
Interacção e Concorrência 2016/17
Bloco de acetatos 8

Alexandre Madeira
(based on Lúıs S. Barbosa 2014/15 course Slides)

HASLab INESC TEC, DI UMINHO

April 26, 2017

Motivation

System’s correctness wrt a specification

• equivalence checking (between two designs), through ∼ and =

• unsuitable to check properties such as

can the system perform action α followed by β?

which are best answered by exploring the process state space

Which logic?

• Modal logic over transition systems

• The Hennessy-Milner logic (offered in mCRL2)

• The modal µ-calculus (offered in mCRL2)

Motivation

System’s correctness wrt a specification

• equivalence checking (between two designs), through ∼ and =

• unsuitable to check properties such as

can the system perform action α followed by β?

which are best answered by exploring the process state space

Which logic?

• Modal logic over transition systems

• The Hennessy-Milner logic (offered in mCRL2)

• The modal µ-calculus (offered in mCRL2)

Motivation

System’s correctness wrt a specification

• equivalence checking (between two designs), through ∼ and =

• unsuitable to check properties such as

can the system perform action α followed by β?

which are best answered by exploring the process state space

Which logic?

• Modal logic over transition systems

• The Hennessy-Milner logic (offered in mCRL2)

• The modal µ-calculus (offered in mCRL2)

The language

Signatures

Signatures are pairs (PROP,MOD) where PROP and MOD are
sets of propositional symbols and modality symbols.

Formulas

φ ::= p | tt | ff | ¬φ | φ1 ∧ φ2 | φ1 → φ2 | 〈m〉φ | [m]φ

where p ∈ PROP and m ∈ MOD

Disjunction (∨) and equivalence (↔) are defined by abbreviation.

The language

Signatures

Signatures are pairs (PROP,MOD) where PROP and MOD are
sets of propositional symbols and modality symbols.

Formulas

φ ::= p | tt | ff | ¬φ | φ1 ∧ φ2 | φ1 → φ2 | 〈m〉φ | [m]φ

where p ∈ PROP and m ∈ MOD

Disjunction (∨) and equivalence (↔) are defined by abbreviation.

The language

Signatures

Signatures are pairs (PROP,MOD) where PROP and MOD are
sets of propositional symbols and modality symbols.

Formulas

φ ::= p | tt | ff | ¬φ | φ1 ∧ φ2 | φ1 → φ2 | 〈m〉φ | [m]φ

where p ∈ PROP and m ∈ MOD

Disjunction (∨) and equivalence (↔) are defined by abbreviation.

The language

Notes

• if there is only one modality in the signature (i.e., MOD is a
singleton), write simply �φ and

• the language has some redundancy: in particular modal connectives
are dual (as quantifiers are in first-order logic):

[m]φ is equivalent to ¬〈m〉 ¬φ

The language

Notes

• if there is only one modality in the signature (i.e., MOD is a
singleton), write simply �φ and

• the language has some redundancy: in particular modal connectives
are dual (as quantifiers are in first-order logic):

[m]φ is equivalent to ¬〈m〉 ¬φ

The language

Semantics
A model for the language is a pair M = 〈F ,V 〉, where

• F = 〈W , {Rm}m∈MOD〉 is a Kripke frame, ie,

• W is a a non empty set (of states or worlds)
• {Rm}m∈MOD is a family of binary relations Rm ⊆W ×W , for

each modality symbol m ∈ MOD.

• V : PROP→ P(W) is a valuation.

The language

Satisfaction: for a model M and a point w

M,w |= tt

M,w 6|= ff

M,w |= p iff w ∈ V (p)

M,w |= ¬φ iff M,w 6|= φ

M,w |= φ1 ∧ φ2 iff M,w |= φ1 and M,w |= φ2

M,w |= φ1 → φ2 iff M,w 6|= φ1 or M,w |= φ2

M,w |= 〈m〉φ iff there exists v ∈W st wRmv andM, v |= φ

M,w |= [m]φ iff for all v ∈W st wRmv andM, v |= φ

The language

Safistaction
A formula φ is

• satisfiable in a model M if it is satisfied at some point of M

• globally satisfied inM (M |= φ) if it is satisfied at all points inM

• valid (|= φ) if it is globally satisfied in all models

• a semantic consequence of a set of formulas Γ (Γ |= φ) if for all
models M and all points w , if M,w |= Γ then M,w |= φ

Examples

Temporal logic

• W is a set of instants

• there is a unique modality corresponding to the transitive closure
of the next-time relation

• origin: Arthur Prior, an attempt to deal with temporal information
from the inside, capturing the situated nature of our experience and
the context-dependent way we talk about it

Examples: Temporal logics with U and S

M,w |= φU ψ iff
there exists v ∈W such that (w , v) ∈ R and M, v |= ψ, and for all
u ∈W such that (w , u) ∈ R and (u, v) ∈ R one has M, u |= φ

M,w |= φS ψ iff
there exists a v ∈W such that (v ,w) ∈ R and M, v |= ψ and, for all u
such that (v , u) ∈ R and (u,w) ∈ R one has M, u |= φ

• note the ∃∀ qualification pattern: these operators are neither
diamonds nor boxes.

• helpful to express guarantee properties, e.g., some event will
happen, and a certain condition will hold until then

• ... a plethora of temporal logics: LTL, CTL, CTL*

Examples: Temporal logics with U and S

M,w |= φU ψ iff
there exists v ∈W such that (w , v) ∈ R and M, v |= ψ, and for all
u ∈W such that (w , u) ∈ R and (u, v) ∈ R one has M, u |= φ

M,w |= φS ψ iff
there exists a v ∈W such that (v ,w) ∈ R and M, v |= ψ and, for all u
such that (v , u) ∈ R and (u,w) ∈ R one has M, u |= φ

• note the ∃∀ qualification pattern: these operators are neither
diamonds nor boxes.

• helpful to express guarantee properties, e.g., some event will
happen, and a certain condition will hold until then

• ... a plethora of temporal logics: LTL, CTL, CTL*

Examples

Process logic (Hennessy-Milner logic)

• PROP = ∅

• W = P is a set of states, typically process terms, in a labelled
transition system

• each subset K ⊆ Act of actions generates a modality corresponding
to transitions labelled by an element of K

Assuming the underlying LTS F = 〈P, {p K−→ p′ | K ⊆ Act}〉 as the
modal frame, satisfaction is abbreviated as

p |= 〈K 〉φ iff ∃
q∈{p′|p

a−→p′ ∧ a∈K}
. q |= φ

p |= [K]φ iff ∀
q∈{p′|p

a−→p′ ∧ a∈K}
. q |= φ

Examples

Process logic (Hennessy-Milner logic)

• PROP = ∅

• W = P is a set of states, typically process terms, in a labelled
transition system

• each subset K ⊆ Act of actions generates a modality corresponding
to transitions labelled by an element of K

Assuming the underlying LTS F = 〈P, {p K−→ p′ | K ⊆ Act}〉 as the
modal frame, satisfaction is abbreviated as

p |= 〈K 〉φ iff ∃
q∈{p′|p

a−→p′ ∧ a∈K}
. q |= φ

p |= [K]φ iff ∀
q∈{p′|p

a−→p′ ∧ a∈K}
. q |= φ

Examples

Process logic (Hennessy-Milner logic)

• PROP = ∅

• W = P is a set of states, typically process terms, in a labelled
transition system

• each subset K ⊆ Act of actions generates a modality corresponding
to transitions labelled by an element of K

Assuming the underlying LTS F = 〈P, {p K−→ p′ | K ⊆ Act}〉 as the
modal frame, satisfaction is abbreviated as

p |= 〈K 〉φ iff ∃
q∈{p′|p

a−→p′ ∧ a∈K}
. q |= φ

p |= [K]φ iff ∀
q∈{p′|p

a−→p′ ∧ a∈K}
. q |= φ

Examples

Process logic (Hennessy-Milner logic)

• PROP = ∅

• W = P is a set of states, typically process terms, in a labelled
transition system

• each subset K ⊆ Act of actions generates a modality corresponding
to transitions labelled by an element of K

Assuming the underlying LTS F = 〈P, {p K−→ p′ | K ⊆ Act}〉 as the
modal frame, satisfaction is abbreviated as

p |= 〈K 〉φ iff ∃
q∈{p′|p

a−→p′ ∧ a∈K}
. q |= φ

p |= [K]φ iff ∀
q∈{p′|p

a−→p′ ∧ a∈K}
. q |= φ

Examples

Process logic: The taxi network example

• φ0 = In a taxi network, a car can collect a passenger or be allocated
by the Central to a pending service

• φ0 = 〈rec , alo〉 tt

• φ1 = This applies only to cars already on service

• φ1 = [onservice] 〈rec , alo〉 tt or
φ1 = [onservice]φ0

• φ2 = If a car is allocated to a service, it must first collect the
passenger and then plan the route

• φ2 = [alo] 〈rec〉 〈plan〉 tt

Examples

Process logic: The taxi network example

• φ0 = In a taxi network, a car can collect a passenger or be allocated
by the Central to a pending service

• φ0 = 〈rec , alo〉 tt

• φ1 = This applies only to cars already on service

• φ1 = [onservice] 〈rec , alo〉 tt or
φ1 = [onservice]φ0

• φ2 = If a car is allocated to a service, it must first collect the
passenger and then plan the route

• φ2 = [alo] 〈rec〉 〈plan〉 tt

Examples

Process logic: The taxi network example

• φ0 = In a taxi network, a car can collect a passenger or be allocated
by the Central to a pending service

• φ0 = 〈rec , alo〉 tt

• φ1 = This applies only to cars already on service

• φ1 = [onservice] 〈rec , alo〉 tt or
φ1 = [onservice]φ0

• φ2 = If a car is allocated to a service, it must first collect the
passenger and then plan the route

• φ2 = [alo] 〈rec〉 〈plan〉 tt

Examples

Process logic: The taxi network example

• φ0 = In a taxi network, a car can collect a passenger or be allocated
by the Central to a pending service

• φ0 = 〈rec , alo〉 tt

• φ1 = This applies only to cars already on service

• φ1 = [onservice] 〈rec , alo〉 tt or
φ1 = [onservice]φ0

• φ2 = If a car is allocated to a service, it must first collect the
passenger and then plan the route

• φ2 = [alo] 〈rec〉 〈plan〉 tt

Examples

Process logic: The taxi network example

• φ0 = In a taxi network, a car can collect a passenger or be allocated
by the Central to a pending service

• φ0 = 〈rec , alo〉 tt

• φ1 = This applies only to cars already on service

• φ1 = [onservice] 〈rec , alo〉 tt or
φ1 = [onservice]φ0

• φ2 = If a car is allocated to a service, it must first collect the
passenger and then plan the route

• φ2 = [alo] 〈rec〉 〈plan〉 tt

Examples

Process logic: The taxi network example

• φ0 = In a taxi network, a car can collect a passenger or be allocated
by the Central to a pending service

• φ0 = 〈rec , alo〉 tt

• φ1 = This applies only to cars already on service

• φ1 = [onservice] 〈rec , alo〉 tt or
φ1 = [onservice]φ0

• φ2 = If a car is allocated to a service, it must first collect the
passenger and then plan the route

• φ2 = [alo] 〈rec〉 〈plan〉 tt

Examples

Process logic: The taxi network example

• φ3 = On detecting an emergence the taxi becomes inactive

• φ3 = [sos] [−] ff

• φ4 = A car on service is not inactive

• φ4 = [onservice] 〈−〉 tt

Examples

Process logic: The taxi network example

• φ3 = On detecting an emergence the taxi becomes inactive

• φ3 = [sos] [−] ff

• φ4 = A car on service is not inactive

• φ4 = [onservice] 〈−〉 tt

Examples

Process logic: The taxi network example

• φ3 = On detecting an emergence the taxi becomes inactive

• φ3 = [sos] [−] ff

• φ4 = A car on service is not inactive

• φ4 = [onservice] 〈−〉 tt

Examples

Process logic: The taxi network example

• φ3 = On detecting an emergence the taxi becomes inactive

• φ3 = [sos] [−] ff

• φ4 = A car on service is not inactive

• φ4 = [onservice] 〈−〉 tt

Process logic: typical properties

• inevitability of a: 〈−〉 tt ∧ [−a] ff

• progress: 〈−〉 tt

• deadlock or termination: [−] ff

• satisfaction decided by unfolding the definition of |=: no need to
compute the transition graph

Process logic: typical properties

• inevitability of a: 〈−〉 tt ∧ [−a] ff

• progress: 〈−〉 tt

• deadlock or termination: [−] ff

• satisfaction decided by unfolding the definition of |=: no need to
compute the transition graph

Process logic: typical properties

• inevitability of a: 〈−〉 tt ∧ [−a] ff

• progress: 〈−〉 tt

• deadlock or termination: [−] ff

• satisfaction decided by unfolding the definition of |=: no need to
compute the transition graph

Hennessy-Milner logic

... propositional logic with action modalities

Syntax

φ ::= tt | ff | φ1 ∧ φ2 | φ1 ∨ φ2 | 〈K 〉φ | [K]φ

Semantics: E |= φ

E |= tt

E 6|= ff

E |= φ1 ∧ φ2 iff E |= φ1 ∧ E |= φ2

E |= φ1 ∨ φ2 iff E |= φ1 ∨ E |= φ2

E |= 〈K 〉φ iff ∃
F∈{E ′|E

a−→E ′ ∧ a∈K}
. F |= φ

E |= [K]φ iff ∀
F∈{E ′|E

a−→E ′ ∧ a∈K}
. F |= φ

Example

Sem =df get.put.Sem

Pi =df get.ci .put.Pi

S =df (Sem | (|i∈I Pi)) \ {get, put}

• Sem |= 〈get〉 tt

holds because

∃
F∈{Sem′|Sem

get−−→Sem′}
. F |= tt

with F = put.Sem.

• Sem |= [put] ff also holds, because

T = {Sem′ | Sem put−−→ Sem′} = ∅.
Hence ∀F∈T . F |= ff becomes trivially true.

• The only action initially permmited to S is τ : |= [−τ] ff.

Example

Sem =df get.put.Sem

Pi =df get.ci .put.Pi

S =df (Sem | (|i∈I Pi)) \ {get, put}

• Sem |= 〈get〉 tt holds because

∃
F∈{Sem′|Sem

get−−→Sem′}
. F |= tt

with F = put.Sem.

• Sem |= [put] ff also holds, because

T = {Sem′ | Sem put−−→ Sem′} = ∅.
Hence ∀F∈T . F |= ff becomes trivially true.

• The only action initially permmited to S is τ : |= [−τ] ff.

Example

Sem =df get.put.Sem

Pi =df get.ci .put.Pi

S =df (Sem | (|i∈I Pi)) \ {get, put}

• Sem |= 〈get〉 tt holds because

∃
F∈{Sem′|Sem

get−−→Sem′}
. F |= tt

with F = put.Sem.

• Sem |= [put] ff

also holds, because

T = {Sem′ | Sem put−−→ Sem′} = ∅.
Hence ∀F∈T . F |= ff becomes trivially true.

• The only action initially permmited to S is τ : |= [−τ] ff.

Example

Sem =df get.put.Sem

Pi =df get.ci .put.Pi

S =df (Sem | (|i∈I Pi)) \ {get, put}

• Sem |= 〈get〉 tt holds because

∃
F∈{Sem′|Sem

get−−→Sem′}
. F |= tt

with F = put.Sem.

• Sem |= [put] ff also holds, because

T = {Sem′ | Sem put−−→ Sem′} = ∅.
Hence ∀F∈T . F |= ff becomes trivially true.

• The only action initially permmited to S is τ : |= [−τ] ff.

Example

Sem =df get.put.Sem

Pi =df get.ci .put.Pi

S =df (Sem | (|i∈I Pi)) \ {get, put}

• Afterwards, S can engage in any of the critical events c1, c2, ..., ci :
[τ] 〈c1, c2, ..., ci 〉 tt

• After the semaphore initial synchronization and the occurrence of cj
in Pj , a new synchronization becomes inevitable:
S |= [τ] [cj] (〈−〉 tt ∧ [−τ] ff)

Exercise

Verify:

¬〈a〉φ = [a]¬φ
¬[a]φ = 〈a〉 ¬φ
〈a〉ff = ff

[a] tt = tt

〈a〉 (φ ∨ ψ) = 〈a〉φ ∨ 〈a〉ψ
[a] (φ ∧ ψ) = [a]φ ∧ [a]ψ

〈a〉φ ∧ [a]ψ ⇒ 〈a〉 (φ ∧ ψ)

Exercise

Formalise each of the following properties:

1 The occurrence of a and b is impossible.

2 The occurrence of a followed by b is impossible.

3 Only the occurrence of a is possible.

4 Once a occurred, b or c may occur.

5 After a occurred followed by b, c may occur.

6 Once a occurred, b or c may occur but not both.

7 a cannot occur before b.

8 There is only an initial transition labelled by a.

Exercise

Consider the following processes and enumerate for each of them
the properties they verify:

1 E1 =df a.b.0

2 E2 =df a.c .0

3 E =df E1 + E2

4 F =df a.(b.0 + c .0)

5 G =df E + F

Exercise

Specify a LTS such that the following modal properties hold
simultaneously in its initial state:

• 〈a〉 〈b〉 〈c〉 tt ∧ 〈c〉 tt

• 〈a〉 〈b〉 ([a] ff ∧ [c] ff ∧ [b] ff)

• 〈a〉 〈b〉 (〈a〉 tt ∧ [c] ff)

Exercise

Consider the following specification of a CNC program:

Start =df fw .Go + stop.0

Go =df fw .bk.bk .Start + right.left.bk.Start

Formalise the following properties:

1 After fw another fw is immediately possible

2 After fw followed by right, left is possible but bk is not.

3 Action fw is the only one initially possible

4 The third action of process Start is not fw .

Hennessy-Milner with regular modalities

As in mCRL2, we can enrich modalities with regular expressions of
modal symbols:

α := K | K ∪ K | K ∩ K

for K ⊆ A.

As above we represent

• the set A with −
• the set A \ {a} with −a

Regular modalities

R := ε | α | R.R | R + R | R∗

Hennessy-Milner with regular modalities

As in mCRL2, we can enrich modalities with regular expressions of
modal symbols:

α := K | K ∪ K | K ∩ K

for K ⊆ A. As above we represent

• the set A with −
• the set A \ {a} with −a

Regular modalities

R := ε | α | R.R | R + R | R∗

Hennessy-Milner with regular modalities

interpretation of regular modalities

• 〈R1 + R2〉true = 〈R1〉true ∨ 〈R2〉true
[R1 + R2]true = [R1]true ∨ [R2]true

• 〈R1.R2〉true = 〈R1〉〈R2〉true
[R1.R2]true = [R1][R2]true

Hennessy-Milner with regular modalities

• As long as no error happens, a deadlock will not occur.

[(−error)∗]〈−〉tt

• Whenever an a can happen in any reachable state, a b action
can subsequently be done unless a c happens cancelling the
need to do the b.

[−∗.a]〈−∗.(b ∪ c)〉tt

• Whenever an a action happens, it must always be possible to
do a b after that, although doing the b can infinitely be
postponed.

[−∗.a.(−b)∗]〈−∗.b〉tt

Hennessy-Milner with regular modalities

• As long as no error happens, a deadlock will not occur.

[(−error)∗]〈−〉tt

• Whenever an a can happen in any reachable state, a b action
can subsequently be done unless a c happens cancelling the
need to do the b.

[−∗.a]〈−∗.(b ∪ c)〉tt

• Whenever an a action happens, it must always be possible to
do a b after that, although doing the b can infinitely be
postponed.

[−∗.a.(−b)∗]〈−∗.b〉tt

Hennessy-Milner with regular modalities

• As long as no error happens, a deadlock will not occur.

[(−error)∗]〈−〉tt

• Whenever an a can happen in any reachable state, a b action
can subsequently be done unless a c happens cancelling the
need to do the b.

[−∗.a]〈−∗.(b ∪ c)〉tt

• Whenever an a action happens, it must always be possible to
do a b after that, although doing the b can infinitely be
postponed.

[−∗.a.(−b)∗]〈−∗.b〉tt

A denotational semantics

Idea: associate to each formula φ the set of processes that makes it true

φ vs ||φ|| = {E ∈ P | E |= φ}

||tt|| = P
||ff|| = ∅

||φ1 ∧ φ2|| = ||φ1|| ∩ ||φ2||
||φ1 ∨ φ2|| = ||φ1|| ∪ ||φ2||

||[K]φ|| = ||[K]||(||φ||)
||〈K 〉φ|| = ||〈K 〉||(||φ||)

A denotational semantics

Idea: associate to each formula φ the set of processes that makes it true

φ vs ||φ|| = {E ∈ P | E |= φ}

||tt|| = P
||ff|| = ∅

||φ1 ∧ φ2|| = ||φ1|| ∩ ||φ2||
||φ1 ∨ φ2|| = ||φ1|| ∪ ||φ2||

||[K]φ|| = ||[K]||(||φ||)
||〈K 〉φ|| = ||〈K 〉||(||φ||)

A denotational semantics

Idea: associate to each formula φ the set of processes that makes it true

φ vs ||φ|| = {E ∈ P | E |= φ}

||tt|| = P
||ff|| = ∅

||φ1 ∧ φ2|| = ||φ1|| ∩ ||φ2||
||φ1 ∨ φ2|| = ||φ1|| ∪ ||φ2||

||[K]φ|| = ||[K]||(||φ||)
||〈K 〉φ|| = ||〈K 〉||(||φ||)

A denotational semantics

Idea: associate to each formula φ the set of processes that makes it true

φ vs ||φ|| = {E ∈ P | E |= φ}

||tt|| = P
||ff|| = ∅

||φ1 ∧ φ2|| = ||φ1|| ∩ ||φ2||
||φ1 ∨ φ2|| = ||φ1|| ∪ ||φ2||

||[K]φ|| = ||[K]||(||φ||)
||〈K 〉φ|| = ||〈K 〉||(||φ||)

||[K]|| and ||〈K 〉||

Just as ∧ corresponds to ∩ and ∨ to ∪, modal logic combinators
correspond to unary functions on sets of processes:

||[K]||(X) = {F ∈ P | if F
a−→ F ′ ∧ a ∈ K then F ′ ∈ X}

||〈K 〉||(X) = {F ∈ P | ∃F ′∈X ,a∈K . F
a−→ F ′}

Note
These combinators perform a reduction to the previous state indexed
by actions in K

||[K]|| and ||〈K 〉||

Example

q1

a

~~

a

m

a

��
q2

c // q3 cgg n cdd

||〈a〉||{q2, n} = {q1,m}
||[a]||{q2, n} = {q2, q3,m, n}

A denotational semantics

E |= φ iff E ∈ ||φ||

Example: 0 |= [−] ff

because

||[−] ff|| = ||[−]||(||ff||)
= ||[−]||(∅)

= {F ∈ P | if F
x−→ F ′ ∧ x ∈ Act then F ′ ∈ ∅}

= {0}

A denotational semantics

E |= φ iff E ∈ ||φ||

Example: 0 |= [−] ff
because

||[−] ff|| = ||[−]||(||ff||)
= ||[−]||(∅)

= {F ∈ P | if F
x−→ F ′ ∧ x ∈ Act then F ′ ∈ ∅}

= {0}

A denotational semantics

E |= φ iff E ∈ ||φ||

Example: ?? |= 〈−〉 tt

because

||〈−〉 tt|| = ||〈−〉||(||tt||)
= ||〈−〉||(P)

= {F ∈ P | ∃F ′∈P,a∈K . F
a−→ F ′}

= P \ {0}

A denotational semantics

E |= φ iff E ∈ ||φ||

Example: ?? |= 〈−〉 tt
because

||〈−〉 tt|| = ||〈−〉||(||tt||)
= ||〈−〉||(P)

= {F ∈ P | ∃F ′∈P,a∈K . F
a−→ F ′}

= P \ {0}

A denotational semantics

Complement
Any property φ divides P into two disjoint sets:

||φ|| and P− ||φ||

The characteristic formula of the complement of ||φ|| is φc:

||φc|| = P− ||φ||

where φc is defined inductively on the formulae structure:

ttc = ff ffc = tt

(φ1 ∧ φ2)c = φc
1 ∨ φc

2

(φ1 ∨ φ2)c = φc
1 ∧ φc

2

(〈a〉φ)c = [a]φc

... but negation is not explicitly introduced in the logic.

Exercise

Compute

1 ||〈a〉 〈−〉 tt||
2 ||[a] 〈−〉 tt ∧ [b] [−] ff||
3 ||[a] 〈−〉 tt ∨ [b] [−] ff||

Modal Equivalence

For each (finite or infinite) set Γ of formulae,

E 'Γ F ⇔ ∀φ∈Γ . E |= φ⇔ F |= φ

Examples

a.b.0 + a.c .0 'Γ a.(b.0 + c .0)

for Γ = {〈x1〉 〈x2〉 ...〈xn〉 tt | xi ∈ Act}

Modal Equivalence

For each (finite or infinite) set Γ of formulae,

E 'Γ F ⇔ ∀φ∈Γ . E |= φ⇔ F |= φ

Examples

a.b.0 + a.c .0 'Γ a.(b.0 + c .0)

for Γ = {〈x1〉 〈x2〉 ...〈xn〉 tt | xi ∈ Act}

Modal Equivalence

For each (finite or infinite) set Γ of formulae,

E ' F ⇔ E 'Γ F for every set Γ of well-formed formulae

Lemma

E ∼ F ⇒ E ' F

Note
the converse of this lemma does not hold, e.g. let

• A =df
∑

i≥0 Ai , where A0 =df 0 and Ai+1 =df a.Ai

• A′ =df A + K , K = a.K

A � A′ but A' A′

Modal Equivalence

For each (finite or infinite) set Γ of formulae,

E ' F ⇔ E 'Γ F for every set Γ of well-formed formulae

Lemma

E ∼ F ⇒ E ' F

Note
the converse of this lemma does not hold, e.g. let

• A =df
∑

i≥0 Ai , where A0 =df 0 and Ai+1 =df a.Ai

• A′ =df A + K , K = a.K

A � A′ but A' A′

Modal Equivalence

For each (finite or infinite) set Γ of formulae,

E ' F ⇔ E 'Γ F for every set Γ of well-formed formulae

Lemma

E ∼ F ⇒ E ' F

Note
the converse of this lemma does not hold, e.g. let

• A =df
∑

i≥0 Ai , where A0 =df 0 and Ai+1 =df a.Ai

• A′ =df A + K , K = a.K

A � A′ but A' A′

Modal Equivalence

Theorem [Hennessy-Milner, 1985]

E ∼ F ⇔ E ' F

for image-finite processes.

Image-finite processes
E is image-finite iff {F | E a−→ F} is finite for every action a ∈ Act

Modal Equivalence

Theorem [Hennessy-Milner, 1985]

E ∼ F ⇔ E ' F

for image-finite processes.

Image-finite processes
E is image-finite iff {F | E a−→ F} is finite for every action a ∈ Act

Modal Equivalence

Theorem [Hennessy-Milner, 1985]

E ∼ F ⇔ E ' F

for image-finite processes.

proof

⇒ : by induction of the formula structure

⇐ : show that ' is itself a bisimulation, by contradiction

Exercise

Show that states s, t and v are not bisimilar and determine the
modal properties which distinguish between them.

Exercise

Consider processes E =df a.(b.0 + c .0) e F =df a.b.0 + a.c .0.
Propose a formula φ in M valid in E but false in F .

Exercise

Let E be a process. A formula φ is said to be characteristic of E iff

∀F∈P . F |= φ sse F ∼ E

Note that a process verifies the characteristic formula of E iff it is
strongly bisimilar to E .
Determine the characteristic formula of process x .0.

Exercise

Consider processes below and write down a formula in M valid in
R but not in S .

E =df b.c .0 + b.d .0 (1)

F =df E + b.(c .0 + d .0) (2)

R =df a.E + a.F (3)

S =df a.F (4)

Exercise

In general, parallel composite in process algebra fails to be
idempotent.

1 Making E =df a.b.E , formalise a property in M to distinguish
between E and E | E .

2 In some cases idempotency holds. Build a bissimulation to
witness equivalence E ∼ E | E when E is E =df

∑
x∈K x .E ,

for any K ⊆ Act − {τ}. Would this remain true for Act?

	Modal languages
	Hennessy-Milner logic
	Modal equivalence and bissimulation

