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On the injectivity of the Leibniz operator

Abstract

The class of weakly algebrizable logics is defined as the class of logics having monotonic
and injective Leibniz operator. We show that “monotonicity” cannot be discarded on this
definition, by presenting an example of a system with injective and non monotonic Leibniz
operator.

We also show that the non injectivity of the non protoalgebraic inf-sup fragment of

the Classic Propositional Calculus, CPC∧∨, holds only from the fact that the empty set is

a CPC∧∨-filter.

1. Introduction

An important paradigm in algebraic logic is the Lindenbaum-Tarski process for
building Boolean algebras from the classical propositional logic. A main aim on
abstract algebraic logic is the study of the generalization of this process for other
deductive systems. This study has lead to the establishment of an algebraic hier-
archy defined by properties of the Leibniz operator. The relevant classes of this
hirarchy for the present note are the class of protoalgebraic logics and the class of
weakly algebraizable logics.

Relevant references about this subject are the papers by Blok and Pigozzi [2]
and [3]; Czelakowski’s book, Protoalgebraic Logics [6] and the paper [5]; Hermann’s
papers [14] and [15], the book A General Semantics for Sentential Logic by Font
and Jansana [10] and the survey [11] by Font, Jansana and Pigozzi.

We follow the notation by Blok and Pigozzi in [1]. Some basic definitions and
proofs of well known results will be omitted. However, references are provided.

We begin by stating some definitions and results about algebraic logic we require.
Then we study the {∨,∧,¬,>,⊥}-fragment of the Intuitionistic Propositional Cal-
culus, IPC∗, and we show that its Leibniz operator is injective but not monotonic.
Therefore, the class of weakly algebraizable logics may not be simply defined as the
class of logics with injective Leibniz operator. Finally, we show that the non injec-
tivity of the inf-sup fragment CPC∧∨ of the Classic Propositional Calculus follows
from the fact that the empty set is a CPC∧∨-filter.

1The authors wish to thank Don Pigozzi and Isabel Ferreirim for some fruitful discussions
concerning this work.
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2. Preliminaries

Let Λ = {ωi : i ∈ I} be a (countable algebraic similarity) language, a set of
finitary connectives with associated natural numbers called their arity, and let V =
{x1, x2, x3, ...} be a countable infinite set of (propositional) variables. An algebra
A of type Λ consists of a set A and, for each element w ∈ Λ, a function from An to
A where n is the arity of w.

We denote by Fm(Λ) the set of formulas over Λ with variables in V and, defining
the operations on Fm(Λ) in the usual way, we obtain an algebra over the language
Λ, called the formula algebra, that we denote by Fm(Λ). We write δ(x0, . . . , xn) to
denote a formula whose variables belong to the set {x0, . . . , xn}. An equation over
Λ is a pair 〈δ, ε〉, with δ, ε ∈ Fm(Λ), which we denote by δ ≈ ε.

The algebra Fm(Λ) has the universal mapping property over V , i.e. for any
algebra A, of type Λ, with domain A, and any mapping h : V → A, there is a unique
homomorphism from Fm(Λ) into A, also denoted by h. For each δ(x0, . . . , xn) ∈
Fm(Λ) we denote by δA(a0, . . . , an) its image by h, for any h such that h(xi) =
ai (i = 0, . . . , n).

A matrix over Λ is a pair A = 〈A, F 〉, where A is an algebra of type Λ and F
is a subset of A. The algebra A is called the algebraic reduct of A and the set F is
called the designated filter of A. A congruence relation θ on A is compatible with
F if for any two elements a, a′ ∈ A such that a θ a′, either a, a′ ∈ F or a, a′ /∈ F .

For a matrix A = 〈A, F 〉 the Leibniz congruence on A over F is the largest
congruence relation on A compatible with F ; we denote it by ΩA(F ) or simply by
Ω(F ). For an algebra A the Leibniz operator ΩA is defined by

ΩA : P(A) → Cong(A)
F 7→ ΩA(F ).

The Leibniz operator ΩA is injective if it is an injective map and it is called mono-
tonic if

∀ F, G ∈ P(A), F ⊆ G ⇒ ΩA(F ) ⊆ ΩA(G).

A (finitary) deductive system is a pair S = 〈Λ,`S〉, where Λ is a language and `S
is a structural (or substitution-invariant) finitary consequence relation (a finitary
deductive system can also be defined by axioms and inference rules, see [2]). We
write ∆ `S δ (or simply ∆ ` δ) to mean that the pair 〈∆, δ〉 belongs to `S .

By a theorem of S we mean a formula ϕ such that ∅ `S ϕ; we denote by Thm(S)
the set of all theorems. A set of formulas Γ is said to be closed under the consequence
relation `S if Γ `S ϕ implies ϕ ∈ Γ and it is called a theory of S or an S-theory.
The set of all theories of S is denoted by Th(S). Given any set of formulas Γ, the set
of all consequences of Γ, ConS(Γ), is the smallest theory that contains Γ. Clearly,
ConS(Γ) = {ϕ : Γ `S ϕ}.

Let Λ and Λ′ ⊆ Λ be two languages and let S be a deductive system over Λ.
The Λ′-fragment S ′ of S is the deductive system with language Λ′ and consequence
relation `S′ defined by:

Γ `S′ ϕ iff Γ `S ϕ (Γ ⊆ Fm(Λ′), ϕ ∈ Fm(Λ′)).
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Given a matrix A = 〈A, F 〉, a formula ϕ is a (semantic) consequence of a set
of formulas Γ, and we write Γ |=A ϕ, if for every mapping h : V → A, h(ϕ) ∈ F
whenever h(δ) ∈ F for every δ ∈ Γ. We call A a model of a formula ϕ if ∅ |=A ϕ
and we write A |= ϕ.

Let K be a class of matrices over a language Λ. A formula ϕ is a consequence of
a set of formulas Γ in K, and we write Γ |=K ϕ, if for every matrix A ∈ K, Γ |=A ϕ.

Let S be a deductive system over a language Λ. A matrix A is an S-matrix (or
a model of S) if the consequence in S implies the semantic consequence in A, i.e.,
Γ ` ϕ ⇒ Γ |=A ϕ. The class of all S-matrices is denoted by Mod(S). An S-matrix
A = 〈A, F 〉 is reduced if Ω(F ) = idA and we denote by Mod∗(S) the class of all
reduced S-matrices. A set F ⊆ A such that 〈A, F 〉 ∈ Mod(S) is called an S-filter
of A. The set of all S-filters of A is denoted by FiS(A).

3. Injectivity for non protoalgebraic logics

A deductive system S is said to be protoalgebraic if the restriction of ΩFm to the set
of theories of S is monotonic. The subclass of the protoalgebraic logics for which this
restriction of ΩFm is also injective is called the class of weakly algebraizable logics.
We say that a deductive system S has injective Leibniz operator (for simplicity, we
say that S is injective) if for any algebra A, the restriction of ΩA to the set FiS(A)
is injective. In the context of protoalgebraic logics it was shown that the injectivity
of the restriction of ΩFm to the set of theories of S implies the deductive system to
be injective (see [7, Theorem 4.7]).

Lemma 1 ([6]). Let S be a deductive system. Then S is protoalgebraic if and only
if for all F ⊆ Th(S), Ω(

⋂F) =
⋂ {

Ω(T ) : T ∈ F}
.

As a consequence we have:

Proposition 2. If S is protoalgebraic then Ω(Th(S)) is closed under (arbitrary)
intersections.

The converse of this proposition holds in the case where the S-theories are
definable by a set of equations in the sense of the following definition:

Definition 3. Let K be a set of matrices over a language Λ. We say that the filters
of the matrices in K are equationally definable by a set of equations E =

{
δi(x) ≈

εi(x) : i ∈ I
}

if for each matrix A = 〈A, F 〉 ∈ K we have:

F =
{

a ∈ A : for all δ ≈ ε ∈ E(x), δA(a) ≡ εA(a)
(
Ω(F )

)}
.

This notion of equational definability generalizes the concept of explicit defin-
ability of the truth predicate introduced by Czelakowski and Jansana in [7] (see also
[6]). Moreover, if all the matrices in K are reduced the two notions coincide.

It is not difficult to see that equationally definability implies injectivity in the
following sense:
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Proposition 4. Let S be a deductive system over Λ. If the class of all models of S
has equationally definable filters by a set of equations, then for any algebra A, the
restriction of ΩA to the S-filters of A is injective.

For the class of all models having the algebraic part being the set of formulas,
with filters equationally definable, protoalgebraicity (monotonicity) can be charac-
terized by the condition of Ω(Th(S)) being closed under finite intersections.

Theorem 5. Let S be a deductive system over Λ. Assume that the class of all
models of S, of the form 〈Fm(Λ), T 〉 has equationally definable filters by a set of
equations E. Then, S is protoalgebraic if and only if Ω(Th(S)) is closed under
finite intersections.

Proof. By Proposition 2, for any protoalgebraic system S, Ω(Th(S)) is closed under
finite intersections.

Assume now that Ω(Th(S)) is closed under finite intersections. Let T,G ∈
Th(S) such that T ⊆ G and F = {F, G}. Since Ω(Th(S)) is closed under finite
intersections,

⋂
Ω(F) = Ω(T ) ∩ Ω(G) = Ω(H), for some H ∈ Th(S). Moreover,

a ∈ H if and only if for all δ ≈ ε ∈ E, δA(a) ≡ εA(a)
(
Ω(H)

)
. That is, for all

δ ≈ ε ∈ E, δA(a) ≡ εA(a)
(
Ω(T ) ∩ Ω(G)

)
. This implies that for all δ ≈ ε ∈

E, δA(a) ≡ εA(a)
(
Ω(T )

)
. Hence a ∈ T and so H ⊆ T . Let now a ∈ T . Since

T ⊆ G, a ∈ G. Hence, for all δ ≈ ε ∈ E, δA(a) ≡ εA(a)
(
Ω(T )

)
and for all δ ≈ ε ∈

E, δA(a) ≡ εA(a)
(
Ω(G)

)
. Then for all δ ≈ ε ∈ E, δA(a) ≡ εA(a)

(
Ω(T ) ∩ Ω(G)

)
which means that δA(a) ≡ εA(a)

(
Ω(H)

)
and so T ⊆ H.

Therefore T = H and thus Ω(T ) = Ω(H) = Ω(T ) ∩ Ω(G) ⊆ Ω(G). Hence, S is
protoalgebraic.

3.1. Injective deductive systems

One important question related to the class of weakly algebraizable logics can be
formulated: “Is injectivity enough to guarantee monotonicity?” We will show below
that the answer is “no” by giving an example of a deductive system that is injective
but not protoalgebraic.

Very few examples of non protoalgebraic deductive systems have been investi-
gated. Among them we have: the inf-sup fragment of the Classic Propositional
Calculus (CPC∧∨) (see [9], [10] and [13]); Belnap’s Logic (see [8] and [10]), the
{∨,∧,¬,>,⊥}-fragment of the Intuitionistic Propositional Calculus IPC, denoted
by IPC∗ (see [2], [10] and [17]). Recently, Positive Modal Logics and some Subin-
tuitionistic Logics have also been investigated (see [4], [16]).

If a deductive system does not have theorems, then each algebra A has non
injective Leibniz operator, since the Leibniz congruence for both the empty set and
the universal set is the universal congruence. An immediate consequence is that an
injective deductive system most have theorems. It is well known that the deductive
system IPC∗ has theorems. We will show that it is injective.

Proposition 6. Let S be a deductive system such that for every algebra A there
is at most one reduced S-matrix with algebraic reduct A. Then S is injective.
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Proof. Suppose that S is not injective. That is, there exists an algebra A such
that ΩA is not injective. Hence, there are F1, F2 ∈ FiS(A) such that F1 6=
F2 and ΩA(F1) = ΩA(F2). Let A1 = 〈A, F1〉 and A2 = 〈A, F2〉. Clearly,
A1 and A1 are S-matrices. Moreover, the matrices 〈A/ΩA(F1), F1/ΩA(F1)〉 and
〈A/ΩA(F2), F2/ΩA(F2)〉 are reduced S-matrices with the same algebraic reduct
A/ΩA(F1) (= A/ΩA(F2) ) and such that F1/ΩA(F1) 6= F2/ΩA(F2), a contradic-
tion.

The following result, proved by Rebagliato and Verdú in [17], characterizes the
reduced IPC∗-matrices (PCDL denotes the variety of the pseudocomplemented dis-
tributive lattices).

Theorem 7 ([17]). The following are equivalent:

(i) A = 〈A, F 〉 is a reduced IPC∗-matrix;

(ii) (a) A ∈ PCDL;
(b) F = {1} and
(c) ∀ a, b ∈ A, if a < b then there exists c ∈ A, c 6= 1, that satisfies c ∧ a = a
and (c ∨ b) ∧ ¬(¬a ∧ b) = ¬(¬a ∧ b).

From this theorem we conclude that for every algebra A there is at most one
reduced IPC∗-matrix with algebraic reduct A. Moreover, when such reduced matrix
exists, it is equal to 〈A, {1}〉. Hence, by Proposition 6, IPC∗ is injective. Therefore,
IPC∗ is an example of a deductive system which is non protoalgebraic but injective.

3.2. Non protoalgebraic deductive systems without theorems

As we pointed out above, there are non protoalgebraic systems without theorems,
which obviously are non injective. Since the non injectivity is shown by using that
Ω(∅) = Ω(Fm(Λ)), it is natural to investigate the injectivity of the restriction of the
Leibniz operator to the set of non empty S-filters.

We say that a deductive system is quasi-injective if for every algebra A, the
restriction of ΩA to FiS(A) \ {∅}, ΩA : FiS(A) \ {∅} → Cong(A), is injective.

We will need the following result, proved by Font and Jansana in [10], that
characterizes the algebraic reducts of the CPC∧∨-matrices:

Theorem 8 ([9]). The class of algebraic reducts of the reduced CPC∧∨-matrices
is the class of distributive lattices with maximum 1 such that for every a, b ∈ A, if
a < b then there is c ∈ A, with a ∨ c 6= 1 and b ∨ c = 1.

On the other hand, if A is not a trivial algebra then A = 〈A,∅〉 can not be a
reduced CPC∧∨-matrix, since ΩA(∅) = A2 6= ∆A.

Next proposition is a weaker version of a result in [9] that characterizes CPC∧∨-
matrices:

Proposition 9 ([9]). Let A be an algebra and A = 〈A, F 〉 a reduced CPC∧∨-
matrix. If A is non trivial then F = {1}, otherwise F = ∅.
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Now, we are able to state our final result about the injectivity of the Leibniz
operator on CPC∧∨.

Theorem 10. CPC∧∨ is quasi-injective.

Proof. Let A be an algebra. If A is not trivial the statement follows from Propo-
sition 9 and Proposition 6. If A = {a} then FiCPC∧∨(A)\{∅} = ∅ and, obviously,
ΩA : FiCPC∧∨(A) \ {∅} → Cong(A) is injective.

In the previous subsection we saw that the non injectivity of the Leibniz operator
of the deductive system CPC∧∨ follows only from the fact that the empty set is a
CPC∧∨-filter. It is not expected that it happens for any deductive systems without
theorems, since CPC∧∨ is a very particular case of a non protoalgebraic fragment
of an algebraizable logic. In fact, Belnap’s logic, [8], is an example of a deductive
system, without theorems, which is not quasi-injective. Moreover, not all fragments
of an algebraizable logic are quasi-injective. For example, the trivial fragment of
CPC, CPC∅, is not quasi-injective. It would be interesting to find a characterization
of quasi-injective deductive systems.
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