Processos e Concorrência 2015/16 Bloco de acetatos 5

Alexandre Madeira

(based on Luís S. Barbosa 2014/15 course Slides) HASLab INESC TEC, DI UMINHO

March 26, 2017

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

$$\frac{1}{a.p \xrightarrow{a} p} (act)$$

$$\frac{p \xrightarrow{a} p'}{p + q \xrightarrow{a} p'} (sum - l) \qquad \frac{q \xrightarrow{a} q'}{p + q \xrightarrow{a} q'} (sum - r)$$

$$\frac{p \stackrel{a}{\rightarrow} p'}{p \mid q \stackrel{a}{\rightarrow} p' \mid q} (par - l) \qquad \frac{q \stackrel{a}{\rightarrow} q'}{p \mid q \stackrel{a}{\rightarrow} p \mid q'} (par - r)$$

$$\frac{p \stackrel{a}{\rightarrow} p'}{p \mid q \stackrel{a}{\rightarrow} p' \mid q'} (react) \qquad \frac{p \stackrel{a}{\rightarrow} p'}{p \setminus \{k\} \stackrel{a}{\rightarrow} p' \setminus \{k\}} (res) \text{ (if } a \notin \{k, \overline{k}\})$$

$$\frac{p \stackrel{a}{\rightarrow} p'}{p[f] \stackrel{f(a)}{\longrightarrow} p'[f]} (rel) \text{ (f relabelling function)}$$

$$\frac{p \stackrel{a}{\rightarrow} p'}{k \stackrel{a}{\rightarrow} p'} (con) \quad k = d^{f} p$$

These rules define a LTS

$$\{ \xrightarrow{a} \subseteq \mathbb{P} \times \mathbb{P} | a \in Act \}$$

Relation \xrightarrow{a} is defined inductively over process structure entailing a semantic description which is

Structural *i.e.*, each process shape (defined by the most external combinator) has a type of transitions

Modular *i.e.*, a process transition is defined from transitions in its sup-processes

Complete *i.e.*, all possible transitions are infered from these rules

Graphical representations

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Synchronization diagram

- represent interfaces of processes
- static combinators are an algebra of synchronization diagrams

Graphical representations

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Synchronization diagram

- represent interfaces of processes
- static combinators are an algebra of synchronization diagrams

Transition graph

- derivative, *n*-derivative, transition tree
- folds into a transition graph

Transition tree

$B = {}^{df} in.\overline{o1}.B + in.\overline{o2}.B$

◆□ > ◆□ > ◆□ > ◆□ > ◆□ > ○ < ○

Transition graph

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

 $B = {}^{df} in.\overline{o1}.B + in.\overline{o2}.B$

Transition graph

 $B = {}^{df} in.\overline{o1}.B + in.\overline{o2}.B$

compare with $B' = {}^{df} in.(\overline{o1}.B' + \overline{o2}.B')$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Data parameters

Language \mathbb{P} is extended to \mathbb{P}_V over a data universe V, a set V_e of expressions over V and a evaluation $Val: V_e \to V$

Example

$$B = {}^{df} in(x).B'_{x}$$
$$B'_{v} = {}^{df} \overline{out} \langle v \rangle.B$$

Data parameters

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Language \mathbb{P} is extended to \mathbb{P}_V over a data universe V, a set V_e of expressions over V and a evaluation $Val: V_e \to V$

Example

$$B =^{df} in(x).B'_{x}$$
$$B'_{v} =^{df} \overline{out} \langle v \rangle.B$$

- Two prefix forms: a(x).E and $\overline{a}\langle e \rangle.E$ (actions as ports)
- Data parameters: $A_S(x_1, ..., x_n) = {}^{df} E_A$, with $S \in V$ and each $x_i \in L$
- Conditional combinator: if b then P, if b then P_1 else P_2

Clearly

if b then
$$P_1$$
 else $P_2 = {}^{abv}$ (if b then P_1) + (if $\neg b$ then P_2)

Data parameters

Additional semantic rules

$$\frac{}{a(x).E \xrightarrow{a(v)} \{v/x\}E} (prefix_i) \quad \text{for } v \in V$$

$$\frac{\overline{a\langle e\rangle}.E \xrightarrow{\overline{a}\langle v\rangle} E}{(prefix_o)} \quad \text{for } Val(e) = v$$

$$\frac{E_1 \stackrel{a}{\rightarrow} E'}{\text{if } b \text{ then } E_1 \text{ else } E_2 \stackrel{a}{\rightarrow} E'} (\textit{if}_1) \quad \text{ for } Val(b) = \textbf{tt}$$

$$\frac{E_2 \stackrel{a}{\rightarrow} E'}{\text{if } b \text{ then } E_1 \text{ else } E_2 \stackrel{a}{\rightarrow} E'} (if_2) \quad \text{ for } Val(b) = \mathbf{ff}$$

•
$$B = {}^{df} in(x).\overline{out}\langle x \rangle.B$$

•
$$B = {}^{df} in(x).\overline{out}\langle x \rangle.B$$

• $B = {}^{df} in(x).in(y).\overline{out}\langle x \rangle.\overline{out}\langle y \rangle.B$

•
$$B = {}^{df} in(x).in(y).\overline{out}\langle x \rangle.\overline{out}\langle y \rangle.B$$

• $B = {}^{df} in(x).\overline{out}\langle x \rangle.B$

•
$$B = {}^{df} in(x).in(y).\overline{out}\langle y \rangle.\overline{out}\langle x \rangle.B$$

・ロト・日本・モート モー うへぐ

- $B = {}^{df} in(x).\overline{out}\langle x \rangle.B$
- $B = {}^{df} in(x).in(y).\overline{out}\langle x \rangle.\overline{out}\langle y \rangle.B$
- $B = {}^{df} in(x).in(y).\overline{out}\langle y \rangle.\overline{out}\langle x \rangle.B$
- $B = {}^{df} in(x).in(y).(\overline{out}\langle y \rangle.B + \overline{out}\langle x \rangle.B)$

•
$$B = {}^{df} in(x).\overline{out}\langle x \rangle.B$$

- $B = {}^{df} in(x).in(y).\overline{out}\langle x \rangle.\overline{out}\langle y \rangle.B$
- $B = {}^{df} in(x).in(y).\overline{out}\langle y \rangle.\overline{out}\langle x \rangle.B$
- $B = {}^{df} in(x).in(y).(\overline{out}\langle y \rangle.B + \overline{out}\langle x \rangle.B)$

•
$$B = {}^{df} in(x).\overline{out} \langle 2 \times x \rangle.B$$

• $B = {}^{df} in(x).($ if x > 3 then $\overline{out}\langle x \rangle).B$

Back to $\ensuremath{\mathbb{P}}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Encoding in the basic language: $\mathcal{T}(\): \mathbb{P}_V \to \mathbb{P}$

$$\mathcal{T}(a(x).E) = \sum_{v \in V} a_v \cdot \mathcal{T}(\{v/x\}E)$$
$$\mathcal{T}(\overline{a}\langle e \rangle \cdot E) = \overline{a}_e \cdot \mathcal{T}(E)$$
$$\mathcal{T}(\sum_{i \in I} E_i) = \sum_{i \in I} \mathcal{T}(E_i)$$
$$\mathcal{T}(E \mid F) = \mathcal{T}(E) \mid \mathcal{T}(F)$$
$$\mathcal{T}(E \setminus K) = \mathcal{T}(E) \setminus \{a_v \mid a \in K, v \in V\}$$

and

$$\mathcal{T}(\text{if } b \text{ then } E) = \begin{cases} \mathcal{T}(E) & \text{if } Val(b) = \text{tt} \\ \mathbf{0} & \text{if } Val(b) = \text{ff} \end{cases}$$

Exercise

Draw the transition diagram of the process Pred:

$$\begin{aligned} & \text{Pred} =^{df} in(x).\text{Pred}'(x) \\ & \text{Pred}'(x) =^{df} \text{ if } x = 0 \text{ then } \overline{out}\langle 0 \rangle.\text{Pred else } \overline{out}\langle x - 1 \rangle. \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Two-level semantics

• **behavioural** given by transition rules which express how system's components interact (as seen in the last classes)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Two-level semantics

- **behavioural** given by transition rules which express how system's components interact (as seen in the last classes)
- arquitectural, expresses a notion of similar assembly configurations and is expressed through a structural congruence relation;

Structural congruence

- \equiv over $\mathbb P$ is given by the closure of the following conditions:
 - for all $A(\vec{x}) = {}^{df} E_A$, $A(\vec{y}) \equiv \{\vec{y}/\vec{x}\} E_A$, (*i.e.*, folding/unfolding preserve \equiv)
 - α-conversion (*i.e.*, replacement of bounded variables).
 - both | and + originate, with ${f 0}$, abelian monoids
 - forall $a \notin \operatorname{fn}(P)$ $(P \mid Q) \setminus \{a\} \equiv P \mid Q \setminus \{a\}$
 - $\mathbf{0} \setminus \{a\} \equiv \mathbf{0}$

Compatibility

・ロト・日本・モト・モート ヨー うへで

Lemma

Structural congruence preserves transitions:

if $p \xrightarrow{a} p'$ and $p \equiv q$ there exists a process q' such that $q \xrightarrow{a} q'$ and $p' \equiv q'$.

Processes are 'prototypical' transition systems

... hence all definitions apply:

 $E \sim F$

- Processes *E*, *F* are bisimilar if there exist a bisimulation *S* st $\{\langle E, F \rangle\} \in S$.
- A binary relation S in \mathbb{P} is a (strict) bisimulation iff, whenever $(E, F) \in S$ and $a \in Act$,

i)
$$E \xrightarrow{a} E' \Rightarrow F \xrightarrow{a} F'$$
 and $(E', F') \in S$
ii) $F \xrightarrow{a} F' \Rightarrow E \xrightarrow{a} E'$ and $(E', F') \in S$

Alternative characterization of bisimilarity

Recalling bisimilarity definition:

 $\sim = \bigcup \{ S \subseteq \mathbb{P} \times \mathbb{P} \mid S \text{ is a (strict) bisimulation} \}$

・ロト・日本・モト・モート ヨー うへで

Alternative characterization of bisimilarity

Recalling bisimilarity definition:

 $\sim = \bigcup \{ S \subseteq \mathbb{P} \times \mathbb{P} \mid S \text{ is a (strict) bisimulation} \}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Usefull Lemma: $E \sim F$ iff

i)
$$E \xrightarrow{a} E' \Rightarrow F \xrightarrow{a} F'$$
 and $E' \sim F'$
ii) $F \xrightarrow{a} F' \Rightarrow E \xrightarrow{a} E'$ and $E' \sim F'$

Processes are 'prototypical' transition systems

Example: $S \sim M$

$$T = {}^{df} i.\overline{k}.T$$
$$R = {}^{df} k.j.R$$
$$S = {}^{df} (T \mid R) \setminus \{k\}$$

$$M = {}^{df} i.\tau.N$$
$$N = {}^{df} j.i.\tau.N + i.j.\tau.N$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Processes are 'prototypical' transition systems

Example: $S \sim M$

$$T = {}^{df} i.\overline{k}.T$$
$$R = {}^{df} k.j.R$$
$$S = {}^{df} (T \mid R) \setminus \{k\}$$

$$M = {}^{df} i.\tau.N$$
$$N = {}^{df} j.i.\tau.N + i.j.\tau.N$$

through bisimulation

$$R = \{ \langle S, M \rangle \rangle, \langle (\overline{k}.T \mid R) \setminus \{k\}, \tau.N \rangle, \langle (T \mid j.R) \setminus \{k\}, N \rangle, \\ \langle (\overline{k}.T \mid j.R) \setminus \{k\}, j.\tau.N \rangle \}$$

A semaphore

Sem = df get.put.Sem

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

A semaphore

n-semaphores

$$Sem_{n} = {}^{df} Sem_{n,0}$$

$$Sem_{n,0} = {}^{df} get.Sem_{n,1}$$

$$Sem_{n,i} = {}^{df} get.Sem_{n,i+1} + put.Sem_{n,i-1}$$

$$(for \ 0 < i < n)$$

$$Sem_{n,n} = {}^{df} put.Sem_{n,n-1}$$

A semaphore

n-semaphores

$$Sem_{n} = {}^{df} Sem_{n,0}$$

$$Sem_{n,0} = {}^{df} get.Sem_{n,1}$$

$$Sem_{n,i} = {}^{df} get.Sem_{n,i+1} + put.Sem_{n,i-1}$$

$$(for \ 0 < i < n)$$

$$Sem_{n,n} = {}^{df} put.Sem_{n,n-1}$$

 Sem_n can also be implemented by the parallel composition of n Sem processes:

$$Sem^n = {}^{df} Sem \mid Sem \mid ... \mid Sem$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Is $Sem_n \sim Sem^n$?

For n = 2:

$\{ \langle Sem_{2,0}, Sem \mid Sem \rangle, \langle Sem_{2,1}, Sem \mid put.Sem \rangle, \\ \langle Sem_{2,1}, put.Sem \mid Sem \rangle \langle Sem_{2,2}, put.Sem \mid put.Sem \rangle \}$

is a bisimulation.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Is $Sem_n \sim Sem^n$?

For n = 2:

$$\{ \langle Sem_{2,0}, Sem \mid Sem \rangle, \langle Sem_{2,1}, Sem \mid put.Sem \rangle, \\ \langle Sem_{2,1}, put.Sem \mid Sem \rangle \langle Sem_{2,2}, put.Sem \mid put.Sem \rangle \}$$

is a bisimulation.

• but can we get rid of structurally congruent pairs?

Bisimulation up to \equiv

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Definition

A binary relation S in \mathbb{P} is a (strict) bisimulation up to \equiv iff, whenever $(E, F) \in S$ and $a \in Act$,

i)
$$E \xrightarrow{a} E' \Rightarrow F \xrightarrow{a} F'$$
 and $(E', F') \in \equiv \cdot S \cdot \equiv$
ii) $F \xrightarrow{a} F' \Rightarrow E \xrightarrow{a} E'$ and $(E', F') \in \equiv \cdot S \cdot \equiv$

Bisimulation up to \equiv

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Definition

A binary relation S in \mathbb{P} is a (strict) bisimulation up to \equiv iff, whenever $(E, F) \in S$ and $a \in Act$,

i)
$$E \xrightarrow{a} E' \Rightarrow F \xrightarrow{a} F'$$
 and $(E', F') \in \equiv \cdot S \cdot \equiv$
ii) $F \xrightarrow{a} F' \Rightarrow E \xrightarrow{a} E'$ and $(E', F') \in \equiv \cdot S \cdot \equiv$

Lemma

If S is a (strict) bisimulation up to \equiv , then $S \subseteq \sim$

A \sim -calculus

Lemma

・ロト・日本・モト・モート ヨー うへで

congruence is the name of **modularity** in Mathematics

• process combinators preserve \sim
\sim is a congruence

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

congruence is the name of modularity in Mathematics

• process combinators preserve \sim

Lemma Assume $E \sim F$. Then,

 $a.E \sim a.F$ $E + P \sim F + P$ $E \mid P \sim F \mid P$ $E \setminus K \sim F \setminus K$ $E[f] \sim F[f]$

\sim is a congruence

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

congruence is the name of modularity in Mathematics

• process combinators preserve \sim

Lemma Assume $E \sim F$. Then,

 $a.E \sim a.F$ $E + P \sim F + P$ $E \mid P \sim F \mid P$ $E \setminus K \sim F \setminus K$ $E[f] \sim F[f]$

• recursive definition preserves \sim

$$\sim$$
 is a congruence

• First \sim is extended to processes with variables:

$$E \sim F \equiv \forall_{\tilde{P}} . E[\tilde{P}/\tilde{X}] \sim F[\tilde{P}/\tilde{X}]$$

• Then prove:

Lemma

- i) $\tilde{P} = {}^{df} \tilde{E} \implies \tilde{P} \sim \tilde{E}$ where \tilde{E} is a family of process expressions and \tilde{P} a family of process identifiers.
- ii) Let $\tilde{E} \sim \tilde{F}$, where \tilde{E} and \tilde{F} are families of recursive process expressions over a family of process variables \tilde{X} , and define:

$$ilde{A} = {}^{df} ilde{E}[ilde{A}/ ilde{X}]$$
 and $ilde{B} = {}^{df} ilde{F}[ilde{B}/ ilde{X}]$

Then

$$ilde{A} \sim ilde{B}$$

(日) (日) (日) (日) (日) (日) (日) (日)

The expansion theorem

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Every process is equivalent to the sum of its derivatives

$$E \sim \sum \{a.E' \mid E \xrightarrow{a} E'\}$$

The expansion theorem

The usual definition (based on the concurrent canonical form):

$$E \sim \sum \{ f_i(a) \cdot (E_1[f_1] \mid \dots \mid E'_i[f_i] \mid \dots \mid E_n[f_n]) \setminus K \mid$$

$$E_i \xrightarrow{a} E'_i \text{ and } f_i(a) \notin K \cup \overline{K} \}$$

$$+ \sum \{ \tau \cdot (E_1[f_1] \mid \dots \mid E'_i[f_i] \mid \dots \mid E'_j[f_j] \mid \dots \mid E_n[f_n]) \setminus K \mid$$

$$E_i \xrightarrow{a} E'_i \text{ and } E_j \xrightarrow{b} E'_j \text{ and } f_i(a) = \overline{f_j(b)} \}$$

for $E = {}^{df} (E_1[f_1] \mid ... \mid E_n[f_n]) \setminus K$, with $n \ge 1$

The expansion theorem

Corollary (for n = 1 and $f_1 = id$)

$$(E+F) \setminus K \sim E \setminus K + F \setminus K$$
$$(a.E) \setminus K \sim \begin{cases} \mathbf{0} & \text{if } a \in (K \cup \overline{K}) \\ a.(E \setminus K) & \text{otherwise} \end{cases}$$

Revisit the example and show $S \sim M$ using the expansion theorem

$$T = {}^{df} i.\overline{k}.T$$
$$R = {}^{df} k.j.R$$
$$S = {}^{df} (T \mid R) \setminus \{k\}$$

$$M = {}^{df} i.\tau.N$$
$$N = {}^{df} j.i.\tau.N + i.j.\tau.N$$

$S \sim M$

<ロ> <畳> <差> <差> <差> < 差 のへの

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

$S \sim M$ $S \sim (T \mid R) \setminus \{k\}$ $\sim i.(\overline{k}.T \mid R) \setminus \{k\}$ $\sim i.\tau.(T \mid j.R) \setminus \{k\}$ $\sim i.\tau.(i.(\overline{k}.T \mid j.R) \setminus \{k\} + j.(T \mid R) \setminus \{k\})$ $\sim i.\tau.(i.j.(\overline{k}.T \mid R) \setminus \{k\} + j.i.(\overline{k}.T \mid R) \setminus \{k\})$ $\sim i.\tau.(i.j.\tau.(T \mid j.R) \setminus \{k\} + j.i.\tau.(T \mid j.R) \setminus \{k\})$

$$S \sim M$$

$$S \sim (T \mid R) \setminus \{k\}$$

$$\sim i.(\overline{k}.T \mid R) \setminus \{k\}$$

$$\sim i.\tau.(T \mid j.R) \setminus \{k\}$$

$$\sim i.\tau.(i.(\overline{k}.T \mid j.R) \setminus \{k\} + j.(T \mid R) \setminus \{k\})$$

$$\sim i.\tau.(i.j.(\overline{k}.T \mid R) \setminus \{k\} + j.i.(\overline{k}.T \mid R) \setminus \{k\})$$

$$\sim i.\tau.(i.j.\tau.(T \mid j.R) \setminus \{k\} + j.i.\tau.(T \mid j.R) \setminus \{k\})$$
Let $N' = (T \mid j.R) \setminus \{k\}$.

This expands into $N' \sim i.j.\tau. (T \mid j.R) \setminus \{k\} + j.i.\tau.(T \mid j.R) \setminus \{k\}$, Therefore $N' \sim N$ and $S \sim i.\tau.N \sim M$

• requires result on unique solutions for recursive process equations

Exercise

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Using the expansion theorem, reduce ${\cal P}$ and ${\cal Q}$ into its concurrent normal form

$$P_{1} = {}^{df} a.P'_{1} + b.P''_{2}$$

$$P_{2} = {}^{df} \overline{a}.P'_{2} + c.P''_{2}$$

$$P_{3} = {}^{df} \overline{a}.P'_{3} + \overline{c}.P''_{3}$$

$$P = {}^{df} (P_{1} | P_{2}) \setminus \{a\}$$

$$Q = {}^{df} (P_{1} | P_{2} | P_{3}) \setminus \{a, b\}$$

Observable transitions

$$\stackrel{a}{\Rightarrow} \subseteq \mathbb{P} \times \mathbb{P}$$

- $L \cup \{\epsilon\}$
- A [€]⇒-transition corresponds to zero or more non observable transitions
- inference rules for $\stackrel{a}{\Rightarrow}$:

$$\frac{1}{E \stackrel{\epsilon}{\Rightarrow} E} (O_1)$$

$$\frac{E \xrightarrow{\tau} E' \quad E' \xrightarrow{\epsilon} F}{E \xrightarrow{\epsilon} F} (O_2)$$

$$\frac{E \stackrel{\epsilon}{\Rightarrow} E' \quad E' \stackrel{a}{\to} F' \quad F' \stackrel{\epsilon}{\Rightarrow} F}{E \stackrel{a}{\Rightarrow} F} (O_3) \quad \text{for } a \in L$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

$$T_0 = {}^{df} j.T_1 + i.T_2$$
$$T_1 = {}^{df} i.T_3$$
$$T_2 = {}^{df} j.T_3$$
$$T_3 = {}^{df} \tau.T_0$$

 and

$$A =^{df} i.j.A + j.i.A$$

・ロト ・聞ト ・ヨト ・ヨト

æ

From their graphs,

and

we conclude that $T_0 \approx A$ (why?).

Observational equivalence

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

$E \approx F$

 A binary relation S in ℙ is a weak bisimulation iff, whenever (E, F) ∈ S and a ∈ L ∪ {ε},

i)
$$E \stackrel{a}{\Rightarrow} E' \Rightarrow F \stackrel{a}{\Rightarrow} F'$$
 and $(E', F') \in S$
ii) $F \stackrel{a}{\Rightarrow} F' \Rightarrow E \stackrel{a}{\Rightarrow} E'$ and $(E', F') \in S$

Observational equivalence

$E \approx F$

 A binary relation S in P is a weak bisimulation iff, whenever (E, F) ∈ S and a ∈ L ∪ {ε},

i)
$$E \stackrel{a}{\Rightarrow} E' \Rightarrow F \stackrel{a}{\Rightarrow} F'$$
 and $(E', F') \in S$
ii) $F \stackrel{a}{\Rightarrow} F' \Rightarrow E \stackrel{a}{\Rightarrow} E'$ and $(E', F') \in S$

 Processes *E*, *F* are observationally equivalent if there exists a weak bisimulation *S* st {⟨*E*, *F*⟩} ∈ *S*

Observational equivalence

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$E \approx F$

 A binary relation S in P is a weak bisimulation iff, whenever (E, F) ∈ S and a ∈ L ∪ {ε},

i)
$$E \stackrel{a}{\Rightarrow} E' \Rightarrow F \stackrel{a}{\Rightarrow} F'$$
 and $(E', F') \in S$
ii) $F \stackrel{a}{\Rightarrow} F' \Rightarrow E \stackrel{a}{\Rightarrow} E'$ and $(E', F') \in S$

Processes *E*, *F* are observationally equivalent if there exists a weak bisimulation *S* st {⟨*E*, *F*⟩} ∈ *S* I.e.,

$$\approx = \bigcup \{ S \subseteq \mathbb{P} \times \mathbb{P} \mid S \text{ is a weak bisimulation} \}$$

Properties

• as expected: \approx is an equivalence relation

Properties

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

- as expected: \approx is an equivalence relation
- **basic property**: for any $E \in \mathbb{P}$,

$$E \approx \tau.E$$

(proof idea: $id_{\mathbb{P}} \cup \{(E, \tau.E) \mid E \in \mathbb{P}\}$ is a weak bisimulation

Properties

- as expected: \approx is an equivalence relation
- **basic property**: for any $E \in \mathbb{P}$,

$$E \approx \tau.E$$

(proof idea: $id_{\mathbb{P}} \cup \{(E, \tau.E) \mid E \in \mathbb{P}\}$ is a weak bisimulation

weak vs. strict:

 $\sim \subseteq \approx$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Lemma Let $E \approx F$. Then, for any $P \in \mathbb{P}$ and $K \subseteq L$,

 $a.E \approx a.F$ $E \mid P \approx F \mid P$ $E \setminus K \approx F \setminus K$ $E[f] \approx F[f]$

Lemma Let $E \approx F$. Then, for any $P \in \mathbb{P}$ and $K \subseteq L$,

 $a.E \approx a.F$ $E \mid P \approx F \mid P$ $E \setminus K \approx F \setminus K$ $E[f] \approx F[f]$

but

 $E + P \approx F + P$

does not hold, in general.

Example (initial τ restricts options menu')

$i.\mathbf{0} \approx \tau.i.\mathbf{0}$

э

Example (initial τ restricts options menu')

 $i.\mathbf{0} \approx \tau.i.\mathbf{0}$

However

 $j.\mathbf{0} + i.\mathbf{0} \not\approx j.\mathbf{0} + \tau.i.\mathbf{0}$

Actually,

Forcing a congruence: E = F

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Solution: force any initial τ to be matched by another τ

Process equality

Two processes *E* and *F* are equal (or observationally congruent) iff

i)
$$E \approx F$$

ii) $E \xrightarrow{\tau} E' \Rightarrow F \xrightarrow{\tau} X \stackrel{\epsilon}{\Rightarrow} F'$ and $E' \approx F'$
iii) $F \xrightarrow{\tau} F' \Rightarrow E \xrightarrow{\tau} X \stackrel{\epsilon}{\Rightarrow} E'$ and $E' \approx F'$

Forcing a congruence: E = F

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Solution: force any initial τ to be matched by another τ

Process equality

Two processes *E* and *F* are equal (or observationally congruent) iff

i)
$$E \approx F$$

ii) $E \xrightarrow{\tau} E' \Rightarrow F \xrightarrow{\tau} X \stackrel{\epsilon}{\Rightarrow} F'$ and $E' \approx F'$
iii) $F \xrightarrow{\tau} F' \Rightarrow E \xrightarrow{\tau} X \stackrel{\epsilon}{\Rightarrow} E'$ and $E' \approx F'$

• note that $E \neq \tau.E$, but $\tau.E = \tau.\tau.E$

Forcing a congruence: E = F

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

= can be regarded as a restriction of \approx to all pairs of processes which preserve it in additive contexts

Lemma

Let E and F be processes st the union of their sorts is distinct of L. Then,

$$E = F \equiv \forall_{G \in \mathbb{P}} . (E + G \approx F + G)$$

Properties of =

Lemma

$$E \approx F \equiv (E = F) \lor (E = \tau.F) \lor (\tau.E = F)$$

Properties of =

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Lemma

$$\sim \subseteq = \subseteq \approx$$

So,

the whole \sim theory remains valid

Additionally,

Lemma (additional laws)

$$a.\tau.E = a.E$$
$$E + \tau.E = \tau.E$$
$$a.(E + \tau.F) = a.(E + \tau.F) + a.F$$

guarded : X occurs in a sub-expression of type a.E' for $a \in Act - \{\tau\}$

weakly guarded :

X occurs in a sub-expression of type a.E' for $a \in Act$

in both cases assures that, until a guard is reached, behaviour does not depends on the process that instantiates the variable

guarded :

$$X$$
 occurs in a sub-expression of type $a.E'$ for
 $a \in Act - \{\tau\}$

weakly guarded :

X occurs in a sub-expression of type a.E' for $a \in Act$

in both cases assures that, until a guard is reached, behaviour does not depends on the process that instantiates the variable

example: X is weakly guarded in both τ .X and τ .**0** + a.X + b.a.X but guarded only in the second

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

sequential :

X is sequential in E if every strict sub-expression in which X occurs is either a.E', for $a \in Act$, or $\Sigma \tilde{E}$.

avoids X to become guarded by a τ as a result of an interaction

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

sequential :

X is sequential in E if every strict sub-expression in which X occurs is either a.E', for $a \in Act$, or $\Sigma \tilde{E}$.

avoids X to become guarded by a τ as a result of an interaction

example: X is not sequential in $X = (\overline{a} X | a.0) \setminus \{a\}$

Solving equations

Have equations over (\mathbb{P}, \sim) or $(\mathbb{P}, =)$ (unique) solutions?

Solving equations

Have equations over (\mathbb{P}, \sim) or $(\mathbb{P}, =)$ (unique) solutions?

Lemma

Recursive equations $\tilde{X} = \tilde{E}(\tilde{X})$ or $\tilde{X} \sim \tilde{E}(\tilde{X})$, over \mathbb{P} , have unique solutions (up to = or \sim , respectively). Formally,

i) Let $\tilde{E} = \{E_i \mid i \in I\}$ be a family of expressions with a maximum of I free variables $(\{X_i \mid i \in I\})$ such that any variable free in E_i is weakly guarded. Then

 $ilde{P} \sim \{ ilde{P}/ ilde{X}\} ilde{E} \ \land \ ilde{Q} \sim \{ ilde{Q}/ ilde{X}\} ilde{E} \ \Rightarrow \ ilde{P} \sim ilde{Q}$

Solving equations

Have equations over (\mathbb{P}, \sim) or $(\mathbb{P}, =)$ (unique) solutions?

Lemma

Recursive equations $\tilde{X} = \tilde{E}(\tilde{X})$ or $\tilde{X} \sim \tilde{E}(\tilde{X})$, over \mathbb{P} , have unique solutions (up to = or \sim , respectively). Formally,

i) Let $\tilde{E} = \{E_i \mid i \in I\}$ be a family of expressions with a maximum of I free variables $(\{X_i \mid i \in I\})$ such that any variable free in E_i is weakly guarded. Then

$$ilde{P} \sim \{ ilde{P}/ ilde{X}\} ilde{E} \ \land \ ilde{Q} \sim \{ ilde{Q}/ ilde{X}\} ilde{E} \ \Rightarrow \ ilde{P} \sim ilde{Q}$$

ii) Let $\tilde{E} = \{E_i \mid i \in I\}$ be a family of expressions with a maximum of I free variables $(\{X_i \mid i \in I\})$ such that any variable free in E_i is guarded and sequential. Then

$$ilde{P} = \{ ilde{P}/ ilde{X}\} ilde{E} \ \land \ ilde{Q} = \{ ilde{Q}/ ilde{X}\} ilde{E} \ \Rightarrow \ ilde{P} = ilde{Q}$$
◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Consider

$$Sem = {}^{df} get.put.Sem$$

$$P_1 = {}^{df} \overline{get.c_1}.\overline{put.P_1}$$

$$P_2 = {}^{df} \overline{get.c_2}.\overline{put.P_2}$$

$$S = {}^{df} (Sem \mid P_1 \mid P_2) \setminus \{get, put\}$$

and

$$S' =^{df} \tau . c_1 . S' + \tau . c_2 . S'$$

in order to prove S = S':

Consider

$$Sem = {}^{df} get.put.Sem$$

$$P_1 = {}^{df} \overline{get.}c_1.\overline{put.}P_1$$

$$P_2 = {}^{df} \overline{get.}c_2.\overline{put.}P_2$$

$$S = {}^{df} (Sem \mid P_1 \mid P_2) \setminus \{get, put\}$$

and

$$S' = {}^{df} \tau . c_1 . S' + \tau . c_2 . S'$$

in order to prove S = S': it is enough to show that both are solutions of

$$X = \tau . c_1 . X + \tau . c_2 . X$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Then:

- $S = \tau. (c_1.\overline{put}.P_1 | P_2 | put.Sem) \setminus K + \tau.(P_1 | c_2.\overline{put}.P_2 | put.Sem) \setminus K$ = $\tau.c_1. (\overline{put}.P_1 | P_2 | put.Sem) \setminus K + \tau.c_2.(P_1 | \overline{put}.P_2 | put.Sem) \setminus K$ = $\tau.c_1.\tau. (P_1 | P_2 | Sem) \setminus K + \tau.c_2.\tau.(P_1 | P_2 | Sem) \setminus K$ = $\tau.c_1.\tau.S + \tau.c_2.\tau.S$ = $\tau.c_1.S + \tau.c_2.S$
 - $= \{S/X\}E$

Then:

 $S = \tau. (c_1.\overline{put}.P_1 | P_2 | put.Sem) \setminus K + \tau.(P_1 | c_2.\overline{put}.P_2 | put.Sem) \setminus K$ = $\tau.c_1. (\overline{put}.P_1 | P_2 | put.Sem) \setminus K + \tau.c_2.(P_1 | \overline{put}.P_2 | put.Sem) \setminus K$ = $\tau.c_1.\tau. (P_1 | P_2 | Sem) \setminus K + \tau.c_2.\tau.(P_1 | P_2 | Sem) \setminus K$ = $\tau.c_1.\tau.S + \tau.c_2.\tau.S$ = $\tau.c_1.S + \tau.c_2.S$ = $\{S/X\}E$

for S' is immediate

Consider,

$$B = {}^{df} in.B_1$$
$$B_1 = {}^{df} in.B_2 + \overline{out}.B_1$$
$$B_2 = {}^{df} \overline{out}.B_1$$

$$B' = {}^{df} (C_1 | C_2) \setminus m$$
$$C_1 = {}^{df} in.\overline{m}.C_1$$
$$C_2 = {}^{df} m.\overline{out}.C_2$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Consider,

$$B = {}^{df} in.B_1 \qquad B' = {}^{df} (C_1 | C_2) \setminus m$$

$$B_1 = {}^{df} in.B_2 + \overline{out}.B \qquad C_1 = {}^{df} in.\overline{m}.C_1$$

$$B_2 = {}^{df} \overline{out}.B_1 \qquad C_2 = {}^{df} m.\overline{out}.C_2$$

B is a solution of

$$X = E(X, Y, Z) = in.Y$$

$$Y = E_1(X, Y, Z) = in.Z + \overline{out.X}$$

$$Z = E_3(X, Y, Z) = \overline{out.Y}$$

through $\sigma = \{B/X, B_1/Y, B_2/Z\}$

To prove $\mathbf{B} = \mathbf{B}'$

$$B' = (C_1 | C_2) \setminus m$$

= $in.(\overline{m}.C_1 | C_2) \setminus m$
= $in.\tau.(C_1 | \overline{out}.C_2) \setminus m$
= $in.(C_1 | \overline{out}.C_2) \setminus m$

Let $S_1 = (C_1 \mid \overline{out}.C_2) \setminus m$ to proceed:

$$S_{1} = (C_{1} | \overline{out}.C_{2}) \setminus m$$

= in. ($\overline{m}.C_{1} | \overline{out}.C_{2}$) \ m + $\overline{out}.(C_{1} | C_{2}) \setminus m$
= in. ($\overline{m}.C_{1} | \overline{out}.C_{2}$) \ m + $\overline{out}.B'$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Finally, let, $S_2 = (\overline{m}.C_1 \mid \overline{out}.C_2) \setminus m$. Then,

$$S_{2} = (\overline{m}.C_{1} \mid \overline{out}.C_{2}) \setminus m$$

= $\overline{out}.(\overline{m}.C_{1} \mid C_{2}) \setminus m$
= $\overline{out}.\tau.(C_{1} \mid \overline{out}.C_{2}) \setminus m$
= $\overline{out}.\tau.S_{1}$
= $\overline{out}.S_{1}$

Note the same problem can be solved with a system of 2 equations:

$$X = E(X, Y) = in.Y$$

$$Y = E'(X, Y) = in.\overline{out}.Y + \overline{out}.in.Y$$

Clearly, by substitution,

$$B = in.B_1$$

$$B_1 = in.\overline{out}.B_1 + \overline{out}.in.B_1$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

On the other hand, it's already proved that $B' = \ldots = in.S_1$. so,

$$S_{1} = (C_{1} | \overline{out}.C_{2}) \setminus m$$

= $in.(\overline{m}.C_{1} | \overline{out}.C_{2}) \setminus m + \overline{out}.B'$
= $in.\overline{out}.(\overline{m}.C_{1} | C_{2}) \setminus m + \overline{out}.B'$
= $in.\overline{out}.\tau.(C_{1} | \overline{out}.C_{2}) \setminus m + \overline{out}.B'$
= $in.\overline{out}.\tau.S_{1} + \overline{out}.B'$
= $in.\overline{out}.S_{1} + \overline{out}.B'$
= $in.\overline{out}.S_{1} + \overline{out}.in.S_{1}$

Hence, $B' = \{B'/X, S_1/Y\}E$ and $S_1 = \{B'/X, S_1/Y\}E'$

Suppose two variants of parallel composition have been added to the process language \mathbb{P} and defined through the following rules:

$$\frac{E \xrightarrow{a} E'}{E \otimes F \xrightarrow{a} E' \otimes F} (O_1) \qquad \qquad \frac{F \xrightarrow{a} F'}{E \otimes F \xrightarrow{a} E \otimes F'} (O_2)$$

$$\frac{E \xrightarrow{a} E' \text{ and } \overline{a} \notin \mathcal{L}(F)}{E \parallel F \xrightarrow{a} E' \parallel F} (P_1) \qquad \qquad \frac{F \xrightarrow{a} F' \text{ and } \overline{a} \notin \mathcal{L}(E)}{E \parallel F \xrightarrow{a} E \parallel F'} (P_2)$$

$$\frac{E \xrightarrow{a} E' F \xrightarrow{\overline{a}} F'}{E \parallel F \xrightarrow{\tau} E' \parallel F'} (P_3)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

1 Explain, in your own words, the meaning of $\otimes e \parallel$.

- 2 prove or refute:
 - \otimes is associative with respect to \sim
 - \parallel is associative with respect to \sim

Exercise

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Consider the following statements about a binary relation S on \mathbb{P} . Discuss whether you may conclude from each of them whether S is (or is not) a weak bisimulation:

- **1** S is the identity in \mathbb{P} .
- **2** S is a subset of the identity in \mathbb{P} .
- **3** S is a strict bisimulation up to \equiv .
- **4** S is the empty relation.

$$S = \{(a.E, a.F) \mid E \approx F\}.$$

$$S = \{(a.E, a.F) \mid E \approx F\} \cup \approx.$$

Exercise

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Suppose processes R and T have transitions $R \xrightarrow{\tau} T$ and $T \xrightarrow{\tau} R$, among others. Show that, under this condition, R = T.

Identify, in the list of process pairs below, which of them can be related by $\approx \!\!\!\!\!\!\!\!\!\!\!\!$ And by =?

Consider the following specification of a *pipe*, as supported e.g. in UNIX:

$$U \rhd V =^{abv} (U[c/out] | V[c/in]) \setminus \{c\}$$

under the assumption that, in both processes, actions \overline{out} e *in* stand for, respectively, the output and input ports.

1 Consider now the following processes only partially defined:

$$U_{1} = {}^{df} \overline{out}.T$$

$$V_{1} = {}^{df} \overline{in.R}$$

$$U_{2} = {}^{df} \overline{out}.\overline{out}.\overline{out}.T$$

$$V_{2} = {}^{df} \overline{in.in.R}$$

Prove, by equational reasoning, or refute the following properties:

$$\begin{array}{ccccccc} \bullet & U_1 \vartriangleright V_1 & \sim & T \vartriangleright R \\ \bullet & U_2 \vartriangleright V_2 & = & U_1 \vartriangleright V \end{array}$$

2 Show that $\mathbf{0} \succ \mathbf{0} = \mathbf{0}$.