Interação e Concorrência 2016/17 Bloco de slides 2

Alexandre Madeira
(based on Luís S. Barbosa 2014/15 course Slides) HASLab INESC TEC, DI UMINHO

Febrary 17, 2016

Looking for suitable notions of equivalence of behaviours

Intuition

Two LTS should be equivalent if they cannot be distinguished by interacting with them.

Graph isomorphism
is too strong

Trace

Definition

Let $T=\langle S, N, \downarrow, s, \rightarrow\rangle$ be a labelled transition system. The set of traces $\operatorname{Tr}(s)$, for $s \in S$ is the minimal set satisfying
(1) $\epsilon \in \operatorname{Tr}(s)$
(2) $\checkmark \in \operatorname{Tr}(s) \Leftrightarrow s \in \downarrow$
(3) $a \sigma \in \operatorname{Tr}(s) \Rightarrow\left\langle\exists s^{\prime}: s^{\prime} \in S: s \xrightarrow{a} s^{\prime} \wedge \sigma \in \operatorname{Tr}\left(s^{\prime}\right)\right\rangle$

Trace equivalence

on states:
Two states s, r are trace equivalent iff $\operatorname{Tr}(s)=\operatorname{Tr}(r)$
(i.e. if they can perform the same finite sequences of transitions)
on LTSs:
The LTS $T_{1}=\left\langle S_{1}, N_{1}, \downarrow_{1}, s_{1} \rightarrow_{1}\right\rangle$ and $T_{2}=\left\langle S_{2}, N_{2}, \downarrow_{2}, s_{2} \rightarrow_{2}\right\rangle$ are trace equivalent if

$$
\operatorname{Tr}\left(s_{1}\right)=\operatorname{Tr}\left(s_{2}\right)
$$

Trace equivalence

Example

Simulation

the quest for a behavioural equality: able to identify states that cannot be distinguished by any realistic form of observation

Simulation

A state q simulates another state p if every transition from q is corresponded by a transition from p and this capacity is kept along the whole life of the system to which state space q belongs to.

Simulation

Definition
Given $\left\langle S_{1}, N, \downarrow_{1}, \rightarrow_{1}\right\rangle$ and $\left\langle S_{2}, N, \downarrow_{2}, \rightarrow_{2}\right\rangle$ over N, relation $R \subseteq S_{1} \times S_{2}$ is a simulation iff, for all $\langle p, q\rangle \in R$ and $a \in N$,
(1) $p \downarrow_{1} \Rightarrow q \downarrow_{2}$
(2) $p \xrightarrow{a}_{1} p^{\prime} \Rightarrow\left\langle\exists q^{\prime}: q^{\prime} \in S_{2}: q{ }_{\rightarrow}^{a} q^{\prime} \wedge\left\langle p^{\prime}, q^{\prime}\right\rangle \in R\right\rangle$

Example

$$
q_{0} \lesssim p_{0} \quad \text { cf. } \quad\left\{\left\langle q_{0}, p_{0}\right\rangle,\left\langle q_{1}, p_{1}\right\rangle,\left\langle q_{4}, p_{1}\right\rangle,\left\langle q_{2}, p_{2}\right\rangle,\left\langle q_{3}, p_{3}\right\rangle\right\}
$$

Similarity

Definition
Smilarity

$$
p \lesssim q \equiv\langle\exists R: R \text { is a simulation and }\langle p, q\rangle \in R\rangle
$$

Lemma
The similarity relation is a preorder (ie, reflexive and transitive)

Bisimulation

Definition (Bisimulation)
Given $\left\langle S_{1}, N, \downarrow_{1}, \rightarrow_{1}\right\rangle$ and $\left\langle S_{2}, N, \downarrow_{2}, \rightarrow_{2}\right\rangle$ over N, relation $R \subseteq S_{1} \times S_{2}$ is a bisimulation iff both R and its converse R° are simulations. I.e., whenever $\langle p, q\rangle \in R$ and $a \in N$,
(1) $p \downarrow_{1} \Leftrightarrow q \downarrow_{2}$

$$
\begin{aligned}
& \text { (Zig) } p \xrightarrow{a}_{1} p^{\prime} \Rightarrow\left\langle\exists q^{\prime}: q^{\prime} \in S_{2}: q \xrightarrow{a}_{2} q^{\prime} \wedge\left\langle p^{\prime}, q^{\prime}\right\rangle \in R\right\rangle \\
& \text { (Zag) } q \xrightarrow{a}_{2} q^{\prime} \Rightarrow\left\langle\exists p^{\prime}: p^{\prime} \in S_{1}: p \xrightarrow[\rightarrow]{a}_{1} p^{\prime} \wedge\left\langle p^{\prime}, q^{\prime}\right\rangle \in R\right\rangle
\end{aligned}
$$

Bisimulation

The Game characterization
Two players R and I discuss whether the transition structures are mutually corresponding

- R starts by chosing a transition
- I replies trying to match it
- if I succeeds, R plays again
- R wins if I fails to find a corresponding match
- I wins if it replies to all moves from R and the game is in a configuration where all states have been visited or R can't move further. In this case is said that I has a wining strategy
$s \sim t$ iff
I has an universal wining strategy from (s, t), i.e.,

Examples

$$
q_{1} \xrightarrow{a} q_{2} \xrightarrow{a} q_{3} \xrightarrow{a} \cdots
$$

Examples

Bisimilarity

Definition (Bisimilarity)

$$
p \sim q \equiv\langle\exists R:: R \text { is a bisimulation and }\langle p, q\rangle \in R\rangle
$$

Lemma

(1) The identity relation id is a bisimulation
(2) The empty relation \perp is a bisimulation
(3) The converse R° of a bisimulation is a bisimulation
(4) The composition $S \cdot R$ of two bisimulations S and R is a bisimulation
(5) The $\bigcup_{i \in I} R_{i}$ of a family of bisimulations $\left\{R_{i} \mid i \in I\right\}$ is a bisimulation
(6) ~is a bisimulation

Properties

Lemma
The bisimilarity relation is an equivalence relation (ie, reflexive, symmetric and transitive)

Lemma
The class of all bisimulations between two LTS has the structure of a complete lattice, ordered by set inclusion, whose top is the bisimilarity relation \sim.

Properties

Exercise

Define an LTS trace equivalent to the presented one, but with a distinct behaviour.

Properties

Lemma

In a deterministic labelled transition system, two states are bisimilar iff they are trace equivalent, i.e.,

$$
s \sim s^{\prime} \Leftrightarrow \operatorname{Tr}(s)=\operatorname{Tr}\left(s^{\prime}\right)
$$

Hint: define a relation R as

$$
\langle x, y\rangle \in R \Leftrightarrow \operatorname{Tr}(x)=\operatorname{Tr}(y)
$$

and show R is a bisimulation.

Properties

Warning

The bisimilarity relation \sim is not the symmetric closure of \lesssim

Example

$$
q_{0} \lesssim p_{0}, p_{0} \lesssim q_{0} \text { but } p_{0} \nsim q_{0}
$$

$$
p_{0} \xrightarrow{a} p_{1} \xrightarrow{b} p_{2}
$$

Notes

Similarity as the greatest simulation

$$
\lesssim \equiv \bigcup\{S \mid S \text { is a simulation }\}
$$

Bisimilarity as the greatest bisimulation

$$
\sim \equiv \bigcup\{S \mid S \text { is a bisimulation }\}
$$

Exercises

Suppose a labelled transition system is given by the following transition relation:
$\{(1, a, 2),(1, a, 3),(2, a, 3),(2, b, 1),(3, a, 3),(3, b, 1)$,
$(4, a, 5),(5, a, 5),(5, b, 6),(6, a, 5),(7, a, 8),(8, a, 8),(8, b, 7)\}$
Prove or refute $1 \sim 4 \sim 6 \sim 7$.

Exercises

Prove that $M_{1} \sim N_{1}$:

Exercises

Find an LTS with two states in a bisimulation relation with the states of the following LTS:

Exercises

Prove or refute the following sentences:

- "bisimulations are closed by unions"
- "bisimulations are closed by intersections"

Exercises

Given two labelled transition systems $\left\langle S_{A}, N, \downarrow_{A}, \rightarrow_{A}\right\rangle$ and $\left\langle S_{B}, N, \downarrow_{B}, \rightarrow_{B}\right\rangle$, two states p and q are equisimilar iff

$$
p \doteqdot q \equiv p \lesssim q \wedge q \lesssim p
$$

(1) Show that \doteqdot is an equivalence relation.
(2) Compare this equivalence with bisimilarity \sim.

Exercises

A relation R over the state space of a labelled transition system is a word bisimulation if, whenever $\langle p, q\rangle \in R$ and $\sigma \in N^{*}$, we have

$$
\begin{aligned}
& p \xrightarrow{\sigma} p^{\prime} \Rightarrow\left\langle\exists q^{\prime}: q^{\prime} \in S_{2}: q \xrightarrow{\sigma} q^{\prime} \wedge\left\langle p^{\prime}, q^{\prime}\right\rangle \in R\right\rangle \\
& q \xrightarrow{\sigma} q^{\prime} \Rightarrow\left\langle\exists p^{\prime}: p^{\prime} \in S_{1}: p \xrightarrow{\sigma} p^{\prime} \wedge\left\langle p^{\prime}, q^{\prime}\right\rangle \in R\right\rangle
\end{aligned}
$$

(1) Define formally relation $\xrightarrow{\sigma}$, for $\sigma \in N^{*}$
(2) Two states are word bisimilar iff they belong to a word bisimulation. Show that two states p and q are word bisimilar iff $p \sim q$.

