Interação e Concorrência 2016/17 Bloco de slides 2

Alexandre Madeira

(based on Luís S. Barbosa 2014/15 course Slides) HASLab INESC TEC, DI UMINHO

Febrary 17, 2016

Looking for suitable notions of equivalence of behaviours

Intuition

Two LTS should be equivalent if they cannot be distinguished by interacting with them.

Graph isomorphism

is too strong

Trace

Definition Let $T = \langle S, N, \downarrow, s, \rightarrow \rangle$ be a labelled transition system. The set of traces Tr(s), for $s \in S$ is the minimal set satisfying

(1)
$$\epsilon \in Tr(s)$$

(2) $\checkmark \in Tr(s) \Leftrightarrow s \in \downarrow$
(3) $a\sigma \in Tr(s) \Rightarrow \langle \exists s' : s' \in S : s \xrightarrow{a} s' \land \sigma \in Tr(s') \rangle$

Trace equivalence

on states:

Two states s, r are trace equivalent iff Tr(s) = Tr(r)

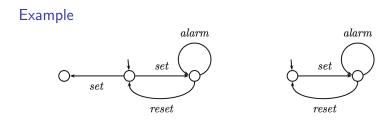
(i.e. if they can perform the same finite sequences of transitions)

on LTSs:

The LTS $T_1 = \langle S_1, N_1, \downarrow_1, s_1 \rightarrow_1 \rangle$ and $T_2 = \langle S_2, N_2, \downarrow_2, s_2 \rightarrow_2 \rangle$ are trace equivalent if

 $Tr(s_1) = Tr(s_2)$

Trace equivalence



Simulation

the quest for a behavioural equality: able to identify states that cannot be distinguished by any realistic form of observation

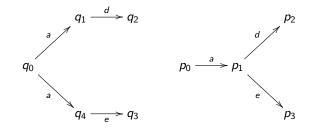
Simulation

A state q simulates another state p if every transition from q is corresponded by a transition from p and this capacity is kept along the whole life of the system to which state space q belongs to.

Simulation

Definition Given $\langle S_1, N, \downarrow_1, \rightarrow_1 \rangle$ and $\langle S_2, N, \downarrow_2, \rightarrow_2 \rangle$ over N, relation $R \subseteq S_1 \times S_2$ is a simulation iff, for all $\langle p, q \rangle \in R$ and $a \in N$,

Example



 $q_0 \lesssim p_0$ cf. $\{\langle q_0, p_0
angle, \langle q_1, p_1
angle, \langle q_4, p_1
angle, \langle q_2, p_2
angle, \langle q_3, p_3
angle\}$

Similarity

Definition Smilarity

$$p \lesssim q \; \equiv \; \langle \exists R : R \; \text{is a simulation and} \; \langle p,q
angle \in R
angle$$

Lemma The similarity relation is a preorder (ie, reflexive and transitive)

Bisimulation

Definition (Bisimulation)

Given $\langle S_1, N, \downarrow_1, \rightarrow_1 \rangle$ and $\langle S_2, N, \downarrow_2, \rightarrow_2 \rangle$ over N, relation $R \subseteq S_1 \times S_2$ is a bisimulation iff both R and its converse R° are simulations. I.e., whenever $\langle p, q \rangle \in R$ and $a \in N$,

(1)
$$p\downarrow_1 \Leftrightarrow q\downarrow_2$$

(Zig) $p \xrightarrow{a}_{1} p' \Rightarrow \langle \exists q' : q' \in S_2 : q \xrightarrow{a}_{2} q' \land \langle p', q' \rangle \in R \rangle$ (Zag) $q \xrightarrow{a}_{2} q' \Rightarrow \langle \exists p' : p' \in S_1 : p \xrightarrow{a}_{1} p' \land \langle p', q' \rangle \in R \rangle$

Bisimulation

The Game characterization

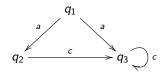
Two players R and I discuss whether the transition structures are mutually corresponding

- R starts by chosing a transition
- I replies trying to match it
- if I succeeds, R plays again
- *R* wins if *I* fails to find a corresponding match
- *I* wins if it replies to all moves from *R* and the game is in a configuration where all states have been visited or *R* can't move further. In this case is said that *I* has a wining strategy

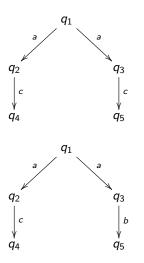
$s \sim t$ iff

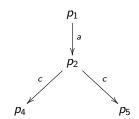
I has an universal wining strategy from (s, t), i.e.,

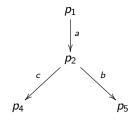
Examples



Examples







Bisimilarity

Definition (Bisimilarity)

$$p \sim q \; \equiv \; \langle \exists \; R \; :: \; R \; ext{is a bisimulation and} \; \langle p,q
angle \in R
angle$$

Lemma

- 1 The identity relation *id* is a bisimulation
- **2** The empty relation \perp is a bisimulation
- **3** The converse R° of a bisimulation is a bisimulation
- ④ The composition S ⋅ R of two bisimulations S and R is a bisimulation
- **5** The $\bigcup_{i \in I} R_i$ of a family of bisimulations $\{R_i | i \in I\}$ is a bisimulation
- $\mathbf{6}$ \sim is a bisimulation

Lemma

The bisimilarity relation is an equivalence relation (ie, reflexive, symmetric and transitive)

Lemma

The class of all bisimulations between two LTS has the structure of a complete lattice, ordered by set inclusion, whose top is the bisimilarity relation \sim .

Exercise

Define an LTS trace equivalent to the presented one, but with a distinct behaviour.

Lemma

In a **deterministic** labelled transition system, two states are bisimilar iff they are trace equivalent, i.e.,

$$s \sim s' \iff Tr(s) = Tr(s')$$

Hint: define a relation R as

$$\langle x, y \rangle \in R \iff Tr(x) = Tr(y)$$

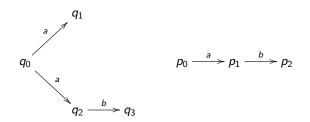
and show R is a bisimulation.

Warning

The bisimilarity relation \sim is not the symmetric closure of \lesssim

Example

$$q_0 \lesssim p_0, \; p_0 \lesssim q_0 \;\;$$
 but $\;\; p_0
eq q_0$



Notes

Similarity as the greatest simulation

$$\lesssim \equiv \bigcup \{S | S \text{ is a simulation} \}$$

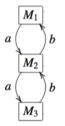
Bisimilarity as the greatest bisimulation

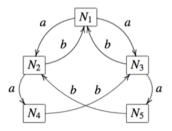
$$\sim \equiv \bigcup \{S | S \text{ is a bisimulation} \}$$

Suppose a labelled transition system is given by the following transition relation:

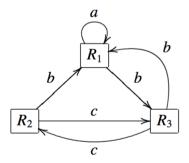
 $\{ (1, a, 2), (1, a, 3), (2, a, 3), (2, b, 1), (3, a, 3), (3, b, 1), \\ (4, a, 5), (5, a, 5), (5, b, 6), (6, a, 5), (7, a, 8), (8, a, 8), (8, b, 7) \}$ Prove or refute $1 \sim 4 \sim 6 \sim 7$.

Prove that $M_1 \sim N_1$:





Find an LTS with two states in a bisimulation relation with the states of the following LTS:



Prove or refute the following sentences:

- "bisimulations are closed by unions"
- "bisimulations are closed by intersections"

Given two labelled transition systems $\langle S_A, N, \downarrow_A, \rightarrow_A \rangle$ and $\langle S_B, N, \downarrow_B, \rightarrow_B \rangle$, two states *p* and *q* are *equisimilar* iff

$$p \doteq q \equiv p \lesssim q \land q \lesssim p$$

- **1** Show that \neq is an equivalence relation.
- 2 Compare this equivalence with bisimilarity \sim .

A relation R over the state space of a labelled transition system is a *word bisimulation* if, whenever $\langle p, q \rangle \in R$ and $\sigma \in N^*$, we have

$$\begin{array}{l} p \xrightarrow{\sigma} p' \Rightarrow \langle \exists q' : q' \in S_2 : q \xrightarrow{\sigma} q' \land \langle p', q' \rangle \in R \rangle \\ q \xrightarrow{\sigma} q' \Rightarrow \langle \exists p' : p' \in S_1 : p \xrightarrow{\sigma} p' \land \langle p', q' \rangle \in R \rangle \end{array}$$

- **1** Define formally relation $\xrightarrow{\sigma}$, for $\sigma \in N^*$
- 2 Two states are word bisimilar iff they belong to a word bisimulation. Show that two states p and q are word bisimilar iff p ~ q.