Processos e Concorréncia 2015/16
Bloco de acetatos 5

Alexandre Madeira
(based on Luis S. Barbosa 2014 /15 course Slides)
HASLab INESC TEC, DI UMINHO

\'/
4N

March 26, 2017

Semantics

(act)
apSp
a / a ’
p—=p qg=q
(sum —1) (sum —r)
a a
p+q=p p+qg=4q
a / a /
p=p q9=q
—(par 1) ——— (par —r)
a a
pla=p'lq pla=pld
pSp g4 p2p _
———— (react) a—(res) (ifa ¢ {k,k})
pla=p |d p\{k} = p'\ {k}
p3p

— e (rel) (f relabelling function)
plfl == p'[f]

p=p

(con) k=% p

a /

k= p

Semantics

These rules define a LTS
{3 C PxPlac Act}

Relation 2> is defined inductively over process structure entailing a
semantic description which is

Structural i.e., each process shape (defined by the most external
combinator) has a type of transitions

Modular i.e., a process transition is defined from transitions in its
Sup-processes

Complete i.e., all possible transitions are infered from these rules

Graphical representations

Synchronization diagram

e represent interfaces of processes

e static combinators are an algebra of synchronization diagrams

Graphical representations

Synchronization diagram

e represent interfaces of processes

e static combinators are an algebra of synchronization diagrams

Transition graph

e derivative, n-derivative, transition tree

e folds into a transition graph

Transition tree
B =9 in.ol.B + in.02.B

in.ol.B + in.02.B

ol.B 02.B
ol 02
in.ol.B + in.02.B in.ol.B + in.02.B
/ in / in
m m
ol.B 02.B ol.B 02.B
olt 02 olt 02

Transition graph

B =9 in.o1.B + in.02.B

Transition graph

B =9 in.o1.B + in.02.B

in.ol.B + in.g\

o2
ol.B 02.B

compare with B’ =9 in.(0o1.B’ + 02.B’)

Data parameters

Language P is extended to Py, over a data universe V, a set V. of
expressions over V' and a evaluation Val/: V, —» V

Example
P B =% in(x).B.

B! =% Gout(v).B

Data parameters

Language P is extended to Py, over a data universe V, a set V. of
expressions over V' and a evaluation Val/: V, —» V

Example
P B =% in(x).B.

B! =% Gout(v).B

e Two prefix forms: a(x).E and a(e).E (actions as ports)

e Data parameters: As(xq, ..., X,) =" Ea, with S € V and each
x; €L

e Conditional combinator: if bthen P, if bthen P; else P,

Clearly

if bthen P; else P, =2 (if bthen P;) + (if =bthen P;)

Additional semantic rules

o (prefix;)
a(x).E — {v/x}E

(prefix,)

[
—~

v)

ale).E —5 E

E3FE

— (if1)
if bthen Ej else E; = E’

E S FE

(if2)
if bthen E; else E, 2 E’

Data parameters

forveV

for Val(e) = v

for Val(b) = tt

for Val(b) = ff

Examples

o B =9 in(x).out(x).B

Examples

o B =% in(x).
o B =% in(x).in

.B
out(x).out(y).B

o
c
—
X
o >~

—~

y)-

Examples

Examples

Examples

Back to P

Encoding in the basic language: 7(): Py — P

T(a(x).E)=>_ a,.T({v/x}E)

vev
T(3(e).E) = 3..T(E)
T _E)=) T(E)
icl icl
T(E|F)=TI(E)|T(F)
T(E\K)=T(E)\{avlae K,ve V}

and
T(E) if Val(b) =tt

T(ifbthen E) = {0 i Val(b) — fF

Exercise

Draw the transition diagram of the process Pred:

Pred =% in(x).Pred’(x)
Pred’(x) =9 if x = 0 then out(0).Pred else out(x — 1).

Semantics

Two-level semantics

e behavioural given by transition rules which express how system's
components interact (as seen in the last classes)

Semantics

Two-level semantics

e behavioural given by transition rules which express how system’s
components interact (as seen in the last classes)

e arquitectural, expresses a notion of similar assembly
configurations and is expressed through a structural congruence
relation;

Semantics

Structural congruence
= over P is given by the closure of the following conditions:

o for all A(X) =% Ex, A(Y) = {y/X} Ea,
(i.e., folding/unfolding preserve =)

e q-conversion (i.e., replacement of bounded variables).

both | and + originate, with 0, abelian monoids
foralla¢ tn(P) (P| Q)\{a} =P | Q\ {a}
0\{a} =0

Compatibility

Lemma
Structural congruence preserves transitions:

if p= p’ and p = g there exists a process ¢’ such that ¢ = ¢’ and
!/ — /

Processes are ‘prototypical’ transition
systems

... hence all definitions apply:
E~F
e Processes E, F are bisimilar if there exist a bisimulation S st
{{E,F)} €S.

e A binary relation S in P is a (strict) bisimulation iff, whenever
(E,F) € S and a € Act,

) ESE = F3F and (E,F)eS
iy F2F = E3E and (E,F)cS

Alternative characterization of bisimilarity

Recalling bisimilarity definition:

~=|J{SCPxP|S isa (strict) bisimulation}

Alternative characterization of bisimilarity

Recalling bisimilarity definition:

~= | J{SCPxP|S isa (strict) bisimulation}

Usefull Lemma:
E ~ F iff

Processes are ‘prototypical’ transition

Example: S ~ M

T=%*ikT
R =% kj.R
S="(T|R)\{k}

M= ir.N
N=%jirN+ijr.N

systems

Processes are ‘prototypical’ transition
systems
Example: S ~ M

T=%*ikT
R =% kj.R
S="(T|R)\{k}

M= ir.N
N=%jirN+ijr.N

through bisimulation

R :{<57 M)>»<(ET | R)\{k}vT'N>a <(T |./R) \ {k}7N>v
((k.T [j.R)\ {k},j.7.N)}

Example: Semaphores

A semaphore

Sem = get.put.Sem

Example: Semaphores

A semaphore

Sem = get.put.Sem

n-semaphores

Sem, =9 Semp o
Semp =dIf get.Semy, 1
Sem, =df get.Semy, i1 + put.Semp i1
(for 0 < i< n)

Semp, =df put.Semy, p_1

Example: Semaphores

A semaphore

Sem = get.put.Sem

n-semaphores

Sem, =9 Semp o
Semp =df get.Semy, 1
Sem,, ; =df get.Semy, i1 + put.Semp i1
(for 0 < i< n)
Semp, =df put.Semy, p_1

Sem,, can also be implemented by the parallel composition of n Sem

processes:
Sem” =% Sem | Sem | ... | Sem

Example: Semaphores

Is Sem, ~ Sem"?

For n = 2:

{(Semy 0, Sem | Sem), (Sem; 1, Sem | put.Sem),
(Sema 1, put.Sem | Sem)(Semy 2, put.Sem | put.Sem)}

is a bisimulation.

Example: Semaphores

Is Sem, ~ Sem"?

For n = 2:

{(Semy 0, Sem | Sem), (Sem; 1, Sem | put.Sem),
(Sema 1, put.Sem | Sem)(Semy 2, put.Sem | put.Sem)}

is a bisimulation.

e but can we get rid of structurally congruent pairs?

Bisimulation up to =

Definition
A binary relation S in PP is a (strict) bisimulation up to = iff, whenever
(E,F) € S and a € Act,

) ESE = F3F and (E,F)e=-S-

i) F3XF = E3E and (E,F)e

Bisimulation up to =

Definition
A binary relation S in PP is a (strict) bisimulation up to = iff, whenever
(E,F) € S and a € Act,

) ESE = F3F and (E,F)e=-S-

i) F3F = E3E and (E,F)e

Lemma
If S is a (strict) bisimulation up to =, then S C ~

A ~-calculus

Lemma E=F = E~F

~ IS a congruence

congruence is the name of modularity in Mathematics|

e process combinators preserve ~

~ IS a congruence

congruence is the name of modularity in Mathematics‘

e process combinators preserve ~

Lemma
Assume E ~ F. Then,

a.E ~aF
E+P~F+P
E|P~F|P
E\K~F\K
E[f] ~ F[f]

~ IS a congruence

congruence is the name of modularity in Mathematics‘

e process combinators preserve ~

Lemma
Assume E ~ F. Then,

a.E ~aF
E+P~F+P
E|P~F|P
E\K~F\K
E[f] ~ F[f]

e recursive definition preserves ~

~ IS a congruence

e First ~ is extended to processes with variables:

E~F = V5. E[P/X] ~ FIP/X]

e Then prove:

Lemma
) Pt E = PnE)
where E is a family of process expressions and P a family
of process identifiers.

ii) Let E ~ F, where E and F are families of recursive
process expressions over a family of process variables X,
and define:

A =9 E[A/X] and B = F[B/X]

Then

A~ B

The expansion theorem

Every process is equivalent to the sum of its derivatives

E~) {aE'|ESE}

The expansion theorem

The usual definition (based on the concurrent canonical form):

E ~ > {fi(a(Elf]| .. | E]] .. | Elf)\ K |
E; 5 E and fi(a) ¢ KUK}
n
S ATELA]] [EE] L EB] | | Ealfa) \ K |
E % E/ and E 2 E/ and fi(a) = £(b) }

for E =9 (E[A] | ... | Elfu]) \ K, with n > 1

The expansion theorem

Corollary (for n=1 and f; = id)

(E+F)\K~E\K+F\K

0 if ae(KUK)
(2E)\ K~ {a.(E\ K) otherwise

Revisit the example and show S ~ M using the expansion
theorem

T=9ikT
R =% kj.R
S=9(T|R)\{k}

M= i+ N
N=9jirN+ijr.N

Example

Example

S~M
S~(T[R)\{k}
~i(k.T|R)\ {k}
~ i (T | j.R)\ {k}
~ i (i (kT j R\ kY +i(T | R)\ {k})
~ (i (kT | R)\ {k} +j.i.(k.T | R)\ {k})
~ir (i (T j.R)\ {k} +j.im.(T | j.R)\ {k})

Example

S~M
S~(T[R)\{k}

~i(k.T|R)\ {k}

~ i (T | j.R)\ {k}

~ i (i (kT j R\ kY +i(T | R)\ {k})

~ (i (kT | R)\ {k} +j.i.(k.T | R)\ {k})

~ir (i (T j.R)\ {k} +j.im.(T | j.R)\ {k})
Let N = (T | j.R)\ {k}.

This expands into N’ ~ ij.7. (T | j.R)\ {k} +j.im.(T | j.R)\ {k},
Therefore NV~ Nand S~ i7.N~ M

e requires result on unique solutions for recursive process equations

Exercise

Using the expansion theorem, reduce P and @ into its
concurrent normal form

Pr = a.P| + b.P}

P, =" a.P) + c.P}

P3 =9 3.P} +c.P}

P = (Pr| P,)\{a}

Q=9 (PL| P2 | P3)\{a b}

Observable transitions

2CPxP

o LU{e}
€ o .
e A =--transition corresponds to zero or more non observable
transitions

. a
e inference rules for =:

€

ESE E3SF FSF

~ (03) forael
E=F

Example

To=%jTi+iT,

=0T
T,="j.Ts
T3 :df T. To

and

A=%jjA+]iA

Example
From their graphs,

N
s

T3

i J
A
RN
i.A J.A

we conclude that Tg » A (why?).

A
=

and

Observational equivalence

Ex~F
e A binary relation S in P is a weak bisimulation iff, whenever
(E,F)e Sand ac LU{e},
) E2E = F2F and (E,F)cS
i) F2F = E2FE and (E,F)cS

Observational equivalence

Ex~F
e A binary relation S in P is a weak bisimulation iff, whenever
(E,F)e Sand ac LU{e},
) E2E = F2F and (E,F)cS
i) F2F = E2FE and (E,F)cS

e Processes E, F are observationally equivalent if there exists a weak
bisimulation S st {(E,F)} € S

Observational equivalence

E~F

e A binary relation S in P is a weak bisimulation iff, whenever
(E,F)e Sand ac LU{e},

) E2E = F2F and (E,F)cS
i) F2F = E2FE and (E,F)cS
e Processes E, F are observationally equivalent if there exists a weak

bisimulation S st {(E,F)} € S
le.,

~ = J{SCPxP|S isa weak bisimulation}

Properties

e as expected: & is an equivalence relation

Properties

e as expected: & is an equivalence relation

e basic property: for any E € P,
E ~ 1.E

(proof idea: idp U {(E,T.E) | E € P} is a weak bisimulation

Properties

e as expected: & is an equivalence relation

e basic property: for any E € P,
E ~ 1.E

(proof idea: idp U {(E,T.E) | E € P} is a weak bisimulation

e weak vs. strict:

~C ~

Is =~ a congruence?

Lemma
Let E~ F. Then, forany P Pand K C L,

a.E~aF
E|P~F|P
E\K~F\K
E[f] = FI[f]

Is =~ a congruence?

Lemma
Let E~ F. Then, forany P Pand K C L,

a.E~aF
E|P~F|P
E\K~F\K
E[f] = FI[f]

but
E+P~F+P

does not hold, in general.

Is =~ a congruence?
Example (initial 7 restricts options menu")

i0 ~ 7.0

Is =~ a congruence?
Example (initial 7 restricts options menu’)

i0 ~ 7.0

However

jO+i0%.0+7.i0

Actually,

j0+i.0 jO+7.i0

NN
]

0

Forcing a congruence: E = F

Solution: force any initial 7 to be matched by another T‘

Process equality
Two processes E and F are equal (or observationally congruent) iff

i) Ex~F
i) ELE = FOL X=F andE ~F
i) F5F = ELX=E and E'~F

Forcing a congruence: E = F

Solution: force any initial 7 to be matched by another T‘

Process equality
Two processes E and F are equal (or observationally congruent) iff

i) Ex~F
i) ELE = FOL X=F andE ~F
i) F5F = ELX=E and E'~F

e note that E # 7.E, but 7.E = 7.7.E

Forcing a congruence: E = F

= can be regarded as a restriction of ~ to all pairs of processes which
preserve it in additive contexts

Lemma
Let E and F be processes st the union of their sorts is distinct of L. Then,

E=F = VYep.(E+G ~ F+G)

Properties of =

Lemma

Ex~F = (E=F)Vv (E=7F)V (r.E=F)

Properties of =

Lemma
So,

‘the whole ~ theory remains valid
Additionally,

Lemma (additional laws)

aT.E=aE
E+71.E=T1E
a(E+71.F)=a(E+T7.F)+aF

Conditions on variables

guarded :
X occurs in a sub-expression of type a.E’ for
aeAct—{r}

weakly guarded :
X occurs in a sub-expression of type a.E’ for a € Act

in both cases assures that, until a guard is reached, behaviour does not
depends on the process that instantiates the variable

Conditions on variables

guarded :
X occurs in a sub-expression of type a.E’ for
aeAct—{r}

weakly guarded :
X occurs in a sub-expression of type a.E’ for a € Act

in both cases assures that, until a guard is reached, behaviour does not
depends on the process that instantiates the variable

example: X is weakly guarded in both 7.X and 7.0 + a.X + b.a.X but
guarded only in the second

Conditions on variables

sequential :
X is sequential in E if every strict sub-expression in which
X occurs is either a.E’, for a € Act, or X E.

avoids X to become guarded by a 7 as a result of an interaction

Conditions on variables

sequential :
X is sequential in E if every strict sub-expression in which
X occurs is either a.E’, for a € Act, or X E.

avoids X to become guarded by a 7 as a result of an interaction

example: X is not sequential in X = (3.X | a.0) \ {a}

Solving equations

Have equations over (P, ~) or (P,=) (unique) solutions?‘

Solving equations

‘ Have equations over (P, ~) or (P,=) (unique) solutions?‘

Lemma o o
Recursive equations X = E(X) or X ~ E(X), over P, have unique
solutions (up to = or ~, respectively). Formally,

i) Let E={E; | i €I} be a family of expressions with a
maximum of / free variables ({X; | i € I}) such that any
variable free in E; is weakly guarded. Then

P~A{P/XYE N Q~{Q/X}E = P~Q

Solving equations

‘ Have equations over (P, ~) or (P,=) (unique) solutions?‘

Lemma o o
Recursive equations X = E(X) or X ~ E(X), over P, have unique
solutions (up to = or ~, respectively). Formally,

i) Let E={E; | i €I} be a family of expressions with a
maximum of / free variables ({X; | i € I}) such that any
variable free in E; is weakly guarded. Then

P~A{P/XYE N Q~{Q/X}E = P~Q

i) Let £E={E; | i< I} bea family of expressions with a
maximum of / free variables ({X; | i € I}) such that any
variable free in E; is guarded and sequential. Then

P={P/X}E N Q={Q/X}E = P=@Q

Example (1)

Consider
Sem =% get.put.Sem
P, =% get.c;.put.P,
P, =9 get.c,.put.P,
S =% (Sem| Py | P,)\ {get, put}
and

S =108 +1c5

in order to prove S = S

Example (1)

Consider
Sem =% get.put.Sem
P, =% get.c;.put.P,
P, =9 get.c,.put.P,
S =9 (Sem | P | P,)\ {get, put}
and

S =108 +1c5

in order to prove S = S’: it is enough to show that both are solutions of

X = T.Cl.X+T.C2.X

Example (1)

Then:

S= 1.(c.put.Py | Py | put.Sem)\ K +7.(P1 | co.put.Ps | put.Sem) \ K
= 71.c1. (put.Py | Py | put.Sem)\ K +71.c2.(P1 | put.P, | put.Sem) \ K
= 1.c1.7. (P1 | P2 | Sem)\ K +7.co.7.(P1 | P2 | Sem) \ K
= 1.0.7.S4+ 1.02.7.5
= 1.00.5+71.6.5
= {S/X}E

Example (1)

Then:

S= 1.(c.put.Py | Py | put.Sem)\ K +7.(P1 | co.put.Ps | put.Sem) \ K
= 71.c1. (put.Py | Py | put.Sem)\ K +71.c2.(P1 | put.P, | put.Sem) \ K
= 1.c1.7. (P1 | P2 | Sem)\ K +7.co.7.(P1 | P2 | Sem) \ K
= 1.0.7.S4+ 1.02.7.5
= 1.00.5+71.6.5
= {S/X}E

for S’ is immediate

Example (2)

Consider,
B =% in.B B' =% (Cy| G)\'m

By = in.B, + out.B G =% inm.G,

B, =% out.B; G, =% m.out.C,

Example (2)

Consider,
B =% in.B B' =% (Cy| G)\'m
B, =% in.B, + out.B G =% inm.G,
Bz = ﬁBl C2 = m.out. C2

B is a solution of

X=EX,Y,Z)=inY
Y = E(X,Y,Z) = inZ + out.X
Z=E(X,Y,Z)=out.Y

through o = {B/X,B1/Y,B>/Z}

Example (2)
To prove B =B’

B'=(G|G)\m
in(m.C | G)\'m

= int.(Cy | out.G3)\ m
= in.(C | out.G3)\ m

Let S; = (Cy | out.C3) \ m to proceed:

51: (Cl |WC2)\m
= in. (ﬁCl |WC2)\m+W(C1 | Cg)\m
= in.(m.C; | out.C) \ m +out.B’

Example (2)

Finally, let, S, = (m.Cy | out.G;) \ m. Then,

Sy = (MG |out.G)\ m
= out.(m.Ci | G)\'m
= out.7.(C; | out.G) \' m
= out.7.5;

= out.5

Example (2)

Note the same problem can be solved with a system of 2 equations:

X=EX,Y)=inY
Y = E'(X,Y) =inout.Y +out.in.Y

Clearly, by substitution,

B = inbB;
Bl = in.W.Bl +m.in.81

Example

On the other hand, it's already proved that B’ = ... = in.5;.
S0,

S = (G |out.G)\'m

in. (m.Cy | out.G3) \ m+out.B’
in.out. (m.Cy |)\ m +out.B’

= in.out.T.(C | out.Gy) \ m +out.B’
in.out.7.S; + out.B’

in.out.S; + out.B’

= in.out.S; + out.in.5;

Hence, B’ = {B'/X,5/Y}E and S5, = {B'/X,51/Y}E’

Exercises

5 = = E DA

Suppose two variants of parallel composition have been added to the
process language P and defined through the following rules:

ESFE F3F
a—(01) a—(oz)
EQF3E®F EQF3SEQF

EZE and 3¢ L(F) F2F and 3¢ L(E)
~ (P1) ~ (P2)
E|F3E|F E|F3E|F

ELE F3F

(
ENFLE|F

@ Explain, in your own words, the meaning of ® e ||.
@® prove or refute:

e (@ is associative with respect to ~
e || is associative with respect to ~

Exercise

Consider the following statements about a binary relation S on P.
Discuss whether you may conclude from each of them whether S is
(or is not) a weak bisimulation:

@ S is the identity in P.

® S is a subset of the identity in PP.
® S is a strict bisimulation up to =.
O S is the empty relation.

© S={(a.E,a.F)| ExF}.

O S={(aE,aF) | ExF}U~.

Exercise

Suppose processes R and T have transitions R = T and T 5 R,
among others. Show that, under this condition, R = T.

Identify, in the list of process pairs below, which of them can be related
by ~. And by =7

® a.7.b.0ea.b.0

@D a.(b.0+ 71.c.0) e a.(b.0+ c.0)

© a.(b.0+71.c0)ea(b0+c.0)+ac0
O a0+b0+7.b0ea0+7.b0

© a0+ b0+7.b0eal+b0

O a.(b.0+ (r.(c.0+7.d0))) e
a.(b.0 4 (7.(c.0 + 7.d.0))) + a.(c.0 + 7.d.0)

)
b.0 + (7.(c.0 + 7.d.0))) e
b0+ c.0+ d.0) + a.(c.0 + d.0) + 2.d.0

a.b.0+ a.c.0) e 7.a.b.0 + 7.a.c.0
O 7.(a.7.6.0+ a.b.7.0) e 2.b.0

0 7.(7.a.0+7.6.0) e 7.2.0 + 7.5.0

® A= arAeB=% 3B
®A="7A+a20eal
®A="7Ac0

Q a

a.

(3 I

o~

Consider the following specification of a pipe, as supported e.g. in UNIX:
UV =" (U[c/out] | V[c/in])\ {c}

under the assumption that, in both processes, actions out e in stand for,

respectively, the output and input ports.

@ Consider now the following processes only partially defined:

Uy =9 out. T
Vi =% in.R
U, =% Gout.out.out.T

Vo =9 in.in.in.R

Prove, by equational reasoning, or refute the following properties:

O UiV ~ TR
0O LV, = Up>V

® Show that 0>0 = 0.

	A -calculus

