Processos e Concorrência 2015/16 Bloco de acetatos 5

Alexandre Madeira
(based on Luís S. Barbosa 2014/15 course Slides) HASLab INESC TEC, DI UMINHO

March 26, 2017

$$
\begin{aligned}
& \underset{\text { a. } p \xrightarrow{a} p}{ }(a c t) \\
& \frac{p \xrightarrow{a} p^{\prime}}{p+q \xrightarrow{a} p^{\prime}}(\text { sum }-1) \quad \frac{q \xrightarrow{a} q^{\prime}}{p+q \xrightarrow{a} q^{\prime}}(\text { sum }-r) \\
& \frac{p \xrightarrow{a} p^{\prime}}{p\left|q \xrightarrow{a} p^{\prime}\right| q}(p a r-I) \quad \frac{q \xrightarrow{a} q^{\prime}}{p|q \xrightarrow{a} p| q^{\prime}}(\text { par }-r) \\
& \frac{p \xrightarrow{a} p^{\prime} \quad q \xrightarrow{\bar{a}} q^{\prime}}{p\left|q \xrightarrow{\tau} p^{\prime}\right| q^{\prime}}(\text { react }) \quad \frac{p \xrightarrow{a} p^{\prime}}{p \backslash\{k\} \xrightarrow{a} p^{\prime} \backslash\{k\}} \text { (res) (if } a \notin\{k, \bar{k}\} \text {) } \\
& \frac{p \xrightarrow{a} p^{\prime}}{p[f] \xrightarrow{f(a)} p^{\prime}[f]}(r e l) \quad \text { (} f \text { relabelling function) } \\
& \frac{p \xrightarrow{a} p^{\prime}}{k \xrightarrow{a} p^{\prime}}(\text { con }) k={ }^{d f} p
\end{aligned}
$$

Semantics

These rules define a LTS

$$
\{\xrightarrow{a} \subseteq \mathbb{P} \times \mathbb{P} \mid a \in A c t\}
$$

Relation \xrightarrow{a} is defined inductively over process structure entailing a semantic description which is

Structural i.e., each process shape (defined by the most external combinator) has a type of transitions

Modular i.e., a process transition is defined from transitions in its sup-processes

Complete i.e., all possible transitions are infered from these rules

Graphical representations

Synchronization diagram

- represent interfaces of processes
- static combinators are an algebra of synchronization diagrams

Graphical representations

Synchronization diagram

- represent interfaces of processes
- static combinators are an algebra of synchronization diagrams

Transition graph

- derivative, n-derivative, transition tree
- folds into a transition graph

Transition tree

$B={ }^{d f}$ in. $\overline{01} \cdot B+$ in. $\overline{o 2} \cdot B$

Transition graph

$$
B={ }^{d f} \text { in. } \overline{o 1} \cdot B+\text { in. } \overline{o 2} \cdot B
$$

Transition graph

$B={ }^{\text {df }}$ in. $\overline{o 1} \cdot B+$ in. $\overline{o 2} \cdot B$

compare with $B^{\prime}={ }^{d f}$ in $\cdot\left(\overline{o 1} \cdot B^{\prime}+\overline{o 2} \cdot B^{\prime}\right)$

Data parameters

Language \mathbb{P} is extended to \mathbb{P}_{V} over a data universe V, a set V_{e} of expressions over V and a evaluation $V a l: V_{e} \rightarrow V$
Example

$$
\begin{aligned}
B & ={ }^{d f} \text { in }(x) \cdot B_{x}^{\prime} \\
B_{v}^{\prime} & ={ }^{d f} \frac{}{\text { out }}\langle v\rangle \cdot B
\end{aligned}
$$

Data parameters

Language \mathbb{P} is extended to \mathbb{P}_{V} over a data universe V, a set V_{e} of expressions over V and a evaluation $V a l: V_{e} \rightarrow V$
Example

$$
\begin{aligned}
B & ={ }^{d f} \text { in }(x) \cdot B_{x}^{\prime} \\
B_{v}^{\prime} & ={ }^{d f} \frac{}{\text { out }\langle v\rangle \cdot B}
\end{aligned}
$$

- Two prefix forms: $a(x) \cdot E$ and $\bar{a}\langle e\rangle . E$ (actions as ports)
- Data parameters: $A_{S}\left(x_{1}, \ldots, x_{n}\right)={ }^{d f} E_{A}$, with $S \in V$ and each $x_{i} \in L$
- Conditional combinator: if b then P, if b then P_{1} else P_{2}

Clearly

$$
\text { if } \left.b \text { then } P_{1} \text { else } P_{2}={ }^{a b v} \text { (if } b \text { then } P_{1}\right)+\left(\text { if } \neg b \text { then } P_{2}\right)
$$

Data parameters

Additional semantic rules

$$
\begin{aligned}
\overline{a(x) \cdot E \xrightarrow{a(v)}\{v / x\} E}\left(\text { prefix }_{i}\right) & \text { for } v \in V \\
\underset{\bar{a}\langle e\rangle . E \xrightarrow{\bar{a}\langle v\rangle} E}{ }\left(\text { prefix }_{0}\right) & \text { for } \operatorname{Val}(e)=v
\end{aligned}
$$

$$
\frac{E_{1} \xrightarrow{a} E^{\prime}}{\text { if } b \text { then } E_{1} \text { else } E_{2} \xrightarrow{a} E^{\prime}}\left(i f_{1}\right) \quad \text { for } \operatorname{Val}(b)=\mathbf{t t}
$$

$$
\frac{E_{2} \xrightarrow{a} E^{\prime}}{\text { if } b \text { then } E_{1} \text { else } E_{2} \xrightarrow{a} E^{\prime}}\left(i f_{2}\right) \quad \text { for } \operatorname{Val}(b)=\mathbf{f f}
$$

Examples

- $B={ }^{d f}$ in $(x) . \overline{o u t}\langle x\rangle . B$

Examples

- $B={ }^{d f}$ in $(x) . \overline{o u t}\langle x\rangle . B$
- $B={ }^{d f} \operatorname{in}(x) . i n(y) . \overline{o u t}\langle x\rangle . \overline{o u t}\langle y\rangle . B$

Examples

- $B={ }^{d f}$ in $(x) . \overline{o u t}\langle x\rangle . B$
- $B={ }^{d f}$ in $(x) \cdot i n(y) \cdot \overline{o u t}\langle x\rangle . \overline{o u t}\langle y\rangle . B$
- $B={ }^{d f} \operatorname{in}(x) . i n(y) . \overline{o u t}\langle y\rangle . \overline{o u t}\langle x\rangle . B$

Examples

- $B={ }^{d f}$ in $(x) . \overline{o u t}\langle x\rangle . B$
- $B={ }^{d f}$ in $(x) \cdot i n(y) \cdot \overline{o u t}\langle x\rangle . \overline{o u t}\langle y\rangle . B$
- $B={ }^{d f}$ in $(x) \cdot \operatorname{in}(y) \cdot \overline{o u t}\langle y\rangle . \overline{o u t}\langle x\rangle . B$
- $B={ }^{d f} \operatorname{in}(x) \cdot i n(y) \cdot(\overline{o u t}\langle y\rangle . B+\overline{o u t}\langle x\rangle \cdot B)$

Examples

- $B={ }^{d f}$ in $(x) . \overline{o u t}\langle x\rangle . B$
- $B={ }^{d f}$ in $(x) \cdot i n(y) . \overline{o u t}\langle x\rangle . \overline{o u t}\langle y\rangle . B$
- $B={ }^{d f} \operatorname{in}(x) \cdot i n(y) . \overline{o u t}\langle y\rangle . \overline{o u t}\langle x\rangle . B$
- $B={ }^{d f}$ in $(x) \cdot i n(y) \cdot(\overline{o u t}\langle y\rangle . B+\overline{o u t}\langle x\rangle \cdot B)$
- $B={ }^{d f}$ in $(x) . \overline{o u t}\langle 2 \times x\rangle . B$
- $B={ }^{d f}$ in (x).(if $x>3$ then $\left.\overline{o u t}\langle x\rangle\right) \cdot B$

Back to \mathbb{P}

Encoding in the basic language: $\mathcal{T}(): \mathbb{P}_{V} \rightarrow \mathbb{P}$

$$
\begin{aligned}
\mathcal{T}(a(x) \cdot E) & =\sum_{v \in V} a_{v} \cdot \mathcal{T}(\{v / x\} E) \\
\mathcal{T}(\bar{a}\langle e\rangle \cdot E) & =\bar{a}_{e} \cdot \mathcal{T}(E) \\
\mathcal{T}\left(\sum_{i \in I} E_{i}\right) & =\sum_{i \in I} \mathcal{T}\left(E_{i}\right) \\
\mathcal{T}(E \mid F) & =\mathcal{T}(E) \mid \mathcal{T}(F) \\
\mathcal{T}(E \backslash K) & =\mathcal{T}(E) \backslash\left\{a_{v} \mid a \in K, v \in V\right\}
\end{aligned}
$$

and

$$
\mathcal{T}(\text { if } b \text { then } E)= \begin{cases}\mathcal{T}(E) & \text { if } \operatorname{Val}(b)=\mathbf{t t} \\ \mathbf{0} & \text { if } \operatorname{Val}(b)=\mathbf{f f}\end{cases}
$$

Exercise

Draw the transition diagram of the process Pred:
Pred $={ }^{d f}$ in $(x) \cdot \operatorname{Pred}^{\prime}(x)$
$\operatorname{Pred}^{\prime}(x)={ }^{d f}$ if $x=0$ then $\overline{o u t}\langle 0\rangle$. Pred else $\overline{o u t}\langle x-1\rangle$.

Semantics

Two-level semantics

- behavioural given by transition rules which express how system's components interact (as seen in the last classes)

Semantics

Two-level semantics

- behavioural given by transition rules which express how system's components interact (as seen in the last classes)
- arquitectural, expresses a notion of similar assembly configurations and is expressed through a structural congruence relation;

Semantics

Structural congruence

\equiv over \mathbb{P} is given by the closure of the following conditions:

- for all $A(\vec{x})={ }^{d f} E_{A}, A(\vec{y}) \equiv\{\vec{y} / \vec{x}\} E_{A}$, (i.e., folding/unfolding preserve \equiv)
- α-conversion (i.e., replacement of bounded variables).
- both \mid and + originate, with $\mathbf{0}$, abelian monoids
- forall $a \notin \operatorname{fn}(P)(P \mid Q) \backslash\{a\} \equiv P \mid Q \backslash\{a\}$
- $\mathbf{0} \backslash\{a\} \equiv \mathbf{0}$

Compatibility

Lemma

Structural congruence preserves transitions:
if $p \xrightarrow{a} p^{\prime}$ and $p \equiv q$ there exists a process q^{\prime} such that $q \xrightarrow{a} q^{\prime}$ and $p^{\prime} \equiv q^{\prime}$.

Processes are 'prototypical' transition systems

... hence all definitions apply:
$E \sim F$

- Processes E, F are bisimilar if there exist a bisimulation S st $\{\langle E, F\rangle\} \in S$.
- A binary relation S in \mathbb{P} is a (strict) bisimulation iff, whenever $(E, F) \in S$ and $a \in A c t$,
i) $E \xrightarrow{a} E^{\prime} \Rightarrow F \xrightarrow{a} F^{\prime}$ and $\left(E^{\prime}, F^{\prime}\right) \in S$
ii) $F \xrightarrow{a} F^{\prime} \Rightarrow E \xrightarrow{a} E^{\prime}$ and $\left(E^{\prime}, F^{\prime}\right) \in S$

Alternative characterization of bisimilarity

Recalling bisimilarity definition:

$$
\sim=\bigcup\{S \subseteq \mathbb{P} \times \mathbb{P} \mid S \text { is a (strict) bisimulation }\}
$$

Alternative characterization of bisimilarity

Recalling bisimilarity definition:

$$
\sim=\bigcup\{S \subseteq \mathbb{P} \times \mathbb{P} \mid S \text { is a (strict) bisimulation }\}
$$

Usefull Lemma:
$E \sim F$ iff

$$
\begin{aligned}
& \text { i) } E \xrightarrow{a} E^{\prime} \Rightarrow F \xrightarrow{a} F^{\prime} \text { and } E^{\prime} \sim F^{\prime} \\
& \text { ii) } F \xrightarrow{a} F^{\prime} \Rightarrow E \xrightarrow{a} E^{\prime} \text { and } E^{\prime} \sim F^{\prime}
\end{aligned}
$$

Processes are 'prototypical' transition systems

Example: $S \sim M$

$$
\begin{aligned}
& T={ }^{d f} i \cdot \bar{k} \cdot T \\
& R={ }^{d f} k \cdot j \cdot R \\
& S={ }^{d f}(T \mid R) \backslash\{k\}
\end{aligned}
$$

$$
\begin{aligned}
M & ={ }^{d f} \text { i. } \tau . N \\
N & ={ }^{d f} \text { j.i. } . N+i . j . \tau . N
\end{aligned}
$$

Processes are 'prototypical' transition systems

Example: $S \sim M$

$$
\begin{aligned}
& T={ }^{d f} i . \bar{k} \cdot T \\
& R={ }^{d f} k \cdot j . R \\
& S={ }^{d f}(T \mid R) \backslash\{k\}
\end{aligned}
$$

$$
\begin{aligned}
M & ={ }^{d f} \text { i. } \tau . N \\
N & ={ }^{d f} \text { j.i. } . N+i . j . \tau . N
\end{aligned}
$$

through bisimulation

$$
\begin{aligned}
R= & \{\langle S, M)\rangle,\langle(\bar{k} . T \mid R) \backslash\{k\}, \tau . N\rangle,\langle(T \mid j . R) \backslash\{k\}, N\rangle, \\
& \langle(\bar{k} . T \mid j . R) \backslash\{k\}, j . \tau . N\rangle\}
\end{aligned}
$$

Example: Semaphores

A semaphore
Sem $={ }^{d f}$ get.put.Sem

Example: Semaphores

A semaphore

$$
\text { Sem }={ }^{d f} \text { get.put.Sem }
$$

n-semaphores

$$
\begin{aligned}
& \text { Sem }_{n}={ }^{d f} \text { Sem }_{n, 0} \\
& \text { Sem }_{n, 0}={ }^{d f} \text { get. }^{\text {Sem }}{ }_{n, 1} \\
& \text { Sem }_{n, i}={ }^{d f} \text { get. } \text { Sem }_{n, i+1}+\text { put. Sem } \\
& \quad(\text { for } 0<i<n) \\
& \text { Sem }_{n, n}=
\end{aligned}
$$

Example: Semaphores

A semaphore

$$
\text { Sem }={ }^{d f} \text { get.put.Sem }
$$

n-semaphores

$$
\begin{aligned}
& \text { Sem }_{n}={ }^{\text {df }} \text { Sem }_{n, 0} \\
& \text { Sem }_{n, 0}={ }^{\text {dff }} \text { get. }^{\text {Sem }}{ }_{n, 1} \\
& \text { Sem }_{n, i}={ }^{d f} \text { get. } \text { Sem }_{n, i+1}+\text { put. Sem } \\
& n, i-1 \\
& \quad(\text { for } 0<i<n) \\
& \text { Sem }_{n, n}={ }^{d f} \text { put. } \text { Sem }_{n, n-1}
\end{aligned}
$$

Sem $_{n}$ can also be implemented by the parallel composition of n Sem processes:

$$
\text { Sem }^{n}={ }^{d f} \text { Sem } \mid \text { Sem }|\ldots| \text { Sem }
$$

Example: Semaphores

Is Sem $_{n} \sim$ Sem n ?

For $n=2$:

$$
\begin{aligned}
& \left.\left\{\left\langle\text { Sem }_{2,0}, \text { Sem }\right| \text { Sem }\right\rangle,\left\langle\text { Sem }_{2,1}, \text { Sem }\right| \text { put.Sem }\right\rangle, \\
& \\
& \left.\left.\left.\left\langle\text { Sem }_{2,1}, \text { put.Sem }\right| \text { Sem }\right\rangle\left\langle\text { Sem }_{2,2}, \text { put.Sem }\right| \text { put.Sem }\right\rangle\right\}
\end{aligned}
$$

is a bisimulation.

Example: Semaphores

Is Sem $_{n} \sim$ Sem n ?

For $n=2$:

$$
\begin{aligned}
& \left.\left\{\left\langle\text { Sem }_{2,0}, \text { Sem }\right| \text { Sem }\right\rangle,\left\langle\text { Sem }_{2,1}, \text { Sem }\right| \text { put.Sem }\right\rangle, \\
& \\
& \left.\left.\left.\left\langle\text { Sem }_{2,1}, \text { put.Sem }\right| \text { Sem }\right\rangle\left\langle\text { Sem }_{2,2}, \text { put.Sem }\right| \text { put.Sem }\right\rangle\right\}
\end{aligned}
$$

is a bisimulation.

- but can we get rid of structurally congruent pairs?

Bisimulation up to \equiv

Definition

A binary relation S in \mathbb{P} is a (strict) bisimulation up to \equiv iff, whenever $(E, F) \in S$ and $a \in A c t$,

$$
\begin{aligned}
& \text { i) } E \xrightarrow{a} E^{\prime} \Rightarrow F \xrightarrow{a} F^{\prime} \text { and }\left(E^{\prime}, F^{\prime}\right) \in \cdot S \cdot \equiv \\
& \text { ii) } F \xrightarrow{a} F^{\prime} \Rightarrow E \xrightarrow{a} E^{\prime} \text { and }\left(E^{\prime}, F^{\prime}\right) \in \equiv \cdot S \cdot \equiv
\end{aligned}
$$

Bisimulation up to \equiv

Definition

A binary relation S in \mathbb{P} is a (strict) bisimulation up to \equiv iff, whenever $(E, F) \in S$ and $a \in A c t$,

$$
\begin{aligned}
& \text { i) } E \xrightarrow{a} E^{\prime} \Rightarrow F \xrightarrow{a} F^{\prime} \text { and }\left(E^{\prime}, F^{\prime}\right) \in \equiv \cdot S \cdot \equiv \\
& \text { ii) } F \xrightarrow{a} F^{\prime} \Rightarrow E \xrightarrow{a} E^{\prime} \text { and }\left(E^{\prime}, F^{\prime}\right) \in \equiv \cdot S \cdot \equiv
\end{aligned}
$$

Lemma
If S is a (strict) bisimulation up to \equiv, then $S \subseteq \sim$

A ~-calculus

Lemma

$$
E \equiv F \Rightarrow E \sim F
$$

\sim is a congruence

 congruence is the name of modularity in Mathematics- process combinators preserve \sim

\sim is a congruence

 congruence is the name of modularity in Mathematics- process combinators preserve \sim

Lemma
Assume $E \sim F$. Then,

$$
\begin{aligned}
a . E & \sim a . F \\
E+P & \sim F+P \\
E \mid P & \sim F \mid P \\
E \backslash K & \sim F \backslash K \\
E[f] & \sim F[f]
\end{aligned}
$$

\sim is a congruence

 congruence is the name of modularity in Mathematics- process combinators preserve \sim

Lemma
Assume $E \sim F$. Then,

$$
\begin{aligned}
a . E & \sim a . F \\
E+P & \sim F+P \\
E \mid P & \sim F \mid P \\
E \backslash K & \sim F \backslash K \\
E[f] & \sim F[f]
\end{aligned}
$$

- recursive definition preserves \sim

\sim is a congruence

- First \sim is extended to processes with variables:

$$
E \sim F \equiv \forall_{\tilde{P}} \cdot E[\tilde{P} / \tilde{X}] \sim F[\tilde{P} / \tilde{X}]
$$

- Then prove:

Lemma
i) $\tilde{P}={ }^{d f} \frac{\tilde{E}}{\tilde{E}} \Rightarrow \tilde{P} \sim \tilde{E}$
where \tilde{E} is a family of process expressions and \tilde{P} a family of process identifiers.
ii) Let $\tilde{E} \sim \tilde{F}$, where \tilde{E} and \tilde{F} are families of recursive process expressions over a family of process variables \tilde{X}, and define:

$$
\tilde{A}={ }^{d f} \tilde{E}[\tilde{A} / \tilde{X}] \text { and } \tilde{B}={ }^{d f} \tilde{F}[\tilde{B} / \tilde{X}]
$$

Then

$$
\tilde{A} \sim \tilde{B}
$$

The expansion theorem

Every process is equivalent to the sum of its derivatives

$$
E \sim \sum\left\{a . E^{\prime} \mid E \xrightarrow{a} E^{\prime}\right\}
$$

The expansion theorem

The usual definition (based on the concurrent canonical form):

$$
\begin{aligned}
E \sim & \sum\left\{f_{i}(a) \cdot\left(E_{1}\left[f_{1}\right]|\ldots| E_{i}^{\prime}\left[f_{i}\right]|\ldots| E_{n}\left[f_{n}\right]\right) \backslash K \mid\right. \\
& \left.+\quad E_{i} \xrightarrow{a} E_{i}^{\prime} \text { and } f_{i}(a) \notin K \cup \bar{K}\right\} \\
& \sum\left\{\tau \cdot\left(E_{1}\left[f_{1}\right]|\ldots| E_{i}^{\prime}\left[f_{i}\right]|\ldots| E_{j}^{\prime}\left[f_{j}\right]|\ldots| E_{n}\left[f_{n}\right]\right) \backslash K \mid\right. \\
& \left.E_{i} \xrightarrow{a} E_{i}^{\prime} \text { and } E_{j} \xrightarrow{b} E_{j}^{\prime} \text { and } f_{i}(a)=\overline{f_{j}(b)}\right\}
\end{aligned}
$$

for $E={ }^{d f}\left(E_{1}\left[f_{1}\right]|\ldots| E_{n}\left[f_{n}\right]\right) \backslash K$, with $n \geq 1$

The expansion theorem

Corollary (for $n=1$ and $f_{1}=i d$)

$$
\begin{aligned}
(E+F) \backslash K & \sim E \backslash K+F \backslash K \\
(a . E) \backslash K & \sim \begin{cases}0 & \text { if } a \in(K \cup \bar{K}) \\
\text { a.(}(E \backslash K) & \text { otherwise }\end{cases}
\end{aligned}
$$

Revisit the example and show $S \sim M$ using the expansion theorem

$$
\begin{aligned}
& T={ }^{d f} i \cdot \bar{k} \cdot T \\
& R={ }^{d f} k \cdot j \cdot R \\
& S={ }^{d f}(T \mid R) \backslash\{k\}
\end{aligned}
$$

$$
\begin{aligned}
M & ={ }^{d f} \text { i. } \tau . N \\
N & ={ }^{d f} \text { j.i. } \tau . N+i . j . \tau . N
\end{aligned}
$$

Example

$S \sim M$

Example

$S \sim M$

$$
\begin{aligned}
S & \sim(T \mid R) \backslash\{k\} \\
& \sim i .(\bar{k} . T \mid R) \backslash\{k\} \\
& \sim i . \tau .(T \mid j . R) \backslash\{k\} \\
& \sim i . \tau .(i .(\bar{k} . T \mid j . R) \backslash\{k\}+j .(T \mid R) \backslash\{k\}) \\
& \sim i . \tau .(i . j .(\bar{k} . T \mid R) \backslash\{k\}+j . i .(\bar{k} . T \mid R) \backslash\{k\}) \\
& \sim i . \tau .(i . j . \tau .(T \mid j . R) \backslash\{k\}+j . i . \tau .(T \mid j . R) \backslash\{k\})
\end{aligned}
$$

Example

$S \sim M$

$$
\begin{aligned}
S & \sim(T \mid R) \backslash\{k\} \\
& \sim i .(\bar{k} . T \mid R) \backslash\{k\} \\
& \sim i . \tau .(T \mid j . R) \backslash\{k\} \\
& \sim i . \tau .(i .(\bar{k} . T \mid j . R) \backslash\{k\}+j .(T \mid R) \backslash\{k\}) \\
& \sim i . \tau .(i . j .(\bar{k} . T \mid R) \backslash\{k\}+j . i .(\bar{k} . T \mid R) \backslash\{k\}) \\
& \sim i . \tau .(i . j . \tau .(T \mid j . R) \backslash\{k\}+j . i . \tau .(T \mid j . R) \backslash\{k\})
\end{aligned}
$$

Let $N^{\prime}=(T \mid j . R) \backslash\{k\}$.
This expands into $N^{\prime} \sim i . j . \tau .(T \mid j . R) \backslash\{k\}+j . i . \tau .(T \mid j . R) \backslash\{k\}$,
Therefore $N^{\prime} \sim N$ and $S \sim i . \tau . N \sim M$

- requires result on unique solutions for recursive process equations

Exercise

Using the expansion theorem, reduce P and Q into its concurrent normal form

$$
\begin{aligned}
& P_{1}=d f a \cdot P_{1}^{\prime}+b \cdot P_{2}^{\prime \prime} \\
& P_{2}=d f \overline{\bar{a}} \cdot P_{2}^{\prime}+c \cdot P_{2}^{\prime \prime} \\
& P_{3}=d f \bar{a} \cdot P_{3}^{\prime}+\bar{c} \cdot P_{3}^{\prime \prime} \\
& P={ }^{d f}\left(P_{1} \mid P_{2}\right) \backslash\{a\} \\
& Q={ }^{d f}\left(P_{1}\left|P_{2}\right| P_{3}\right) \backslash\{a, b\}
\end{aligned}
$$

Observable transitions

$$
\stackrel{a}{\Rightarrow} \subseteq \mathbb{P} \times \mathbb{P}
$$

- $L \cup\{\epsilon\}$
- A $\xlongequal{\Rightarrow}$-transition corresponds to zero or more non observable transitions
- inference rules for $\stackrel{a}{\Rightarrow}$:

$$
\begin{array}{r}
\frac{E \stackrel{\epsilon}{\Rightarrow} E}{}\left(O_{1}\right) \\
\frac{E \stackrel{\tau}{\rightarrow} E^{\prime} \quad E^{\prime} \stackrel{\epsilon}{\Rightarrow} F}{E \stackrel{\epsilon}{\Rightarrow} F}\left(O_{2}\right) \\
\frac{E \stackrel{\epsilon}{\Rightarrow} E^{\prime} \quad E^{\prime} \xrightarrow{a} F^{\prime} \quad F^{\prime} \stackrel{\epsilon}{\Rightarrow} F}{E \stackrel{g}{\Rightarrow} F}\left(O_{3}\right) \text { for } a \in L
\end{array}
$$

Example

$$
\begin{aligned}
& T_{0}=^{d f} j . T_{1}+i . T_{2} \\
& T_{1}={ }^{d f} \quad i \cdot T_{3} \\
& T_{2}={ }^{d f} j \cdot T_{3} \\
& T_{3}={ }^{d f} \tau \cdot T_{0}
\end{aligned}
$$

and

$$
A={ }^{d f} \text { i.j. } A+j . i . A
$$

Example

From their graphs,

and

we conclude that $T_{0} \nsim A$ (why?).

Observational equivalence

$E \approx F$

- A binary relation S in \mathbb{P} is a weak bisimulation iff, whenever $(E, F) \in S$ and $a \in L \cup\{\epsilon\}$,

$$
\begin{aligned}
& \text { i) } E \stackrel{a}{\Rightarrow} E^{\prime} \Rightarrow F \stackrel{a}{\Rightarrow} F^{\prime} \text { and }\left(E^{\prime}, F^{\prime}\right) \in S \\
& \text { ii) } F \stackrel{\Rightarrow}{\Rightarrow} F^{\prime} \Rightarrow E \Rightarrow E^{\prime} \text { and }\left(E^{\prime}, F^{\prime}\right) \in S
\end{aligned}
$$

Observational equivalence

$E \approx F$

- A binary relation S in \mathbb{P} is a weak bisimulation iff, whenever $(E, F) \in S$ and $a \in L \cup\{\epsilon\}$,
i) $E \stackrel{a}{\Rightarrow} E^{\prime} \Rightarrow F \stackrel{a}{\Rightarrow} F^{\prime}$ and $\left(E^{\prime}, F^{\prime}\right) \in S$
ii) $F \stackrel{\Rightarrow}{\Rightarrow} F^{\prime} \Rightarrow E \stackrel{a}{\Rightarrow} E^{\prime}$ and $\left(E^{\prime}, F^{\prime}\right) \in S$
- Processes E, F are observationally equivalent if there exists a weak bisimulation S st $\{\langle E, F\rangle\} \in S$

Observational equivalence

$E \approx F$

- A binary relation S in \mathbb{P} is a weak bisimulation iff, whenever $(E, F) \in S$ and $a \in L \cup\{\epsilon\}$,

$$
\begin{aligned}
& \text { i) } E \stackrel{a}{\Rightarrow} E^{\prime} \Rightarrow F \stackrel{a}{\Rightarrow} F^{\prime} \text { and }\left(E^{\prime}, F^{\prime}\right) \in S \\
& \text { ii) } F \stackrel{\Rightarrow}{\Rightarrow} F^{\prime} \Rightarrow E \Rightarrow E^{\prime} \text { and }\left(E^{\prime}, F^{\prime}\right) \in S
\end{aligned}
$$

- Processes E, F are observationally equivalent if there exists a weak bisimulation S st $\{\langle E, F\rangle\} \in S$
l.e.,

$$
\approx=\bigcup\{S \subseteq \mathbb{P} \times \mathbb{P} \mid S \text { is a weak bisimulation }\}
$$

Properties

- as expected: \approx is an equivalence relation

Properties

- as expected: \approx is an equivalence relation
- basic property: for any $E \in \mathbb{P}$,

$$
E \approx \tau . E
$$

(proof idea: $\operatorname{id}_{\mathbb{P}} \cup\{(E, \tau . E) \mid E \in \mathbb{P}\}$ is a weak bisimulation

Properties

- as expected: \approx is an equivalence relation
- basic property: for any $E \in \mathbb{P}$,

$$
E \approx \tau . E
$$

(proof idea: $\operatorname{id}_{\mathbb{P}} \cup\{(E, \tau . E) \mid E \in \mathbb{P}\}$ is a weak bisimulation

- weak vs. strict:

$$
\sim \subseteq \approx
$$

Is \approx a congruence?

Lemma
Let $E \approx F$. Then, for any $P \in \mathbb{P}$ and $K \subseteq L$,

$$
\begin{aligned}
a . E & \approx a . F \\
E \mid P & \approx F \mid P \\
E \backslash K & \approx F \backslash K \\
E[f] & \approx F[f]
\end{aligned}
$$

Is \approx a congruence?

Lemma
Let $E \approx F$. Then, for any $P \in \mathbb{P}$ and $K \subseteq L$,

$$
\begin{aligned}
a . E & \approx a . F \\
E \mid P & \approx F \mid P \\
E \backslash K & \approx F \backslash K \\
E[f] & \approx F[f]
\end{aligned}
$$

but

$$
E+P \approx F+P
$$

does not hold, in general.

Is \approx a congruence?

Example (initial τ restricts options menu')

$$
i .0 \approx \tau . i .0
$$

Is \approx a congruence?

Example (initial τ restricts options menu')

$$
i .0 \approx \tau . i .0
$$

However

$$
j .0+i . \mathbf{0} \not \approx j .0+\tau . i .0
$$

Actually,

Forcing a congruence: $E=F$

 Solution: force any initial τ to be matched by another τProcess equality
Two processes E and F are equal (or observationally congruent) iff
i) $E \approx F$
ii) $E \xrightarrow{\tau} E^{\prime} \Rightarrow F \xrightarrow{\tau} X \xrightarrow{\epsilon} F^{\prime}$ and $E^{\prime} \approx F^{\prime}$
iii) $F \xrightarrow{\tau} F^{\prime} \Rightarrow E \xrightarrow{\tau} X \xrightarrow{\epsilon} E^{\prime}$ and $E^{\prime} \approx F^{\prime}$

Forcing a congruence: $E=F$

Solution: force any initial τ to be matched by another τ

Process equality
Two processes E and F are equal (or observationally congruent) iff
i) $E \approx F$
ii) $E \xrightarrow{\tau} E^{\prime} \Rightarrow F \xrightarrow{\tau} X \xrightarrow{\epsilon} F^{\prime}$ and $E^{\prime} \approx F^{\prime}$
iii) $F \xrightarrow{\tau} F^{\prime} \Rightarrow E \xrightarrow{\tau} X \xrightarrow{\epsilon} E^{\prime}$ and $E^{\prime} \approx F^{\prime}$

- note that $E \neq \tau . E$, but $\tau . E=\tau . \tau . E$

Forcing a congruence: $E=F$

$=$ can be regarded as a restriction of \approx to all pairs of processes which preserve it in additive contexts

Lemma
Let E and F be processes st the union of their sorts is distinct of L. Then,

$$
E=F \equiv \forall_{G \in \mathbb{P}} \cdot(E+G \approx F+G)
$$

Properties of $=$

Lemma

$$
E \approx F \equiv(E=F) \vee(E=\tau . F) \vee(\tau . E=F)
$$

Properties of $=$

Lemma

$$
\sim \subseteq=\subseteq \approx
$$

So,

$$
\text { the whole } \sim \text { theory remains valid }
$$

Additionally,
Lemma (additional laws)

$$
\begin{aligned}
a \cdot \tau \cdot E & =a \cdot E \\
E+\tau \cdot E & =\tau \cdot E \\
a .(E+\tau . F) & =a \cdot(E+\tau . F)+a \cdot F
\end{aligned}
$$

Conditions on variables

guarded :
X occurs in a sub-expression of type a. E^{\prime} for $a \in \operatorname{Act}-\{\tau\}$
weakly guarded :
X occurs in a sub-expression of type $a . E^{\prime}$ for $a \in A c t$
in both cases assures that, until a guard is reached, behaviour does not depends on the process that instantiates the variable

Conditions on variables

guarded :

X occurs in a sub-expression of type $a . E^{\prime}$ for
$a \in \operatorname{Act}-\{\tau\}$
weakly guarded :
X occurs in a sub-expression of type $a . E^{\prime}$ for $a \in A c t$
in both cases assures that, until a guard is reached, behaviour does not depends on the process that instantiates the variable
example: X is weakly guarded in both $\tau . X$ and $\tau .0+a . X+b . a . X$ but guarded only in the second

Conditions on variables

sequential :
X is sequential in E if every strict sub-expression in which X occurs is either $a . E^{\prime}$, for $a \in A c t$, or $\sum \tilde{E}$.
avoids X to become guarded by a τ as a result of an interaction

Conditions on variables

sequential :
X is sequential in E if every strict sub-expression in which X occurs is either $a . E^{\prime}$, for $a \in A c t$, or $\sum \tilde{E}$.
avoids X to become guarded by a τ as a result of an interaction
example: X is not sequential in $X=(\bar{a} . X \mid a .0) \backslash\{a\}$

Solving equations

$$
\text { Have equations over }(\mathbb{P}, \sim) \text { or }(\mathbb{P},=) \text { (unique) solutions? }
$$

Solving equations

$$
\text { Have equations over }(\mathbb{P}, \sim) \text { or }(\mathbb{P},=) \text { (unique) solutions? }
$$

Lemma
Recursive equations $\tilde{X}=\tilde{E}(\tilde{X})$ or $\tilde{X} \sim \tilde{E}(\tilde{X})$, over \mathbb{P}, have unique solutions (up to $=$ or \sim, respectively). Formally,
i) Let $\tilde{E}=\left\{E_{i} \mid i \in I\right\}$ be a family of expressions with a maximum of I free variables ($\left\{X_{i} \mid i \in I\right\}$) such that any variable free in E_{i} is weakly guarded. Then

$$
\tilde{P} \sim\{\tilde{P} / \tilde{X}\} \tilde{E} \wedge \tilde{Q} \sim\{\tilde{Q} / \tilde{X}\} \tilde{E} \Rightarrow \tilde{P} \sim \tilde{Q}
$$

Solving equations

$$
\text { Have equations over }(\mathbb{P}, \sim) \text { or }(\mathbb{P},=) \text { (unique) solutions? }
$$

Lemma

Recursive equations $\tilde{X}=\tilde{E}(\tilde{X})$ or $\tilde{X} \sim \tilde{E}(\tilde{X})$, over \mathbb{P}, have unique solutions (up to $=$ or \sim, respectively). Formally,
i) Let $\tilde{E}=\left\{E_{i} \mid i \in I\right\}$ be a family of expressions with a maximum of I free variables ($\left\{X_{i} \mid i \in I\right\}$) such that any variable free in E_{i} is weakly guarded. Then

$$
\tilde{P} \sim\{\tilde{P} / \tilde{X}\} \tilde{E} \wedge \tilde{Q} \sim\{\tilde{Q} / \tilde{X}\} \tilde{E} \Rightarrow \tilde{P} \sim \tilde{Q}
$$

ii) Let $\tilde{E}=\left\{E_{i} \mid i \in I\right\}$ be a family of expressions with a maximum of I free variables ($\left\{X_{i} \mid i \in I\right\}$) such that any variable free in E_{i} is guarded and sequential. Then

$$
\tilde{P}=\{\tilde{P} / \tilde{X}\} \tilde{E} \wedge \tilde{Q}=\{\tilde{Q} / \tilde{X}\} \tilde{E} \Rightarrow \tilde{P}=\tilde{Q}
$$

Example (1)

Consider

$$
\begin{aligned}
\text { Sem } & ={ }^{d f} \text { get.put.Sem } \\
P_{1} & ={ }^{d f} \overline{\text { get. }} \cdot c_{1} \cdot \overline{p u t} \cdot P_{1} \\
P_{2} & ={ }^{d f} \overline{\text { get. }} \cdot c_{2} \cdot \overline{p u t} \cdot P_{2} \\
S & ={ }^{d f}\left(\text { Sem }\left|P_{1}\right| P_{2}\right) \backslash\{\text { get }, \text { put }\}
\end{aligned}
$$

and

$$
S^{\prime}={ }^{d f} \tau \cdot c_{1} \cdot S^{\prime}+\tau \cdot c_{2} \cdot S^{\prime}
$$

in order to prove $S=S^{\prime}$:

Example (1)

Consider

$$
\begin{aligned}
\text { Sem } & ={ }^{d f} \text { get.put.Sem } \\
P_{1} & ={ }^{d f} \overline{\text { get. }} \cdot c_{1} \cdot \overline{p u t} \cdot P_{1} \\
P_{2} & ={ }^{d f} \overline{\text { get. }} \cdot c_{2} \cdot \overline{p u t} \cdot P_{2} \\
S & ={ }^{d f}\left(\text { Sem }\left|P_{1}\right| P_{2}\right) \backslash\{\text { get }, \text { put }\}
\end{aligned}
$$

and

$$
S^{\prime}={ }^{d f} \tau \cdot c_{1} \cdot S^{\prime}+\tau \cdot c_{2} \cdot S^{\prime}
$$

in order to prove $S=S^{\prime}$: it is enough to show that both are solutions of

$$
X=\tau \cdot c_{1} \cdot X+\tau \cdot c_{2} \cdot X
$$

Example (1)

Then:

$$
\begin{aligned}
S & =\tau \cdot\left(c_{1} \cdot \overline{\text { put }} \cdot P_{1}\left|P_{2}\right| \text { put.Sem }\right) \backslash K+\tau .\left(P_{1}\left|c_{2} \cdot \overline{p u t} . P_{2}\right| \text { put.Sem }\right) \backslash K \\
& =\tau \cdot c_{1} \cdot\left(\overline{p u t} . P_{1}\left|P_{2}\right| \text { put.Sem }\right) \backslash K+\tau \cdot c_{2} \cdot\left(P_{1}\left|\overline{p u t} . P_{2}\right| \text { put.Sem }\right) \backslash K \\
& =\tau \cdot c_{1} \cdot \tau .\left(P_{1}\left|P_{2}\right| \text { Sem }\right) \backslash K+\tau \cdot c_{2} \cdot \tau \cdot\left(P_{1}\left|P_{2}\right| \text { Sem }\right) \backslash K \\
& =\tau \cdot c_{1} \cdot \tau . S+\tau \cdot c_{2} \cdot \tau . S \\
& =\tau \cdot c_{1} \cdot S+\tau \cdot c_{2} \cdot S \\
& =\{S / X\} E
\end{aligned}
$$

Example (1)

Then:

$$
\begin{aligned}
S & =\tau \cdot\left(c_{1} \cdot \overline{p u t} . P_{1}\left|P_{2}\right| \text { put.Sem }\right) \backslash K+\tau .\left(P_{1}\left|c_{2} \cdot \overline{p u t} . P_{2}\right| \text { put.Sem }\right) \backslash K \\
& =\tau \cdot c_{1} \cdot\left(\overline{p u t} . P_{1}\left|P_{2}\right| \text { put.Sem }\right) \backslash K+\tau \cdot c_{2} \cdot\left(P_{1}\left|\overline{p u t} \cdot P_{2}\right| \text { put.Sem }\right) \backslash K \\
& =\tau \cdot c_{1} \cdot \tau \cdot\left(P_{1}\left|P_{2}\right| \text { Sem }\right) \backslash K+\tau \cdot c_{2} \cdot \tau \cdot\left(P_{1}\left|P_{2}\right| \text { Sem }\right) \backslash K \\
& =\tau \cdot c_{1} \cdot \tau . S+\tau \cdot c_{2} \cdot \tau . S \\
& =\tau \cdot c_{1} \cdot S+\tau \cdot c_{2} \cdot S \\
& =\{S / X\} E
\end{aligned}
$$

for S^{\prime} is immediate

Example (2)

Consider,

$$
\begin{aligned}
& B={ }^{d f} \text { in. } B_{1} \\
& B_{1}={ }^{d f} \text { in. } B_{2}+\overline{\text { out } \cdot B} \\
& B_{2}==^{d f} \overline{\text { out }} \cdot B_{1}
\end{aligned}
$$

$$
B^{\prime}={ }^{d f}\left(C_{1} \mid C_{2}\right) \backslash m
$$

$$
C_{1}={ }^{d f} \text { in. } \bar{m} \cdot C_{1}
$$

$$
C_{2}={ }^{d f} \text { m. } \overline{\text { out }} \cdot C_{2}
$$

Example (2)

Consider,

$$
\begin{array}{ll}
B==^{d f} \text { in. } B_{1} & B^{\prime}={ }^{d f}\left(C_{1} \mid C_{2}\right) \backslash m \\
B_{1}==^{d f} \text { in. } B_{2}+\overline{\text { out } . B} & C_{1}={ }^{d f} \text { in. } \bar{m} \cdot C_{1} \\
B_{2}={ }^{d f} \overline{\text { out } . B_{1}} & C_{2}={ }^{d f} \text { m. } \overline{\text { out. } . C_{2}}
\end{array}
$$

B is a solution of

$$
\begin{aligned}
& X=E(X, Y, Z)=\text { in. } Y \\
& Y=E_{1}(X, Y, Z)=\text { in. } Z+\overline{\text { out } . ~} X \\
& Z=E_{3}(X, Y, Z)=\overline{\text { out }} . Y
\end{aligned}
$$

through $\sigma=\left\{B / X, B_{1} / Y, B_{2} / Z\right\}$

Example (2)

To prove $B=B^{\prime}$

$$
\begin{aligned}
B^{\prime} & =\left(C_{1} \mid C_{2}\right) \backslash m \\
& =\text { in. }\left(\bar{m} \cdot C_{1} \mid C_{2}\right) \backslash m \\
& =\text { in. } \tau \cdot\left(C_{1} \mid \overline{\text { out }} \cdot C_{2}\right) \backslash m \\
& =\text { in. }\left(C_{1} \mid \overline{\text { out. }} C_{2}\right) \backslash m
\end{aligned}
$$

Let $S_{1}=\left(C_{1} \mid \overline{o u t} . C_{2}\right) \backslash m$ to proceed:

$$
\begin{aligned}
S_{1} & =\left(C_{1} \mid \overline{\text { out }} . C_{2}\right) \backslash m \\
& =\text { in. }\left(\bar{m} . C_{1} \mid \overline{\text { out }} . C_{2}\right) \backslash m+\overline{\text { out }} .\left(C_{1} \mid C_{2}\right) \backslash m \\
& =\text { in. }\left(\bar{m} . C_{1} \mid \overline{\text { out }} . C_{2}\right) \backslash m+\overline{\text { out. }} B^{\prime}
\end{aligned}
$$

Example (2)

Finally, let, $S_{2}=\left(\bar{m} . C_{1} \mid \overline{o u t} . C_{2}\right) \backslash m$. Then,

$$
\begin{aligned}
S_{2} & =\left(\bar{m} . C_{1} \mid \overline{\text { out }} . C_{2}\right) \backslash m \\
& \left.=\overline{\text { out. }} \cdot \bar{m} \cdot C_{1} \mid C_{2}\right) \backslash m \\
& =\overline{\text { out. }} \cdot \frac{\left(C_{1} \mid \overline{\text { out }} . C_{2}\right) \backslash m}{} \\
& =\overline{\text { out. }} \cdot \frac{S_{1}}{} \\
& =\overline{\text { out. }} S_{1}
\end{aligned}
$$

Example (2)

Note the same problem can be solved with a system of 2 equations:

$$
\begin{aligned}
& X=E(X, Y)=\text { in. } Y \\
& Y=E^{\prime}(X, Y)=\text { in. } \overline{\text { out } . ~} Y+\overline{\text { out } . \text { in. } . Y}
\end{aligned}
$$

Clearly, by substitution,

$$
\begin{aligned}
B & =\text { in. } B_{1} \\
B_{1} & =\text { in.out. } B_{1}+\overline{\text { out }} \cdot \mathrm{in} \cdot B_{1}
\end{aligned}
$$

Example (2)

On the other hand, it's already proved that $B^{\prime}=\ldots=i n . S_{1}$. so,

$$
\begin{aligned}
& S_{1}=\left(C_{1} \mid \overline{\text { out. }} . C_{2}\right) \backslash m \\
& =\text { in. }\left(\bar{m} . C_{1} \mid \overline{o u t} . C_{2}\right) \backslash m+\overline{o u t} . B^{\prime} \\
& =\text { in. } \overline{o u t} .\left(\bar{m} . C_{1} \mid C_{2}\right) \backslash m+\overline{o u t} . B^{\prime} \\
& =\text { in. } \overline{\text { out. }} \tau .\left(C_{1} \mid \overline{\text { out. }} . C_{2}\right) \backslash m+\overline{\text { out. }} B^{\prime} \\
& =\text { in. } \overline{\text { out }} . \tau . S_{1}+\overline{\text { out. }} \cdot B^{\prime} \\
& =\text { in. } \overline{o u t} \cdot S_{1}+\overline{o u t} . B^{\prime} \\
& =\text { in. } \overline{o u t} . S_{1}+\overline{o u t} . i n . S_{1}
\end{aligned}
$$

Hence, $B^{\prime}=\left\{B^{\prime} / X, S_{1} / Y\right\} E$ and $S_{1}=\left\{B^{\prime} / X, S_{1} / Y\right\} E^{\prime}$

Exercises

Suppose two variants of parallel composition have been added to the process language \mathbb{P} and defined through the following rules:

$$
\begin{array}{cc}
\frac{E \xrightarrow{a} E^{\prime}}{E \otimes F \xrightarrow{a} E^{\prime} \otimes F}\left(O_{1}\right) & \frac{F \xrightarrow{a} F^{\prime}}{E \otimes F \xrightarrow{a} E \otimes F^{\prime}}\left(O_{2}\right) \\
E \xrightarrow{E} E^{\prime} \text { and } \quad \bar{a} \notin \mathcal{L}(F) \\
E\left\|\xrightarrow{a} E^{\prime}\right\| F & \left(P_{1}\right) \\
\frac{E \xrightarrow{a} E^{\prime} \quad F \xrightarrow{\bar{a}} F^{\prime}}{E\left\|F \xrightarrow{\tau} E^{\prime}\right\| F^{\prime}}\left(P_{3}\right) &
\end{array}
$$

(1) Explain, in your own words, the meaning of $\otimes \mathrm{e} \|$.
(2) prove or refute:

- \otimes is associative with respect to \sim
- \|| is associative with respect to \sim

Exercise

Consider the following statements about a binary relation S on \mathbb{P}. Discuss whether you may conclude from each of them whether S is (or is not) a weak bisimulation:
(1) S is the identity in \mathbb{P}.
(2) S is a subset of the identity in \mathbb{P}.
(3) S is a strict bisimulation up to \equiv.
(4) S is the empty relation.
(5) $S=\{(a . E, a . F) \mid E \approx F\}$.
(6) $S=\{(a . E, a . F) \mid E \approx F\} \cup \approx$.

Exercise

Suppose processes R and T have transitions $R \xrightarrow{\tau} T$ and $T \xrightarrow{\tau} R$, among others. Show that, under this condition, $R=T$.

Identify, in the list of process pairs below, which of them can be related by \approx. And by $=$?
(1) a. $\tau . b . \mathbf{0}$ e a.b. $\mathbf{0}$
(2) a.(b.0 + $\tau . c . \mathbf{0})$ e $a .(b . \mathbf{0}+c . \mathbf{0})$
(3) a. $(b . \mathbf{0}+\tau . c . \mathbf{0}) \mathrm{e} a .(b . \mathbf{0}+c . \mathbf{0})+a . c . \mathbf{0}$
(4) a. $\mathbf{0}+b . \mathbf{0}+\tau . b . \mathbf{0}$ e a. $\mathbf{0}+\tau . b . \mathbf{0}$
(5) $a . \mathbf{0}+b . \mathbf{0}+\tau . b . \mathbf{0}$ e $a . \mathbf{0}+b . \mathbf{0}$
(6) a. $(b .0+(\tau .(c .0+\tau . d .0))) \mathrm{e}$
$a .(b . \mathbf{0}+(\tau .(c . \mathbf{0}+\tau . d . \mathbf{0})))+a .(c . \mathbf{0}+\tau . d . \mathbf{0})$
(7) a. $(b .0+(\tau .(c .0+\tau . d .0))) \mathrm{e}$
$a .(b . \mathbf{0}+c . \mathbf{0}+d . \mathbf{0})+a .(c . \mathbf{0}+d . \mathbf{0})+a . d . \mathbf{0}$
8 ($\tau .(a . b . \mathbf{0}+$ a.c. $\mathbf{0})$ e $\tau . a . b . \mathbf{0}+\tau . a . c . \mathbf{0}$
(9) $\tau .(a . \tau . b . \mathbf{0}+$ a.b. $\tau .0)$ e a.b. $\mathbf{0}$
(10) $\tau .(\tau . a . \mathbf{0}+\tau . b .0)$ e $\tau . a . \mathbf{0}+\tau . b .0$
(11) $A={ }^{d f}$ a. $\tau \cdot A$ e $B={ }^{d f}$ a.B
(12) $A={ }^{d f} \tau . A+a .0$ e a. $\mathbf{0}$
(13) $A={ }^{d f} \tau \cdot A$ e $\mathbf{0}$

Consider the following specification of a pipe, as supported e.g. in Unix:

$$
U \triangleright V={ }^{a b v}(U[c / o u t] \mid V[c / i n]) \backslash\{c\}
$$

under the assumption that, in both processes, actions $\overline{o u t} \mathrm{e}$ in stand for, respectively, the output and input ports.
(1) Consider now the following processes only partially defined:

$$
\begin{aligned}
& U_{1}={ }^{d f} \overline{\text { out. }} T \\
& V_{1}={ }^{d f} \text { in. } R \\
& U_{2}={ }^{d f} \overline{\text { out. }} \overline{\text { out. }} \overline{\text { out } . ~} T \\
& V_{2}={ }^{d f} \text { in.in.in. } R
\end{aligned}
$$

Prove, by equational reasoning, or refute the following properties:
(1) $U_{1} \triangleright V_{1} \sim T \triangleright R$
(2) $U_{2} \triangleright V_{2}=U_{1} \triangleright V_{1}$
(2) Show that $\mathbf{0} \triangleright \mathbf{0}=\mathbf{0}$.

