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Abstract

In this paper we give a description of all subsemigroups of the bicyclic monoid

B. We show that there are essentially five different types of subsemigroups. One

of them is the degenerate case, and the remaining four split in two groups of two,

linked by the obvious anti-isomorphism of B. Each subsemigroup is characterized

by a certain collection of parameters. Using our description, we determine the reg-

ular, simple and bisimple subsemigroups of B. Finally we describe algorithms for

obtaining the parameters from the generating set.
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1 Introduction

The bicyclic monoid B is defined by the presentation 〈b, c | bc = 1〉. A natural set of

normal forms is {cibj : i, j ≥ 0} and we shall identify B with this set. The normal forms

multiply according to the following rule:

cibjckbl =

{
ci−j+kbl if j ≤ k

cibj−k+l if j > k.

The bicyclic monoid is one of the most fundamental semigroups. It is one of the main

ingredients in the Bruck–Reilly extensions (see [7]), and also the basis of several general-

izations; see [1],[2],[5],[6]. In [8, Sec 3.4] references are given to a number of applications

of the bicyclic monoid to topics outside semigroup theory. The bicyclic monoid is known

to have several remarkable properties, one of which is that it is completely determined

by its lattice of subsemigroups; see [10] and [11]. Also, in [9] the authors study properties

of a specific subsemigroup of B. Slightly surprisingly, there seems to be little other work

in literature regarding the subsemigroups of B.
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In this paper we give a description of all subsemigroups of B. We show that there are

essentially five different types of subsemigroups. One of them is the degenerate case of

subsets of {cibi : i ≥ 0}, and the remaining four split in two groups of two, linked by the

obvious anti-isomorphism ̂ : cibj 7→ cjbi of B. Each subsemigroup is characterized by a

certain collection of parameters. We describe algorithms for obtaining these parameters

from the generating set.

The paper is organized as follows. In Section 2 we define a series of distinguished

subsets of B, which are then used as a kind of building blocks, and then we state our

main theorem in Section 3. Section 4 contains the auxiliary results needed to prove

the main theorem. In Sections 5 and 6 we respectively consider the two non-degenerate

types of subsemigroups. In Section 7 we determine, using our description, the regular,

simple and bisimple subsemigroups of B. Finally, Section 8 contains the algorithms for

the computation of parameters. The classification of subsemigroups is used in the forth-

coming paper [3] to investigate some properties of subsemigroups of B, such as finite

presentability and automaticity.

2 Distinguished subsets

In this section we introduce the notation we will need throughout the paper. In order to

define subsets of the bicyclic monoid we find it convenient to represent B as an infinite

square grid, as shown in Figure 1. We start by defining the functions Φ,Ψ, λ : B → N0

by Φ(cibj) = i, Ψ(cibj) = j and λ(cibj) = |j − i| and by introducing some basic subsets

of B:

D = {cibi : i ≥ 0} − the diagonal ,

U = {cibj : j > i ≥ 0} − the upper half,

Rp = {cibj : j ≥ p, i ≥ 0} − the right half plane (determined by p),

Lp = {cibj : 0 ≤ j < p, i ≥ 0} − the left strip (determined by p),

Md = {cibj : d | j − i; i, j ≥ 0} − the λ-multiples of d,

for p ≥ 0 and d > 0.

We now define the function̂ : B → B by cibj 7→ ĉibj = cjbi. Geometrically ̂ is

the reflection with respect to the main diagonal. So, for example, Û is the lower half.

Algebraically this function is an anti-isomorphism (x̂y = ŷx̂), as is easy to check.

By using the above basic sets and functions we now define some further subsets of B

that will be used in our description. For 0 ≤ q ≤ p ≤ m we define the triangle

Tq,p = Lp ∩ R̂q ∩ (U ∪ D) = {cibj : q ≤ i ≤ j < p},

and the strips

Sq,p = Rp ∩ R̂q ∩ L̂p = {cibj : q ≤ i < p, j ≥ p},

S′
q,p = Sq,p ∪ Tq,p = {cibj : q ≤ i < p, j ≥ i},

Sq,p,m = Sq,p ∩ Rm = {cibj : q ≤ i < p, j ≥ m}.
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Figure 1: The bicyclic monoid
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Note that for q = p the above sets are empty. For i,m ≥ 0 and d > 0 we define the lines

Λi = R̂i ∩ L̂i+1 = {cibj : j ≥ 0},

Λi,m,d = Λi ∩ Rm ∩ Md = {cibj : d | j − i, j ≥ m}

and in general for I ⊆ {0, . . . ,m − 1},

ΛI,m,d =
⋃

i∈I Λi,m,d = {cibj : i ∈ I, d | j − i, j ≥ m}.

For p ≥ 0, d > 0, r ∈ [d] = {0, . . . , d − 1} and P ⊆ [d] we define the squares

Σp = Rp ∪ R̂p = {cibj : i, j ≥ p},

Σp,d,r = Σp ∩ (

∞⋃

u=0

Λp+r+ud) ∩ (

∞⋃

u=0

̂Λp+r+ud) = {cp+r+udbp+r+vd : u, v ≥ 0},

Σp,d,P =
⋃

r∈P Σp,d,r = {cp+r+udbp+r+vd : r ∈ P ;u, v ≥ 0}.

Some of our subsetes are illustrated in Figures 2 and 3.

Finally, for X ⊆ S, we define ι(X) = min(Φ(X ∩ U)) (if X ∩ U 6= ∅) and κ(X) =

min(Ψ(X ∩ Û)) (if X ∩ Û 6= ∅).

3 The main theorem

We now state our main theorem, that will be proved in the following sections.

Theorem 3.1 Let S be a subsemigroup of the bicyclic monoid. Then one of the following

conditions holds:

1. The subsemigroup is a subset of the diagonal; S ⊆ D.

2. The subsemigroup is a union of a subset of a triangle, a subset of the diagonal

above the triangle, a square below the triangle and some lines belonging to a strip

determined by square and the triangle, or the reflection of this union with respect

to the diagonal. Formally there exist q, p ∈ N0 with q ≤ p, d ∈ N, I ⊆ {q, . . . , p−1}

with q ∈ I, P ⊆ {0, . . . , d − 1} with 0 ∈ P , FD ⊆ D ∩ Lq, F ⊆ Tq,p such that S is

of one of the following forms:

(i) S = FD ∪ F ∪ ΛI,p,d ∪ Σp,d,P ;

(ii) S = FD ∪ F̂ ∪ Λ̂I,p,d ∪ Σp,d,P .

3. There exist d ∈ N, I ⊆ N0, FD ⊆ D ∩Lmin(I) and sets Si ⊆ Λi,i,d (i ∈ I) such that

S is of one of the following forms:

(i) S = FD ∪
⋃

i∈I

Si;

(ii) S = FD ∪
⋃

i∈I

Ŝi;
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Figure 3: The λ-multiples of 3, M3, and the square Σ1,3,{0,1}
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where each Si has the form

Si = Fi ∪ Λi,mi,d

for some mi ∈ N0 and some finite set Fi, and

I = I0 ∪ {r + ud : r ∈ R, u ∈ N0, r + ud ≥ N}

for some (possibly empty) R ⊆ {0, . . . , d − 1}, some N ∈ N0 and some finite set

I0 ⊆ {0, . . . , N − 1}.

We start by observing that if S ⊆ D then there is nothing to describe because any

idempotent cibi is an identity for the square Σi below it.

Condition 2. corresponds to subsemigroups having elements both above and below

the diagonal; we call them two-sided subsemigroups. We observe that a subsemigroup

defined by condition 2.(ii) is symmetric to the corresponding subsemigroup given by

condition 2.(i) with respect to the diagonal, and so we can use the anti-isomorphism ̂ to

obtain one from the other. Therefore we only need to consider subsemigroups that fall

in one of these two categories. The description of two-sided subsemigroups is obtained

in Section 5.

We call upper subsemigroups those having all elements above the diagonal and lower

subsemigroups those having all elements below the diagonal. Condition 3. corresponds

to upper and lower subsemigroups. Again conditions 3.(i) and 3.(ii) give subsemigroups

symmetric with respect to the diagonal and so only one of them will have to be considered.

Upper subsemigroups are dealt with in Section 6.

4 Auxiliary results

In this section we will prove some useful properties of the subsets defined in Section 2.

Lemma 4.1 For any d ∈ N the λ-multiples of d, Md, is a subsemigroup.

Proof. Let cibj , ckbl ∈ Md. Then d | i− j and d | k− l. If j > k then cibjckbl = cibj−k+l

otherwise cibjckbl = ci−j+kbl. In any case cibjckbl ∈ Md because d | i − j + k − l. �

Lemma 4.2 For any p ∈ N the right half plane Rp and the strip S′
0,p are subsemigroups.

Proof. Let x = cibj , y = ckbl ∈ Rp (j, l ≥ p). If j ≥ k then xy = cibj−k+l ∈ Rp since

j − k + l ≥ l ≥ p. If j < k then xy = ci−j+kbl ∈ Rp since l ≥ p. Therefore Rp is

a subsemigroup. Let x = cibj , y = ckbl ∈ S′
0,p (i, k < p, j ≥ i, l ≥ k). If j ≥ k then

xy = cibj−k+l ∈ S′
0,p since i < p and j−k + l ≥ j ≥ i. If j < k then xy = ci−j+kbl ∈ S′

0,p

since i − j + k ≤ k < p and l ≥ k ≥ i − j + k. Therefore S ′
0,p is also a subsemigroup. �

In the following result we use the fact that the image of a subsemigroup under an

anti-isomorphism is also a subsemigroup.
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Lemma 4.3 For any q, p,m ∈ N0 with q < p ≤ m the following sets are subsemigroups:

(i) Sq,p; (ii) S′
q,p; (iii) Σp;

(iv) Sq,p ∪ Σp; (v) Sq,p,m; (vi) S′
q,p ∪ Σp.

Proof. To prove (i) – (v) we will just write the sets as intersections of subsemigroups

given by the previous lemma and their images by the anti-isomorphism ̂ . We have

Sq,p = S′
0,p ∩ R̂q ∩ Rp, S′

q,p = S′
0,p ∩ R̂q, Σp = Rp ∩ R̂p, Sq,p ∪ Σp = Rp ∩ R̂q and

Sq,p,m = S′
0,p ∩ Rm ∩ R̂q. To prove that S = S′

q,p ∪ Σp is a subsemigroup, it is sufficient

to show that, for x = cibj ∈ S′
q,p (q ≤ i < p, j ≥ i) and y = ckbl ∈ Σp (k, l ≥ p), we have

xy, yx ∈ S. If j ≥ k then xy = cibj−k+l ∈ S, because i ≥ q and j − k + l ≥ l ≥ p. If

j < k then xy = ci−j+kbl ∈ S, because i − j + k > i ≥ q and l ≥ p. Since l ≥ p > i we

have yx = ckbl−i+j ∈ Σp, because k ≥ p and l − i + j ≥ l ≥ p. �

The following lemma establishes some inclusions that will also be useful.

Lemma 4.4 For any p, q ∈ N0 with q < p the following inclusions hold:

(i) Tq,pSq,p ⊆ Sq,p; (ii) Sq,pTq,p ⊆ Sq,p;

(iii) Tq,pΣp ⊆ Sq,p ∪ Σp; (iv) ΣpTq,p ⊆ Σp.

Proof. Let α = cibj ∈ Tq,p (q ≤ i ≤ j < p), β = ckbl ∈ Sq,p (q ≤ k < p, l ≥ p) and

γ = cubv ∈ Σp (u, v ≥ p). If j ≥ k then αβ = cibj−k+l and, since j − k + l ≥ l ≥ p,

αβ ∈ Sq,p. If j < k then αβ = ci−j+kbl and, since l ≥ p and S′
q,p is a subsemi-

group, αβ ∈ Sq,p. So (i) is proved. We have βα = ckbl−i+j because i < p ≤ l. Since

l− i + j ≥ l ≥ p we have βα ∈ Sq,p and so (ii) is proved as well. We have αγ = ci−j+ubv

because j < p ≤ u and, since v ≥ p and S ′
q,p ∪Σp is a subsemigroup, αγ ∈ Sq,p ∪Σp and

(iii) is proved. Finally, γα = cubv+j−i because i < p ≤ v. We have γα ∈ Σp, because

u ≥ p, and (iv) is proved as well. �

Lemma 4.5 For any p ∈ N0, d ∈ N and P ⊆ {0, . . . , d − 1}, the square Σp,d,P is a

subsemigroup.

Proof. Let α = cp+r1+u1dbp+r1+v1d, β = cp+r2+u2dbp+r2+v2d ∈ Σp,d,P where r1, r2 ∈ P ;

u1, v1, u2, v2 ∈ N0. If p + r1 + v1d ≥ p + r2 + u2d then αβ = cp+r1+u1dbp+r1+(v1−u2+v2)d.

Since we have p + r1 + v1d ≥ p + r2 + u2d, it follows that r1 + v1d − u2d ≥ r2 ≥ 0,

which implies r1 + (v1 − u2 + v2)d ≥ 0. So we have (v1 − u2 + v2)d ≥ −r1 > −d and

hence v1 + v2 − u2 ≥ 0. Therefore αβ ∈ Σp,d,P . If p + r1 + v1d < p + r2 + u2d then

αβ = cp+r2+(u1−v1+u2)dbp+r2+v2d. Analogously p + r2 + u2d > p + r1 + v1d implies

u1 − v1 + u2 ≥ 0 and so αβ ∈ Σp,d,P . �

Lemma 4.6 For any q, p ∈ N0 with q ≤ p, d ∈ N and P ⊆ {0, . . . , d − 1}, the set

Σp,d,P ∪ (Md ∩ S′
q,p)

is a subsemigroup.
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Proof. Let H = Σp,d,P ∪ (Md ∩ S′
q,p). We know from the previous lemma that Σp,d,P is

a subsemigroup. From Lemmas 4.1 and 4.3 we know that Md ∩ S′
q,p is a subsemigroup

as well. Let α = cp+r+udbp+r+vd ∈ Σp,d,P and let β = cibi+sd ∈ Md ∩ S′
q,p. We just have

to prove that αβ, βα ∈ H. Since p + r + vd ≥ p > i, αβ = cp+r+udbp+r+(v+s)d ∈ Σp,d,P .

We have βα = cibi+sdcp+r+udbp+r+vd. We note that H ⊆ U = (Σp ∪ S′
q,p) ∩ Md and,

using the same two lemmas, U is a subsemigroup. Therefore, if i + sd ≥ p + r + ud then

βα /∈ Σp and, since U is a subsemigroup, βα ∈ S ′
q,p ∩ Md ⊆ H. If i + sd < p + r + ud

and u − s < 0 we have again βα ∈ S ′
q,p ∩ Md ⊆ H. Finally, if i + sd < p + r + ud and

u − s ≥ 0 then βα = cp+r+(u−s)dbp+r+vd ∈ Σp,d,P . �

Lemma 4.7 For any p ∈ N0, d ∈ N and I ⊆ {0, . . . , p − 1}, the set ΛI,p,d is a subsemi-

group.

Proof. Let α = cibi+ud, β = cjbj+vd ∈ ΛI,p,d (i, j < p; i + ud, j + vd ≥ p). Then

αβ = cibi+(u+v)d because i + ud ≥ p > j. Since i + (u + v)d ≥ i + ud ≥ p we have

αβ ∈ ΛI,p,d. �

Lemma 4.8 Let p ∈ N0, d ∈ N, ∅ 6= I ⊆ {0, . . . , p − 1}, ∅ 6= P ⊆ {0, . . . , d − 1}, and

q = min(I). The set H = Σp,d,P ∪ ΛI,p,d is a subsemigroup if and only if

I ′ = {p + r − ud : r ∈ P, u ∈ N0, p + r − ud ≥ q} ⊆ I.

Proof. We will first assume that H is a subsemigroup and prove that I ′ ⊆ I. Let

cqbq+d1 , cp+r+dbp+r ∈ H where r ∈ P and d1 > 0 is a multiple of d. For any n,m ∈ N

such that p+r+md−nd1 ≥ q we have (cqbq+d1)n(cp+r+dbp+r)m = cp+r+md−nd1bp+r ∈ H

and so p + r − ud ∈ I for any r ∈ P and u ∈ N such that p + r − ud ≥ q. Therefore

I ′ ⊆ I. Let us assume now that I ′ ⊆ I and prove that H is a subsemigroup. We know

that Σp,d,P is a subsemigroup. Let α = cp+r+udbp+r+vd ∈ Σp,d,P (r ∈ P ;u, v ∈ N0) and

β = cibi+d1 ∈ ΛI,p,d (i ∈ I, d1 ∈ N, d | d1). We have αβ = cp+r+udbp+r+vd+d1 ∈ Σp,d,P .

If i + d1 ≥ p + r + ud then βα = cibi+d1+(v−u)d ∈ ΛI,p,d, because i + d1 + (v − u)d ≥

p + r + vd ≥ p. If i + d1 < p + r + ud then βα = cp+r+ud−d1bp+r+vd. In this case, if

ud − d1 ≥ 0 then βα ∈ Σp,d,P and if ud − d1 < 0 then p + r + ud − d1 ≥ q because

H ⊆ Sq,p ∪ Σp and Sq,p ∪ Σp is a subsemigroup. Therefore p + r + ud − d1 ∈ I ′ ⊆ I,

implying βα ∈ ΛI,p,d. �

5 Two-sided subsemigroups

In this section we describe subsemigroups that have elements both above and below the

diagonal. Let S be a subsemigroup of B with S ∩U 6= ∅ and S ∩ Û 6= ∅. Without loss of

generality we can assume that q = ι(S) ≤ κ(S) = p observing that the other case is dual

to this by using the anti-isomorphism ̂.
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We now state our main result of this section:

Theorem 5.1 Let S be a subsemigroup of B such that S ∩ U 6= ∅, S ∩ Û 6= ∅ and

q = ι(S) ≤ κ(S) = p. There exist d ∈ N, FD ⊆ D ∩ Lq, F ⊆ Tq,p, I ⊆ {q, . . . , p − 1},

P ⊆ {0, . . . , d − 1} with 0 ∈ P such that

S = FD ∪ F ∪ ΛI,p,d ∪ Σp,d,P .

To prove this theorem we need the following elementary result from number theory,

the proof of which we include for completeness:

Lemma 5.2 Let a1, . . . , ak, b1, . . . , bl, r0 ∈ N0 be arbitrary with a1 > 0, b1 > 0 and let

d = gcd(a1, . . . , ak, b1, . . . , bl).

Then there exist numbers α1, . . . , αk,−β1, . . . ,−βl ∈ N0 such that:

1. α1a1 + . . . + αkak + β1b1 + . . . + βlbl = d;

2. α1, . . . , αk,−β1, . . . ,−βl ≥ r0.

Proof. We start by assuming, without loss of generality, that a1, . . . , ak, b1, . . . , bl > 0.

Since d = gcd(a1, . . . , ak, b1, . . . , bl), we can write d =
∑k

i=1 α′
iai +

∑l
j=1 β′

jbj for some

integers α1, . . . , αk, β1, . . . , βl. Let H be any positive integer and let

P = Hkla1 . . . akb1 . . . bl, Q = P/k, R = P/l.

We can then write

d =

k∑

i=1

α′
iai +

l∑

j=1

β′
jbj =

k∑

i=1

α′
iai + P − P +

l∑

j=1

β′
jbj

=

k∑

i=1

(α′
iai + Q) +

l∑

j=1

(β′
jbj − R) =

k∑

i=1

(α′
i + Q/ai)ai +

l∑

j=1

(β′
j − R/bj)bj

=

k∑

i=1

αiai +

l∑

j=1

βjbj

It is clear that when H increases all numbers α1, . . . , αk,−β1, . . . ,−βl increase as well

and so the result holds. �

Proof of Theorem 5.1. Let FD = S ∩ D ∩ Lq and S′ = S\FD. We have S′ =

S ∩ (Md ∩ (S′
q,p ∪ Σp)) where d = gcd(λ(S′)) and so S′ is a subsemigroup. We observe

that the elements cibi ∈ FD act as identities in S′. Let x ∈ S′ ∩ U and y ∈ S′ ∩ Û such

that Φ(x) = ι(S) = q and Ψ(y) = κ(S) = p. Let Y ⊆ S ′ be a finite set such that:

(i) x, y ∈ Y ;

(ii) Λi ∩ S′ ∩ S′
q,p 6= ∅ =⇒ Λi ∩ Y 6= ∅ for i ∈ {q . . . , p − 1} (Y contains at least one

representative for each line in the strip with elements in S ′);
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(iii) {(i − p) mod d : Λi ∩ Y ∩ Σp 6= ∅} = {(i − p) mod d : Λi ∩ S′ ∩ Σp 6= ∅} (Y

contains at least one representative for each class of lines in the square having a

representative in S′);

(iv) gcd(λ(Y )) = d.

Such Y can be obtained by choosing a finite set Y1 (with at most p − q + d elements)

satisfying (i) − (iii), and a finite set Y2 such that gcd(λ(Y2)) = gcd(λ(S′)), and letting

Y = Y1 ∪Y2. Let Y ∩ (D∪U) = {ci1bj1 , . . . , cirbjr} where x = ci1bj1 , q = i1 ≤ i2 ≤ . . . ≤

ir, j1 > i1, j2 ≥ i2, . . . , jr ≥ ir and let Y ∩ Û = {ck1bl1 , . . . , cksbls} where y = ck1bl1 ,

p = l1 ≤ l2 ≤ . . . ≤ ls and k1 > l1, . . . , ks > ls.

We are going to show that

cp+dbp, cpbp+d ∈ S′.

Before proving this we will make an observation showing the importance of these two

elements. This observation is illustrated in Figure 4.

Let cibj be an element in Md∩ (Sq,p∪Σp). We have cibjcpbp+d = cibj+d which means

intuitively that we can move d positions to the right in the grid using the element cpbp+d.

If i ≥ p then we also have cp+dbpcibj = ci+dcj which means that we can move d positions

down. If j ≥ p+ d then we have cibjcp+dcp = cibj−d which means that we can move left.

Finally, if i ≥ p + d then we have cpbp+dcibj = ci−dbj and so we can move up.

In order to prove that cp+dbp, cpbp+d ∈ S′ we first note that d = gcd{j1 − i1, . . . , jr −

ir, k1 − l1, . . . , ks − ls}, by (iv). Since i1 − j1 < 0 and k1 − l1 > 0, Lemma 5.2 can be

applied and we can write

d = α1(i1 − j1) + . . . + αr(ir − jr) + β1(k1 − l1) + . . . + βs(ks − ls) (1)

with α1, . . . , αr, β1, . . . , βs ≥ max{i1, . . . , ir, l1, . . . , ls}. We can now consider the product

(ci1bj1)α1 . . . (cirbjr )αr which is equal to

(ci1bi1+α1(j1−i1))(ci2bi2+α2(j2−i2)) . . . (cirbir+αr(jr−ir)).

Since α1 ≥ max{i1, . . . , ir} and j1 − i1 ≥ 1 we have i1 + α1(j1 − i1) > i1, . . . , ir and

therefore, we can compute the above product working from the left hand side to obtain

ci1bi1+α1(j1−i1)+α2(j2−i2)+...+αr(jr−ir). (2)

We now consider the product (cksbls)βs . . . (ck2bl2)β2(ck1bl1)β1 which is equal to

(cls+βs(ks−ls)bls) . . . (cl2+β2(k2−l2)bl2)(cl1+β1(k1−l1)bl1).

Since β1 ≥ max{l1, . . . , ls} and k1 − l1 ≥ 1 we have l1 + β1(k1 − l1) > l1, . . . , ls and we

can compute this product from the right to obtain

cl1+β1(k1−l1)+β2(k2−l2)+...+βs(ks−ls)bl1 . (3)
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Multiplying the elements (2) and (3) of S ′ we obtain

ci1bi1+α1(j1−i1)+α2(j2−i2)+...+αr(jr−ir)cl1+β1(k1−l1)+β2(k2−l2)+...+βs(ks−ls)bl1

= cl1+dbl1 = cp+dbp

since q = i1 ≤ l1 = p and using equation (1). So cp+dbp ∈ S′. Since d | (j1 − i1) we

can write j1 − i1 = td for some t ∈ N. Since p ≥ i1 we have p + td ≥ j1 and therefore

ci1bj1(cp+dbp)t = ci1−j1+p+tdbp = cpbp. We conclude that cpbp ∈ S′ as well. We now take

the constants α1, . . . , αr, β1, . . . , βs ≥ max{i1, . . . , ir, l1, . . . , ls} to be such that

d = α1(j1 − i1) + . . . + αr(jr − ir) + β1(l1 − k1) + . . . + βs(ls − ks) (4)

and we consider the following element of S ′:

cpbpci1bi1+α1(j1−i1)+α2(j2−i2)+...+αr(jr−ir)cl1+β1(k1−l1)+β2(k2−l2)+...+βs(ks−ls)bl1 .

Since i1 = q ≤ p = l1 this element can be written as

cpbp+α1(j1−i1)+α2(j2−i2)+...+αr(jr−ir)cp+β1(k1−l1)+β2(k2−l2)+...+βs(ks−ls)bp

and it is equal to cpbp+d by equation (4). Therefore we have cpbp+d, cp+dbp ∈ S′ as we

wanted to show.

We are now going to prove that S ′ ∩ Σp = Σp,d,P where P = {(i − p) mod d :

Li ∩ Y ∩ Σp 6= ∅}. We will first show that Σp,d,P ⊆ S′. Let cp+r+udbp+r+vd ∈ Σp,d,P .

By definition of Y there is cibj ∈ Y ∩ Σp such that (i − p) mod d = r. Therefore,

since Y ⊆ S′ ⊆ Md, we have cibj = cp+r+u′dbp+r+v′d. As we have seen we can move

from cibj to cp+r+udbp+r+vd using the elements cpbp+d and cp+dbp which means that

cp+r+udbp+r+vd belongs to S′, because it can be written as a product of the elements

cpbp+d, cp+dbp, cibj ∈ S′. We will now show that S′ ∩ Σp ⊆ Σp,d,P . Let cibj ∈ S′ ∩ Σp.

By definition of P and by (iii) in the definition of Y we have (i − p) mod d = r ∈ P .

Since S′ ⊆ Md we have cibj = cp+r+udbp+r+vd for some u, v ≥ 0 and so cibj ∈ Σp,d,P .

We conclude that S′ ∩ Σp = Σp,d,P .

We now prove that S′ ∩ Sq,p = ΛI,p,d where I = {i : q ≤ i ≤ p − 1; cibj ∈

S′ for some j}. In fact, from any element cibj ∈ S′ ∩ Sq,p we can move left and right

using the elements cpbp+d and cp+dbp in order to obtain the whole line Λi,p,d. Since

S′ ⊆ Md it follows that S′ ∩ Sq,p = ΛI,p,d. We conclude that S′ = F ∪ Σp,d,P ∪ ΛI,p,d

where F = S ∩ Tq,p is a finite set, and this implies S = FD ∪ F ∪ Σp,d,P ∪ ΛI,p,d as

required. �

6 Upper subsemigroups

In this section we consider subsemigroups whose elements are above (and on) the diago-

nal. The case where all elements are below the diagonal is again obtained by using the

anti-isomorphism ̂.
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Lemma 6.1 Let q, p, d ∈ N0 with q < p and d > 0, and let X ⊆ S ′
q,p be a finite set with

ι(X) = q and gcd(λ(X)) = d. For any x ∈ X there exists m ∈ N0 such that

ΛΦ(x),m,d ⊆ 〈X〉.

Proof. Let S = 〈X〉 and let Y = X ∩ U = {ci1bi1+d1 , . . . , cinbin+dn} with q = i1 ≤ i2 ≤

. . . ≤ in; d1, . . . , dn ∈ N. For each j ∈ {1, . . . , n} choose αj ∈ N such that ij + αjdj ≥ p

and d = gcd(d1, . . . , dn) = gcd(α1d1, . . . , αndn). We can take α1, . . . , αn to be large

enough distinct primes not appearing in the decomposition of d in prime factors. It is

well known that given numbers x1, . . . , xn ∈ N, such that gcd{x1, . . . , xn} = d, there is

a constant k such that all multiples of d greater then k can be obtained as combinations

of x1, . . . , xn with coefficients in N. Let k ∈ N be such that

{td : td ≥ k, t ∈ N} ⊆ {γ1(α1d1) + . . . + γn(αndn) : γ1, . . . , γn ∈ N}.

Let m = p + k. We are going to prove that ΛΦ(x),m,d ⊆ S for any x ∈ X. Let x ∈ X,

i = Φ(x) ∈ {q, . . . , p − 1} and t ∈ N with i + td ≥ m. Then td ≥ m − i = p + k − i ≥ k.

Therefore we can write

td = γ1(α1d1) + . . . + γn(αndn)

with γ1, . . . , γn ∈ N. If x = cij cij+dj ∈ Y then we have

cibi+td = cij bij+td = (cij bij+αjdj )γj ·
∏

1≤l≤n

l 6=j

(cilbil+αldl)γl .

If x /∈ Y then x = cibi and so we have cibi+td = cibi(ci1bi1+α1d1)γ1 . . . (cinbin+αndn)γn ∈

S. �

Theorem 6.2 Let S be a subsemigroup of B such that S ∩ Û = ∅ and S ∩U 6= ∅. There

exist d ∈ N, I ⊆ N0, FD ⊆ D ∩ Lmin(I), and sets Si ⊆ Λi,i,d (i ∈ I) such that

S = FD ∪
⋃

i∈I

Si

where each Si has the form

Si = Fi ∪ Λi,mi,d

for some mi ∈ N0 and some finite set Fi, and

I = I0 ∪ {r + ud : r ∈ R, u ∈ N0, r + ud ≥ N}

for some (possibly empty) R ⊆ {0, . . . , d − 1}, some N ∈ N0 and some finite set I0 ⊆

{0, . . . , N − 1}.

Proof. Let q = ι(S), FD = S∩D∩Lq, S′ = S\FD, so that we have S = FD ∪S′, and let

d = gcd(λ(S′)). Since S′ ⊆ (U ∪ D) ∩ Md, letting I = Φ(S′), we have S = FD ∪
⋃

i∈I Si
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where Si = S′ ∩ Λi,i,d for i ∈ I. For any i ∈ I we can consider a finite set Xi ⊆ S′ with

i ∈ Φ(Xi) and gcd(Xi) = d and conclude, by using Lemma 6.1, that Λi,mi,d ⊆ S for some

mi ∈ N0. If I is finite then we can take R = ∅, I0 = I and N = max(I) + 1. We will

now consider the case where I is infinite. Let X = {ci1bi1+d1 , . . . , cikbik+dk} ⊆ S′ such

that d = gcd(λ(X)), i1 ≥ i2 ≥ . . . ≥ ik. By Lemma 6.1, there is a constant M such that

td ≥ M implies ci1bi1+td ∈ S′. Define a set R ⊆ {0, . . . , d − 1} by

r ∈ R ⇔ |{i ∈ N : Λi ∩ S′ 6= ∅ & i mod d = r}| = ∞.

Then there exists a constant K such that

cibj ∈ S′ & i ≥ K =⇒ (i mod d) ∈ R.

Let N = max{i1,K} and

I0 = {i : q ≤ i ≤ N − 1,Λi ∩ S′ 6= ∅}.

We claim that

I = I0 ∪ {r + ud : r ∈ R, u ∈ N0, r + ud ≥ N}.

The direct inclusion is obvious, as is I0 ⊆ I. Now consider an arbitrary r+ud ≥ N , r ∈ R.

Choose an arbitrary cr+vdbr+vd+wd ∈ S′ such that t = v − u ≥ M/d. From td ≥ M it

follows that ci1bi1+td ∈ S′ and so ci1bi1+tdcr+vdbr+vd+wd = cr+udbr+vd+wd ∈ S′ because

r + vd = r + ud + td ≥ N + td ≥ i1 + td. We conclude that r + ud ∈ I. �

Remark. In the case where I is finite (R = ∅), the subsemigroup can be written as a union

of two finite sets and finitely many lines all starting from the same column. Formally

there exist q, p,m ∈ N0 with q < p ≤ m, finite sets FD ⊆ D ∩ Lq, F ⊆ S′
q,p\Sq,p,m and a

set I ⊆ {q, . . . , p − 1} such that

S = FD ∪ F ∪ ΛI,m,d.

7 Corollaries

In this section we use our classification of subsemigroups of B to describe which of them

are regular (and hence inverse), simple or bisimple. We use the standard semigroup

theory terminology and notation as found in [7]. In particular, it is well known that in

B we have

cibj L ckbl ⇔ j = l, cibj R ckbl ⇔ i = k, cibj H ckbl ⇔ i = k & j = l,

D = J = B × B.

We see that B is a bisimple semigroup (i.e. it has a unique D-class, the egg-box of which

is the familiar square grid used in the previous sections). Since the idempotents are the

elements in the diagonal, an element cibj has the unique inverse cjbi and B is an inverse

semigroup. Hence, a subsemigroup S of B is regular if and only if it is inverse if and

only if it satisfies cibj ∈ S =⇒ cjbi ∈ S. Therefore we have:
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Theorem 7.1 A subsemigroup S of B is regular (and hence inverse) if and only if it

has the form FD ∪Σp,d,P where FD is a finite subset of the diagonal and either of FD or

P may be empty.

Given a regular subsemigroup S of B we have

LS = LB ∩ (S × S), RS = RB ∩ (S × S), HS = HB ∩ (S × S) (5)

(see [7, Propositon 2.4.2]) and so we have the following:

Corollary 7.2 A D-class of a regular subsemigroup of B is either isomorphic to B or

it is a trivial group.

Proof. Using (5) we see that a D-class of a regular subsemigroup S = FD ∪ Σp,d,P is

either a single idempotent from FD or a set of the form Σp,d,r with r ∈ P . The latter is

isomorphic to B via cp+r+udbp+r+vd 7→ cubv. �

To determine the simple subsemigroups of B we need the following result, proved in

[9]:

Lemma 7.3 A subset of the form Ip = {cibj : 0 ≤ i ≤ j, j ≥ p} (p ∈ N0) is an ideal of

U .

Theorem 7.4 The simple subsemigroups of B are precisely those of the forms ΛI,p,d ∪

Σp,d,P and Λ̂I,p,d ∪ Σp,d,P (with non-empty P ).

Proof. An upper (or diagonal) subsemigroup S is not simple since, for p large enough

the set S ∩ Ip is a proper ideal of S; similarly, a lower subsemigroup is not simple. A

two-sided subsemigroup S of the form FD ∪F ∪ΛI,p,d∪Σp,d,P is not simple if FD ∪F 6= ∅

because in this case ΛI,p,d ∪Σp,d,P is a proper ideal of S. This proves that a simple sub-

semigroup of B must be of the form ΛI,p,d∪Σp,d,P or Λ̂I,p,d∪Σp,d,P . For the converse we

will now show that a semigroup S of the form ΛI,p,d ∪Σp,d,P is always simple by showing

that, for an arbitrary s = ckbl ∈ S, we have S ⊆ S1sS1. Let t = cibj ∈ S arbitrary.

Taking α = cibu ∈ S with u ≥ max(k, j + k − l) we have αs = cibu−k+l. Hence, with

β = cp+dbp ∈ S and v = (u − k + l − j)/d, we have αsβv = cibu−k+lcp+vdbp = t. �

Theorem 7.5 A subsemigroup of B is bisimple if and only if it has the form Σp,d,0.

Proof. Let S be an arbitrary simple subsemigroup of B. Without loss of generality as-

sume that S is of the form S = ΛI,p,d ∪ Σp,d,P with 0 ∈ P . If S contains two elements

α = cibj , β = ckbl such that i− p mod d 6= k− p mod d then S is not bisimple. Indeed,

suppose that that α and β are D-related in S. Then there is s ∈ S such that α RS s

and s RS β. This implies that α LB s and s RB β and so s = ckbj . But d does not

divide k − j and so s /∈ S, a contradiction. So for S to be bisimple it is necessary that
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P = {0} and, by using Lemma 4.8, that I = {p− ud : p− ud ≥ k} for some k ≥ 0. Next

notice that the elements cpbp and cp−dbp are not L-related in S because for any ckbl ∈ S

we have l ≥ p and so ckblcp−dbp = ckbl+d 6= cpbp. Suppose that cpbp DS cp−dbp. Then

we would have cpbp LSs and s RScp−dbp for some s ∈ S and therefore cpbp LBs and

s RBcp−dbp which implies s = cp−dbp and so cpbp LS cp−dbp, a contradiction. So for S

to be bisimple it is in fact necessary that I = ∅ and P = {0}. Since Σp,d,0 is isomorphic

to B it is bisimple, completing the proof. �

We now describe two-sided subsemigroups as finite unions of semigroups.

Theorem 7.6 A two-sided subsemigroup is a finite union of copies of B and subsemi-

groups of N0.

Proof. Assume without loss of generality that S is of the form S = FD∪F∪ΛI,p,d∪Σp,d,P .

We have S =
⋃p−1

i=0 (S ∩ Λi,i,d) ∪
⋃

r∈P Σp,d,r and, since Λi,i,d is isomorphic to N0 via

cibi+ud 7→ u and Σp,d,r is isomorphic to B, the result follows. �

We say that M is a special subsemigroup of N0 if M = {n : n ≥ k} for some k.

Corollary 7.7 A subsemigroup of B is:

1. Regular if and only if it is obtained by adjoining successively finitely many identities

to a finite union of copies of B.

2. Simple if and only if it is a finite union of copies of B and special subsemigroups

of N0.

3. Bisimple if and only if it is isomorphic to B.

8 Computation of parameters and examples

In this section we will show how to compute the parameters that appear in our main

theorem, given a finite generating set for the subsemigroup. We will first consider two-

sided subsemigroups defined by condition 2.(i) in the main theorem and then we will

consider finitely generated upper subsemigroups defined by condition 3.(i), observing

again that subsemigroups defined by 2.(ii) and 3.(ii) can be obtained from these two by

using the anti-isomorphism ̂. We observe that, given a finite set X, we can determine

which kind of subsemigroup it generates:

1) 〈X〉 ⊆ D if and only if X ⊆ D;

2) 〈X〉 is a two-sided subsemigroup if and only if X ∩ U 6= ∅ and X ∩ Û 6= ∅;

3) 〈X〉 is an upper (respectively lower) subsemigroup if and only if X ∩ U 6= ∅ and

X ∩ Û = ∅ (respectively X ∩ U = ∅ and X ∩ Û 6= ∅).

17



Theorem 8.1 Let S = FD∪F ∪ΛI,p,d∪Σp,d,P be a two-sided subsemigroup of B defined

by condition 2.(i) in the main theorem. Let X be a finite generating set for S. Then we

have:

(i) q = ι(X), p = κ(X), d = gcd(λ(X));

(ii) FD = X ∩ D ∩ Lq;

(iii) P = {(i − p) mod d : Λi ∩ X ∩ Σp 6= ∅};

(iv) F =

M⋃

i=1

(X ∩ Tq,p)
i ∩ Tq,p where M = (p − q + 1)(p − q)/2;

(v) Defining

I0 = {p + r − ud : r ∈ P, u ∈ N0, p + r − ud ≥ q} ∪ {i : Λi ∩ (F ∪ (X ∩ Sq,p)) 6= ∅}

and the left action . : B × N0 → N0 by

cibj .k =

{
i if j ≥ k

i − j + k otherwise

we have

I =

p−q⋃

n=0

Fn.I0.

Proof. Let q′ = ι(X), p′ = κ(X), d′ = gcd(λ(X)), F ′
D = X ∩ D ∩ Lq′ and X ′ = X\F ′

D.

Then we have S = F ′
D ∪ 〈X ′〉 and the elements of F ′

D act as identities in 〈X ′〉. If q′ ≤ p′

then X ′ ⊆ Md∩ (S′
q′,p′ ∪Σp′) and, by Lemmas 4.1 and 4.3, this last set is a subsemigroup

and so 〈X ′〉 ⊆ Md ∩ (S′
q′,p′ ∪ Σp′), implying q = q′, p = p′. If q′ > p′ then analogous

reasoning gives 〈X ′〉 ⊆ Md ∩ (Ŝ′
q′,p′ ∪ Σp′) from which follows that p = q′ < p′ = q

which contradicts our assumption on the shape of S. So we have q = q′, p = p′ and

then it immediately follows that FD = F ′
D = X ∩ D ∩ Lq′ = X ∩ D ∩ Lq. Finally, from

S = 〈X〉 ⊆ Md′ (since Md′ is a subsemigroup) it follows that d = d′. This proves (i) and

(ii).

We know that P = {(i − p) mod d : Λi ∩ S ∩ Σp 6= ∅}. Let P ′ = {(i − p) mod d :

Λi∩X ′∩Σp 6= ∅}. It is clear that P ′ ⊆ P . We also have X ′ ⊆ Σp,d,P∪(Md∩S′
q,p) = T . But

T is a subsemigroup by Lemma 4.6, and so 〈X ′〉 = S\FD ⊆ T . Therefore S∩Σp ⊆ T ∩Σp

which is equivalent to Σp,d,P ⊆ Σp,d,P ′ and so in fact P = P ′, proving (iii).

To prove (iv) we observe that the inclusions in Lemma 4.4 imply that ΛI,p,d ∪Σp,d,P

is an ideal of S. It then follows that the elements of F can be obtained by forming

the appropriate products of the generators of X that belong to Tq,p. Since Tq,p has

(p − q + 1)(p − q)/2 elements the desired formula follows. In practice we do not need to

form all these products. Again using the fact that ΛI,p,d ∪Σp,d,P is an ideal we see that

F can be be computed by the following simple orbit algorithm:
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X0 := X ∩ Tq,p

F := X0

while not (FX0 ∩ Tq,p ⊆ F ) do

F := F ∪ (FX0 ∩ Tq,p)

od.

To prove (v) we will first show that I0 ⊆ I. Since S ∩ (Sq,p ∪Σp) = ΛI,p,d ∪Σp,d,P is

a subsemigroup, it follows from Lemma 4.8 that {p + r−ud : r ∈ P, u ∈ N0, p + r−ud ≥

q} ⊆ I. Given cibj ∈ F ∪ (X ∩Sq,p) we can multiply this element on the right by a power

of an element of the form cqbq+d1 with d1 > 0 (such an element must exist by definition

of q) in order to obtain an element in S ∩ (Λi ∪ Sq,p). From this element we can obtain

the whole line Λi,p,d by using the elements cpbp+d, cp+dbp ∈ T and so I0 ⊆ I.

We will now show that T = ΛI0,p,d ∪Σp,d,P is a right ideal (TS1 ⊆ T ). We know that

T is a subsemigroup, by Lemma 4.8. By the way we have defined I0 we have X∩Sq,p ⊆ T .

We also have X ∩ Σp ⊆ T because S ∩ Σp = Σp,d,P = T ∩ Σp. It remains to show that

T ((X ∩ Tq,p) ∪ FD) ⊆ T . Let ckbl ∈ T, cibi+d1 ∈ (X ∩ Tq,p) ∪ FD. Since l ≥ i, we have

ckblcibi+d1 = ckbl+d1 ∈ T . Therefore T is a right ideal. Clearly if I0 ⊆ I ′ ⊆ I then

T ′ = ΛI′,p,d ∪ Σp,d,P is a right ideal as well.

Finally we observe that, although multiplying two elements in F we can obtain an

element in a line belonging to I\I0, we do not have to consider these products in order

to obtain I. If cibj , ckbl ∈ F and cibjckbl = ci−j+kbl where i − j + k ∈ I\I0, then I0

contains line k and so line i− j + k can also be obtained from F.I0. We conclude that I

can be obtained by running the orbit algorithm, starting from I0:

I := I0

while not (F.I ⊆ I) do

I := I ∪ F.I

od.

This algorithm must stop in no more then p− q iterations because it generates a strictly

ascending chain of sets contained in {q, . . . , p− 1} (normally far fewer iterations are nec-

essary), concluding the proof of (v). �

We will now consider finitely generated upper subsemigroups. Let X ⊆ U ∪ D be a

finite set such that X ∩U 6= ∅ and let S = 〈X〉. As already remarked after Theorem 6.2,

we are in the case where I is finite (R = ∅) in condition 3.(i) of the main theorem, and

our subsemigroup has the form

S = FD ∪ F ∪ ΛI,m,d.

Similarly as in the proof of Theorem 8.1 we can see that

q = ι(X), p = max(Φ(X)) + 1, I ⊆ {q, . . . , p − 1},

FD = X ∩ D ∩ Lq, d = gcd(λ(X)).
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We need to obtain the parameters F , I, and m from the generating set. Since the

elements in FD act as identities in 〈X ′〉, where X ′ = X\FD, we will assume, without

loss of generality, that FD = ∅ and so X = X ′ ⊆ S′
q,p. We will define an algorithm to

obtain these parameters that consists in forming a sequence of unions of powers of the

generating set, X,X ∪ X2, X ∪ X2 ∪ X3, . . ., until we have a subsemigroup of the form

F ∪ΛI,m,d. For that we need a sufficient condition, that can be checked by an algorithm,

for a finite subset of a strip S ′
q,p to give us a subsemigroup of this form.

Lemma 8.2 Let Y ⊆ S′
q,p be a finite set with gcd(Y ) = d and cqbq+d1 ∈ Y for some

d1 ∈ N. Suppose that for any i ∈ I = Φ(Y ) there is mi ∈ N0 such that

cibmi , bmi+d, . . . , cib2mi−i−d ∈ Y, cibmi−d /∈ Y.

Let m = max{mi : i ∈ I} and F = Y ∩ (S′
q,p\Sq,p,m). If FF ∩ (S′

q,p\Sq,p,m) ⊆ F and

F.I ⊆ I then 〈Y 〉 = F ∪ ΛI,m,d. Moreover m is minimum such that ΛI,m,d ⊆ 〈Y 〉.

Proof. We start by showing that F ∪ ΛI,m,d ⊆ 〈Y 〉 = S. For any i ∈ I, we have

Λi,mi,d ⊆ 〈cibmi , . . . , cib2mi−i−d〉, because any element in Λi,mi,d can be written in the

form cibu(cibmi)k for some k ∈ N0, and u ∈ N0 such that i + (mi − i) = mi ≤ u ≤

2mi − i − d = i + 2(mi − i) − d. We conclude that Λi,mi,d ⊆ S for any i ∈ I and

therefore F ∪ ΛI,m,d ⊆ S with m = max{mi : i ∈ I}. It is clear that Y ⊆ F ∪ ΛI,m,d,

because Y ⊆ Md and I = Φ(Y ), and so to prove the other inclusion we just have to

show that F ∪ ΛI,m,d is a subsemigroup. We have FF ∩ (S ′
q,p\Sq,p,m) ⊆ F , F.I ⊆ I by

hypothesis and, since Φ(F ) ⊆ I, we also have Φ(FF ) ⊆ F.I ⊆ I and we conclude that

FF ⊆ F ∪ ΛI,m,d. It is also clear that ΛI,m,d(ΛI,m,d ∪ F ) ⊆ ΛI,m,d. Finally, F.I ⊆ I

implies FΛI,m,d ⊆ ΛI,m,d. �

Clearly, it can be checked by an algorithm whether a finite set Y ⊆ S ′
q,p satisfies

the conditions of Lemma 8.2; let us call such a procedure iscomplete(Y). Also, provided

that Y does satisfy these conditions, there is a straightforward procedure parameters(Y)

returning the triple (F, I,m). Given these two procedures, an algorithm to compute the

parameters F, I,m given any finite generating set X is:

Y := X

while not iscomplete(Y ) do

Y := Y ∪ Y X

od

(F, I,m) := parameters(Y ).

Note that if we are simply interested in the index set I of lines occurring in S, we can

use a much more efficient orbit algorithm:

I := Φ(X)

while not X.I ⊆ I do
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I := I ∪ X.I

od.

We conclude the paper by presenting two examples: one of a two-sided subsemigroup

and one of an upper subsemigroup.

Example 8.3 Let S be the subsemigroup of B generated by the set

X = {cb, c4b7, c10b13, c18b24, c23b17}.

Then S is clearly a two-sided subsemigroup of the form S = FD ∪ F ∪ ΛI,p,d ∪ Σp,d,P .

From the generating set we see that FD = {cb}, q = 4, p = 17, d = 3 and P = {0, 1}.

The remaining parameters have been obtained using our implementation of the above

algorithms in the system GAP (see [4]), and they are I = {4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15}

and

F = {c4b7, c4b10, c4b13, c4b16, c7b13, c7b16, c10b13, c10b16}.

This subsemigroup is shown in Figure 5.

Example 8.4 Let S to be the subsemigroup of B generated by the set

X = {cb, c3b13, c5b9, c10b16}.

Then S is clearly an upper subsemigroup of the form S = FD ∪F ∪ΛI,m,d and from the

generating set we see that FD = {cb} and d = 2. Using again our implementation in

GAP we have obtained m = 20, I = {3, 5, 6, 10} and

F = {c3b13, c3b17, c3b19, c5b9, c5b13, c5b17, c5b19, c6b16, c10b16}.

This subsemigroup is shown in Figure 6.
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Figure 5: Two-sided subsemigroup generated by {cb, c4b7, c10b13, c18b24, c23b17}.
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