Automatic subsemigroups of free products

L. Descalço
Departamento de Matemática, Universidade de Aveiro
3830-220 Aveiro, Portugal
Telefax: +351234382014
E-mail: luisd@mat.ua.pt

9 June 2004

Abstract

We consider the automaticity of subsemigroups of free products of semigroups, proving that subsemigroups of free products, with all generators having length greater than one in the free product, are automatic. As a corollary, we show that if S is a free product of semigroups that are either finite or free, then any finitely generated subsemigroup of S is automatic. In particular, any finitely generated subsemigroup of a free product of finite or monogenic semigroups is automatic.

2000 Mathematics Subject Classification: 20M10

1 introduction

The notion of automatic group has recently been extended to semigroups and the basic properties of this new class of semigroups have been established in [3]. The notion of automatic semigroup does not correspond to a nice geometric property as in the case of groups where being automatic is the same as having the fellow traveller property (see $[1,2])$. Nevertheless it is a natural class of semigroups where we have some interesting computational properties, for example the word problem is solvable in quadratic time (see [3]), and several results concerning automaticity of semigroups have been established (see, for example [4, 7, 8, 9, 10]).

We are interested in the following general question:
When is a subsemigroup of an automatic semigroup automatic as well?
A general result concerning this problem was established in [9], where the authors have proved the following:

Proposition 1.1 Let S be a semigroup and let T be a subsemigroup of S such that $S \backslash T$ is finite. Then S is automatic if and only if T is automatic.

A description of the subsemigroups of the bicyclic monoid was obtained in [5] and, using this description, the question above was answered (in [6]) for the bicyclic monoid and its subsemigroups:

Proposition 1.2 All finitely generated subsemigroups of the bicyclic monoid are automatic.

The question was also solved (in [3]) for free semigroups and their subsemigroups where the following was shown:

Proposition 1.3 If F is a free semigroup and S is a finitely generated subsemigroup of F, then S is automatic.

In this paper we extend this last result by considering subsemigroups of free products of semigroups. We show that some subsemigroups of free products of arbitrary semigroups, including in particular finitely generated subsemigroups of free semigroups, are automatic.

We start by introducing the definitions we require. Given a finite set A, which we call an alphabet, we denote by A^{+}the free semigroup generated by A consisting of finite sequences of elements of A, which we call words, under the concatenation, and by A^{*} the free monoid generated by A consisting of A^{+}together with the empty word ϵ. Let S be a semigroup and $\psi: A \rightarrow S$ a mapping. We say that A is a finite generating set for S with respect to ψ if the unique extension of ψ to a semigroup homomorphism $\psi: A^{+} \rightarrow S$ is surjective. For $u, v \in A^{+}$we write $u \equiv v$ to mean that u and v are equal as words and $u=v$ to mean that u and v represent the same element in the semigroup i.e. that $u \psi=v \psi$. We say that a subset L of A^{+}, usually called a language, is regular if there is a finite state automaton accepting L. To be able to deal with automata that accept pairs of words and to define automatic semigroups we need to define the set $A(2, \$)=((A \cup\{\$\}) \times(A \cup\{\$\})) \backslash\{(\$, \$)\}$ where $\$$ is a symbol not in A (called the padding symbol) and the function $\delta_{A}: A^{*} \times A^{*} \rightarrow A(2, \$)^{*}$ defined by

$$
\left(a_{1} \ldots a_{m}, b_{1} \ldots b_{n}\right) \delta_{A}= \begin{cases}\epsilon & \text { if } 0=m=n \\ \left(a_{1}, b_{1}\right) \ldots\left(a_{m}, b_{m}\right) & \text { if } 0<m=n \\ \left(a_{1}, b_{1}\right) \ldots\left(a_{m}, b_{m}\right)\left(\$, b_{m+1}\right) \ldots\left(\$, b_{n}\right) & \text { if } 0 \leq m<n \\ \left(a_{1}, b_{1}\right) \ldots\left(a_{n}, b_{n}\right)\left(a_{n+1}, \$\right) \ldots\left(a_{m}, \$\right) & \text { if } m>n \geq 0\end{cases}
$$

Let S be a semigroup and A a finite generating set for S with respect to $\psi: A^{+} \rightarrow S$. The pair (A, L) is an automatic structure for S (with respect to ψ) if

- L is a regular subset of A^{+}and $L \psi=S$,
- $L_{=}=\{(\alpha, \beta): \alpha, \beta \in L, \alpha=\beta\} \delta_{A}$ is regular in $A(2, \$)^{+}$, and
- $L_{a}=\{(\alpha, \beta): \alpha, \beta \in L, \alpha a=\beta\} \delta_{A}$ is regular in $A(2, \$)^{+}$for each $a \in A$.

We say that a semigroup is automatic if it has an automatic structure.
Given an alphabet A and a set $K \subseteq A^{+}$we define

$$
\begin{aligned}
\operatorname{Pref}(K) & =\left\{w \in A^{*}: w w^{\prime} \in K \text { for some } w^{\prime} \in A^{*}\right\} \\
\operatorname{Suff}(K) & =\left\{w \in A^{*}: w^{\prime} w \in K \text { for some } w^{\prime} \in A^{*}\right\} \\
\operatorname{Subw}(K) & =\left\{w \in A^{*}: w_{1} w w_{2} \in K \text { for some } w_{1}, w_{2} \in A^{*}\right\}
\end{aligned}
$$

to be the sets of prefixes, suffixes and subwords of words in K, respectively.
If S_{1}, \ldots, S_{n} are semigroups with presentations $\left\langle A_{1} \mid R_{1}\right\rangle, \ldots,\left\langle A_{n} \mid R_{n}\right\rangle$ then their free product, $S=S_{1} * \ldots * S_{n}$, is the semigroup defined by the presentation $\left\langle A_{1} \cup \ldots \cup\right.$ $A_{n}\left|R_{1} \cup \ldots \cup R_{n}\right\rangle$. Any element $s \in S$ can be identified with a sequence

$$
s_{1} \ldots s_{m}(m>1)
$$

of elements of $\bigcup_{k=1}^{n} S_{k}$ such that,

$$
s_{i} \in S_{k} \Longrightarrow s_{i+1} \notin S_{k}(i=1, \ldots, m-1 ; k=1, \ldots, n)
$$

such a sequence we call a reduced sequence (of elements of $\bigcup_{k=1}^{n} S_{k}$). Given two elements $s=s_{1} \ldots s_{m}, s^{\prime}=s_{1}^{\prime} \ldots s_{p}^{\prime} \in S$, their product $s s^{\prime}$ is the following: if the elements s_{m}, s_{1}^{\prime} do not belong to a common factor S_{k} then the product $s s^{\prime}$ is the concatenation of sequences and in this case we say simply that the product $s s^{\prime}$ is the concatenation; otherwise we have $s_{m}, s_{1}^{\prime} \in S_{k}$ for some k and the product $s s^{\prime}$ is the reduced sequence $s_{1} \ldots s_{m-1} s_{0}^{\prime} s_{2}^{\prime} \ldots s_{p}^{\prime}$ where $s_{0}^{\prime}=s_{m} s_{1}^{\prime}$ in S_{k}.

2 Main Result

Our main result is the following:
Theorem 2.1 Let S be a free product of finitely many semigroups. Let H be a subsemigroup of S generated by a finite set X such that no element of X belongs to a non free factor of S. Then H is automatic.

This result has the following equivalent formulation:
Theorem 2.2 Let S be a free product of finitely many semigroups

$$
S=S_{1} * \ldots * S_{n} * T_{1} * \ldots * T_{m}
$$

where T_{1}, \ldots, T_{m} are free semigroups on finite sets Y_{1}, \ldots, Y_{m} respectively. Let $H=<$ $t_{1}, \ldots, t_{l}>$ be a subsemigroup of S where

$$
t_{1}, \ldots, t_{l} \in S \backslash\left(S_{1} \cup \ldots \cup S_{n}\right)
$$

Then H is an automatic semigroup.

Proof. Let us denote T_{i} by S_{n+i} for $i=1, \ldots, m$ and let $Y=Y_{1} \cup \ldots \cup Y_{m}$. Each generator t_{i} such that $t_{i} \notin T_{1} \cup \ldots \cup T_{m}$ can be written as a reduced sequence of elements of $\bigcup_{k=1}^{m+n} S_{k}$:

$$
t_{i}=s_{i, 1} s_{i, 2} \ldots s_{i, p(i)}
$$

with $p(i) \geq 2$. For each $k \in\{1, \ldots, n\}$ we define

$$
A_{k}=\left\{{ }^{k} a_{1}, \ldots,{ }^{k} a_{r_{k}}\right\}
$$

to be an alphabet in bijection with the following finite subset of S_{k} :

$$
F_{k}=\bigcup_{i=1}^{l}\left(\left\{s_{i, j} \in S_{k}: j=1, \ldots, p(i)\right\}\right) \cup\left\{s_{i, p(i)} s_{j, 1} \in S_{k}: i, j \in\{1, \ldots, l\}\right\}
$$

and let $f_{k}: A_{k} \rightarrow F_{k}$ be that bijection (we assume that the alphabets are disjoint). The elements in F_{k} are all those from S_{k} that may appear in a reduced sequence corresponding to an element from H (here it is essential that no generator belongs to S_{k}). They are finitely many and each one corresponds now to a letter from A_{k}.

We define the alphabet

$$
A=A_{1} \cup \ldots \cup A_{n} \cup Y
$$

and the language $L \subseteq A^{+}$by

$$
\begin{aligned}
L=\left\{y_{1} \ldots y_{k}:\right. & y_{i} \in A_{1} \cup \ldots \cup A_{n} \cup Y_{1}^{+} \cup \ldots \cup Y_{m}^{+}, \\
& y_{i} \in A_{j} \Longrightarrow y_{i+1} \notin A_{j}(i=1, \ldots, k-1 ; j=1, \ldots, n), \\
& \left.y_{i} \in Y_{j}^{+} \Longrightarrow y_{i+1} \notin Y_{j}^{+}(i=1, \ldots, k-1 ; j=1, \ldots, m)\right\}
\end{aligned}
$$

The bijections f_{k} induce a homomorphism

$$
f: A^{+} \rightarrow S
$$

and we will now show that any element in H has a unique representative in L. Given an element $h \in H$ it can be written as a product of the generators t_{1}, \ldots, t_{l}. Hence, when we write h as a reduced sequence of elements of $\bigcup_{j=1}^{n+m} S_{j}: h=u_{1} \ldots u_{r}$, each element u_{i} is either some $s_{k, l}$ or a product $s_{k, p(k)} s_{l, 1}$ or belongs to a free semigroup T_{j}. It follows from the definition of the alphabets A_{1}, \ldots, A_{n} and from the definition of L that there is a unique word $w \in L$ such that $w f=h$.

Let $\gamma_{1}, \ldots, \gamma_{l}$ be the unique words in L such that $\gamma_{i} f=t_{i}, i=1, \ldots, l$. Let $X=$ $\left\{x_{1}, \ldots, x_{l}, 1\right\}$ be a new alphabet and ρ be the homomorphism defined by

$$
\rho:(X \cup\{\$\})^{+} \rightarrow A^{*} ; x_{i} \mapsto \gamma_{i} ; 1, \$ \mapsto \epsilon
$$

We define the partial function

$$
\begin{aligned}
\lambda: A^{*} \rightarrow L \cup\{\epsilon\} ; & \epsilon \mapsto \epsilon, \\
& w \mapsto \bar{w} \in L \text { if there is } \bar{w} \in L \text { such that } \bar{w}=w \text { in } S,
\end{aligned}
$$

Figure 1: Diagram with ρ, f and λ
which maps each word in A^{+}to the corresponding unique "reduced word" in L if such word exists. The domain of this partial function is not A^{*} because there may for example exist $a, b \in A_{k}$ for some k, such that $(a f)(b f) \notin F_{k}$ and in this case there is no word $w \in L$ such that $w=a b$ in S. Nevertheless, since we have

$$
X^{+} \rho \backslash\{\epsilon\}=\left\{\gamma_{\alpha_{1}} \ldots \gamma_{\alpha_{k}}: k \in \mathbb{N} ; \alpha_{1}, \ldots, \alpha_{k} \in\{1, \ldots, l\}\right\},
$$

the partial function λ is defined on $X^{+} \rho$, and more generally, it is easy to see that it is also defined on

$$
\operatorname{Subw}\left(\left(X^{+} \rho \cup \overline{X^{+} \rho}\right)^{+}\right)
$$

We observe that the set $\overline{X^{+} \rho} \backslash\{\epsilon\} \subseteq L \subseteq A^{+}$is in bijection with H since, given an arbitrary $h \in H$ we have $h=t_{\alpha_{1}} \ldots t_{\alpha_{k}}$ if and only if $h=\overline{\left(x_{\alpha_{1}} \ldots x_{\alpha_{k}}\right) \rho} f$, and we have already seen that there is a unique word in L representing h. Therefore, we can identify the subsemigroup H with the set $\overline{X^{+} \rho} \backslash\{\epsilon\}$ which is a semigroup, defining the product of two words $w_{1}, w_{2} \in \overline{X^{+} \rho} \backslash\{\epsilon\}$, representing two elements $s_{1}, s_{2} \in H$, to be the word $\overline{w_{1} w_{2}} \in \overline{X^{+} \rho} \backslash\{\epsilon\}$, which represents the element $s_{1} s_{2} \in H$. This semigroup is generated by the words $\gamma_{1}, \ldots, \gamma_{l}$. We observe that this product may be simply the concatenation or not, depending on the words w_{1}, w_{2}, but if it is not the concatenation, it means that the last letter in w_{1} multiplies by the first letter from w_{2} and we have $\left|\overline{w_{1} w_{2}}\right|=\left|w_{1} w_{2}\right|-1$. Figure 1 illustrates the use of our functions by showing a diagram with the relevant subsets of their domains and ranges.

Let us consider the language $K \subseteq X^{+}$defined by

$$
\begin{aligned}
K=\{ & x_{\alpha_{1}} 1^{\left|\gamma_{\alpha_{1}}\right|-1} x_{\alpha_{2}} 1^{r\left(\alpha_{1}, \alpha_{2}\right)} x_{\alpha_{3}} \ldots 1^{r\left(\alpha_{t-2}, \alpha_{t-1}\right)} x_{\alpha_{t}} 1^{r\left(\alpha_{t-1}, \alpha_{t}\right)}: \\
& \left.t \geq 1, \alpha_{i} \in\{1, \ldots, l\}, i=1, \ldots, t\right\}
\end{aligned}
$$

where

$$
r(i, j)= \begin{cases}\left|\gamma_{j}\right|-1 & \text { if }\left|\overline{\gamma_{i} \gamma_{j}}\right|=\left|\gamma_{i} \gamma_{j}\right| \\ \left|\gamma_{j}\right|-2 & \text { if }\left|\overline{\gamma_{i} \gamma_{j}}\right|=\left|\gamma_{i} \gamma_{j}\right|-1\end{cases}
$$

We observe that $|w|=|\overline{w \rho}|$ for any word $w \in K$. We can easily define a finite deterministic automaton that recognizes the language K and so K is a regular language.

We denote by H^{1} the monoid obtained by adjoining an identity 1_{H} to H and we identify this monoid with the monoid $\overline{X^{+} \rho}$, obtained from the semigroup $\overline{X^{+} \rho} \backslash\{\epsilon\}$ defined above, by adding the identity ϵ. Hence, we consider X as a generating set for $\overline{X^{+} \rho}$ with respect to the unique extension of the function $\varphi: X \rightarrow \overline{X^{+} \rho} ; x \mapsto x \rho$ to an homomorphism $\varphi: X^{+} \rightarrow \overline{X^{+} \rho} \cong H^{1}$. We will show that $\left(X, K^{1}\right)$ is an automatic structure for H^{1}, where K^{1} is the regular language $K \cup\{1\} \subseteq X^{+}$.

We have

$$
\begin{aligned}
& K_{=}^{1}=K_{1}^{1}=K_{=} \cup\{(1,1)\} \\
& K_{x_{i}}^{1}=K_{x_{i}} \cup\left\{(1, w) \delta_{X}: w \in K, \overline{w \rho} \equiv \gamma_{i}\right\} .
\end{aligned}
$$

The sets $\{(1,1)\}$ and $\left\{(1, w) \delta_{A}: w \in K, \overline{w \rho} \equiv \gamma_{i}\right\}$ are finite, since $\overline{w \rho} \equiv \gamma_{i}$ implies $|w|=\left|\gamma_{i}\right|$, and so we just have to prove that $K_{=}$and $K_{x_{i}}$, for each i, are regular languages.

Denoting by ${ }^{i} a,{ }^{i} b, \ldots$ generic elements in A_{i}, for $w_{1}, w_{2} \in A^{*}$ we write $w_{1} \bowtie w_{2}$ if one of the following situations occur:

$$
\begin{aligned}
& \left(w_{1} \in \operatorname{Pref}\left(w_{2}\right) \& w_{1} \in A^{*} Y\right) \text { or } \\
& \left(w_{2} \in \operatorname{Pref}\left(w_{1}\right) \& w_{2} \in A^{*} Y\right) \text { or } \\
& \left(w_{1} \equiv w^{i} a \text { and } w_{2} \equiv w^{i} b w^{\prime}\right) \text { for some } i \text { or } \\
& \left(w_{1} \equiv w^{i} a w^{\prime} \text { and } w_{2} \equiv w^{i} b\right) \text { for some } i .
\end{aligned}
$$

For $w_{1} \bowtie w_{2}$ we define

$$
\operatorname{Rem}\left(w_{1}, w_{2}\right)= \begin{cases}(\epsilon, w) & \left(w_{2} \equiv w_{1} w, w_{1} \in A^{*} Y\right) \\ (w, \epsilon) & \left(w_{1} \equiv w_{2} w, w_{2} \in A^{*} Y\right) \\ \left({ }^{i} a,{ }^{i} b w^{\prime}\right) & \left(w_{1} \equiv w^{i} a, w_{2} \equiv w^{i} b w^{\prime}, i \in\{1, \ldots, k\}\right) \\ \left({ }^{i} a w^{\prime},{ }^{i} b\right) & \left(w_{1} \equiv w^{i} a w^{\prime}, w_{2} \equiv w^{i} b, i \in\{1, \ldots, k\}\right)\end{cases}
$$

Intuitively, for two words $w_{1}, w_{2} \in L$ we have $w_{1} \bowtie w_{2}$ if one of the words is almost a prefix of the other, in the sense that it may be possible to multiply the shorter word by a word from L in order to obtain the longer word. The function Rem (which stands for remainder) gives us the remainders of the two words: the two suffixes not belonging to the common prefix.

The following result tells us that there is a finite set where we can store the remainders, if we are dealing with words from our languages.

Claim 1 There is a finite set $W \subseteq A^{*}$ such that $\left(w_{1}, w_{2}\right) \delta_{X} \in K_{=} \cup\left(\bigcup_{i=1}^{l} K_{x_{i}}\right)$ implies that, for all $t \in \mathbb{N}$, we have $\overline{w_{1}(t) \rho} \bowtie \overline{w_{2}(t) \rho}$ and $\operatorname{Rem}\left(\overline{w_{1}(t) \rho}, \overline{w_{2}(t) \rho}\right) \in W \times W$.

Proof. We take

$$
N=\max \left\{\left|\gamma_{i}\right|: i=1, \ldots, l\right\}
$$

and we will prove that the result holds with

$$
W=\left\{w \in \operatorname{Suff}\left(\overline{X^{+} \rho}\right):|w| \leq N+1\right\}
$$

Let $w_{1}, w_{2} \in K$ and $t \leq\left|w_{1}\right|,\left|w_{2}\right|$. By the definition of K, we can write $t \leq\left|\overline{w_{j}(t) \rho}\right| \leq$ $t+N(j=1,2)$ and so we have

$$
\left\|\overline{w_{1}(t) \rho}|-| \overline{w_{2}(t) \rho}\right\| \leq N .
$$

If $\left(w_{1}, w_{2}\right) \delta_{X} \in K_{=}$then $\overline{w_{1} \rho} \equiv \overline{w_{2} \rho}$ and therefore

$$
\overline{w_{1}(t) \rho} \bowtie \overline{w_{2}(t) \rho}
$$

Let $\operatorname{Rem}\left(\overline{w_{1}(t) \rho}, \overline{w_{2}(t) \rho}\right)=\left(\eta_{1}, \eta_{2}\right)$ where $\eta_{1}, \eta_{2} \in A^{*}$. Since $w_{1}, w_{2} \in K \subseteq X^{+}$we have $w_{1}(t) \rho, w_{2}(t) \rho \in X^{+} \rho$ and so $\overline{w_{1}(t) \rho}, \overline{w_{2}(t) \rho} \in \overline{X^{+} \rho}$. Therefore, by definition of Rem, $\eta_{1}, \eta_{2} \in \operatorname{Suff}\left(\overline{X^{+} \rho}\right)$. Since $\left|\left|\overline{w_{1}(t) \rho}\right|-\left|\overline{w_{2}(t) \rho}\right|\right| \leq N$, again by definition of Rem, we have $\left|\eta_{1}\right|,\left|\eta_{2}\right| \leq N+1$ and we conclude that $\left(\eta_{1}, \eta_{2}\right) \in W \times W$.

Suppose now that $\left(w_{1}, w_{2}\right) \delta_{A} \in K_{x_{i}}$. Then it is $\overline{\left(w_{1} \rho\right) \gamma_{i}} \equiv \overline{w_{2} \rho}$ and so

$$
\overline{w_{1}(t) \rho} \bowtie \overline{w_{2}(t) \rho}
$$

for any $t \in \mathbb{N}$. Since we have $\left|\overline{w_{1} \rho}\right|=\left|w_{1}\right|$ and $\left|\overline{w_{2} \rho}\right|=\left|w_{2}\right|$ it may be $\left|w_{2}\right|=\left|w_{1}\right|+\left|\gamma_{i}\right|$ or $\left|w_{2}\right|=\left|w_{1}\right|+\left|\gamma_{i}\right|-1$ according to whether $\overline{w_{1} \rho} \gamma_{i} \equiv \overline{\left(w_{1} \rho\right) \gamma_{i}}$ or not. For $t \leq\left|w_{1}\right|$ we have as above $t \leq\left|\overline{w_{j}(t) \rho}\right| \leq t+N(j=1,2)$ and so $\left\|\overline{w_{1}(t) \rho}|-| \overline{w_{2}(t) \rho}\right\| \leq N$. For $\left|w_{1}\right|<t \leq\left|w_{2}\right|$ we have

$$
\left|\overline{w_{1}(t) \rho}\right|=\left|\overline{w_{1} \rho}\right|=\left|w_{1}\right|, \quad t \leq\left|\overline{w_{2}(t) \rho}\right| \leq\left|w_{1}\right|+\left|\gamma_{i}\right| \leq\left|w_{1}\right|+N
$$

and so $\left\|\overline{w_{2}(t) \rho}|-| \overline{w_{1}(t) \rho}\right\| \leq N$. Again $\overline{w_{1}(t) \rho}, \overline{w_{2}(t) \rho} \in \overline{X^{+} \rho}$, since $w_{1}, w_{2} \in K \subseteq X^{+}$, and we have $\operatorname{Rem}\left(\overline{w_{1}(t) \rho}, \overline{w_{2}(t) \rho}\right) \in W \times W$.

From now on we assume that a set W satisfying the conditions of Claim 1 is fixed and we will use this set to construct automata that allow us to prove the regularity of our languages. We will prove that there is an automaton \mathcal{M} such that $K_{=}=\mathcal{L}(\mathcal{M}) \cap$ $(K \times K) \delta_{X}$ and automata \mathcal{M}_{i} such that $K_{x_{i}}=\mathcal{L}\left(\mathcal{M}_{i}\right) \cap(K \times K) \delta_{X}$. Let

$$
\mathcal{M}=(Q, B,(\epsilon, \epsilon), \mu, T)
$$

where $Q=W \times W$ is the set of states, $B=(X \cup\{\$\}) \times(X \cup\{\$\})$ is the alphabet, (ϵ, ϵ) is the initial state, $T=\left\{(a, a): a \in A_{1} \cup \ldots \cup A_{n} \cup\{\epsilon\}\right\}$ is the set of terminal states and the transition μ is the partial function from $Q \times B$ to Q defined by

$$
\begin{aligned}
(\alpha, \beta) \xrightarrow{(x, y)}{ }_{\mu} \operatorname{Rem}(\overline{\alpha(x \rho)}, \overline{\beta(y \rho)}) \text { if } & \overline{\alpha(x \rho)} \bowtie \overline{\beta(y \rho)} \text { and } \\
& \operatorname{Rem}(\overline{\alpha(x \rho)}, \overline{\beta(y \rho)}) \in W \times W
\end{aligned}
$$

for $(\alpha, \beta) \in Q$ and $(x, y) \in B$. For $i \in\{1, \ldots, l\}$ we define

$$
M_{i}=\left(Q, B,(\epsilon, \epsilon), \mu, T_{i}\right)
$$

where the set of terminal states T_{i} is defined as follows. If $\gamma_{i} \equiv{ }^{j} a \gamma_{i}^{\prime}$ for some word $\gamma_{i}^{\prime} \in A^{+}$then we define

$$
T_{i}=\left\{\left({ }^{j} b,{ }^{j} c \gamma_{i}^{\prime}\right):{ }^{j_{b}}{ }^{j} a={ }^{j} c \text { in } S_{j}\right\} \cup\left\{\left({ }^{k} b,{ }^{k} b \gamma_{i}\right): k \neq j\right\} \cup\left\{\left(\epsilon, \gamma_{i}\right)\right\} .
$$

If $\gamma_{i} \in Y A^{*}$ then we define

$$
T_{i}=\left\{\left({ }^{k} a,{ }^{k} a \gamma_{i}\right)\right\} \cup\left\{\left(\epsilon, \gamma_{i}\right)\right\} .
$$

For $w_{1} \equiv x_{1} \ldots x_{n}, w_{2} \equiv y_{1} \ldots y_{n}$, with $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n} \in X \cup\{\$\}$, and $(\alpha, \beta),\left(\alpha^{\prime}, \beta^{\prime}\right) \in W \times W$ we write

$$
(\alpha, \beta) \xrightarrow{\left(w_{1}, w_{2}\right)} \mu\left(\alpha^{\prime}, \beta^{\prime}\right)
$$

and we say that there is a path in the automaton from (α, β) to ($\alpha^{\prime}, \beta^{\prime}$) labelled by $\left(w_{1}, w_{2}\right)$, if there are $\left(\alpha_{0}, \beta_{0}\right)=(\alpha, \beta),\left(\alpha_{1}, \beta_{1}\right), \ldots,\left(\alpha_{n}, \beta_{n}\right)=\left(\alpha^{\prime}, \beta^{\prime}\right) \in W \times W$ such that $\left(\alpha_{i-1}, \beta_{i-1}\right) \xrightarrow{\left(x_{i}, y_{i}\right)}\left(\alpha_{i}, \beta_{i}\right), i=1, \ldots, n$.

The following result, relates a path in the automata with the remainders of the pair of words labelling the path.

Claim 2 For any $w_{1}, w_{2} \in(X \cup\{\$\})^{+}$, with $\left|w_{1}\right|=\left|w_{2}\right|$, we have

$$
\begin{equation*}
(\alpha, \beta) \xrightarrow{\left(w_{1}, w_{2}\right)}{ }_{\mu}\left(\theta_{1}, \theta_{2}\right) \quad \Longrightarrow \operatorname{Rem}\left(\overline{\alpha\left(w_{1} \rho\right)}, \overline{\beta\left(w_{2} \rho\right)}\right)=\left(\theta_{1}, \theta_{2}\right) . \tag{1}
\end{equation*}
$$

Proof. We will prove this claim by induction on $m=\left|w_{1}\right|=\left|w_{2}\right|$. For $m=1$ the implication follows from the definition of μ. Suppose the claim holds for words of length m and let w_{1}, w_{2} be words of length $m+1$ with $(\alpha, \beta) \xrightarrow{\left(w_{1}, w_{2}\right)}{ }_{\mu}\left(\theta_{1}, \theta_{2}\right)$. Then we can write $w_{1} \equiv w_{1}^{\prime} x$ and $w_{2} \equiv w_{2}^{\prime} y$ where w_{1}^{\prime} and w_{2}^{\prime} are words of length m. We have $(\alpha, \beta) \xrightarrow{{ }^{\left(w_{1}^{\prime}, w_{2}^{\prime}\right)}} \mu\left(\eta_{1}, \eta_{2}\right)$ and $\left(\eta_{1}, \eta_{2}\right) \xrightarrow{(x, y)} \mu\left(\theta_{1}, \theta_{2}\right)$ for some words $\eta_{1}, \eta_{2} \in W$. By the induction hypothesis and by definition of μ it is $\left(\eta_{1}, \eta_{2}\right)=\operatorname{Rem}\left(\overline{\alpha\left(w_{1}^{\prime} \rho\right)}, \overline{\beta\left(w_{2}^{\prime} \rho\right)}\right)$ and $\left(\theta_{1}, \theta_{2}\right)=\operatorname{Rem}\left(\overline{\eta_{1}(x \rho)}, \overline{\eta_{2}(y \rho)}\right)$. We can then write

$$
\begin{aligned}
\overline{\alpha\left(w_{1}^{\prime} \rho\right)} & \equiv w^{\prime \prime} \eta_{1}, & \overline{\eta_{1}(x \rho)} & \equiv w^{\prime} \theta_{1}, \\
\overline{\beta\left(w_{2}^{\prime} \rho\right)} & \equiv w^{\prime \prime} \eta_{2}, & & \overline{\eta_{2}(y \rho)}
\end{aligned} \equiv w^{\prime} \theta_{2},
$$

for some words $w^{\prime}, w^{\prime \prime} \in A^{*}$.
We will now show that

$$
\overline{w^{\prime \prime} w^{\prime} \theta_{1}} \equiv \overline{w^{\prime \prime} w^{\prime}} \theta_{1} .
$$

The equation holds trivially for $\theta_{1} \equiv \epsilon$. If $w^{\prime} \neq \epsilon$ the equation holds as well, since $w^{\prime} \theta_{1} \in L$. We will now consider the case where $\theta_{1} \neq \epsilon$ and $w^{\prime} \equiv \epsilon$. If $w^{\prime \prime} \in A^{*} Y \cup\{\epsilon\}$ then the equation clearly holds. Otherwise we have $w^{\prime \prime} \equiv w^{\prime \prime \prime}{ }^{i} a$ for some i, it must be $\eta_{1} \neq \epsilon$ by the definition of Rem and, since $w^{\prime \prime} \eta_{1} \in L$, we have either $\eta_{1} \in Y A^{*}$ or $\eta_{1} \equiv{ }^{j} b \eta_{1}^{\prime}$ with $i \neq j$. Since $\overline{\eta_{1}(x \rho)} \equiv \theta_{1}$ we have $\theta_{1} \in Y A^{*}$ or $\theta_{1} \in A_{j} A^{*}$ with $i \neq j$ as well and, in either case, $\overline{w^{\prime \prime} \theta_{1}} \equiv \overline{w^{\prime \prime}} \theta_{1}$ yielding again $\overline{w^{\prime \prime} w^{\prime} \theta_{1}} \equiv \overline{w^{\prime \prime} w^{\prime} \theta_{1}}$. A similar argument shows that $\overline{w^{\prime \prime} w^{\prime} \theta_{2}} \equiv \overline{w^{\prime \prime} w^{\prime}} \theta_{2}$.

Therefore we have

$$
\begin{aligned}
& \overline{\alpha\left(w_{1} \rho\right)} \equiv \overline{\alpha\left(w_{1}^{\prime} \rho\right)(x \rho)} \equiv \overline{\overline{\alpha\left(w_{1}^{\prime} \rho\right)}(x \rho)} \equiv \\
& \overline{\left(w^{\prime \prime} \eta_{1}\right)(x \rho)} \equiv \overline{w^{\prime \prime} \overline{\eta_{1}(x \rho)}} \equiv \overline{w^{\prime \prime} w^{\prime} \theta_{1}} \equiv \overline{w^{\prime \prime} w^{\prime} \theta_{1}}
\end{aligned}
$$

and

$$
\begin{aligned}
& \overline{\beta\left(w_{2} \rho\right)} \equiv \overline{\beta\left(w_{2}^{\prime} \rho\right)(y \rho)} \equiv \overline{\overline{\beta\left(w_{2}^{\prime} \rho\right)}(y \rho)} \equiv \\
& \overline{\left(w^{\prime \prime} \eta_{2}\right)(y \rho)} \equiv \overline{w^{\prime \prime}} \overline{\eta_{2}(y \rho)} \equiv \overline{w^{\prime \prime} w^{\prime} \theta_{2}} \equiv \overline{w^{\prime \prime} w^{\prime} \theta_{2}} .
\end{aligned}
$$

Hence $\operatorname{Rem}\left(\overline{\alpha\left(w_{1} \rho\right)}, \overline{\beta\left(w_{2} \rho\right)}\right)=\left(\theta_{1}, \theta_{2}\right)$ which concludes the proof of the claim.

We will now use the two claims to prove that

$$
\begin{aligned}
& K_{=}=\mathcal{L}(\mathcal{M}) \cap(K \times K) \delta_{X} \\
& K_{x_{i}}=\mathcal{L}\left(\mathcal{M}_{i}\right) \cap(K \times K) \delta_{X}(i=1, \ldots, l),
\end{aligned}
$$

by showing each of the four inclusions separately.
To prove that $K_{=} \subseteq \mathcal{L}(\mathcal{M})$ let $\left(w_{1}, w_{2}\right) \delta_{X} \in K_{=}$arbitrary. We have $\overline{w_{1} \rho} \equiv \overline{w_{2} \rho}$, $\left|w_{1}\right|=\left|\overline{w_{1} \rho}\right|=\left|\overline{w_{2} \rho}\right|=\left|w_{2}\right|$ and we can write $w_{1} \equiv y_{1} \ldots y_{k}$ and $w_{2} \equiv z_{1} \ldots z_{k}$ with $y_{1}, \ldots, y_{k}, z_{1} \ldots, z_{k} \in X$. Using the two claims and by definition of μ we can construct a unique path labeled by $\left(w_{1}, w_{2}\right)$,

$$
(\epsilon, \epsilon) \xrightarrow{\left(y_{1}, z_{1}\right)} \mu\left(\eta_{1}, \eta_{1}^{\prime}\right) \xrightarrow{\left(y_{2}, z_{2}\right)} \mu\left(\eta_{2}, \eta_{2}^{\prime}\right) \xrightarrow{\left(y_{3}, z_{3}\right)} \mu \ldots \xrightarrow{\left(y_{k}, z_{k}\right)} \mu\left(\eta_{k}, \eta_{k}^{\prime}\right),
$$

with all $\eta_{i}, \eta_{i}^{\prime} \in W$. By Claim 2 it must be $\left(\eta_{k}, \eta_{k}^{\prime}\right)=\operatorname{Rem}\left(\overline{w_{1} \rho}, \overline{w_{2} \rho}\right)$. Since $\overline{w_{1} \rho} \equiv \overline{w_{2} \rho}$, by definition of Rem we have $\left(\eta_{k}, \eta_{k}^{\prime}\right)=(a, a)$ with $a \in A_{1} \cup \ldots \cup A_{n} \cup\{\epsilon\}$, which means that $\left(w_{1}, w_{2}\right) \delta_{A} \in \mathcal{L}(\mathcal{M})$.

To prove that $\mathcal{L}(\mathcal{M}) \cap(K \times K) \delta_{X} \subseteq K_{=}$let w_{1}, w_{2} be arbitrary words in K such that $\left(w_{1}, w_{2}\right) \delta_{X} \in \mathcal{L}(\mathcal{M})$. We can write $w_{1} \equiv y_{1} \ldots y_{q}$ and $w_{2} \equiv z_{1} \ldots z_{r}$ where $y_{1}, \ldots, y_{q}, z_{1}, \ldots, z_{r} \in X$. So there is a path

$$
(\epsilon, \epsilon) \xrightarrow{\left(y_{1} \ldots y_{k}, z_{1} \ldots z_{k}\right)}(a, a)
$$

in \mathcal{M} where $k=\max \{q, r\}, y_{q+1}=\ldots=y_{k}=z_{r+1}=\ldots=z_{k}=\$$ and $a \in A_{1} \cup \ldots \cup$ $A_{n} \cup\{\epsilon\}$. By Claim 2 and since $\$ \rho=\epsilon$, it is ($\left.a, a\right)=\operatorname{Rem}\left(\overline{w_{1} \rho}, \overline{w_{2} \rho}\right)$ which implies that $w_{1}=w_{2}$ as elements of H and so $\left(w_{1}, w_{2}\right) \delta_{X} \in K_{=}$.

To prove that $K_{x_{i}} \subseteq \mathcal{L}\left(\mathcal{M}_{i}\right)$ let $\left(w_{1}, w_{2}\right) \delta_{A} \in K_{x_{i}}$ be arbitrary. We have $\overline{\left(w_{1} \rho\right) \gamma_{i}} \equiv$ $\overline{w_{2} \rho}$ and we write $w_{1} \equiv y_{1} \ldots y_{k}, w_{2} \equiv z_{1} \ldots z_{r}$ with $y_{1}, \ldots, y_{k}, z_{1}, \ldots, z_{r} \in X$. We note that $r=\left|w_{2}\right|=\left|\overline{w_{2} \rho}\right|=\left|\overline{\left(w_{1} \rho\right) \gamma_{i}}\right|>\left|\overline{w_{1} \rho}\right|=\left|w_{1}\right|=t$. Using the previous claims and by definition of μ we can construct a unique path in \mathcal{M}_{i} labeled by ($w_{1} \$^{r-k}, w_{2}$),

$$
\begin{aligned}
& (\epsilon, \epsilon) \xrightarrow{\left(y_{1}, z_{1}\right)} \mu\left(\eta_{1}, \eta_{1}^{\prime}\right) \xrightarrow{\left(y_{2}, z_{2}\right)} \mu\left(\eta_{2}, \eta_{2}^{\prime}\right) \rightarrow \ldots \\
& \xrightarrow{\left(y_{k}, z_{k}\right)} \mu\left(\eta_{k}, \eta_{k}^{\prime}\right) \xrightarrow{\left(\$, z_{k+1}\right)} \mu\left(\eta_{k+1}, \eta_{k+1}^{\prime}\right) \rightarrow \ldots{\xrightarrow{\left(\S, z_{r}\right)}}_{\mu}\left(\eta_{r}, \eta_{r}^{\prime}\right),
\end{aligned}
$$

with all $\eta_{j}, \eta_{j}^{\prime} \in W$. By Claim 2, $\left(\eta_{r}, \eta_{r}^{\prime}\right)=\operatorname{Rem}\left(\overline{w_{1} \rho}, \overline{w_{2} \rho}\right)$. If $\gamma_{i} \in Y A^{*}$ then, it can be $\overline{w_{1} \rho} \in A^{*} Y$ and so $\left(\eta_{r}, \eta_{r}^{\prime}\right)=\left(\epsilon, \gamma_{i}\right) \in T_{i}$, or $\overline{w_{1} \rho} \equiv w^{k} a$ and then $\left(\eta_{r}, \eta_{r}^{\prime}\right)=$ $\left({ }^{k} a,{ }^{k} a \gamma_{i}\right) \in T_{i}$ as well. Otherwise we have $\gamma_{i} \equiv{ }^{j} a \gamma_{i}^{\prime}$ and, since $\overline{\left(w_{1} \rho\right) \gamma_{i}} \equiv \overline{w_{2} \rho}$, there are three possibilities: it may be $\overline{w_{1} \rho} \equiv w^{\prime}{ }_{b}$ and $\overline{w_{2} \rho} \equiv w^{\prime}{ }_{c} \gamma_{i}^{\prime}$ with ${ }^{j} b{ }^{j} a={ }^{j} c$ in S_{j}, and so $\operatorname{Rem}\left(\overline{w_{1} \rho}, \overline{w_{2} \rho}\right)=\left({ }^{j} b,{ }^{j} c \gamma_{i}^{\prime}\right) \in T_{i}$; it can also be $\overline{w_{1} \rho} \equiv w^{\prime}{ }^{k} b(k \neq j)$ and $\overline{w_{2} \rho} \equiv w^{\prime}{ }^{k} b \gamma_{i}$ and then $\operatorname{Rem}\left(\overline{w_{1} \rho}, \overline{w_{2} \rho}\right)=\left({ }^{k} b,{ }^{k} b \gamma_{i}\right) \in T_{i}$; finally it can be $\overline{w_{1} \rho} \in A^{*} Y$
and then $\operatorname{Rem}\left(\overline{w_{1} \rho}, \overline{w_{2} \rho}\right)=\left(\epsilon, \gamma_{i}\right) \in T_{i}$. In any case $\left(\eta_{r}, \eta_{r}^{\prime}\right)=\operatorname{Rem}\left(\overline{w_{1} \rho}, \overline{w_{2} \rho}\right) \in T_{i}$ and so $\left(w_{1}, w_{2}\right) \delta_{X} \in \mathcal{L}\left(\mathcal{M}_{i}\right)$.

To prove that $\mathcal{L}\left(\mathcal{M}_{i}\right) \cap(K \times K) \delta_{X} \subseteq K_{x_{i}}$ let $w_{1}, w_{2} \in K$ arbitrary such that $\left(w_{1}, w_{2}\right) \delta_{X} \in \mathcal{L}\left(\mathcal{M}_{i}\right)$. We can write $w_{1} \equiv y_{1} \ldots y_{q}$ and $w_{2} \equiv z_{1} \ldots z_{r}$ where y_{1}, \ldots, y_{q}, $z_{1}, \ldots, z_{r} \in X$. There is a path

$$
(\epsilon, \epsilon) \xrightarrow{\left(y_{1} \ldots y_{k}, z_{1} \ldots z_{k}\right)}\left(\eta, \eta^{\prime}\right)
$$

in \mathcal{M}_{i} where $k=\max \{q, r\}, y_{q+1}=\ldots=y_{k}=z_{r+1}=\ldots=z_{k}=\$$ and $\left(\eta, \eta^{\prime}\right) \in T_{i}$. By Claim 2 we have $\left(\eta, \eta^{\prime}\right)=\operatorname{Rem}\left(\overline{w_{1} \rho}, \overline{w_{2} \rho}\right)$. If $\gamma_{i} \equiv{ }^{j} a \gamma_{i}^{\prime}$ then, by definition of T_{i}, we have either $\left(\eta, \eta^{\prime}\right)=\left({ }^{j} b,{ }^{j} c \gamma_{i}^{\prime}\right)$ with ${ }^{j} b^{j} a={ }^{j} c$ in S_{j}, or $\left(\eta, \eta^{\prime}\right)=\left({ }^{k} b,{ }^{k} b \gamma_{i}\right)$ with $k \neq j$, or $\left(\eta, \eta^{\prime}\right)=\left(\epsilon, \gamma_{i}\right)$. In the first case we have $\overline{w_{1} \rho} \equiv w^{j} b$ and $\overline{w_{2} \rho} \equiv w^{j} c \gamma_{i}^{\prime}$ for some word $w \in A^{*}$ and so we can write $\overline{\left(w_{1} \rho\right) \gamma_{i}} \equiv \overline{w^{j} b^{j} a \gamma_{i}^{\prime}} \equiv \overline{w^{j} c \gamma_{i}^{\prime}} \equiv \overline{w_{2} \rho}$ which means that $w_{1} x_{i}=w_{2}$ in H. In the second case we have $\overline{w_{1} \rho} \equiv w^{k} b$ and $\overline{w_{2} \rho} \equiv w^{k} b \gamma_{i}$ for some word $w \in A^{*}$ and so we can write $\overline{\left(w_{1} \rho\right) \gamma_{i}} \equiv \overline{w^{k} b \gamma_{i}} \equiv \overline{w_{2} \rho}$ and again $w_{1} x_{i}=w_{2}$ in H. In the third case we have $\overline{w_{1} \rho} \in A^{*} Y$ and so $\overline{w_{2} \rho} \equiv \overline{w_{1} \rho} \gamma_{i} \equiv \overline{\left(w_{1} \rho\right) \gamma_{i}}$ which implies $w_{2}=w_{1} x_{i}$ in H. If we have $\gamma_{i} \in Y A^{*}$ then, by definition of T_{i}, it may be $\operatorname{Rem}\left(\overline{w_{1} \rho}, \overline{w_{2} \rho}\right)=\left({ }^{k} a,{ }^{k} a \gamma_{i}\right)$ or $\operatorname{Rem}\left(\overline{w_{1} \rho}, \overline{w_{2} \rho}\right)=\left(\epsilon, \gamma_{i}\right)$. In the first case we have $\overline{w_{1} \rho} \equiv w^{k} a$ and $\overline{w_{2} \rho} \equiv w^{k} a \gamma_{i}$ which implies that $\overline{\left(w_{1} \rho\right) \gamma_{i}} \equiv \overline{w^{k} a \gamma_{i}} \equiv w^{k} a \gamma_{i} \equiv \overline{w_{2} \rho}$ and therefore $w_{1} x_{i}=w_{2}$ in H. In the second case we have $\overline{w_{1} \rho} \in A^{*} Y$ and $\overline{w_{2} \rho} \equiv \overline{w_{1} \rho} \gamma_{i} \equiv \overline{\left(w_{1} \rho\right) \gamma_{i}}$ which implies again $w_{2}=w_{1} x_{i}$ in H. So in any case $\left(w_{1}, w_{2}\right) \delta_{X} \in K_{x_{i}}$ and the inclusion is proved.

To conclude the proof of the theorem we observe that, since $K_{=}=\mathcal{L}(\mathcal{M}) \cap(K \times K) \delta_{A}$ and $K_{x_{i}}=\mathcal{L}\left(\mathcal{M}_{i}\right) \cap(K \times K) \delta_{A}, K_{=}$and $K_{x_{i}}$ are regular languages and so H^{1} is automatic which implies that H is automatic.

3 Corollaries and Questions

We have the following consequence of our result, which concerns free products of free and finite semigroups:

Corollary 3.1 If S is a free product of semigroups that are either finite or free then any finitely generated subsemigroup of S is automatic.

Proof. Let $S=S_{1} * \ldots * S_{n} * T_{1} * \ldots * T_{m}$ where S_{1}, \ldots, S_{n} are finite semigroups and T_{1}, \ldots, T_{m} are free semigroups. Let H be an (infinite) subsemigroup of S. Suppose that H is generated by $A=\left\{t_{1}, \ldots, t_{l}\right\} \subseteq S$ and, without loss of generality, that $A \cap S_{1}=$ $\left\{t_{1}, \ldots, t_{k}\right\}(0<k<l)$. Since the semigroup $U=<t_{1}, \ldots, t_{k}>$ is a subsemigroup of S_{1} it is finite. Let H^{\prime} be the semigroup generated by the finite set

$$
A^{\prime}=\left\{U^{1} t_{k+1} U^{1}, U^{1} t_{k+2} U^{1}, \ldots, U^{1} t_{l} U^{1}\right\}
$$

We observe that

$$
A \cap\left(S_{1} \cup \ldots \cup S_{n}\right) \supsetneq A^{\prime} \cap\left(S_{1} \cup \ldots \cup S_{n}\right), \quad A^{\prime} \cap S_{1}=\emptyset
$$

and $H \backslash H^{\prime}=U$ is finite. If A^{\prime} contains elements from S_{2} we can remove them the same way obtaining a semigroup $H^{\prime \prime}$ generated by a set $A^{\prime \prime}$ that does not contain elements from $S_{1} \cup S_{2}$ and such that $H \backslash H^{\prime \prime}$ is finite. Repeating this process for every S_{i} that contains generators we will obtain a semigroup V generated by a set B such that $B \cap\left(S_{1} \cup \ldots \cup S_{n}\right)=\emptyset$ and $H \backslash V$ is finite. Since V is in the conditions of the previous theorem it is automatic. Since $H \backslash V$ is finite we can use Proposition 1.1 and conclude the H is automatic.

Corollary 3.2 Any finitely generated subsemigroup of a free product of finite semigroups is automatic.

Proof. This is a particular case of the previous corollary, worth stating separately.

We say that a semigroup is monogenic if it is generated by a single element and we have the following result:

Corollary 3.3 Any finitely generated subsemigroup of a free product of monogenic semigroups is automatic.

Proof. A monogenic semigroup is either free or finite and so we can use Corollary 3.1.

Defining a semigroup to be strongly automatic if all its finitely generated subsemigroups are automatic we may ask the following question:

Question 3.4 Is the free product of strongly automatic semigroups always strongly automatic?

The answer to the same question for groups is "yes" because we can use the Kurosh Subgroup Theorem: If H is a subgroup of $G_{1} * G_{2}$ then H is isomorphic to $F * H_{1} * H_{2}$ where F is a free group, H_{1} is isomorphic to a subgroup of G_{1} and H_{2} is isomorphic to a subgroup of G_{2}. For semigroups it is still an open question.

By Proposition 1.2 the bicyclic monoid is strongly automatic and so we may also consider the following question:

Question 3.5 Does Theorem 2.1 still hold if we allow generators to belong to factors isomorphic to the bicyclic monoid?

References

[1] G. Baumslag, S. M. Gersten, M. Shapiro and H. Short, Automatic Groups and Amalgams, J. Pure Appl. Algebra 76 (1991), 229-316.
[2] J. W. Cannon, D. B. A. Epstein, D. F. Holt, S. V. F. Levy, M. S. Paterson and W. P. Thurston, Word Processing in Groups Jones and Bartlett Publishers, 1992.
[3] C.M. Campbell, E.F. Robertson, N. Ruškuc and R.M. Thomas, Automatic semigroups, Theoretical Computer Science 250 (2001), 365-391.
[4] C.M. Campbell, E.F. Robertson, N. Ruškuc and R.M. Thomas, Direct products of automatic semigroups, J. Austral. Math. Soc. Ser. A 69 (2000) 19-24.
[5] L. Descalço and N. Ruškuc, Subsemigroups of the bicyclic monoid, Internat. J. Algebra Comput., to appear.
[6] L. Descalço and N. Ruškuc, Properties of the subsemigroups of the bicyclic monoid, submitted.
[7] L. Descalço and N. Ruškuc, On automatic Rees matrix semigroups Comm. Algebra 30 (2002) 1207-1226.
[8] A. J. Duncan, E. F. Robertson and N. Ruškuc, Automatic monoids and Change of Generators, Math. Proc. Cambridge Philos. Soc. 127 (1999), 403-409.
[9] M. Hoffmann, N. Ruškuc and R.M. Thomas, Automatic semigroups with subsemigroups of finite Rees index, Internat. J. Algebra Comput. 12 (2002), 463-476.
[10] F. Otto, On Dehn functions of finitely presented bi-automatic monoids, J. Autom. Lang. Comb. 5 (2000) 405-419.

