P_{j}, a new synchronization becomes inevitable:
$S \models[\tau]\left[c_{j}\right](\langle-\rangle \mathbf{t t} \wedge[-\tau] \mathbf{f f})$

Exercise

Verify:

$$
\begin{aligned}
& \neg\langle a\rangle \phi=[a] \neg \phi \\
& \neg[a] \phi=\langle a\rangle \neg \phi \\
& \langle a\rangle \mathbf{f f}=\mathbf{f f} \\
& {[a] \mathbf{t t}=\mathbf{t t}} \\
& \langle a\rangle(\phi \vee \psi)=\langle a\rangle \phi \vee\langle a\rangle \psi \\
& {[a](\phi \wedge \psi)=[a] \phi \wedge[a] \psi} \\
& \langle a\rangle \phi \wedge[a] \psi \Rightarrow\langle a\rangle(\phi \wedge \psi)
\end{aligned}
$$

Exercise

Formalise each of the following properties:
(1) The occurrence of a and b is impossible.
(2) The occurrence of a followed by b is impossible.
(3) Only the occurrence of a is possible.
(4) Once a occurred, b or c may occur.
(5) After a occurred followed by b, c may occur.
(6) Once a occurred, b or c may occur but not both.
(7) a cannot occur before b.

8 There is only an initial transition labelled by a.

Exercise

Consider the following processes and enumerate for each of them the properties they verify:
(1) $E_{1}={ }^{d f}$ a.b. 0
(2) $E_{2}={ }^{d f}$ a.c. 0
(3) $E={ }^{d f} E_{1}+E_{2}$
(4) $F={ }^{d f} a .(b .0+c .0)$
(5) $G={ }^{d f} E+F$

Exercise

Specify a LTS such that the following modal properties hold simultaneously in its initial state:

- $\langle a\rangle\langle b\rangle\langle c\rangle \mathbf{t t} \wedge\langle c\rangle \mathbf{t t}$
- $\langle a\rangle\langle b\rangle([a] \mathbf{f f} \wedge[c] \mathbf{f f} \wedge[b] \mathbf{f f})$
- $\langle a\rangle\langle b\rangle(\langle a\rangle \mathbf{t t} \wedge[c] \mathbf{f f})$

Exercise

Consider the following specification of a CNC program:

$$
\begin{aligned}
\text { Start } & ={ }^{d f} \quad \text { fw. } G o+\text { stop } .0 \\
G o & ={ }^{d f} \text { fw.bk.bk.Start + right.left.bk.Start }
\end{aligned}
$$

Formalise the following properties:
(1) After $f w$ another fw is immediately possible
(2) After fw followed by right, left is possible but bk is not.
(3) Action fw is the only one initially possible
(4) The third action of process Start is not fw.

Hennessy-Milner with regular modalities

As in mCRL2, we can enrich modalities with regular expressions of modal symbols:

$$
\alpha:=K|K \cup K| K \cap K
$$

for $K \subseteq A$.

Hennessy-Milner with regular modalities

As in mCRL2, we can enrich modalities with regular expressions of modal symbols:

$$
\alpha:=K|K \cup K| K \cap K
$$

for $K \subseteq A$. As above we represent

- the set A with -
- the set $A \backslash\{a\}$ with $-a$

Regular modalities

$$
R:=\epsilon|\alpha| R . R|R+R| R^{*}
$$

Hennessy-Milner with regular modalities

interpretation of regular modalities

- $\left\langle R_{1}+R_{2}\right\rangle$ true $=\left\langle R_{1}\right\rangle$ true $\vee\left\langle R_{2}\right\rangle$ true $\left[R_{1}+R_{2}\right]$ true $=\left[R_{1}\right]$ true $\vee\left[R_{2}\right]$ true
- $\left\langle R_{1} \cdot R_{2}\right\rangle$ true $=\left\langle R_{1}\right\rangle\left\langle R_{2}\right\rangle$ true $\left[R_{1} \cdot R_{2}\right]$ true $=\left[R_{1}\right]\left[R_{2}\right]$ true

Hennessy-Milner with regular modalities

- As long as no error happens, a deadlock will not occur.

$$
\left[(- \text { error })^{*}\right]\langle-\rangle \mathbf{t t}
$$

Hennessy-Milner with regular modalities

- As long as no error happens, a deadlock will not occur.

$$
\left[(- \text { error })^{*}\right]\langle-\rangle \mathbf{t t}
$$

- Whenever an a can happen in any reachable state, a b action can subsequently be done unless a c happens cancelling the need to do the b.

$$
\left[-^{*} . a\right]\left\langle-^{*} .(b \cup c)\right\rangle \mathbf{t t}
$$

Hennessy-Milner with regular modalities

- As long as no error happens, a deadlock will not occur.

$$
\left[(- \text { error })^{*}\right]\langle-\rangle \mathbf{t t}
$$

- Whenever an a can happen in any reachable state, a b action can subsequently be done unless a c happens cancelling the need to do the b.

$$
\left[-^{*} . a\right]\left\langle-^{*} .(b \cup c)\right\rangle \mathbf{t t}
$$

- Whenever an a action happens, it must always be possible to do a b after that, although doing the b can infinitely be postponed.

$$
\left[-^{*} . a .(-b)^{*}\right]\left\langle-^{*} . b\right\rangle \mathbf{t t}
$$

A denotational semantics

Idea: associate to each formula ϕ the set of processes that makes it true

A denotational semantics

Idea: associate to each formula ϕ the set of processes that makes it true

$$
\phi \text { vs }\|\phi\|=\{E \in \mathbb{P} \mid E \models \phi\}
$$

A denotational semantics

Idea: associate to each formula ϕ the set of processes that makes it true

$$
\phi \text { vs }\|\phi\|=\{E \in \mathbb{P} \mid E \models \phi\}
$$

$$
\begin{aligned}
\|\mathbf{t t}\| & =\mathbb{P} \\
\|\mathbf{f f}\| & =\emptyset \\
\left\|\phi_{1} \wedge \phi_{2}\right\| & =\left\|\phi_{1}\right\| \cap\left\|\phi_{2}\right\| \\
\left\|\phi_{1} \vee \phi_{2}\right\| & =\left\|\phi_{1}\right\| \cup\left\|\phi_{2}\right\|
\end{aligned}
$$

A denotational semantics

Idea: associate to each formula ϕ the set of processes that makes it true

$$
\phi \text { vs }\|\phi\|=\{E \in \mathbb{P} \mid E \models \phi\}
$$

$$
\begin{aligned}
\|\mathbf{t t}\| & =\mathbb{P} \\
\|\mathbf{f f}\| & =\emptyset \\
\left\|\phi_{1} \wedge \phi_{2}\right\| & =\left\|\phi_{1}\right\| \cap\left\|\phi_{2}\right\| \\
\left\|\phi_{1} \vee \phi_{2}\right\| & =\left\|\phi_{1}\right\| \cup\left\|\phi_{2}\right\|
\end{aligned}
$$

$$
\begin{aligned}
\|[K] \phi\| & =\|[K]\|(\|\phi\|) \\
\|\langle K\rangle \phi\| & =\|\langle K\rangle\|(\|\phi\|)
\end{aligned}
$$

$\|[K]\|$ and $\|\langle K\rangle\|$

Just as \wedge corresponds to \cap and \vee to \cup, modal logic combinators correspond to unary functions on sets of processes:

$$
\begin{gathered}
\|[K]\|(X)=\left\{F \in \mathbb{P} \mid \text { if } F \xrightarrow{a} F^{\prime} \wedge a \in K \text { then } F^{\prime} \in X\right\} \\
\|\langle K\rangle\|(X)=\left\{F \in \mathbb{P} \mid \exists_{F^{\prime} \in X, a \in K} . F \xrightarrow{a} F^{\prime}\right\}
\end{gathered}
$$

Note
These combinators perform a reduction to the previous state indexed by actions in K

$\|[K]\|$ and $\|\langle K\rangle\|$

Example

$$
\begin{aligned}
\|\langle a\rangle\|\left\{q_{2}, n\right\} & =\left\{q_{1}, m\right\} \\
\|[a]\|\left\{q_{2}, n\right\} & =\left\{q_{2}, q_{3}, m, n\right\}
\end{aligned}
$$

A denotational semantics

$$
E \models \phi \text { iff } E \in\|\phi\|
$$

Example: $\mathbf{0} \models[-] \mathbf{f f}$

A denotational semantics

$$
E \models \phi \text { iff } E \in\|\phi\|
$$

Example: $\mathbf{0} \models[-] \mathbf{f f}$ because

$$
\begin{aligned}
\|[-] \mathbf{f f}\| & =\|[-]\|(\|\mathbf{f f}\|) \\
& =\|[-]\|(\emptyset) \\
& =\left\{F \in \mathbb{P} \mid \text { if } F \xrightarrow{x} F^{\prime} \wedge x \in \text { Act then } F^{\prime} \in \emptyset\right\} \\
& =\{\mathbf{0}\}
\end{aligned}
$$

A denotational semantics

$$
E \models \phi \text { iff } E \in\|\phi\|
$$

Example: ?? $\models\langle-\rangle$ tt

A denotational semantics

$$
E \models \phi \text { iff } E \in\|\phi\|
$$

Example: ?? $\models\langle-\rangle$ tt because

$$
\begin{aligned}
\|\langle-\rangle \mathbf{t t}\| & =\|\langle-\rangle\|(\| \mathbf{t \mathbf { t } \|}) \\
& =\|\langle-\rangle\|(\mathbb{P}) \\
& =\left\{F \in \mathbb{P} \mid \exists_{F^{\prime} \in \mathbb{P}, \mathbf{a} \in K} . F \xrightarrow{a} F^{\prime}\right\} \\
& =\mathbb{P} \backslash\{\mathbf{0}\}
\end{aligned}
$$

A denotational semantics

Complement
Any property ϕ divides \mathbb{P} into two disjoint sets:

$$
\|\phi\| \text { and } \mathbb{P}-\|\phi\|
$$

The characteristic formula of the complement of $\|\phi\|$ is ϕ^{c} :

$$
\left\|\phi^{\mathrm{c}}\right\|=\mathbb{P}-\|\phi\|
$$

where ϕ^{c} is defined inductively on the formulae structure:

$$
\begin{aligned}
\mathbf{t t}^{c}=\mathbf{f f} \quad \mathbf{f f}^{c}=\mathbf{t t} \\
\left(\phi_{1} \wedge \phi_{2}\right)^{c}=\phi_{1}^{c} \vee \phi_{2}^{c} \\
\left(\phi_{1} \vee \phi_{2}\right)^{c}=\phi_{1}^{c} \wedge \phi_{2}^{c} \\
(\langle a\rangle \phi)^{c}=[a] \phi^{c}
\end{aligned}
$$

... but negation is not explicitly introduced in the logic.

Exercise

Compute
(1) $\|\langle a\rangle\langle-\rangle \mathbf{t t}\|$
(2) \|[a] $\langle-\rangle \mathbf{t t} \wedge[b][-] \mathbf{f f} \|$
(3)\|[a] $\langle-\rangle \mathbf{t t} \vee[b][-] \mathbf{f f} \|$

Modal Equivalence

For each (finite or infinite) set Γ of formulae,

$$
E \simeq_{\Gamma} F \quad \Leftrightarrow \quad \forall_{\phi \in \Gamma} . E \models \phi \Leftrightarrow F \models \phi
$$

Modal Equivalence

For each (finite or infinite) set Γ of formulae,

$$
E \simeq_{\Gamma} F \quad \Leftrightarrow \quad \forall_{\phi \in \Gamma} . E \models \phi \Leftrightarrow F \models \phi
$$

Examples

$$
\begin{aligned}
\text { a.b. } \mathbf{0}+a . c . \mathbf{0} & \simeq_{\Gamma} a .(b . \mathbf{0}+c .0) \\
\text { for } \Gamma & =\left\{\left\langle x_{1}\right\rangle\left\langle x_{2}\right\rangle \ldots\left\langle x_{n}\right\rangle \mathbf{t t} \mid x_{i} \in A c t\right\}
\end{aligned}
$$

Modal Equivalence

For each (finite or infinite) set Γ of formulae,

$$
E \simeq F \quad \Leftrightarrow \quad E \simeq_{\Gamma} F \text { for every set } \Gamma \text { of well-formed formulae }
$$

Modal Equivalence

For each (finite or infinite) set Γ of formulae,

$$
E \simeq F \quad \Leftrightarrow \quad E \simeq_{\Gamma} F \text { for every set } \Gamma \text { of well-formed formulae }
$$

Lemma

$$
E \sim F \Rightarrow E \simeq F
$$

Modal Equivalence

For each (finite or infinite) set Γ of formulae,

$$
E \simeq F \quad \Leftrightarrow \quad E \simeq_{\Gamma} F \text { for every set } \Gamma \text { of well-formed formulae }
$$

Lemma

$$
E \sim F \Rightarrow E \simeq F
$$

Note

the converse of this lemma does not hold, e.g. let

- $A={ }^{d f} \sum_{i \geq 0} A_{i}$, where $A_{0}={ }^{d f} \mathbf{0}$ and $A_{i+1}={ }^{d f}$ a. A_{i}
- $A^{\prime}={ }^{d f} A+K, K=a . K$

$$
A \nsim A^{\prime} \text { but } A \simeq A^{\prime}
$$

Modal Equivalence

Theorem [Hennessy-Milner, 1985]

$$
E \sim F \Leftrightarrow E \simeq F
$$

for image-finite processes.

Modal Equivalence

Theorem [Hennessy-Milner, 1985]

$$
E \sim F \Leftrightarrow E \simeq F
$$

for image-finite processes.

Image-finite processes
E is image-finite iff $\{F \mid E \xrightarrow{a} F\}$ is finite for every action $a \in A c t$

Modal Equivalence

Theorem [Hennessy-Milner, 1985]

$$
E \sim F \quad \Leftrightarrow \quad E \simeq F
$$

for image-finite processes.
proof
\Rightarrow : by induction of the formula structure
\Leftarrow : show that \simeq is itself a bisimulation, by contradiction

Exercise

Show that states s, t and v are not bisimilar and determine the modal properties which distinguish between them.

Exercise

Consider processes $E={ }^{d f}$ a. $(b . \mathbf{0}+c . \mathbf{0})$ e $F={ }^{d f}$ a.b. $\mathbf{0}+$ a.c. $\mathbf{0}$. Propose a formula ϕ in \mathcal{M} valid in E but false in F.

Exercise

Let E be a process. A formula ϕ is said to be characteristic of E iff

$$
\forall_{F \in \mathbb{P}} . F \models \phi \text { sse } F \sim E
$$

Note that a process verifies the characteristic formula of E iff it is strongly bisimilar to E.
Determine the characteristic formula of process x.0.

Exercise

Consider processes below and write down a formula in \mathcal{M} valid in R but not in S.

$$
\begin{align*}
& E={ }^{d f} b \cdot c \cdot \mathbf{0}+b \cdot d .0 \tag{1}\\
& F={ }^{d f} E+b \cdot(c \cdot \mathbf{0}+d .0) \tag{2}\\
& R={ }^{d f} a . E+a . F \tag{3}\\
& S={ }^{d f} a . F \tag{4}
\end{align*}
$$

Exercise

In general, parallel composite in process algebra fails to be idempotent.
(1) Making $E={ }^{\text {df }}$ a.b. E, formalise a property in \mathcal{M} to distinguish between E and $E \mid E$.
(2) In some cases idempotency holds. Build a bissimulation to witness equivalence $E \sim E \mid E$ when E is $E={ }^{d f} \sum_{x \in K} x . E$, for any $K \subseteq$ Act $-\{\tau\}$. Would this remain true for Act?

