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ABSTRACT

We consider a Rees matrix semigroup S = M([U; I, J; P] over a semigroup U,
with I and J finite index sets, and relate the automaticity of S with the automaticity
of U. We prove that if U is an automatic semigroup and S is finitely generated then
S is an automatic semigroup. If S is an automatic semigroup and there is an entry
p in the matrix P such that pU! = U then U is automatic. We also prove that if S

is a prefix-automatic semigroup, then U is a prefix-automatic semigroup.

1 INTRODUCTION AND DEFINITIONS

We consider automatic semigroups as defined in [?]. We are interested in
the question of whether automaticity of semigroups is preserved by various
semigroup constructions. Some semigroups can be described as Rees matrix
semigroups over semigroups. In this work we start with an automatic semi-
group U, and prove that a Rees matrix semigroup S = M([U; I, J; P] over U is
automatic whenever it is finitely generated. This implies that if a semigroup
is finitely generated and can be described as a Rees matrix semigroup over an

automatic semigroup then it is automatic. We observe that, by the Main The-



orem of [?], S is finitely generated if and only if both I and J are finite sets, U is
finitely generated and the set U\V is finite, where V' is the ideal of U generated
by the entries in the matrix P. We also consider the converse problem: does
the automaticity of S imply that of U? We prove that this is the case when
S is prefix-automatic or when there is an element p in the matrix P such that
pU' = U. Finally, we prove the analogous results for Rees matrix semigroups
with zero.

We start by introducing the definitions we require. The Rees matrix semi-
group S = M[U; 1, J; P] over the semigroup U, with P = (pj;)jesicr & ma-
trix with entries in U, is the semigroup with the support set I x U x J
and multiplication defined by (I, s1,71)(l2, S2,72) = (l1, $1Pr1,82,72) Where
(l1,81,71), (Ig, 89,m9) € I x U x J. We say that U is the base semigroup of
the Rees matrix semigroup S.

If A is a finite set, we denote by AT the free semigroup generated by A
consisting of non empty words over A under the concatenation, and by A* the
free monoid generated by A consisting of A" together with the empty word
€. Let S be a semigroup and ¢ : A — S a mapping. We say that A is a
finite generating set for S with respect to 1 if the unique extension of 1) to a
semigroup homomorphism 1) : AT — S is surjective. For u,v € A" we write
u = v to mean that v and v are equal as words and © = v to mean that v and v
represent the same element in the semigroup i.e. that uy) = vy. We say that a
subset L of AT is regular if there is a finite state automaton accepting L. To be
able to deal with automata that accept pairs of words and to define automatic
semigroups we need to define the set A(2,$) = ((AU{$}) x (AU{$}))\{($,%)}
where $ is a symbol not in A (called the padding symbol) and the function
da: A" x A* — A(2,$)* defined by

€ if0=m=n
(a1,b1) ... (am,bm) ifo<m=n
(a1,b1) .. (Cmy b)) (8, by1) ... (8,0,) If0<m<n
(ay,b1) ... (an,bp)(ans1,9%) ... (am,$) if m>n>0.

(al...am,bl...bn)(SA:

Let S be a semigroup and A a finite generating set for S with respect to
¥ : AT — S. The pair (A, L) is an automatic structure for S (with respect to

¢) it



e L is a regular subset of AT and Ly = S,
o L_={(a,):a,0 € Ly = [}, is regular in A(2,$)", and

o L, ={(a,p) : a,3 € Lyawa = (3}J4 is regular in A(2,$)" for each a €
A.

We say that a semigroup is automatic if it has an automatic structure. If
(A, L) is an automatic structure for a semigroup S then there is an automatic
structure (A, K) such that each element of S has a unique representative in
K (see [?, Proposition 5.4]); we say that (A, K) is an automatic structure with
uniqueness. We say that a semigroup is prefiz-automatic or p-automatic if it

has an automatic structure (A, L) such that the set

L. = {(wy,w3)04 : w1 € L,wy € Pref(L), w; = wy}
is also regular, where

Pref(L) = {w € A" : ww' € L for some v’ € A*}.

For more details on automatic semigroups the reader is referred to [?] (in-
troduction), [?] (geometric aspects and p-automaticity), [?], [?], [?] (computa-

tional and decidability aspects) and [?], [?] (other constructions).

2 GENERALIZED SEQUENTIAL MACHINES

It is known that the fellow-traveler property, which characterizes automatic
groups, does not characterize automatic semigroups. So we have to use directly
the definition and work with regular languages instead of the Cayley graph to
prove that a semigroup is automatic. Since we are working with semigroup
constructions, we usually have to construct automatic structures from known
automatic structures. For that purpose we use the concept of a generalized
sequential machine.

A generalized sequential machine (gsm for short) is a six-tuple A = (Q, A, B,
i, qo, T) where @), A and B are finite sets, (called the states, the input alphabet
and the output alphabet respectively), p is a (partial) function from @ x A to
finite subsets of Q@ x BT, ¢y € @ is the initial state and T C (@ is the set of



terminal states. The inclusion (¢',u) € (q,a)p corresponds to the following
situation: if A is in state ¢ and reads input a, then it can move into state ¢’
and output wu.

We can interpret A as a directed labelled graph with vertices (), and an
edge ¢ (o), ¢’ for every pair (¢',u) € (q,a)p. For a path

. (a1,u1) (ag,uz) (an,un)
T4 q2 43 ... = Qn+t1

we define
O(7) = aras ... an, S(T) =uius. .. Uy.

)

For ¢q,¢' € Q, u € AT and v € BT we write ¢ —>, ¢’ to mean that there
exists a path 7 from ¢ to ¢’ such that ®(7) = v and X(7) = v, and we say
that (u,v) is the label of the path. We say that a path is successful if it has
the form ¢ MJF t withteT.

The gsm A induces a mapping 74 : P(A") — P(B™") from subsets of A"
into subsets of Bt defined by

Xna={ve B : Gue X)(3te D) (g 22, ).

It is well known that if X is regular then so is Xny4; see [?]. Similarly, A
induces a mapping (4 : P(A"T x AT) — P(BT x B*) defined by

Y4 ={(w,z) € Bt x Bt : (3(u,v) €Y)(w e uns & z € vny)}.

The next lemmas asserts that, under certain conditions, this mapping also

preserves regularity:.

Lemma 2.1 Let A= (Q, A, B, u,qo0,T) be a gsm, andlet ma : (A* X A*)ds —
A* x A* be the inverse of d4. Suppose that there is a constant C such that for

any two paths oy, as in A, we have
()] = [P(az)| = |[E(0n)] = [E(a2)|| < C. (1)

If M C (AT x A1)d4 is a regular language in A(2,$)" then N = Mral40p is
a reqular language in B(2,$)*.



Proor. To prove that N is regular we will define a gsm B such that

Mng = N. First we define three functions with domain B* x B* that will be
used in the definition of B:

(ay...ag b b,))\:{al+1---akif/€>l

€ otherwise,

bps1 ...l >k
(al...ak,bl...bl)p:{ P '

€ otherwise,
(ay...ag,by...b)Kk = (a,b1)...(asbs), s =min(k,I).

We now let B = (R, A(2,%), B(2,%),v,79, Z), where

R=QxQxWxW, W= (U._,B"U{$},
70 = (o, 90, €, €), Z =T xT x{(,9),(5,¢), (5,9)}.

In order to define the transition v, we first extend the transition p to allow
input $:
a)p ifa e A
{ }ifa =
Now the transition v is defined by

((Q7 q’,w,w’), (a7 CL’))I/ U S(ql,u,qi,u’,w,w’) (w7w/ € W\{$})>

((q.4"8,€), (5,d"))v = {((¢q1,8,€), (e,u)dp)} (' #9),

(g1, u)E(d @)

{((q1, ¢, %), (u,€)0p)} (a #5),

(q1,u)e(g,a)p

((¢.4,¢%), (a, 8))v

where ¢,¢' € Q, a,a’ € AU {$}, and

v ')
{((q1, g1, (wu, WU )A, (wu, w'v')p), (wu, w'u')k),
((q1,41,%,9), (wu,wu)op)} if Jwul, [w'u'| >0
{((q1, 1,9, €), (e, wu)dp)}
{((q1, 01,6, %), (wu, €)dp)}

if 0 = |wu| < |w'|
if 0 = |w'/| < |wul

provided [[wu| — [w'v'|| < C, and S(g, ¢ w ww) = O otherwise.



We now prove that N C Mng. Let (v,v")0p € N. By definition of N there
is (u,u’)04 € M such that (v,v) € {(u,u')}Ca. So v € uny and v/ € u'ny.
This means that in A there are paths of the form

(as,w;)

Qi-1 — 4 (i:17"'7m7 a’ieAa wZ€B+)
q;—l ) qg (Z = 17 s T a;‘ S Aa ’LU; € B+)a
with

/ / /

!/
U=0QA]...C0np V=W1... Wy, U = a7 ...Q4,

U’:w’l...wn, q{]:%, QmaquT‘

We now show that there is a successful path in B of the form

((as,a;),wi)

(Qi—la qZ/‘—lv Zi—15 Zz{—l) (qh qua Zis Z;) (Z = 17 cee ap)v

where p = max(m,n) and ¢m = Gui1 = .. = Qp, @ = @y = .. = @
U1 = ... = Gy = ap .y = ... = a, = $, such that the output w;...w, is
equal to (v,v")dp. To begin with we follow a path visiting states from the set
Q x Q x (W\{$}) x (W\{$}) as long as i < p and

|zicwil, |25 wi] > 0. (2)

The output w; in these transitions is the longest prefix of (z;_yw;, z,_,w})dp that
belongs to (B x B)™", z; is equal to the remaining letters in z;_qw; if |z;_yw;| >
|zi_,w!| (otherwise it is €) and 2! is equal to the remaining letters of 2z jw/ if
|zi_jwi| > |zi—1w;| (otherwise it is €). We note that |z;],|2| < C because of
assumption (?7). So after transition ¢, the complete output produced is the
longest prefix of (w; ... w;, w}...w})dp that belongs to (B x B)". If for i =p
condition (?7?) still holds then we set 2, = 2, = § and w, = (2,_1wy, 2, W,)dB,
i.e. the output in this last transition is the remainder of (v,v')dg. The machine
ends in the terminal state (q,,q,,$,$) and the complete output is (v,v')dp.
Suppose now that condition (??) does not hold for some i € {2,...,p}, and
let j be the smallest such. Suppose that 0 = [z;_yw;| < [2]_ wj| (the other case
is similar). Then z;_; = € and, since wy,...,w, € BT, we must have j > m,
a; = $ and w; = e. So the complete output produced until transition j — 1 is
the longest prefix of (v,v")dp that belongs to (B x B)*. By definition of v, we

must have z; = §, 27 = € and the output of transition j — 1 is (e, 2;_,w})dp.
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Now we follow a path visiting states from @ x @ x {$} x {€¢} and output the
remainder (€, w},, ... w,)dp of the word (v,v’)ép ending in the terminal state
(@p> 4, 8, €). Again the complete output is the word (v,v’)d5. We conclude
that (v,v")0p € {(u,v')}ns C Mng.

We now show the converse inclusion M7z C N. First we note that in a
path in B, each transition outputs a word in (B* x BT)dz. Moreover if a word
of the form (w,w’)dp, with |w| < |w'], is output in a transition, then either the
machine enters a state in @ x @ x {$} x {$} and stops or it enters the states of
Q x Q x {3} x {e}, from where it cannot move out, and where the transitions
output words of the form (¢, w)dg. So the complete output of a path is always
a word in (BT x BT)dp, noting that a similar argument applies if the first
output containing a $ is a word of the form (w,w’)dg, with |w| > |w'|.

Now let (v,v")dp € Mng. So there is a successful path in B with label
((u,u")oa, (v,0")dp) with (u,u')d4 € M. We will prove that v € uny and
v € u'ny to conclude that

(v,0)0p € {(u,u')0a}maCa0p € MTaCadp = N,
as required. Let
U=aj...ay, v =dy...a,, p=max(m,n).

By definition of v a successful path in B labeled by ((u,u’)da, (v,v")dg) has
the form

) Medded

(Qi—la qz—hwi—l?wi—l qi, qza wlaw;) (Z = 17 s >p)7

where qo = qo, Gp, @y €T A1 = ... =ap=a = ... =0, =8, @ =...=
Ups Gy = - - = Gy and wy ... wy, = (v,v")dp. This yields successful paths
(ai,z;) .
gi-1 — g; (l—l,...,m)
d g =1, m)

in A, withv=12...2,and v = 2] ...2/. Sov € uny and v' € u'n4, complet-

ing the proof of the lemma. |



3 AUTOMATICITY OF A REES MATRIX
SEMIGROUP

We start this section by stating our first main result.

Theorem 3.1 Let S = M[U; 1, J; P] be a Rees matriz semigroup. If U is an

automatic semigroup and if S is finitely generated then S is automatic.

Let V' be the ideal of U generated by the entries of the matrix P i.e.
V = {spjis’ : 5,8 € Ui € I,j € J}, where U' is the monoid obtained by
adding an identity to U regardless of whether or not U already has an identity.
;From the Main Theorem of [?] we know that S = M[U; 1, J; P] is finitely
generated if and only if U is finitely generated and I, J and U\V are finite.

So the previous theorem has the following equivalent formulation:

Theorem 3.2 Let S = M[U; I, J; P] be a Rees matrix semigroup, where I,.J
are finite sets and U\V is finite, where V is the ideal of U generated by the

entries of the matriz P. If U is an automatic semigroup then S is automatic.

PROOF. Since U is automatic and U\V is finite, by [?, Theorem 1.1], V is an
automatic semigroup. Let (B, K) be an automatic structure with uniqueness
for V', where B = {by,...,b,} is a set of semigroup generators for V. Since V'
is the ideal of U generated by the entries in the matrix P we can write each
b (h € N ={1,...,n}) as by, = sppp,r,s), where sy, s, € U, p, € J, N, € L.
Let Sy = M[UY I, J; P]. Given (I,s,7) € I xV x J we can write s = by, ... by

where by, ...b,, is a word in K. So we can write

h

/

(l787,r) = (l7Sal7pa1)()\al78/alsa27pa2> e ()\ah7sah7r>‘

We note that the elements in the above sequence are elements of S; but some
of them can be outside S. Since U'\V is finite and non empty we can write
UNV ={zy,..., 2} with m > 1. We define a set A = C' U D of semigroup

generators for Sy by

C=A{c;:lel,ie N}U{d;j:i,j € N}U{ejr:j€ N,re J},
D={fi:lel,he{l,....m},reJ}
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with
VAT = Sy, = (Lsi,pi), dij = (N, 8585, 5),
ejr = (Nj, 85,7), fine = (1, 4, 7).

We can define a language L = L; U D to represent the elements of S; with
Ly = {cla,dayas - - - Aay_jonCapr Doy -+ - bay, € K,h > 11 € 1 r € J}.

We are going to prove that (A, L) is an automatic structure for S;. First we

need to prove that L is a regular language. To this end let
LW =N ({ei:i€ N}-A*-{ej, 1 j € N}).

Then we can write

L=(|J "uD

lelred
and it is sufficient to prove that for each [ € I, € J the set L*7) is regular. To
do that we define a gsm A such that Kn4 = L"), Let A = (Q, B, A, i1, qo, {€})
with @ = N U {qo, &}, where qp is the initial state, £ is the only accept state
and p is a partial function from @ x B to finite subsets of ) x A" defined by:

(g0, bi)pp={ (4, cu), (&, cuseir) } (i € N),
(i,0))n =10, dij), (§, dijejr)} (i, € N).

Given u = by, ...b,, € K it is clear that the only word v in A" such
that (u,v) corresponds to the label of a successful path in A is the word
ClorCaras - - - Aay,_yap,Canr € L&) So Kny = L&) and L¢") s a regular lan-
guage.

Given two different words u,us € K, they represent two different elements
s1, 52 € V because we have assumed that (B, K) is an automatic structure with
uniqueness for V. It is clear that the words u;74 and ugn4 in L") represent
the elements (I, sy,r) and (I, s2,7) respectively. It follows that two different
words in L") represent two different elements in {I} x V' x {r}, and hence
that two different words in L represent two different elements in S;. Therefore
L =Ap ={(w,w)ds : w € L} is regular.

To conclude that (A, L) is an automatic structure for S; (with uniqueness)
it remains to show that, given a € A, the language L, is regular. Let ay) =

(lo, S0,70) € S1. Let us fix [ € I and r € J and prove that the language

LU = Lo 0 (LG x A%)o 4

9



is regular. Let w be the only word in K that represents the element p,;,s0 € V.
We know from [?, Proposition 3.2] that K3 is a regular set and we will now
show that

KympCada = LI,

a

where 7 : (B*x B*)0p — B*x B* is the inverse of 5. For by, ...bq, . bs, ... bs
€ K we have

k

(bay - - -bay, b5, - b5, )08 € Ky

&= bqy .. bo, W =bg, ...,

<= (I,bay ... ba,W,0) = (I,bg, ...bg,,70)

<= (1, 5015 Par ) (Aass Sty Sass Pas) - - - (Aap_1s St Sans Par,) Aay s Sty ) (lo, S0, T0)
= (1,58, P8,) (N81s 83,5820 P82) - - - (Ngu1 S, S0 P3) (Mg S, T0)

<= Claydayas - - - Aay,_yap Capr® = C1B, AR 8 - - - Ay, B CBro

> (ba, .. bay, b, .. b )Cada € L&,

We note that in a path in A each transition outputs a word of length 1
except possibly the last that can output a word of length 1 or 2 and so condition
(??) in Lemma ?? holds with C' = 1. Applying Lemma ?? we conclude that
L&) s a regular set.

The set ij””) = Lo N ({frns : h € {1,...,m}} x A*)d 4 is regular because it
is finite. But then

T _(l9r)
L= oY .7,
lel,red lel,red

and so L, is regular.
We conclude that 57 is an automatic semigroup. Since S is a subsemigroup
of S; such that S;\S is finite we can use [?, Theorem 1.1] to conclude that S

is an automatic semigroup. n

Note that Theorem ?? generalises [?, Theorem 7.2], where it is assumed
that U is a monoid and that P contains the identity of U. Another interesting

application of our theorem arises when U is a simple semigroup:

Corollary 3.3 If U is an automatic simple semigroup then every Rees matrix
semigroup M|U; I, J; P] (I and J finite) is automatic. [ |
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Example 3.4 The fundamental four spiral semigroup Sp4 (see Section 8.6 in
[?7]) can be represented as a 2 x 2 Rees matrix semigroup over the bicyclic
monoid B (see [?, Exercise 3.8.19] and [?]). Since B is simple and automatic

([?7, Example 4.2]) it follows that Sp, is also automatic.

4 AUTOMATICITY OF THE BASE SEMIGROUP
IN AN AUTOMATIC REES MATRIX
SEMIGROUP

If S = M[U; 1, J; P] is an automatic semigroup we know by the Main Theorem
of [?] that U must be finitely generated. It is an open question if U is automatic
in general. We prove that U is automatic if we assume that there is an element
p in the matrix such that the principal right ideal pU! generated by p is equal to
U. This assumption includes the case where there is an identity in the matrix,
considered in [?] where the authors are interested in p-automatic monoids. We
also prove that if S is p-automatic then U is p-automatic. It is an open question
if the definitions of p-automatic and automatic coincide for semigroups as
they do for groups and, more generally, for right cancellative monoids; see [?,
Theorem 8.1].

Theorem 4.1 Let S = M[U; 1, J; P] be a semigroup, and suppose that there
is an entry p in the matriz P such that pU' = U. If S is automatic then U is

automatic.

PROOF. Let S; = M[U';1,J; P]. Then S is a subsemigroup of S such that
S1\S is finite. Since S is automatic, by [?, Theorem 1.1], S; is also auto-
matic. Let (A, L) be an automatic structure for S; with uniqueness, where

A={ay,...,a,} is a generating set for S; with respect to
v AT — Sy, ap — (in, snygn) (h=1,...,n).

Then
B:{bl,...7bn}U{CjiZjGJ,iEI}

is a generating set for U! with respect to
¢: BT —USby v sp,cji—pj (h=1,...,n, j€ Jiel)

11



see [?, Proposition 2.2]. Without loss of generality we can assume that pj; = p.
Let
Ly =LNn({1} x U x {1}y

This set is regular because

(D x U x (1)) ={an € A:ip=1}- A" {ap € A: jp = 1JU
{CLhEAIih:jh:1}.

Let

. At +.
J AT = BT a0,Gay - - - Qay, 7 00y Cloiny Das - - Gy iay, Do, -

We define K = Ly, f and prove that (B, K) is an automatic structure with
uniqueness for U! with respect to ¢. We observe that f : L;; — K is a
bijection and K represents the elements of U! with uniqueness. In fact, if
a word w € Lj; represents the element (1,s,1) € {1} x U x {1} then the
corresponding word wf in K represents the element s € U'.

Next we show that K is a regular language by defining a gsm A such that
Lyna =K. Let A= (Q,A, B, u,q0,{x}) with Q@ = {qo, x} U J, where ¢q is
the initial state, x is the only accept state and the transition p is a partial
function from @ x A to finite subsets of @) x B™ defined by:

<QO7 ah):u: {(jf“n bh)? (X7 bh)} (h € {17 SR >n})7
(Jy an)p=A{(n, ¢ji,bn), (X: i bn) } (7 € L h €{1,....n}).

Given a word

U= Qo Qay - - - Qg € L1

there is a unique successful path « in A such that ®(«a) = u.
This path is

(aoqvbal)

o ——— X
for h=1 and

(@aqsbay) . (aay Ciaq tag bag)

do Jai Joag — -
(aﬂh717cjah72iah71bah,1) . (aahvcjahfliah bah)
jo‘h—l

12



for h > 1, and its output is
E(CM) = balcjalia2 ba2 c Cjah,liahbah = uf e K.

We conclude that K = Li1n4 is regular, as claimed.

We now start proving that K is regular for b € B . If bp = 1 then K, = K_
and it follows from the uniqueness of K that K is regular. If b¢ # 1 then
bp € U = p;;U' and we can write b = pyys for some s € U'. Since (1,s,1)
is an element of S there is a word w € L that represents the element (1,s,1).
We know by [?, Proposition 3.2] that Ly is a regular language. Let us consider
the regular language H = Lz N (L1y X L11)d4 and prove that Hra(40p = K.

For aq,aay - - - Gq,,ap,a8, ... ag, € L1 we have

(Ao Aoy - - - Qay, QB A, - . g, )04 € H
> Qo  Gay - - - Qo W = g, Ag, - .. Ag,
<= (1, Says Jo1 ) (tags Sags Jag) - - - (Fays Say, 1) (1,5, 1)
= (L, 580,38 )82, 5855 98,) - - - (s s 1)
= (bay Cja,ia,y DasClayiag - - - Do s V51 Cis, i, 0 Cigyig, - - bg)0p € Ky
= (o Gay - - - Qo A3, A3, - - - 05, )Ca0B € K.

Since in any path in A only the first transition can output a word of length
1 and all the others output words of length 2 we can apply Lemma 7?7 with
C' = 1 and conclude that K} is a regular language. So U' is an automatic

semigroup and, by [?, Theorem 7.2, U is automatic. |

Note that Theorem ?7? generalizes [?, Theorem 7.4], where it is assumed
that U is a monoid and that P has a row and a column consisting entirely of

ones.

Theorem 4.2 Let S = M[U;1,J; P] be a Rees matrixz semigroup. If S is

prefiz-automatic then U is prefix-automatic.

PRrROOF. By [?, Corollary 5.4] we can fix a prefix-automatic structure with
uniqueness (A, L) for S. We define A, ¢, B, ¢, L11, f, A and K as in the proof of
the previous theorem just replacing U! by U and S; by S in the definitions, and
assume that 1 [4 is injective. We will prove that (B, K) is a prefix-automatic

structure with uniqueness for U with respect to ¢. We have proved that K is
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regular, that ¢ [ is injective and that f is a bijection, without using the fact

that U! is a monoid. So we just have to prove that
Ky = {(v1,v2)0p 1 v1,v2 € K,v1b = v}

is a regular language for b € B to conclude that U is automatic. We start by
writing K} as a finite union of sets which we then prove are regular. We can

write
Ky = {(w1 f,waf)dp : wi,ws € Ly, (w1 f)b=waf}.
Let Ay = {an, € A: j, =1}. We define

K} = {(w f,waf)0p € Ky : wy € ATa}
for a € A;. We also define K} = K, N (B x B*)dp. It is clear that

K= () K UEK,.

acA,

The language K} is regular because it is finite. Let us fix an element a € A,
with ay) = (I, s,1), and prove that K is a regular set. Let w be the only word
in L representing ([, sb, 1). The set

L. = {(wi,w3)d4 : w1 € L,wy € Pref(L), w; = wo}

is regular by hypothesis and the set Lz is regular by [?, Proposition 3.2]. So
the set

D ={(w],ws)d4 : (Fw] € A*)((wh,w)ds € L7 & (w],w3)d4 € L)}
is regular by [?, Proposition 2.3], where
T:A2,9)" — A(2,%)%; (a,b) — (b,a)
is the homomorphism that swaps coordinates. The set
E = {(wia,ws)d4 : (w],we)ds € D}
is also regular, since we can write
E = {(w1,ws)d4 : (Bw] € A")((wy,w})ds € F & (w},we)da € D)},
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where F' = {(wa,w)d, : w € A*} is a regular set.

We now use the regular set
H=FEn (LH X L11)5A

to prove that Ly is regular by showing that Hr (40 = K. We note that we
can write H = {(wy,w3)04 : w1, wy € Ly & wy = wia & wjw = ws} and so

for an, a4, - .. aa,,asa8, . ..as, € L1; we have

(G Qay - - - oy, QB A, - . g, )04 € H
>, =a & a0y - ..o, W= 0, ag, ...03,
= aa, =0 & (1,801, Jor) (Gass Sass Jas) - - - (Gap_1s San_vs Jan—1) Gy, s Say b, 1)
= (L, 58,98, (i825 5825 ) - - - (i3, 5,5 1)
o, =ak SonPjayiay SazPjayiag - - - Sayb = S61Pjp,ip, S82Pisyis, + - - 5Bk
=g, = 0 & (A1 Qay - - - oy, ) )b = (ap,ap, ...as,)f
= (A0, Aoy - - - Ay, A3, QB, - - - a5, )Ca0B € K.

So we have Hrs(40p = K and we can use Lemma ?? to conclude that K} is
regular. Therefore K, is regular and U is an automatic semigroup.
To prove that U is prefix-automatic we prove that K’ 7 is a regular set.

We begin by writing it as a union of sets which we then prove are regular:
Klr=(JXuo)UYUZ
i,b,c
where
Xiipe) = {(wr1,w2)p € KL7: (3 € {1,...,n}) (w1 € Btbacy,ibc)}
Y = {(wy,ws)dp € KL.7: (3 € {b,...,b,}) (w1 € BTb)}
Z ={(w1,w9)dp € K7 : |wy| <5}

forie I,be{by,....bn},c€{c;i:je Jiel} Letusfixibandcandlet w
be the (unique) word in L representing (i,bc, 1). Defining L. = {(u1,us)d4 :
uy € Pref(L),us € L,u1w = uy} and observing that for wy € Pref(K),wy; € K

with w; = balcja1 bay - - - bahcjahibc and wy = bﬁlcjﬁl% bg, ... b, we have

oy
W1 = W2

— (17 50117j0(1) s (iah7sah7jah)(i7bc7 1) = (17 S,Bl7j/31> S (jﬁwsﬁk? 1)
Q- O, W= Qg ... a8,

<= (Qay - - - Qay,, g, -0, )04 € LN (Pref(Lyq) X Lq1)0a,
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we can write

-----

(Pref(Ln) X L11)5A}).
The sets (Pref(Ly1) X L11)0a, (BT{bacj,ibc} x BT)dp and (Pref(K) x K)ip

are regular by [?, Proposition 2.2]. The set L. is regular because we can write
L= {(u1,u9)d4 : Guz € AY)((u1,u3)04 € L7 & (u3,us)04 € L)}

and use [?, Proposition 3.2]. The set N = (L N (Pref(Ly11) X L11)d4)maCa05

is regular by Lemma ?? and so for a fixed o € {1,...,n} the set

{(wlcjaibc, w2)53 . (wl, w2)(5B € N}
= {((urf)cjpibe, uaf)op : (ur,ug)da € Ly N (Pref(Lyr) x L11)0a}

is also regular. Hence X(; ;) is regular. We note that Y = (L_7N(Pref(Lq) x
L11)04)mal40p and by Lemma ?7 it is regular. Since Z is finite it is proved

that K’ is regular and so U is prefix-automatic. |

5 REES MATRIX SEMIGROUPS WITH ZERO

In this section we show that the previous results are still valid if we consider
Rees matrix semigroups with zero. The Rees matrix semigroup with zero
S = MOU; 1, J; P] over the semigroup U, where P = (pj;)jesicr is a matrix
with entries in U° (U with a zero adjoined to it), is the semigroup with the

support set (I x U x J) U {0} and multiplication defined by

l 7 T162 ) ‘f 102 07
(ll,Sl,Tl)(lg, 82,7’2) _ ( 15 81Pr 15,52 7“2)1 Drii 7&
0 otherwise,

(l1,81,7"1)0 = 0([2, 82,7‘2) =0-0=0.

Alternatively, S can be viewed as the Rees quotient S’/M, where S = M[U%; I,
J; P] (a Rees matrix semigroup without zero), and M = I x {0} x J (an ideal).

With this in mind, the following result from [?] will prove useful:
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Proposition 5.1 If S is an automatic semigroup and if I is a finite ideal of

S then S/I is automatic as well.

In general the converse does not hold; see [?]. However, in our context it

does:

Proposition 5.2 If S = M°[U; I, J; P] is automatic (resp. prefiz-automatic)
then so is T = M[U% I, J; P).

PRrROOF. First we note that S has an automatic (resp. prefix-automatic)
structure with uniqueness of the form (AU {¢}, L U {¢}), where ¢ represents 0,
and no element of A or L represents 0. Indeed, let (B, K) be any automatic
structure with uniqueness for S, and let w be the only element of K represent-
ing 0. Define A={be€ B:b#0}and L = K\{w}. That (AU {¢},LU{t})
is an automatic structure with uniqueness for S follows from Propositions 5.8
and 5.7 and Corollary 5.2 in [?]. Moreover, if (B, K) is a prefix-automatic
structure for S, then so is (AU {¢}, L U{¢}), because

(LU{H) = (K.\{(u,v)04 € KL : v € Pref(w)}) U{(¢,¢)},

and the set {(u,v)d4 € K_ : v € Pref(w)} is finite.
If A={ay,...,a,}, and if a; is mapped onto (ip, s, jn), then obviously T
is generated by the set C' = AU {1;; : ¢ € I,j € J} under the mapping
ap — (ihashvjh>a lij — (@,O,])
Let also
M:LU{LiinEI,jE J}

Clearly, M represents 1" with uniqueness.

Denoting for a moment the multiplication in 7" by % we see that

(L1, s1,7m1)(lg, s2,72)if (11, 51,71)(l2, S2,72) # 0,
(11,0,79) otherwise.

(51,51,7”1) * (52, 3277”2) = {

Therefore, using the regular sets

L'=Ln{a,€A:i,=13A* (1),
Len0 = Ly € AY 2 (w,1)04 € (LU {1})a,} (an € A),

17



we see that

Ma, = (LU {t})a, N (AT x AT)64) U (U, (LF 0 L) 5 {uy, 1) )U
{(bij, bij,) i €1, je J},
M,,; = Uy (L' x {ujDoe) U{(ur, i) L€ Ir € T}

are all regular, and so (C, M) is an automatic structure for 7. Moreover, if
(AU{c}, LU {}) is a prefix-automatic structure for S then

M/: = ((LU {L})/: N (A+ X A+>5A) U {(Lijabij) 11 E I,] € J}
is also regular, so that (C, M) is a prefix-automatic structure for 7. |

Combining the above two propositions with Theorems 7?7, ?? and ?7, we

obtain the following result:

Theorem 5.3 Let S = MO[U; I, J; P] be a Rees matriz semigroup with zero.

(i) If U is automatic and if S is finitely generated then S is automatic as

well.

(ii) If S is automatic and there is an entry p in the matriz P such that
pU' = U then U is automatic.

(iii) If S is prefiz-automatic then U is prefiz-automatic. [ |
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