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which are best answered by exploring the process state space

Which logic?

e Modal logic over transition systems
e The Hennessy-Milner logic (offered in mCRL2)
e The modal si-calculus (offered in mCRL2)
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The language

Signatures

Signatures are pairs (PROP. MOD) where PROP and MOD are
sets of propositional symbols and modality symbols.

Formulas
¢pu=pltt|[fF|=p| p1Ad | d1—= ¢ | (Mo | [m]o

where p € PROP and m € MOD

Disjunction (V) and equivalence (<) are defined by abbreviation.
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The language

Notes
e if there is only one modality in the signature (i.e., MOD is a
singleton), write simply ©¢ and

e the language has some redundancy: in particular modal connectives
are dual (as quantifiers are in first-order logic):

[m] ¢ is equivalent to —(m) —¢



The language

Semantics
A model for the language is a pair M = (F, V), where

o F = (W,{Rm}memon) is a Kripke frame, ie,

e |/ is a a non empty set (of states or worlds)
o {Ry}mevon is a family of binary relations R,, C W x W, for
each modality symbol m € MOD.

e V:PROP — P(W) is a valuation.



The language

Satisfaction: for a model M and a point w

M,w = tt
M, w - ff
M,w=p
MaW):_‘d)
M,w = ¢1 A ¢
M,W)=¢1—>¢2
M, w = (m) o
M, w = [m] ¢

iff
iff
iff
iff
iff
iff

w € V(p)

M,w = @

M,wE ¢ and M, w = ¢,

M,w @1 or Myw = ¢

there exists v € W st wR,v and M, v = ¢
for all v € W st wR,,v and M,v |= ¢



The language

Safistaction
A formula ¢ is

satisfiable in a model M if it is satisfied at some point of M
globally satisfied in M (M = ¢) if it is satisfied at all points in M
valid (| ¢) if it is globally satisfied in all models

e a semantic consequence of a set of formulas I (I &= ¢) if for all
models M and all points w, if M,w =T then M,w |= ¢



Examples

Temporal logic

e |V is a set of instants

e there is a unique modality corresponding to the transitive closure
of the next-time relation

e origin: Arthur Prior, an attempt to deal with temporal information
from the inside, capturing the situated nature of our experience and
the context-dependent way we talk about it
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Examples: Temporal logics with &/ and S

M,w = oU 1 iff

there exists v € W such that (w,v) € R and M, v = 4, and for all

u € W such that (w,u) € R and (u,v) € R one has M, u = ¢

M, w = ¢S iff

there exists a v € W such that (v,w) € R and M, v =% and, for all u
such that (v,u) € R and (u,w) € R one has M,u = ¢

e note the 3V qualification pattern: these operators are neither
diamonds nor boxes.

o helpful to express guarantee properties, e.g., some event will
happen, and a certain condition will hold until then

e ... a plethora of temporal logics: LTL, CTL, CTL*
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Examples

Process logic (Hennessy-Milner logic)

o PROP = §}

o W =P is a set of states, typically process terms, in a labelled
transition system

e each subset K C Act of actions generates a modality corresponding
to transitions labelled by an element of K

Assuming the underlying LTS 7 = (P, {p LR p' | K C Act}) as the
modal frame, satisfaction is abbreviated as

p ': <K>¢ Iff ElqE{PllpiNJ' A aEK} N q ): ¢
P ): [K]¢ iff qu{pllpih’/ A a€K} " q ': ¢
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Examples

Process logic: The taxi network example
e ¢o = In a taxi network, a car can collect a passenger or be allocated
by the Central to a pending service
e o= (rec,alo)tt
e ¢1 = This applies only to cars already on service

e ¢ = [onservice] (rec, alo) tt or
¢1 = [onservice] ¢

e ¢, = If a car is allocated to a service, it must first collect the
passenger and then plan the route

e ¢, = [alo] (rec) (plan) tt
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Examples

Process logic: The taxi network example

e ¢3 = On detecting an emergence the taxi becomes inactive
o ¢3 = [sos][—]ff
e ¢, = A car on service is not inactive

o ¢, = [onservice] (—) tt
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Process logic: typical properties

inevitability of a: (—)tt A [—a] ff
progress: (—)tt
deadlock or termination: [—]ff

satisfaction decided by unfolding the definition of |=: no need to
compute the transition graph



Hennessy-Milner logic

... propositional logic with action modalities

Syntax
¢ =t [ fF| ¢ N2 | 1V | (K)o | [K]o

Semantics: E = ¢

EEtt

E B~ ff

EE ¢ iff EEd1 A EEé
EE¢1V o iff EE¢1 V EE¢
EF(K)d iff 3Fe{E'|Ei>E' A a€K} '’ FE¢

E ): [K](b iff VFE{E'\Ei)E’ A a€K} ' F ): ¢



Example

Sem =% get.put.Sem

P; =% get.c;.put.pP;

S = (Sem | (jies P)) \ {get, put}
e Sem |= (get) tt
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Example

Sem = get.put.Sem
P; =% get.c;.put.P;
S =9 (Sem | (lies P;)) \ {get, put}

e Sem = (get) tt holds because

FEtt

EIFe{Sem’|Semg—Et)Sem'} ’
with F = put.Sem.
e Sem |= [put] ff



Example

Sem = get.put.Sem
Pi :df a.C/.W.P;
S =% (Sem | (lics P:))\ {get, put}

e Sem = (get) tt holds because

FEtt

3 get .
Fe{Sem’|Sem—>Sem’}
with F = put.Sem.

e Sem |= [put] ff also holds, because
T = {Sem’ | Sem 2 Sem'} = 0.
Hence Vect . F |= ff becomes trivially true.

e The only action initially permmited to S is 7: |= [—7] ff.



Example

Sem =" get.put.Sem
P; =9 get.c;.put.P;
S =" (Sem | (|ics P:)) \ {get, put}

e Afterwards, S can engage in any of the critical events ¢, ¢, ..., ¢;:
[’7’] <C1, o,y C,'> tt

e After the semaphore initial synchronization and the occurrence of ¢;
in P;, a new synchronization becomes inevitable:

S = Ir]lgl ((=) te A [-7] fF)



Verify:

~(a)¢ = [a] ¢

—la]¢ = (a) ¢

(ayff = ff

[a]tt = tt

(@) (oVY) = (a)oV(a)y
[a] (¢ AYp) = [a] o A[a] v
(o Alaly = (a) (o AY)

Exercise



Exercise

Formalise each of the following properties:
@ The occurrence of a and b is impossible.
® The occurrence of a followed by b is impossible.
©® Only the occurrence of a is possible.
O Once a occurred, b or ¢ may occur.
@ After a occurred followed by b, ¢ may occur.
® Once a occurred, b or ¢ may occur but not both.
@ a cannot occur before b.

® There is only an initial transition labelled by a.



Exercise

Consider the following processes and enumerate for each of them
the properties they verify:

0 E1 —df a.b.0

® E =ac0

® E=9"E +E

0 F = a(b.0+c.0)
@ G="E+F



Exercise

Specify a LTS such that the following modal properties hold
simultaneously in its initial state:

e (a) (b) (c)tt A (c) tt
e (a) (b) ([a] fF A [c] fF A [b] fF)
o (a) (b) ((a) tt A [c] fF)



Exercise

Consider the following specification of a CNC program:

Start =% fw.Go + stop.0
Go =9 fw.bk.bk.Start + right.left.bk.Start

Formalise the following properties:
@ After fw another fw is immediately possible
® After fw followed by right, left is possible but bk is not.
© Action fw is the only one initially possible
O The third action of process Start is not fw.



Hennessy-Milner with regular modalities

As in mCRL2, we can enrich modalities with regular expressions of
modal symbols:

a=K|KUK|KNK
for K C A.



Hennessy-Milner with regular modalities

As in mCRL2, we can enrich modalities with regular expressions of
modal symbols:

a=K|KUK|KNK
for K C A. As above we represent
e the set A with —
e the set A\ {a} with —a

Regular modalities

R=¢|la|RR|R+R|R"



Hennessy-Milner with regular modalities

interpretation of regular modalities

e (R1 + Ry)true = (Ry)true V (R>)true
[R1 + Re]true = [Ri]true V [Ro]true

o (R1.Ry)true = (R1)(Ry)true
[Rl.Rg]true = [Rl][RQ]tI’UG
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e As long as no error happens, a deadlock will not occur.

[(—error)*](—)tt
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Hennessy-Milner with regular modalities

As long as no error happens, a deadlock will not occur.

[(—error)*](—)tt

Whenever an a can happen in any reachable state, a b action
can subsequently be done unless a ¢ happens cancelling the
need to do the b.

[—*.al(="(bU )t

Whenever an a action happens, it must always be possible to
do a b after that, although doing the b can infinitely be
postponed.

[~*.a(=b)] (" bjee
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A denotational semantics

’ Idea: associate to each formula ¢ the set of processes that makes it true

¢vs || ={E €P|E|=¢}

Jtt] =P

|fF| =0
I$1 A d2| = |p1] N |92
Ip1V ¢ =[] U ||

IIKT ol = IIKIIC2I)
[{K) ol = KK 2l)



[[K]]l and (KO

Just as A corresponds to N and V to U, modal logic combinators
correspond to unary functions on sets of processes:

IKII(X) = {FEP|IfF3F A acK then F e X}
KK [(X) = {F €P|3pexack - F 2 F}

Note
These combinators perform a reduction to the previous state indexed
by actions in K



[[K]]l and (KO

Example
w2 )

[(@){g2, n} = {q1, m}
Ila]l{g2, n} ={a2,q3, m, n}



A denotational semantics

| EEo iff Ec]ol]

Example: 0 = [—] ff



A denotational semantics

| EFo iff Ecdl]

Example: 0 = [—] ff

because

I[=1FF1 = N[=TICIFFD)
= |[-11(0)
={FcP|if FS F' A x€ Act then F' €0}
={0}
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A denotational semantics

| EFo iff Ecdl]

Example: 77 | (—) tt

because

[(=) et = [{=)[(lee])
= [{(=)I(P)
={FeP|3pecpack - F> F'}
=P\ {0}



A denotational semantics

Complement
Any property ¢ divides P into two disjoint sets:

|o] and P — o]

The characteristic formula of the complement of |¢| is ¢<:

[ = P — 19l
where ¢° is defined inductively on the formulae structure:
=ff ffc=tt
(¢1 A §2)" = P71V ¢5
(¢1V $2)" = ¢ A 5
((a) ¢)° = [a] ¢°

. but negation is not explicitly introduced in the logic.



Exercise

Compute
0 [(a) (—)tt|
@ |[a] (—) tt A [b] [-] fF]

-)
© [[a] (—) eV [b] [-]fF|
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For each (finite or infinite) set I of formulae,
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Modal Equivalence

For each (finite or infinite) set I of formulae,
E~F & V¢erE'=¢)<=>F':¢

Examples

a.b.0+a.c.0 ~r a.(b.0+c.0)
for T = {{x1) (x2) ...(xp) tt | x; € Act}
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Modal Equivalence

For each (finite or infinite) set [ of formulae,
E~F <& E ~r Ffor every set I of well-formed formulae
Lemma

E~F = E~F

Note
the converse of this lemma does not hold, e.g. let

o A=9%" oA where Ag =" 0 and Ay =% a. A
[ ) A/ :de—f—K, K:a.K

Ax A but A~A
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Modal Equivalence

Theorem [Hennessy-Milner, 1985]

E~F & Ex~F

for image-finite processes.

Image-finite processes
E is image-finite iff {F | E 3 F} is finite for every action a € Act



Modal Equivalence

Theorem [Hennessy-Milner, 1985]

E~F & E~F

for image-finite processes.

proof

= : by induction of the formula structure

< : show that ~ is itself a bisimulation, by contradiction



Exercise

S t v
a
a a a
b

S1 a b C tl a V1 ——= Vg b
b b b b

S (%

b

Show that states s, t and v are not bisimilar and determine the
modal properties which distinguish between them.



Exercise

Consider processes £ =9 a.(b.0 + c.0) e F =% 2.b.0 + a.c.0.
Propose a formula ¢ in M valid in E but false in F.



Exercise

Let E be a process. A formula ¢ is said to be characteristic of E iff
Veep . FIE ¢ sse F~E

Note that a process verifies the characteristic formula of E iff it is
strongly bisimilar to E.
Determine the characteristic formula of process x.0.



Exercise

Consider processes below and write down a formula in M valid in
R but not in S.

E =% b.cO+b.d0

F =4 E 4+ b.(c.0+d.0)
R =9 a.E +a.F

S =% 4 F

—~ N —~~
N
~— N~ — ~—



Exercise

In general, parallel composite in process algebra fails to be
idempotent.

® Making E =% a.b.E, formalise a property in M to distinguish
between E and E | E.

® In some cases idempotency holds. Build a bissimulation to
witness equivalence E ~ E | E when E is E =" _, x.E,
for any K C Act — {7}. Would this remain true for Act?



	Modal languages
	Hennessy-Milner logic
	Modal equivalence and bissimulation

