# Processos e Concorrência 2015/16 Bloco de acetatos 3 

Alexandre Madeira<br>(based on Luís S. Barbosa 2014/15 course Slides ) HASLab INESC TEC, DI UMINHO



February 21, 2017

## Abstraction

Main idea:
Take a set of actions as internal or non-observable

## Abstraction

Main idea:
Take a set of actions as internal or non-observable

Adding $\tau$ to the set of actions has a number of consequences:

- only external actions are observable
- the effects of an internal action can only be observed if it determines a choice


## Abstraction

Main idea:
Take a set of actions as internal or non-observable

Adding $\tau$ to the set of actions has a number of consequences:

- only external actions are observable
- the effects of an internal action can only be observed if it determines a choice

Approaches

- R. Milner's weak bisimulation [Mil80]
- Van Glabbeek and Weijland's branching bisimulation [GW96]


## Internal actions

$\tau$ abstracts internal activity
inert $\tau$ : internal activity is undetectable by observation
non inert $\tau$ : internal activity is indirectly visible


## Branching bisimulation

- Intuition similar to that of strong bisimulation: But now, instead of letting a single action be simulated by a single action, an action can be simulated by a sequence of internal transitions, followed by that single action.
- An internal action $\tau$ can be simulated by any number of internal transitions (even by none).
- If a state can terminate, it does not need to be related to a terminating state: it suffices that a terminating state can be reached after a number of internal transitions.


## Branching bisimulation

## Definition

Given $\left\langle S_{1}, N, \downarrow_{1}, \rightarrow_{1}\right\rangle$ and $\left\langle S_{2}, N, \downarrow_{2}, \rightarrow_{2}\right\rangle$ over $N$, relation $R \subseteq S_{1} \times S_{2}$ is a branching bisimulation iff for all $\langle p, q\rangle \in R$ and $a \in N$,

1. If $p{ }^{a}{ }_{1} p^{\prime}$, then

- either $a=\tau$ and $p^{\prime} R q$
- or, there is a sequence $q \xrightarrow{\tau}_{2} \cdots \xrightarrow{\tau}_{2} q^{\prime}$ of (zero or more) $\tau$-transitions such that $p R q^{\prime}$ and $q^{\prime} \xrightarrow{a} 2 q^{\prime \prime}$ with $p^{\prime} R q^{\prime \prime}$.

2. If $p \downarrow_{1}$, then there is a sequence $q \stackrel{\tau}{\rightarrow}_{2} \cdots \stackrel{\tau}{\rightarrow}_{2} q^{\prime}$ of (zero or more) $\tau$-transitions such that $p R q^{\prime}$ and $q^{\prime} \downarrow_{2}$.
$1^{\prime}$., $2^{\prime}$. symmetrically ...

## Example



## Branching bisimilarity

## Definition

$$
p \approx q \equiv\langle\exists R:: R \text { is a branching bisimulation and }\langle p, q\rangle \in R\rangle
$$

## Branching bisimilarity

... preserves the branching structure


## Branching bisimilarity

## ... does not preserve $\tau$-loops



## Branching bisimilarity

## ... does not preserve $\tau$-loops


satisfying a notion of fairness: if a $\tau$-loop exists, then no infinite execution sequence will remain in it forever if there is a possibility to leave

## Branching bisimilarity

## Problem

If an alternative is added to the initial state then transition systems that were branching bisimilar may cease to be so.

Example: add a $b$-labelled branch to the initial states of


## Rooted branching bisimilarity

## Startegy

Impose a rootedness condition [R. Milner, 80]:
Initial $\tau$-transitions can never be inert, i.e., two states are equivalent if they can simulate each other's initial transitions, such that the resulting states are branching bisimilar.

## Rooted branching bisimulation

## Definition

Given $\left\langle S_{1}, N, \downarrow_{1}, \rightarrow_{1}\right\rangle$ and $\left\langle S_{2}, N, \downarrow_{2}, \rightarrow_{2}\right\rangle$ over $N$, relation $R \subseteq S_{1} \times S_{2}$ is a rooted branching bisimulation for $p$ and $q$ iff

1. it is a branching bisimulation
2. $\langle p, q\rangle \in R$ and for any $a \in N$ (including $\tau$ ),

- If $p \xrightarrow{a}_{1} p^{\prime}$, then there is a $q^{\prime} \in S_{2}$ such that $q \xrightarrow{a}{ }_{2} q^{\prime}$ and $p^{\prime} \approx q^{\prime}$
- If $q \xrightarrow{a} 2 q^{\prime}$, then there is a $p^{\prime} \in S_{1}$ such that $p \xrightarrow{a}_{1} p^{\prime}$ and $p^{\prime} \approx q^{\prime}$

Whenever initial states are assumed:
$B$ is a rooted branching bisimulation between two LTSs if it is a rooted branching bisimulation for their initial states.

## Example

 branching bisimilar but not rooted

## Example

rooted branching bisimilar


## Exercise

And this pair?
(bisimilar/branching bisimilar/rooted branching bisimilar)


## Exercise

And this pair?
(bisimilar/branching bisimilar/rooted branching bisimilar)


## Exercise

And these pairs?
(bisimilar/branching bisimilar/rooted branching bisimilar)


## Rooted branching bisimilarity

Definition
$p \approx_{r} q \equiv\langle\exists R:: R$ is a rooted branching bisimulation for $p$ and $q\rangle$

Lemma

$$
\sim \subseteq \approx_{r} \subseteq \approx
$$

## Rooted branching bisimilarity

## Definition

$p \approx_{r} q \equiv\langle\exists R:: R$ is a rooted branching bisimulation for $p$ and $q\rangle$

Lemma

$$
\sim \subseteq \approx_{r} \subseteq \approx
$$

Of course, in the absence of $\tau$ actions, $\sim$ and $\approx$ coincide.

## Weak bisimulation

## Definition [Milner,80]

Given $\left\langle S_{1}, N, \downarrow_{1}, \rightarrow_{1}\right\rangle$ and $\left\langle S_{2}, N, \downarrow_{2}, \rightarrow_{2}\right\rangle$ over $N$, relation $R \subseteq S_{1} \times S_{2}$ is a weak bisimulation iff for all $\langle p, q\rangle \in R$ and $a \in N$,

1. If $p{ }^{a}{ }_{1} p^{\prime}$, then

- either $a=\tau$ and $p^{\prime} R q$
- or, there is a sequence
$q \xrightarrow{\tau_{\rightarrow}} \cdots \xrightarrow{\tau}{ }_{2} t \xrightarrow{a}{ }_{2} t^{\prime} \xrightarrow[\rightarrow]{\rightarrow}_{2} \cdots \xrightarrow{\tau}{ }_{2} q^{\prime}$ involving zero or more $\tau$-transitions, such that $p^{\prime} R q^{\prime}$.

2. If $p \downarrow_{1}$, then there is a sequence $q \xrightarrow{\tau}_{2} \cdots \xrightarrow{\tau}{ }_{2} q^{\prime}$ of (zero or more) $\tau$-transitions such that $q^{\prime} \downarrow_{2}$.

1'., 2'. symmetrically ...

## Weak bisimulation

## Definition [Milner,80]

Given $\left\langle S_{1}, N, \downarrow_{1}, \rightarrow_{1}\right\rangle$ and $\left\langle S_{2}, N, \downarrow_{2}, \rightarrow_{2}\right\rangle$ over $N$, relation $R \subseteq S_{1} \times S_{2}$ is a weak bisimulation iff for all $\langle p, q\rangle \in R$ and $a \in N$,

1. If $p{ }^{a}{ }_{1} p^{\prime}$, then

- either $a=\tau$ and $p^{\prime} R q$
- or, there is a sequence
$q \xrightarrow{\tau}{ }_{2} \cdots \xrightarrow{\tau}{ }_{2} t \xrightarrow{a}{ }_{2} t^{\prime} \xrightarrow{\tau}_{2} \cdots \xrightarrow{\tau}{ }_{2} q^{\prime}$ involving zero or more $\tau$-transitions, such that $p^{\prime} R q^{\prime}$.

2. If $p \downarrow_{1}$, then there is a sequence $q \xrightarrow{\tau}_{2} \cdots \xrightarrow{\tau}{ }_{2} q^{\prime}$ of (zero or more) $\tau$-transitions such that $q^{\prime} \downarrow_{2}$.
$1^{\prime}$., 2 '. symmetrically ...

Whenever initial states are assumed:
$B$ is a rooted weak bisimulation between two LTSs if it is a rooted weak bisimulation for their initial states.

## Weak bisimulation

... does not preserve the branching structure


## Weak bisimilarity

## Definition

$$
p \approx_{w} q \equiv\langle\exists R:: R \text { is a weak bisimulation and }\langle p, q\rangle \in R\rangle
$$

## Example

## weak but not branching



## Rooted weak bisimulation

## Definition

Given $\left\langle S_{1}, N, \downarrow_{1}, \rightarrow_{1}\right\rangle$ and $\left\langle S_{2}, N, \downarrow_{2}, \rightarrow_{2}\right\rangle$ over $N$, relation $R \subseteq S_{1} \times S_{2}$ is a rooted weak bisimulation for $p$ and $q$ iff $\langle p, q\rangle \in R$ and for any $a \in N$,

- it is a weak bisimulation
- If $p{ }^{\tau}{ }_{1} p^{\prime}$, then there is a non empty sequence of $\tau$ such that $q \xrightarrow{\tau}_{2}{ }^{\tau}{ }_{2} \ldots \xrightarrow{\tau} \xrightarrow{\tau}_{2} q^{\prime}$ and $p^{\prime} \approx_{w} q^{\prime}$
- Symmetrically ...


## Rooted weak bisimilarity

## Definition

$$
p \approx_{r w} q \equiv\langle\exists R:: R \text { is a rooted weak bisimulation for } p \text { and } q\rangle
$$

Lemma

(ordered by $\subseteq$ )

## Exercise

It is true that $q_{1} \approx_{w} q_{6}$ ? and $q_{1} \approx_{r w} q_{6}$ ?


## Exercise

Is it true that $s \approx_{w} t$ ? and $s \approx_{r w} t$ ?


## The questions to follow ...

- We already have a semantic model for reactive systems. With which language shall we describe them?
- How to compare and transform such systems?
- How to express and prove their properties?
$\leadsto$ process languages and calculi cf. Ccs (Milner, 80), Csp (Hoare, 85),

AcP (Bergstra \& Klop, 82), $\pi$-calculus (Milner, 89), among many others
$\leadsto$ modal (temporal, hybrid) logics

## Exercise 1


(1) In analogy with the definition of (strong) simulation, formalise the notion of weak similarity
(2) Identify the weak similar LTSs
(3) Identify the weak bisimilar LTSs

## Exercise 2



Justify if $t_{1}$ and $r_{1}$ are:

- branching bisimilar?
- rooted branching bisimilar?
- weak bisimilar?
- rooted weak bisimililar?


## Exercise 3



Justify if $t_{0}$ and $r_{1}$ are:

- branching bisimilar?
- rooted branching bisimilar?
- weak bisimilar?
- rooted weak bisimililar?


## Exercise 4



Justify if $t_{0}$ and $r_{1}$ are:

- branching bisimilar?
- rooted branching bisimilar?
- weak bisimilar?
- rooted weak bisimililar?


## Exercise 5

Prove that a

$$
p \approx q \Rightarrow p \sim_{w} q
$$

