
Processos e Concorrência 2015/16
Bloco de acetatos 5

Alexandre Madeira
(based on Lúıs S. Barbosa 2014/15 course Slides)

HASLab INESC TEC, DI UMINHO

March 26, 2017

Semantics

(act)
a.p

a−→ p

p
a−→ p′

(sum − l)
p + q

a−→ p′

q
a−→ q′

(sum − r)
p + q

a−→ q′

p
a−→ p′

(par − l)
p | q a−→ p′ | q

q
a−→ q′

(par − r)
p | q a−→ p | q′

p
a−→ p′ q

a−→ q′

(react)
p | q τ−→ p′ | q′

p
a−→ p′

(res) (if a /∈ {k, k})
p \ {k} a−→ p′ \ {k}

p
a−→ p′

(rel) (f relabelling function)
p[f]

f (a)−−→ p′[f]

p
a−→ p′

(con) k =df p
k

a−→ p′

Semantics

These rules define a LTS

{ a−→ ⊆ P× P|a ∈ Act}

Relation
a−→ is defined inductively over process structure entailing a

semantic description which is

Structural i.e., each process shape (defined by the most external
combinator) has a type of transitions

Modular i.e., a process transition is defined from transitions in its
sup-processes

Complete i.e., all possible transitions are infered from these rules

Graphical representations

Synchronization diagram

• represent interfaces of processes

• static combinators are an algebra of synchronization diagrams

Transition graph

• derivative, n-derivative, transition tree

• folds into a transition graph

Graphical representations

Synchronization diagram

• represent interfaces of processes

• static combinators are an algebra of synchronization diagrams

Transition graph

• derivative, n-derivative, transition tree

• folds into a transition graph

Transition tree

B =df in.o1.B + in.o2.B

in.o1.B + in.o2.B

in
uu

in
))

o1.B

o1

��

o2.B

o2

��
in.o1.B + in.o2.B

inww
in

��

in.o1.B + in.o2.B

in
uu

in

��
o1.B

o1

��

o2.B

o2

��

o1.B

o1

��

o2.B

o2

��
...

Transition graph

B =df in.o1.B + in.o2.B

in.o1.B + in.o2.B

inww in ''
o1.B

o1
((

o2.B

o2
vv

compare with B ′ =df in.(o1.B ′ + o2.B ′)

in.(o1.B ′ + o2.B ′)

in
��

o1.B ′ + o2.B ′

o1

66

o2

hh

Transition graph

B =df in.o1.B + in.o2.B

in.o1.B + in.o2.B

inww in ''
o1.B

o1
((

o2.B

o2
vv

compare with B ′ =df in.(o1.B ′ + o2.B ′)

in.(o1.B ′ + o2.B ′)

in
��

o1.B ′ + o2.B ′

o1

66

o2

hh

Data parameters

Language P is extended to PV over a data universe V , a set Ve of
expressions over V and a evaluation Val : Ve → V

Example
B =df in(x).B ′x

B ′v =df out〈v〉.B

• Two prefix forms: a(x).E and a〈e〉.E (actions as ports)

• Data parameters: AS(x1, ..., xn) =df EA, with S ∈ V and each
xi ∈ L

• Conditional combinator: if b then P, if b then P1 else P2

Clearly

if b then P1 else P2 =abv (if b then P1) + (if¬b then P2)

Data parameters

Language P is extended to PV over a data universe V , a set Ve of
expressions over V and a evaluation Val : Ve → V

Example
B =df in(x).B ′x

B ′v =df out〈v〉.B

• Two prefix forms: a(x).E and a〈e〉.E (actions as ports)

• Data parameters: AS(x1, ..., xn) =df EA, with S ∈ V and each
xi ∈ L

• Conditional combinator: if b then P, if b then P1 else P2

Clearly

if b then P1 else P2 =abv (if b then P1) + (if¬b then P2)

Data parameters

Additional semantic rules

(prefixi)

a(x).E
a(v)−−→ {v/x}E

for v ∈ V

(prefixo)

a〈e〉.E a〈v〉−−→ E
for Val(e) = v

E1
a−→ E ′

(if1)
if b then E1 else E2

a−→ E ′
for Val(b) = tt

E2
a−→ E ′

(if2)
if b then E1 else E2

a−→ E ′
for Val(b) = ff

Examples

• B =df in(x).out〈x〉.B

• B =df in(x).in(y).out〈x〉.out〈y〉.B
• B =df in(x).in(y).out〈y〉.out〈x〉.B
• B =df in(x).in(y).(out〈y〉.B + out〈x〉.B)

• B =df in(x).out〈2× x〉.B
• B =df in(x).(if x > 3 then out〈x〉).B

Examples

• B =df in(x).out〈x〉.B
• B =df in(x).in(y).out〈x〉.out〈y〉.B

• B =df in(x).in(y).out〈y〉.out〈x〉.B
• B =df in(x).in(y).(out〈y〉.B + out〈x〉.B)

• B =df in(x).out〈2× x〉.B
• B =df in(x).(if x > 3 then out〈x〉).B

Examples

• B =df in(x).out〈x〉.B
• B =df in(x).in(y).out〈x〉.out〈y〉.B
• B =df in(x).in(y).out〈y〉.out〈x〉.B

• B =df in(x).in(y).(out〈y〉.B + out〈x〉.B)

• B =df in(x).out〈2× x〉.B
• B =df in(x).(if x > 3 then out〈x〉).B

Examples

• B =df in(x).out〈x〉.B
• B =df in(x).in(y).out〈x〉.out〈y〉.B
• B =df in(x).in(y).out〈y〉.out〈x〉.B
• B =df in(x).in(y).(out〈y〉.B + out〈x〉.B)

• B =df in(x).out〈2× x〉.B
• B =df in(x).(if x > 3 then out〈x〉).B

Examples

• B =df in(x).out〈x〉.B
• B =df in(x).in(y).out〈x〉.out〈y〉.B
• B =df in(x).in(y).out〈y〉.out〈x〉.B
• B =df in(x).in(y).(out〈y〉.B + out〈x〉.B)

• B =df in(x).out〈2× x〉.B
• B =df in(x).(if x > 3 then out〈x〉).B

Back to P

Encoding in the basic language: T () : PV → P

T (a(x).E) =
∑
v∈V

av .T ({v/x}E)

T (a〈e〉.E) = ae .T (E)

T (
∑
i∈I

Ei) =
∑
i∈I

T (Ei)

T (E | F) = T (E) | T (F)

T (E \ K) = T (E) \ {av |a ∈ K , v ∈ V }

and

T (if b then E) =

{
T (E) if Val(b) = tt

0 if Val(b) = ff

Exercise

Draw the transition diagram of the process Pred :

Pred =df in(x).Pred ′(x)

Pred ′(x) =df if x = 0 then out〈0〉.Pred else out〈x − 1〉.

Semantics

Two-level semantics

• behavioural given by transition rules which express how system’s
components interact (as seen in the last classes)

• arquitectural, expresses a notion of similar assembly
configurations and is expressed through a structural congruence
relation;

Semantics

Two-level semantics

• behavioural given by transition rules which express how system’s
components interact (as seen in the last classes)

• arquitectural, expresses a notion of similar assembly
configurations and is expressed through a structural congruence
relation;

Semantics

Structural congruence
≡ over P is given by the closure of the following conditions:

• for all A(~x) =df EA, A(~y) ≡ {~y/~x}EA,
(i.e., folding/unfolding preserve ≡)

• α-conversion (i.e., replacement of bounded variables).

• both | and + originate, with 0, abelian monoids

• forall a /∈ fn(P) (P | Q) \ {a} ≡ P | Q \ {a}

• 0 \ {a} ≡ 0

Compatibility

Lemma

Structural congruence preserves transitions:

if p
a−→ p′ and p ≡ q there exists a process q′ such that q

a−→ q′ and
p′ ≡ q′.

Processes are ‘prototypical’ transition
systems

... hence all definitions apply:

E ∼ F

• Processes E , F are bisimilar if there exist a bisimulation S st
{〈E ,F 〉} ∈ S .

• A binary relation S in P is a (strict) bisimulation iff, whenever
(E ,F) ∈ S and a ∈ Act,

i) E
a−→ E ′ ⇒ F

a−→ F ′ and (E ′,F ′) ∈ S

ii) F
a−→ F ′ ⇒ E

a−→ E ′ and (E ′,F ′) ∈ S

Alternative characterization of bisimilarity

Recalling bisimilarity definition:

∼=
⋃
{S ⊆ P× P | S is a (strict) bisimulation}

Usefull Lemma:
E ∼ F iff

i) E
a−→ E ′ ⇒ F

a−→ F ′ and E ′ ∼ F ′

ii) F
a−→ F ′ ⇒ E

a−→ E ′ and E ′ ∼ F ′

Alternative characterization of bisimilarity

Recalling bisimilarity definition:

∼=
⋃
{S ⊆ P× P | S is a (strict) bisimulation}

Usefull Lemma:
E ∼ F iff

i) E
a−→ E ′ ⇒ F

a−→ F ′ and E ′ ∼ F ′

ii) F
a−→ F ′ ⇒ E

a−→ E ′ and E ′ ∼ F ′

Processes are ‘prototypical’ transition
systems

Example: S ∼ M

T =df i .k .T

R =df k .j .R

S =df (T | R) \ {k}

M =df i .τ.N

N =df j .i .τ.N + i .j .τ.N

through bisimulation

R ={〈S ,M)〉, 〈(k.T | R) \ {k}, τ.N〉, 〈(T | j .R) \ {k},N〉,
〈(k.T | j .R) \ {k}, j .τ.N〉}

Processes are ‘prototypical’ transition
systems

Example: S ∼ M

T =df i .k .T

R =df k .j .R

S =df (T | R) \ {k}

M =df i .τ.N

N =df j .i .τ.N + i .j .τ.N

through bisimulation

R ={〈S ,M)〉, 〈(k .T | R) \ {k}, τ.N〉, 〈(T | j .R) \ {k},N〉,
〈(k.T | j .R) \ {k}, j .τ.N〉}

Example: Semaphores

A semaphore

Sem =df get.put.Sem

n-semaphores

Semn =df Semn,0

Semn,0 =df get.Semn,1

Semn,i =df get.Semn,i+1 + put.Semn,i−1

(for 0 < i < n)

Semn,n =df put.Semn,n−1

Semn can also be implemented by the parallel composition of n Sem
processes:

Semn =df Sem | Sem | ... | Sem

Example: Semaphores

A semaphore

Sem =df get.put.Sem

n-semaphores

Semn =df Semn,0

Semn,0 =df get.Semn,1

Semn,i =df get.Semn,i+1 + put.Semn,i−1

(for 0 < i < n)

Semn,n =df put.Semn,n−1

Semn can also be implemented by the parallel composition of n Sem
processes:

Semn =df Sem | Sem | ... | Sem

Example: Semaphores

A semaphore

Sem =df get.put.Sem

n-semaphores

Semn =df Semn,0

Semn,0 =df get.Semn,1

Semn,i =df get.Semn,i+1 + put.Semn,i−1

(for 0 < i < n)

Semn,n =df put.Semn,n−1

Semn can also be implemented by the parallel composition of n Sem
processes:

Semn =df Sem | Sem | ... | Sem

Example: Semaphores

Is Semn ∼ Semn?

For n = 2:

{〈Sem2,0,Sem | Sem〉, 〈Sem2,1,Sem | put.Sem〉,
〈Sem2,1, put.Sem | Sem〉〈Sem2,2, put.Sem | put.Sem〉}

is a bisimulation.

• but can we get rid of structurally congruent pairs?

Example: Semaphores

Is Semn ∼ Semn?

For n = 2:

{〈Sem2,0,Sem | Sem〉, 〈Sem2,1,Sem | put.Sem〉,
〈Sem2,1, put.Sem | Sem〉〈Sem2,2, put.Sem | put.Sem〉}

is a bisimulation.

• but can we get rid of structurally congruent pairs?

Bisimulation up to ≡

Definition
A binary relation S in P is a (strict) bisimulation up to ≡ iff, whenever
(E ,F) ∈ S and a ∈ Act,

i) E
a−→ E ′ ⇒ F

a−→ F ′ and (E ′,F ′) ∈ ≡ ·S· ≡

ii) F
a−→ F ′ ⇒ E

a−→ E ′ and (E ′,F ′) ∈ ≡ ·S· ≡

Lemma
If S is a (strict) bisimulation up to ≡, then S ⊆ ∼

Bisimulation up to ≡

Definition
A binary relation S in P is a (strict) bisimulation up to ≡ iff, whenever
(E ,F) ∈ S and a ∈ Act,

i) E
a−→ E ′ ⇒ F

a−→ F ′ and (E ′,F ′) ∈ ≡ ·S· ≡

ii) F
a−→ F ′ ⇒ E

a−→ E ′ and (E ′,F ′) ∈ ≡ ·S· ≡

Lemma
If S is a (strict) bisimulation up to ≡, then S ⊆ ∼

A ∼-calculus

Lemma
E ≡ F ⇒ E ∼ F

∼ is a congruence

congruence is the name of modularity in Mathematics

• process combinators preserve ∼

Lemma
Assume E ∼ F . Then,

a.E ∼ a.F

E + P ∼ F + P

E | P ∼ F | P

E \ K ∼ F \ K

E [f] ∼ F [f]

• recursive definition preserves ∼

∼ is a congruence

congruence is the name of modularity in Mathematics

• process combinators preserve ∼

Lemma
Assume E ∼ F . Then,

a.E ∼ a.F

E + P ∼ F + P

E | P ∼ F | P

E \ K ∼ F \ K

E [f] ∼ F [f]

• recursive definition preserves ∼

∼ is a congruence

congruence is the name of modularity in Mathematics

• process combinators preserve ∼

Lemma
Assume E ∼ F . Then,

a.E ∼ a.F

E + P ∼ F + P

E | P ∼ F | P

E \ K ∼ F \ K

E [f] ∼ F [f]

• recursive definition preserves ∼

∼ is a congruence

• First ∼ is extended to processes with variables:

E ∼ F ≡ ∀P̃ . E [P̃/X̃] ∼ F [P̃/X̃]

• Then prove:

Lemma

i) P̃ =df Ẽ ⇒ P̃ ∼ Ẽ
where Ẽ is a family of process expressions and P̃ a family
of process identifiers.

ii) Let Ẽ ∼ F̃ , where Ẽ and F̃ are families of recursive
process expressions over a family of process variables X̃ ,
and define:

Ã =df Ẽ [Ã/X̃] and B̃ =df F̃ [B̃/X̃]

Then
Ã ∼ B̃

The expansion theorem

Every process is equivalent to the sum of its derivatives

E ∼
∑
{a.E ′ | E

a−→ E ′}

The expansion theorem

The usual definition (based on the concurrent canonical form):

E ∼
∑
{ fi (a).(E1[f1] | ... | E ′i [fi] | ... | En[fn]) \ K |

Ei
a−→ E ′i and fi (a) /∈ K ∪ K }

+∑
{ τ.(E1[f1] | ... | E ′i [fi] | ... | E ′j [fj] | ... | En[fn]) \ K |

Ei
a−→ E ′i and Ej

b−→ E ′j and fi (a) = fj(b) }

for E =df (E1[f1] | ... | En[fn]) \ K , with n ≥ 1

The expansion theorem

Corollary (for n = 1 and f1 = id)

(E + F) \ K ∼ E \ K + F \ K

(a.E) \ K ∼

{
0 if a ∈ (K ∪ K)

a.(E \ K) otherwise

Revisit the example and show S ∼ M using the expansion
theorem

T =df i .k.T

R =df k .j .R

S =df (T | R) \ {k}

M =df i .τ.N

N =df j .i .τ.N + i .j .τ.N

Example

S ∼ M

S ∼ (T | R) \ {k}
∼ i .(k.T | R) \ {k}
∼ i .τ.(T | j .R) \ {k}
∼ i .τ.(i . (k.T | j .R) \ {k}+j .(T | R) \ {k})
∼ i .τ.(i .j . (k.T | R) \ {k}+j .i .(k.T | R) \ {k})
∼ i .τ.(i .j .τ. (T | j .R) \ {k}+j .i .τ.(T | j .R) \ {k})

Let N ′ = (T | j .R) \ {k}.
This expands into N ′ ∼ i .j .τ. (T | j .R) \ {k}+j .i .τ.(T | j .R) \ {k},
Therefore N ′ ∼ N and S ∼ i .τ.N ∼ M

• requires result on unique solutions for recursive process equations

Example

S ∼ M
S ∼ (T | R) \ {k}
∼ i .(k.T | R) \ {k}
∼ i .τ.(T | j .R) \ {k}
∼ i .τ.(i . (k.T | j .R) \ {k}+j .(T | R) \ {k})
∼ i .τ.(i .j . (k.T | R) \ {k}+j .i .(k .T | R) \ {k})
∼ i .τ.(i .j .τ. (T | j .R) \ {k}+j .i .τ.(T | j .R) \ {k})

Let N ′ = (T | j .R) \ {k}.
This expands into N ′ ∼ i .j .τ. (T | j .R) \ {k}+j .i .τ.(T | j .R) \ {k},
Therefore N ′ ∼ N and S ∼ i .τ.N ∼ M

• requires result on unique solutions for recursive process equations

Example

S ∼ M
S ∼ (T | R) \ {k}
∼ i .(k.T | R) \ {k}
∼ i .τ.(T | j .R) \ {k}
∼ i .τ.(i . (k.T | j .R) \ {k}+j .(T | R) \ {k})
∼ i .τ.(i .j . (k.T | R) \ {k}+j .i .(k .T | R) \ {k})
∼ i .τ.(i .j .τ. (T | j .R) \ {k}+j .i .τ.(T | j .R) \ {k})

Let N ′ = (T | j .R) \ {k}.
This expands into N ′ ∼ i .j .τ. (T | j .R) \ {k}+j .i .τ.(T | j .R) \ {k},
Therefore N ′ ∼ N and S ∼ i .τ.N ∼ M

• requires result on unique solutions for recursive process equations

Exercise

Using the expansion theorem, reduce P and Q into its
concurrent normal form

P1 =df a.P ′1 + b.P ′′2

P2 =df a.P ′2 + c.P ′′2

P3 =df a.P ′3 + c.P ′′3

P =df (P1 | P2) \ {a}
Q =df (P1 | P2 | P3) \ {a, b}

Observable transitions

a
=⇒ ⊆ P× P

• L ∪ {ε}

• A
ε

=⇒-transition corresponds to zero or more non observable
transitions

• inference rules for
a

=⇒:

(O1)
E

ε
=⇒ E

E
τ−→ E ′ E ′

ε
=⇒ F

(O2)
E

ε
=⇒ F

E
ε

=⇒ E ′ E ′
a−→ F ′ F ′

ε
=⇒ F

(O3) for a ∈ L
E

a
=⇒ F

Example

T0 =df j .T1 + i .T2

T1 =df i .T3

T2 =df j .T3

T3 =df τ.T0

and

A =df i .j .A + j .i .A

Example

From their graphs,

T0

j~~ i
T1

i

T2

j

~~
T3

τ

jj

and

A

j~~ i
i .A

i
((

j .A

j
vv

we conclude that T0 � A (why?).

Observational equivalence

E ≈ F

• A binary relation S in P is a weak bisimulation iff, whenever
(E ,F) ∈ S and a ∈ L ∪ {ε},

i) E
a

=⇒ E ′ ⇒ F
a

=⇒ F ′ and (E ′,F ′) ∈ S

ii) F
a

=⇒ F ′ ⇒ E
a

=⇒ E ′ and (E ′,F ′) ∈ S

• Processes E , F are observationally equivalent if there exists a weak
bisimulation S st {〈E ,F 〉} ∈ S
I.e.,

≈ =
⋃
{S ⊆ P× P | S is a weak bisimulation}

Observational equivalence

E ≈ F

• A binary relation S in P is a weak bisimulation iff, whenever
(E ,F) ∈ S and a ∈ L ∪ {ε},

i) E
a

=⇒ E ′ ⇒ F
a

=⇒ F ′ and (E ′,F ′) ∈ S

ii) F
a

=⇒ F ′ ⇒ E
a

=⇒ E ′ and (E ′,F ′) ∈ S

• Processes E , F are observationally equivalent if there exists a weak
bisimulation S st {〈E ,F 〉} ∈ S

I.e.,
≈ =

⋃
{S ⊆ P× P | S is a weak bisimulation}

Observational equivalence

E ≈ F

• A binary relation S in P is a weak bisimulation iff, whenever
(E ,F) ∈ S and a ∈ L ∪ {ε},

i) E
a

=⇒ E ′ ⇒ F
a

=⇒ F ′ and (E ′,F ′) ∈ S

ii) F
a

=⇒ F ′ ⇒ E
a

=⇒ E ′ and (E ′,F ′) ∈ S

• Processes E , F are observationally equivalent if there exists a weak
bisimulation S st {〈E ,F 〉} ∈ S
I.e.,

≈ =
⋃
{S ⊆ P× P | S is a weak bisimulation}

Properties

• as expected: ≈ is an equivalence relation

• basic property: for any E ∈ P,

E ≈ τ.E

(proof idea: idP ∪ {(E , τ.E) | E ∈ P} is a weak bisimulation

• weak vs. strict:
∼⊆ ≈

Properties

• as expected: ≈ is an equivalence relation

• basic property: for any E ∈ P,

E ≈ τ.E

(proof idea: idP ∪ {(E , τ.E) | E ∈ P} is a weak bisimulation

• weak vs. strict:
∼⊆ ≈

Properties

• as expected: ≈ is an equivalence relation

• basic property: for any E ∈ P,

E ≈ τ.E

(proof idea: idP ∪ {(E , τ.E) | E ∈ P} is a weak bisimulation

• weak vs. strict:
∼⊆ ≈

Is ≈ a congruence?

Lemma
Let E ≈ F . Then, for any P ∈ P and K ⊆ L,

a.E ≈ a.F

E | P ≈ F | P

E \ K ≈ F \ K

E [f]≈ F [f]

but
E + P ≈ F + P

does not hold, in general.

Is ≈ a congruence?

Lemma
Let E ≈ F . Then, for any P ∈ P and K ⊆ L,

a.E ≈ a.F

E | P ≈ F | P

E \ K ≈ F \ K

E [f]≈ F [f]

but
E + P ≈ F + P

does not hold, in general.

Is ≈ a congruence?

Example (initial τ restricts options menu’)

i .0 ≈ τ.i .0

However
j .0 + i .0 6≈ j .0 + τ.i .0

Actually,

j .0 + i .0

j
{{

i
##

0 0

j .0 + τ.i .0

j
zz

τ
$$

0 i .0

i
��

0

Is ≈ a congruence?

Example (initial τ restricts options menu’)

i .0 ≈ τ.i .0

However
j .0 + i .0 6≈ j .0 + τ.i .0

Actually,

j .0 + i .0

j
{{

i
##

0 0

j .0 + τ.i .0

j
zz

τ
$$

0 i .0

i
��

0

Forcing a congruence: E = F

Solution: force any initial τ to be matched by another τ

Process equality
Two processes E and F are equal (or observationally congruent) iff

i) E ≈ F

ii) E
τ−→ E ′ ⇒ F

τ−→ X
ε

=⇒ F ′ and E ′ ≈ F ′

iii) F
τ−→ F ′ ⇒ E

τ−→ X
ε

=⇒ E ′ and E ′ ≈ F ′

• note that E 6= τ.E , but τ.E = τ.τ.E

Forcing a congruence: E = F

Solution: force any initial τ to be matched by another τ

Process equality
Two processes E and F are equal (or observationally congruent) iff

i) E ≈ F

ii) E
τ−→ E ′ ⇒ F

τ−→ X
ε

=⇒ F ′ and E ′ ≈ F ′

iii) F
τ−→ F ′ ⇒ E

τ−→ X
ε

=⇒ E ′ and E ′ ≈ F ′

• note that E 6= τ.E , but τ.E = τ.τ.E

Forcing a congruence: E = F

= can be regarded as a restriction of ≈ to all pairs of processes which
preserve it in additive contexts

Lemma
Let E and F be processes st the union of their sorts is distinct of L. Then,

E = F ≡ ∀G∈P . (E + G ≈ F + G)

Properties of =

Lemma

E ≈ F ≡ (E = F) ∨ (E = τ.F) ∨ (τ.E = F)

Properties of =

Lemma

∼ ⊆ = ⊆ ≈

So,

the whole ∼ theory remains valid

Additionally,

Lemma (additional laws)

a.τ.E = a.E

E + τ.E = τ.E

a.(E + τ.F) = a.(E + τ.F) + a.F

Conditions on variables

guarded :
X occurs in a sub-expression of type a.E ′ for
a ∈ Act − {τ}

weakly guarded :
X occurs in a sub-expression of type a.E ′ for a ∈ Act

in both cases assures that, until a guard is reached, behaviour does not
depends on the process that instantiates the variable

example: X is weakly guarded in both τ.X and τ.0 + a.X + b.a.X but
guarded only in the second

Conditions on variables

guarded :
X occurs in a sub-expression of type a.E ′ for
a ∈ Act − {τ}

weakly guarded :
X occurs in a sub-expression of type a.E ′ for a ∈ Act

in both cases assures that, until a guard is reached, behaviour does not
depends on the process that instantiates the variable

example: X is weakly guarded in both τ.X and τ.0 + a.X + b.a.X but
guarded only in the second

Conditions on variables

sequential :
X is sequential in E if every strict sub-expression in which
X occurs is either a.E ′, for a ∈ Act, or ΣẼ .

avoids X to become guarded by a τ as a result of an interaction

example: X is not sequential in X = (a.X | a.0) \ {a}

Conditions on variables

sequential :
X is sequential in E if every strict sub-expression in which
X occurs is either a.E ′, for a ∈ Act, or ΣẼ .

avoids X to become guarded by a τ as a result of an interaction

example: X is not sequential in X = (a.X | a.0) \ {a}

Solving equations

Have equations over (P,∼) or (P,=) (unique) solutions?

Lemma
Recursive equations X̃ = Ẽ (X̃) or X̃ ∼ Ẽ (X̃), over P, have unique
solutions (up to = or ∼, respectively). Formally,

i) Let Ẽ = {Ei | i ∈ I} be a family of expressions with a
maximum of I free variables ({Xi | i ∈ I}) such that any
variable free in Ei is weakly guarded. Then

P̃ ∼ {P̃/X̃}Ẽ ∧ Q̃ ∼ {Q̃/X̃}Ẽ ⇒ P̃ ∼ Q̃

ii) Let Ẽ = {Ei | i ∈ I} be a family of expressions with a
maximum of I free variables ({Xi | i ∈ I}) such that any
variable free in Ei is guarded and sequential. Then

P̃ = {P̃/X̃}Ẽ ∧ Q̃ = {Q̃/X̃}Ẽ ⇒ P̃ = Q̃

Solving equations

Have equations over (P,∼) or (P,=) (unique) solutions?

Lemma
Recursive equations X̃ = Ẽ (X̃) or X̃ ∼ Ẽ (X̃), over P, have unique
solutions (up to = or ∼, respectively). Formally,

i) Let Ẽ = {Ei | i ∈ I} be a family of expressions with a
maximum of I free variables ({Xi | i ∈ I}) such that any
variable free in Ei is weakly guarded. Then

P̃ ∼ {P̃/X̃}Ẽ ∧ Q̃ ∼ {Q̃/X̃}Ẽ ⇒ P̃ ∼ Q̃

ii) Let Ẽ = {Ei | i ∈ I} be a family of expressions with a
maximum of I free variables ({Xi | i ∈ I}) such that any
variable free in Ei is guarded and sequential. Then

P̃ = {P̃/X̃}Ẽ ∧ Q̃ = {Q̃/X̃}Ẽ ⇒ P̃ = Q̃

Solving equations

Have equations over (P,∼) or (P,=) (unique) solutions?

Lemma
Recursive equations X̃ = Ẽ (X̃) or X̃ ∼ Ẽ (X̃), over P, have unique
solutions (up to = or ∼, respectively). Formally,

i) Let Ẽ = {Ei | i ∈ I} be a family of expressions with a
maximum of I free variables ({Xi | i ∈ I}) such that any
variable free in Ei is weakly guarded. Then

P̃ ∼ {P̃/X̃}Ẽ ∧ Q̃ ∼ {Q̃/X̃}Ẽ ⇒ P̃ ∼ Q̃

ii) Let Ẽ = {Ei | i ∈ I} be a family of expressions with a
maximum of I free variables ({Xi | i ∈ I}) such that any
variable free in Ei is guarded and sequential. Then

P̃ = {P̃/X̃}Ẽ ∧ Q̃ = {Q̃/X̃}Ẽ ⇒ P̃ = Q̃

Example (1)

Consider

Sem =df get.put.Sem

P1 =df get.c1.put.P1

P2 =df get.c2.put.P2

S =df (Sem | P1 | P2) \ {get, put}

and
S ′ =df τ.c1.S

′ + τ.c2.S
′

in order to prove S = S ′:

it is enough to show that both are solutions of

X = τ.c1.X + τ.c2.X

Example (1)

Consider

Sem =df get.put.Sem

P1 =df get.c1.put.P1

P2 =df get.c2.put.P2

S =df (Sem | P1 | P2) \ {get, put}

and
S ′ =df τ.c1.S

′ + τ.c2.S
′

in order to prove S = S ′: it is enough to show that both are solutions of

X = τ.c1.X + τ.c2.X

Example (1)

Then:

S = τ. (c1.put.P1 | P2 | put.Sem) \ K +τ.(P1 | c2.put.P2 | put.Sem) \ K

= τ.c1. (put.P1 | P2 | put.Sem) \ K +τ.c2.(P1 | put.P2 | put.Sem) \ K

= τ.c1.τ. (P1 | P2 | Sem) \ K +τ.c2.τ.(P1 | P2 | Sem) \ K

= τ.c1.τ.S + τ.c2.τ.S

= τ.c1.S + τ.c2.S

= {S/X}E

for S ′ is immediate

Example (1)

Then:

S = τ. (c1.put.P1 | P2 | put.Sem) \ K +τ.(P1 | c2.put.P2 | put.Sem) \ K

= τ.c1. (put.P1 | P2 | put.Sem) \ K +τ.c2.(P1 | put.P2 | put.Sem) \ K

= τ.c1.τ. (P1 | P2 | Sem) \ K +τ.c2.τ.(P1 | P2 | Sem) \ K

= τ.c1.τ.S + τ.c2.τ.S

= τ.c1.S + τ.c2.S

= {S/X}E

for S ′ is immediate

Example (2)

Consider,

B =df in.B1 B ′ =df (C1 | C2) \m

B1 =df in.B2 + out.B C1 =df in.m.C1

B2 =df out.B1 C2 =df m.out.C2

B is a solution of

X = E (X ,Y ,Z) = in.Y

Y = E1(X ,Y ,Z) = in.Z + out.X

Z = E3(X ,Y ,Z) = out.Y

through σ = {B/X ,B1/Y ,B2/Z}

Example (2)

Consider,

B =df in.B1 B ′ =df (C1 | C2) \m

B1 =df in.B2 + out.B C1 =df in.m.C1

B2 =df out.B1 C2 =df m.out.C2

B is a solution of

X = E (X ,Y ,Z) = in.Y

Y = E1(X ,Y ,Z) = in.Z + out.X

Z = E3(X ,Y ,Z) = out.Y

through σ = {B/X ,B1/Y ,B2/Z}

Example (2)

To prove B =B’

B ′ = (C1 | C2) \m

= in.(m.C1 | C2) \m

= in.τ.(C1 | out.C2) \m

= in.(C1 | out.C2) \m

Let S1 = (C1 | out.C2) \m to proceed:

S1 = (C1 | out.C2) \m

= in. (m.C1 | out.C2) \m +out.(C1 | C2) \m

= in. (m.C1 | out.C2) \m +out.B ′

Example (2)

Finally, let, S2 = (m.C1 | out.C2) \m. Then,

S2 = (m.C1 | out.C2) \m

= out.(m.C1 | C2) \m

= out.τ.(C1 | out.C2) \m

= out.τ.S1

= out.S1

Example (2)

Note the same problem can be solved with a system of 2 equations:

X = E (X ,Y) = in.Y

Y = E ′(X ,Y) = in.out.Y + out.in.Y

Clearly, by substitution,

B = in.B1

B1 = in.out.B1 + out.in.B1

Example (2)

On the other hand, it’s already proved that B ′ = ... = in.S1.
so,

S1 = (C1 | out.C2) \m

= in. (m.C1 | out.C2) \m +out.B ′

= in.out. (m.C1 | C2) \m +out.B ′

= in.out.τ. (C1 | out.C2) \m +out.B ′

= in.out.τ.S1 + out.B ′

= in.out.S1 + out.B ′

= in.out.S1 + out.in.S1

Hence, B ′ = {B ′/X ,S1/Y }E and S1 = {B ′/X ,S1/Y }E ′

Exercises

Suppose two variants of parallel composition have been added to the
process language P and defined through the following rules:

E
a−→ E ′

(O1)
E ⊗ F

a−→ E ′ ⊗ F

F
a−→ F ′

(O2)
E ⊗ F

a−→ E ⊗ F ′

E
a−→ E ′ and a /∈ L(F)

(P1)
E ‖ F

a−→ E ′ ‖ F

F
a−→ F ′ and a /∈ L(E)

(P2)
E ‖ F

a−→ E ‖ F ′

E
a−→ E ′ F

a−→ F ′

(P3)
E ‖ F

τ−→ E ′ ‖ F ′

1 Explain, in your own words, the meaning of ⊗ e ‖.

2 prove or refute:

• ⊗ is associative with respect to ∼
• ‖ is associative with respect to ∼

Exercise

Consider the following statements about a binary relation S on P.
Discuss whether you may conclude from each of them whether S is
(or is not) a weak bisimulation:

1 S is the identity in P.

2 S is a subset of the identity in P.

3 S is a strict bisimulation up to ≡.

4 S is the empty relation.

5 S = {(a.E , a.F) | E ≈ F}.
6 S = {(a.E , a.F) | E ≈ F} ∪ ≈.

Exercise

Suppose processes R and T have transitions R
τ−→ T and T

τ−→ R,
among others. Show that, under this condition, R = T .

Identify, in the list of process pairs below, which of them can be related
by ≈. And by =?

1 a.τ.b.0 e a.b.0

2 a.(b.0 + τ.c .0) e a.(b.0 + c .0)

3 a.(b.0 + τ.c .0) e a.(b.0 + c .0) + a.c .0

4 a.0 + b.0 + τ.b.0 e a.0 + τ.b.0

5 a.0 + b.0 + τ.b.0 e a.0 + b.0

6 a.(b.0 + (τ.(c .0 + τ.d .0))) e
a.(b.0 + (τ.(c .0 + τ.d .0))) + a.(c .0 + τ.d .0)

7 a.(b.0 + (τ.(c .0 + τ.d .0))) e
a.(b.0 + c .0 + d .0) + a.(c .0 + d .0) + a.d .0

8 τ.(a.b.0 + a.c .0) e τ.a.b.0 + τ.a.c .0

9 τ.(a.τ.b.0 + a.b.τ.0) e a.b.0

10 τ.(τ.a.0 + τ.b.0) e τ.a.0 + τ.b.0

11 A =df a.τ.A e B =df a.B

12 A =df τ.A + a.0 e a.0

13 A =df τ.A e 0

Consider the following specification of a pipe, as supported e.g. in Unix:

U B V =abv (U[c/out] | V [c/in]) \ {c}

under the assumption that, in both processes, actions out e in stand for,
respectively, the output and input ports.

1 Consider now the following processes only partially defined:

U1 =df out.T

V1 =df in.R

U2 =df out.out.out.T

V2 =df in.in.in.R

Prove, by equational reasoning, or refute the following properties:

1 U1 B V1 ∼ T B R
2 U2 B V2 = U1 B V1

2 Show that 0 B 0 = 0.

	A -calculus

