Processos e Concorrência 2015/16 Bloco de acetatos 6

Alexandre Madeira
(based on Luís S. Barbosa 2014/15 course Slides) HASLab INESC TEC, DI UMINHO

March 26, 2017

mCRL2: A toolset for process algebra

mCRL2 provides:

- a generic process algebra, based on ACP (Bergstra \& Klop, 82), in which other calculi can be embedded

mCRL2: A toolset for process algebra

mCRL2 provides:

- a generic process algebra, based on AcP (Bergstra \& Klop, 82), in which other calculi can be embedded
- extended with data and (real) time

mCRL2: A toolset for process algebra

mCRL2 provides:

- a generic process algebra, based on AcP (Bergstra \& Klop, 82), in which other calculi can be embedded
- extended with data and (real) time
- with an axiomatic semantics

mCRL2: A toolset for process algebra

mCRL2 provides:

- a generic process algebra, based on AcP (Bergstra \& Klop, 82), in which other calculi can be embedded
- extended with data and (real) time
- with an axiomatic semantics
- the full μ-calculus as a specification logic

mCRL2: A toolset for process algebra

mCRL2 provides:

- a generic process algebra, based on AcP (Bergstra \& Klop, 82), in which other calculi can be embedded
- extended with data and (real) time
- with an axiomatic semantics
- the full μ-calculus as a specification logic
- powerful toolset for simulation and verification of reactive systems

Toolset overview

www.mcrl2.org

Actions

Interaction through multisets of actions

- A multiaction is an elementary unit of interaction that can execute itself atomically in time (no duration), after which it terminates successfully

$$
\alpha::=\tau|a| a(d)|\alpha| \alpha
$$

- actions may be parametric on data
- the structure $\langle N, \mid, \tau\rangle$ forms an Abelian monoid

Sequential processes

Sequential, non deterministic behaviour
The set \mathbb{P} of processes is the set of all terms generated by the following BNF, for $a \in N$,

$$
p::=\alpha|\delta| p+p|p \cdot p| \mathrm{P}(d)
$$

- choice: +
- sequential composition: -
- inaction or deadlock: δ (it cannot even to terminate!)
- process references introduced through definitions of the form $\mathrm{P}(x: D)=p$, parametric on data

Axioms: : $+, \cdot, \delta$

$A 1$	$x+y$	$=y+x$
A2	$(x+y)+z$	$=x+(y+z)$
A3	$x+x$	$=x$
$A 4$	$(x+y) \cdot z$	$=x \cdot z+y \cdot z$
$A 5$	$(x \cdot y) \cdot z$	$=x \cdot(y \cdot z)$
$A 6$	$x+\delta$	$=x$
$A 7$	$\delta \cdot x$	$=\delta$

Axioms: : $+, \cdot, \delta$

A1	$x+y$	$=y+x$
A2	$(x+y)+z$	$=x+(y+z)$
A3	$x+x$	$=x$
A4	$(x+y) \cdot z$	$=x \cdot z+y \cdot z$
A5	$(x \cdot y) \cdot z$	$=x \cdot(y \cdot z)$
A6	$x+\delta$	$=x$
$A 7$	$\delta \cdot x$	$=\delta$

- the equality relation is sound: if $s=t$ holds for basic process terms, then $s \sim t$
- and complete: if $s \sim t$ holds for basic process terms, then $s=t$
- an axiomatic theory enables equational reasoning

Sequential Processes

Exercise

Describe the behaviour of

- a.b. $\delta . c+a$
- $(a+b) . \delta . c$
- $(a+b) . e+\delta . c$
- $a+(\delta+a)$
- a. $(b+c) . d .(b+c)$

Axioms: : $+, \cdot, \delta$

Exercise

- show that $\delta \cdot(a+b)=\delta \cdot a+\delta \cdot b$
- show that $a+(\delta+a)=a$
- is it true that $a .(b+c)=a \cdot b+a . c$?

Alternative composition

We have also this kind of processes:

$$
c \rightarrow p \diamond q
$$

where

- c is a boolean condition
- p and q are processes

Alternative composition

We have also this kind of processes:

$$
c \rightarrow p \diamond q
$$

where

- c is a boolean condition
- p and q are processes

Axioms
Cond1 true $\rightarrow x \diamond y=x$
Cond2 false $\rightarrow x \diamond y=y$
Then $c \rightarrow x=c \rightarrow x \diamond \delta$

mCRL2: A toolset for process algebra

Example

```
act order, receive, keep, refund, return;
proc Buy = order.OrderedItem
    OrderedItem = receive.ReceivedItem + refund.Buy;
    ReceivedItem = return.OrderedItem + keep;
init Buy;
```


Example

Clock

act set, alarm, reset;
proc $\quad P=$ set.R
$R=$ reset. $P+$ alarm. R
init P

Example

A refined clock

act set:N, alarm, reset, tick;
proc $P=($ sum $n: N . \operatorname{set}(n) . R(n))+$ tick. P
$R(n: N)=\operatorname{reset} . P+((n==0) \rightarrow$ alarm.R(0) <> tick.R(n-1))
init P

Parallel composition

|| = interleaving + synchronization

- modelling principle: interaction is the key element in software design
- modelling principle: (distributed, reactive) architectures are configurations of communicating black boxes
- mCRL2: supports flexible synchronization discipline ($\neq \mathrm{CCS}$)

$$
p::=\cdots|p\|p|p| p \mid p\| p
$$

Parallel composition

- parallel $p \| q$: interleaves and synchronises the actions of both processes.
- synchronisation $p \mid q$: synchronises the first actions of p and q and combines the remainder of p with q with $\|$, cf axiom:

$$
(a . p) \mid(b . q) \sim(a \mid b) \cdot(p \| q)
$$

- left merge $p \| q$: executes a first action of p and thereafter combines the remainder of p with q with $\|$.

Parallel composition

A semantic parenthesis
Lemma: There is no sound and complete finite axiomatisation for this process algebra with $\|$ modulo bisimilarity [F. Moller, 1990].

Solution: combine two auxiliar operators:

- left merge: \mathbb{L}
- synchronous product: |
such that

$$
p \| t \sim(p \| t+t \llbracket p)+p \mid t
$$

Parallel composition

An example

$$
a \cdot b \| c \cdot d
$$

Parallel composition

An example

$$
a \cdot b \| c \cdot d
$$

Parallel composition

An example

$$
a \cdot b \mid c \cdot d
$$

Parallel composition

An example

$$
a \cdot b \mid c \cdot d
$$

Interaction

Communication $\Gamma_{c}(p)(c o m)$

- applies a communication function C forcing action synchronization and renaming to a new action:

$$
a_{1}|\cdots| a_{n} \rightarrow c
$$

- data parameters are retained in action c, e.g.

$$
\begin{aligned}
& \Gamma_{\{a \mid b \rightarrow c\}}(a(8) \mid b(8))=c(8) \\
& \Gamma_{\{a \mid b \rightarrow c\}}(a(12) \mid b(8))=a(12) \mid b(8) \\
& \Gamma_{\{a \mid b \rightarrow c\}}(a(8)|a(12)| b(8))=a(12) \mid c(8)
\end{aligned}
$$

- left hand-sides in C must be disjoint: e.g., $\{a|b \rightarrow c, a| d \rightarrow j\}$ is not allowed

Interface control

Restriction: $\nabla_{B}(p)$ (allow)

- specifies which actions are allowed to occur
- disregards the data parameters of actions

$$
\nabla_{\{d, b \mid c\}}(d(12)+a(8)+(b(\text { false }, 4) \mid c))=d(12)+(b(\text { false }, 4) \mid c)
$$

- τ is always allowed to occur

Discuss: $\nabla_{\{x, y\}}\left(\Gamma_{\{a|c->x, b| d->y\}}(a . b \| c . d)\right)$

Interface control
An example

$$
\Gamma_{\{a|c->x, b| d->y\}}(a . b \| c . d)
$$

Interface control

An example

Interface control

Block: $\partial_{B}(p)$ (block)

- specifies which actions are not allowed to occur
- disregards the data parameters of actions

$$
\partial_{\{b\}}(d(12)+a(8)+(b(f a l s e, 4) \mid c))=d(12)+a(8)
$$

- the effect is that of renaming to δ
- τ cannot be blocked

Interface control

An example

$$
\partial_{\{b, d\}}\left(\Gamma_{\{b \mid d->y\}}(a . b \| c . d)\right)
$$

Interface control

An example

$$
\partial_{\{b, d\}}\left(\Gamma_{\{b \mid d->y\}}(a . b \| c . d)\right)
$$

Interface control

Enforce communication

- $\nabla_{\{c\}}\left(\Gamma_{\{a \mid b \rightarrow c\}}(p)\right)$

Interface control

Enforce communication

- $\nabla_{\{c\}}\left(\Gamma_{\{a \mid b \rightarrow c\}}(p)\right)$
- $\partial_{\{a, b\}}\left(\Gamma_{\{a \mid b \rightarrow c\}}(p)\right)$

Interface control

Renaming $\rho_{M}(p)$ (rename)

- renames actions in p according to a mapping M
- also disregards the data parameters, but when a renaming is applied the values of data parameters are retained:

$$
\begin{aligned}
\rho_{\{d \rightarrow h\}} & (d(12)+s(8) \mid d(\text { false })+\text { d.a.d }(7)) \\
& =h(12)+s(8) \mid h(\text { false })+\text { h.a. } h(7)
\end{aligned}
$$

- τ cannot be renamed

Interface control

Hiding $\tau_{H}(p)$ (hide)

- hides (or renames to τ) all actions in H in all multiactions of p.
- disregards the data parameters

$$
\begin{aligned}
& \tau_{\{d\}}(d(12)+s(8) \mid d(\text { false })+\text { h.a.d }(7)) \\
& \quad=\tau+s(8) \mid \tau+\text { h.a. } \tau=\tau+s(8)+\text { h.a. } \tau
\end{aligned}
$$

- τ and δ cannot be renamed

Interface control

An example

$$
\tau_{\{a\}}\left(\Gamma_{\{b \mid d->y\}}(a . b \| c . d)\right)
$$

Interface control

An example

$$
\tau_{\{a\}}\left(\Gamma_{\{b \mid d->y\}}(a . b \| c . d)\right)
$$

Example

New buffers from old

```
act inn,outt,ia,ib,oa,ob,c : Bool;
proc BufferS = sum n: Bool.inn(n).outt(n).BufferS;
    BufferA = rename({inn -> ia, outt -> oa}, BufferS);
    BufferB = rename({inn -> ib, outt >> ob}, BufferS);
    S = allow({ia,ob,c}, comm({oa|ib -> c}, BufferA || BufferB));
init hide({c}, S);
```


Data types

- Equalities: equality, inequality, conditional (if (-,-,-))
- Basic types: booleans, naturals, reals, integers, ... with the usual operators
- Sets, multisets, sequences ... with the usual operators
- Function definition, including the λ-notation
- Inductive types: as in

```
sort BTree = struct leaf(Pos) | node(BTree, BTree)
```


Signatures and definitions

Sorts, functions, constants, variables ...

```
sort S,A;
cons s,t:S, b:set(A);
map f: S x S -> A;
        c: A;
var x:S;
eqn f(x,s) = s;
```


Signatures and definitions

A full functional language ...

```
sort BTree = struct leaf(Pos) | node(BTree, BTree);
map flatten: BTree -> List(Pos);
var n:Pos, t,r:BTree;
eqn flatten(leaf(n)) = [n];
    flatten(node(t,r)) = flatten(t) ++ flatten(r);
```


Processes with data

Why?

- Precise modeling of real-life systems
- Data allows for finite specifications of infinite systems

How?

- data and processes parametrized
- summation over data types: $\sum_{n: N} s(n)$
- processes conditional on data: $b \rightarrow p \diamond q$

Examples

A counter

act up, down;
setcounter:Pos;
proc $\operatorname{Ctr}(x: P o s)=$ up. Ctr $(x+1)$
$+(x>0)->$ down. $\operatorname{Ctr}(x-1)$

+ sum m:Pos. (setcounter (m). Ctr (m))
init $\operatorname{Ctr}(345)$;

Examples

A dynamic binary tree

```
act left,right;
map N:Pos;
eqn N = 512;
proc X(n:Pos)=(n<=N)->(left.X(2*n)+right.X(2*n+1))<>delta;
init X(1);
```

