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Abstract

We consider the automaticity of subsemigroups of free products of semigroups,

proving that subsemigroups of free products, with all generators having length

greater than one in the free product, are automatic. As a corollary, we show

that if S is a free product of semigroups that are either finite or free, then any

finitely generated subsemigroup of S is automatic. In particular, any finitely gener-

ated subsemigroup of a free product of finite or monogenic semigroups is automatic.

2000 Mathematics Subject Classification: 20M10

1 introduction

The notion of automatic group has recently been extended to semigroups and the basic

properties of this new class of semigroups have been established in [3]. The notion of

automatic semigroup does not correspond to a nice geometric property as in the case of

groups where being automatic is the same as having the fellow traveller property (see

[1, 2]). Nevertheless it is a natural class of semigroups where we have some interesting

computational properties, for example the word problem is solvable in quadratic time

(see [3]), and several results concerning automaticity of semigroups have been established

(see, for example [4, 7, 8, 9, 10]).

We are interested in the following general question:

When is a subsemigroup of an automatic semigroup automatic as well?

A general result concerning this problem was established in [9], where the authors

have proved the following:

Proposition 1.1 Let S be a semigroup and let T be a subsemigroup of S such that S\T

is finite. Then S is automatic if and only if T is automatic.
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A description of the subsemigroups of the bicyclic monoid was obtained in [5] and, using

this description, the question above was answered (in [6]) for the bicyclic monoid and its

subsemigroups:

Proposition 1.2 All finitely generated subsemigroups of the bicyclic monoid are auto-

matic.

The question was also solved (in [3]) for free semigroups and their subsemigroups where

the following was shown:

Proposition 1.3 If F is a free semigroup and S is a finitely generated subsemigroup of

F , then S is automatic.

In this paper we extend this last result by considering subsemigroups of free products

of semigroups. We show that some subsemigroups of free products of arbitrary semi-

groups, including in particular finitely generated subsemigroups of free semigroups, are

automatic.

We start by introducing the definitions we require. Given a finite set A, which we

call an alphabet, we denote by A+ the free semigroup generated by A consisting of finite

sequences of elements of A, which we call words, under the concatenation, and by A∗

the free monoid generated by A consisting of A+ together with the empty word ε. Let

S be a semigroup and ψ : A → S a mapping. We say that A is a finite generating

set for S with respect to ψ if the unique extension of ψ to a semigroup homomorphism

ψ : A+ → S is surjective. For u, v ∈ A+ we write u ≡ v to mean that u and v are

equal as words and u = v to mean that u and v represent the same element in the

semigroup i.e. that uψ = vψ. We say that a subset L of A+, usually called a language, is

regular if there is a finite state automaton accepting L. To be able to deal with automata

that accept pairs of words and to define automatic semigroups we need to define the set

A(2, $) = ((A∪{$})×(A∪{$}))\{($, $)} where $ is a symbol not in A (called the padding

symbol) and the function δA : A∗ ×A∗ → A(2, $)∗ defined by

(a1 . . . am, b1 . . . bn)δA =



















ε if 0 = m = n

(a1, b1) . . . (am, bm) if 0 < m = n

(a1, b1) . . . (am, bm)($, bm+1) . . . ($, bn) if 0 ≤ m < n

(a1, b1) . . . (an, bn)(an+1, $) . . . (am, $) if m > n ≥ 0.

Let S be a semigroup and A a finite generating set for S with respect to ψ : A+ → S.

The pair (A,L) is an automatic structure for S (with respect to ψ) if

• L is a regular subset of A+ and Lψ = S,

• L= = {(α, β) : α, β ∈ L,α = β}δA is regular in A(2, $)+, and

• La = {(α, β) : α, β ∈ L,αa = β}δA is regular in A(2, $)+ for each a ∈ A.
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We say that a semigroup is automatic if it has an automatic structure.

Given an alphabet A and a set K ⊆ A+ we define

Pref(K) = {w ∈ A∗ : ww′ ∈ K for some w′ ∈ A∗},

Suff(K) = {w ∈ A∗ : w′w ∈ K for some w′ ∈ A∗},

Subw(K) = {w ∈ A∗ : w1ww2 ∈ K for some w1, w2 ∈ A∗}

to be the sets of prefixes, suffixes and subwords of words in K, respectively.

If S1, . . . , Sn are semigroups with presentations 〈A1 | R1〉, . . . , 〈An | Rn〉 then their

free product, S = S1 ∗ . . . ∗ Sn, is the semigroup defined by the presentation 〈A1 ∪ . . . ∪

An | R1 ∪ . . . ∪Rn〉. Any element s ∈ S can be identified with a sequence

s1 . . . sm (m > 1)

of elements of
⋃n

k=1 Sk such that,

si ∈ Sk =⇒ si+1 /∈ Sk (i = 1, . . . ,m− 1; k = 1, . . . , n);

such a sequence we call a reduced sequence (of elements of
⋃n

k=1 Sk). Given two elements

s = s1 . . . sm, s
′ = s′1 . . . s

′
p ∈ S, their product ss′ is the following: if the elements

sm, s
′
1 do not belong to a common factor Sk then the product ss′ is the concatenation

of sequences and in this case we say simply that the product ss′ is the concatenation;

otherwise we have sm, s
′
1 ∈ Sk for some k and the product ss′ is the reduced sequence

s1 . . . sm−1s
′
0s

′
2 . . . s

′
p where s′0 = sms

′
1 in Sk.

2 Main Result

Our main result is the following:

Theorem 2.1 Let S be a free product of finitely many semigroups. Let H be a subsemi-

group of S generated by a finite set X such that no element of X belongs to a non free

factor of S. Then H is automatic.

This result has the following equivalent formulation:

Theorem 2.2 Let S be a free product of finitely many semigroups

S = S1 ∗ . . . ∗ Sn ∗ T1 ∗ . . . ∗ Tm

where T1, . . . , Tm are free semigroups on finite sets Y1, . . . , Ym respectively. Let H =<

t1, . . . , tl > be a subsemigroup of S where

t1, . . . , tl ∈ S\(S1 ∪ . . . ∪ Sn).

Then H is an automatic semigroup.
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Proof. Let us denote Ti by Sn+i for i = 1, . . . ,m and let Y = Y1 ∪ . . . ∪ Ym. Each

generator ti such that ti /∈ T1∪ . . .∪Tm can be written as a reduced sequence of elements

of
⋃m+n

k=1 Sk:

ti = si,1si,2 . . . si,p(i),

with p(i) ≥ 2. For each k ∈ {1, . . . , n} we define

Ak = { ka1, . . . ,
kark

}

to be an alphabet in bijection with the following finite subset of Sk:

Fk =

l
⋃

i=1

({si,j ∈ Sk : j = 1, . . . , p(i)}) ∪ {si,p(i)sj,1 ∈ Sk : i, j ∈ {1, . . . , l}},

and let fk : Ak → Fk be that bijection (we assume that the alphabets are disjoint). The

elements in Fk are all those from Sk that may appear in a reduced sequence corresponding

to an element from H (here it is essential that no generator belongs to Sk). They are

finitely many and each one corresponds now to a letter from Ak.

We define the alphabet

A = A1 ∪ . . . ∪An ∪ Y

and the language L ⊆ A+ by

L = {y1 . . . yk : yi ∈ A1 ∪ . . . ∪An ∪ Y +
1 ∪ . . . ∪ Y +

m ,

yi ∈ Aj =⇒ yi+1 /∈ Aj (i = 1, . . . , k − 1; j = 1, . . . , n),

yi ∈ Y +
j =⇒ yi+1 /∈ Y +

j (i = 1, . . . , k − 1; j = 1, . . . ,m)}.

The bijections fk induce a homomorphism

f : A+ → S

and we will now show that any element in H has a unique representative in L. Given an

element h ∈ H it can be written as a product of the generators t1, . . . , tl. Hence, when

we write h as a reduced sequence of elements of
⋃n+m

j=1 Sj : h = u1 . . . ur, each element ui

is either some sk,l or a product sk,p(k)sl,1 or belongs to a free semigroup Tj . It follows

from the definition of the alphabets A1, . . . , An and from the definition of L that there

is a unique word w ∈ L such that wf = h.

Let γ1, . . . , γl be the unique words in L such that γif = ti, i = 1, . . . , l. Let X =

{x1, . . . , xl, 1} be a new alphabet and ρ be the homomorphism defined by

ρ : (X ∪ {$})+ → A∗;xi 7→ γi; 1, $ 7→ ε.

We define the partial function

λ : A∗ → L ∪ {ε}; ε 7→ ε,

w 7→ w ∈ L if there is w ∈ L such that w = w in S,
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XX++ (X++ρρ)\{εε}}

(X++ρρ)\{εε}}

  ρρ   f 
HH

  λλ   f 

Figure 1: Diagram with ρ, f and λ

which maps each word in A+ to the corresponding unique ”reduced word” in L if such

word exists. The domain of this partial function is not A∗ because there may for example

exist a, b ∈ Ak for some k, such that (af)(bf) /∈ Fk and in this case there is no word

w ∈ L such that w = ab in S. Nevertheless, since we have

X+ρ\{ε} = {γα1
. . . γαk

: k ∈ N;α1, . . . , αk ∈ {1, . . . , l}},

the partial function λ is defined on X+ρ, and more generally, it is easy to see that it is

also defined on

Subw((X+ρ ∪X+ρ)+).

We observe that the set X+ρ\{ε} ⊆ L ⊆ A+ is in bijection with H since, given an

arbitrary h ∈ H we have h = tα1
. . . tαk

if and only if h = (xα1
. . . xαk

)ρf , and we

have already seen that there is a unique word in L representing h. Therefore, we can

identify the subsemigroup H with the set X+ρ\{ε} which is a semigroup, defining the

product of two words w1, w2 ∈ X+ρ\{ε}, representing two elements s1, s2 ∈ H, to be

the word w1w2 ∈ X+ρ\{ε}, which represents the element s1s2 ∈ H. This semigroup

is generated by the words γ1, . . . , γl. We observe that this product may be simply the

concatenation or not, depending on the words w1, w2, but if it is not the concatenation,

it means that the last letter in w1 multiplies by the first letter from w2 and we have

|w1w2| = |w1w2| − 1. Figure 1 illustrates the use of our functions by showing a diagram

with the relevant subsets of their domains and ranges.

Let us consider the language K ⊆ X+ defined by

K = { xα1
1|γα1

|−1xα2
1r(α1,α2)xα3

. . . 1r(αt−2,αt−1)xαt
1r(αt−1,αt) :

t ≥ 1, αi ∈ {1, . . . , l}, i = 1, . . . , t}

where

r(i, j) =

{

|γj | − 1 if |γiγj | = |γiγj |

|γj | − 2 if |γiγj | = |γiγj | − 1.

We observe that |w| = |wρ| for any word w ∈ K. We can easily define a finite determin-

istic automaton that recognizes the language K and so K is a regular language.
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We denote by H1 the monoid obtained by adjoining an identity 1H to H and we iden-

tify this monoid with the monoid X+ρ, obtained from the semigroup X+ρ\{ε} defined

above, by adding the identity ε. Hence, we consider X as a generating set for X+ρ with

respect to the unique extension of the function ϕ : X → X+ρ; x 7→ xρ to an homomor-

phism ϕ : X+ → X+ρ ∼= H1. We will show that (X,K1) is an automatic structure for

H1, where K1 is the regular language K ∪ {1} ⊆ X+.

We have
K1

= = K1
1 = K= ∪ {(1, 1)},

K1
xi

= Kxi
∪ {(1, w)δX : w ∈ K,wρ ≡ γi}.

The sets {(1, 1)} and {(1, w)δA : w ∈ K,wρ ≡ γi} are finite, since wρ ≡ γi implies

|w| = |γi|, and so we just have to prove that K= and Kxi
, for each i, are regular

languages.

Denoting by ia, ib, . . . generic elements in Ai, for w1, w2 ∈ A∗ we write w1 ./ w2 if

one of the following situations occur:

(w1 ∈ Pref(w2) & w1 ∈ A∗Y ) or

(w2 ∈ Pref(w1) & w2 ∈ A∗Y ) or

(w1 ≡ w ia and w2 ≡ w ibw′) for some i or

(w1 ≡ w iaw′ and w2 ≡ w ib) for some i.

For w1 ./ w2 we define

Rem(w1, w2) =



















(ε, w) (w2 ≡ w1w,w1 ∈ A∗Y )

(w, ε) (w1 ≡ w2w,w2 ∈ A∗Y )

( ia, ibw′) (w1 ≡ w ia,w2 ≡ w ibw′, i ∈ {1, . . . , k})

( iaw′, ib) (w1 ≡ w iaw′, w2 ≡ w ib, i ∈ {1, . . . , k}).

Intuitively, for two words w1, w2 ∈ L we have w1 ./ w2 if one of the words is almost a

prefix of the other, in the sense that it may be possible to multiply the shorter word by

a word from L in order to obtain the longer word. The function Rem (which stands for

remainder) gives us the remainders of the two words: the two suffixes not belonging to

the common prefix.

The following result tells us that there is a finite set where we can store the remainders,

if we are dealing with words from our languages.

Claim 1 There is a finite set W ⊆ A∗ such that (w1, w2)δX ∈ K= ∪ (
⋃l

i=1Kxi
) implies

that, for all t ∈ N, we have w1(t)ρ ./ w2(t)ρ and Rem(w1(t)ρ,w2(t)ρ) ∈W ×W .

Proof. We take

N = max{|γi| : i = 1, . . . , l}

and we will prove that the result holds with

W = {w ∈ Suff(X+ρ) : |w| ≤ N + 1}.
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Let w1, w2 ∈ K and t ≤ |w1|, |w2|. By the definition of K, we can write t ≤ |wj(t)ρ| ≤

t+N (j = 1, 2) and so we have

||w1(t)ρ| − |w2(t)ρ|| ≤ N.

If (w1, w2)δX ∈ K= then w1ρ ≡ w2ρ and therefore

w1(t)ρ ./ w2(t)ρ.

Let Rem(w1(t)ρ,w2(t)ρ) = (η1, η2) where η1, η2 ∈ A∗. Since w1, w2 ∈ K ⊆ X+ we have

w1(t)ρ,w2(t)ρ ∈ X+ρ and so w1(t)ρ,w2(t)ρ ∈ X+ρ. Therefore, by definition of Rem,

η1, η2 ∈ Suff(X+ρ). Since ||w1(t)ρ| − |w2(t)ρ|| ≤ N , again by definition of Rem, we have

|η1|, |η2| ≤ N + 1 and we conclude that (η1, η2) ∈W ×W .

Suppose now that (w1, w2)δA ∈ Kxi
. Then it is (w1ρ)γi ≡ w2ρ and so

w1(t)ρ ./ w2(t)ρ

for any t ∈ N. Since we have |w1ρ| = |w1| and |w2ρ| = |w2| it may be |w2| = |w1| + |γi|

or |w2| = |w1| + |γi| − 1 according to whether w1ργi ≡ (w1ρ)γi or not. For t ≤ |w1|

we have as above t ≤ |wj(t)ρ| ≤ t + N (j = 1, 2) and so ||w1(t)ρ| − |w2(t)ρ|| ≤ N . For

|w1| < t ≤ |w2| we have

|w1(t)ρ| = |w1ρ| = |w1|, t ≤ |w2(t)ρ| ≤ |w1| + |γi| ≤ |w1| +N

and so ||w2(t)ρ| − |w1(t)ρ|| ≤ N . Again w1(t)ρ,w2(t)ρ ∈ X+ρ, since w1, w2 ∈ K ⊆ X+,

and we have Rem(w1(t)ρ,w2(t)ρ) ∈W ×W . �

From now on we assume that a set W satisfying the conditions of Claim 1 is fixed

and we will use this set to construct automata that allow us to prove the regularity of

our languages. We will prove that there is an automaton M such that K= = L(M) ∩

(K ×K)δX and automata Mi such that Kxi
= L(Mi) ∩ (K ×K)δX . Let

M = (Q,B, (ε, ε), µ, T )

where Q = W ×W is the set of states, B = (X ∪ {$})× (X ∪ {$}) is the alphabet, (ε, ε)

is the initial state, T = {(a, a) : a ∈ A1 ∪ . . .∪An ∪ {ε}} is the set of terminal states and

the transition µ is the partial function from Q×B to Q defined by

(α, β)
(x,y)
−−−→µ Rem(α(xρ), β(yρ)) if α(xρ) ./ β(yρ) and

Rem(α(xρ), β(yρ)) ∈W ×W

for (α, β) ∈ Q and (x, y) ∈ B. For i ∈ {1, . . . , l} we define

Mi = (Q,B, (ε, ε), µ, Ti)

where the set of terminal states Ti is defined as follows. If γi ≡ jaγ′i for some word

γ′i ∈ A+ then we define

Ti = {( jb, jcγ′i) : jb ja = jc in Sj} ∪ {( kb, kbγi) : k 6= j} ∪ {(ε, γi)}.
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If γi ∈ Y A∗ then we define

Ti = {( ka, kaγi)} ∪ {(ε, γi)}.

For w1 ≡ x1 . . . xn, w2 ≡ y1 . . . yn, with x1, . . . , xn, y1, . . . , yn ∈ X ∪ {$}, and

(α, β), (α′, β′) ∈W ×W we write

(α, β)
(w1,w2)
−−−−−→µ (α′, β′)

and we say that there is a path in the automaton from (α, β) to (α′, β′) labelled by

(w1, w2), if there are (α0, β0) = (α, β), (α1, β1), . . . , (αn, βn) = (α′, β′) ∈ W ×W such

that (αi−1, βi−1)
(xi,yi)
−−−−→ (αi, βi), i = 1, . . . , n.

The following result, relates a path in the automata with the remainders of the pair

of words labelling the path.

Claim 2 For any w1, w2 ∈ (X ∪ {$})+, with |w1| = |w2|, we have

(α, β)
(w1,w2)
−−−−−→µ (θ1, θ2) =⇒ Rem(α(w1ρ), β(w2ρ)) = (θ1, θ2). (1)

Proof. We will prove this claim by induction on m = |w1| = |w2|. For m = 1 the

implication follows from the definition of µ. Suppose the claim holds for words of length

m and let w1, w2 be words of length m + 1 with (α, β)
(w1,w2)
−−−−−→µ (θ1, θ2). Then we can

write w1 ≡ w′
1x and w2 ≡ w′

2y where w′
1 and w′

2 are words of length m. We have

(α, β)
(w′

1,w′

2)−−−−−→µ (η1, η2) and (η1, η2)
(x,y)
−−−→µ (θ1, θ2) for some words η1, η2 ∈ W . By the

induction hypothesis and by definition of µ it is (η1, η2) = Rem(α(w′
1ρ), β(w′

2ρ)) and

(θ1, θ2) = Rem(η1(xρ), η2(yρ)). We can then write

α(w′
1ρ) ≡ w′′η1, η1(xρ) ≡ w′θ1,

β(w′
2ρ) ≡ w′′η2, η2(yρ) ≡ w′θ2,

for some words w′, w′′ ∈ A∗.

We will now show that

w′′w′θ1 ≡ w′′w′θ1.

The equation holds trivially for θ1 ≡ ε. If w′ 6= ε the equation holds as well, since

w′θ1 ∈ L. We will now consider the case where θ1 6= ε and w′ ≡ ε. If w′′ ∈ A∗Y ∪ {ε}

then the equation clearly holds. Otherwise we have w′′ ≡ w′′′ ia for some i, it must

be η1 6= ε by the definition of Rem and, since w′′η1 ∈ L, we have either η1 ∈ Y A∗ or

η1 ≡ jbη′1 with i 6= j. Since η1(xρ) ≡ θ1 we have θ1 ∈ Y A∗ or θ1 ∈ AjA
∗ with i 6= j

as well and, in either case, w′′θ1 ≡ w′′θ1 yielding again w′′w′θ1 ≡ w′′w′θ1. A similar

argument shows that w′′w′θ2 ≡ w′′w′θ2.

Therefore we have

α(w1ρ) ≡ α(w′
1ρ)(xρ) ≡ α(w′

1ρ)(xρ) ≡

(w′′η1)(xρ) ≡ w′′η1(xρ) ≡ w′′w′θ1 ≡ w′′w′θ1
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and

β(w2ρ) ≡ β(w′
2ρ)(yρ) ≡ β(w′

2ρ)(yρ) ≡

(w′′η2)(yρ) ≡ w′′η2(yρ) ≡ w′′w′θ2 ≡ w′′w′θ2.

Hence Rem(α(w1ρ), β(w2ρ)) = (θ1, θ2) which concludes the proof of the claim. �

We will now use the two claims to prove that

K= = L(M) ∩ (K ×K)δX ,

Kxi
= L(Mi) ∩ (K ×K)δX (i = 1, . . . , l),

by showing each of the four inclusions separately.

To prove that K= ⊆ L(M) let (w1, w2)δX ∈ K= arbitrary. We have w1ρ ≡ w2ρ,

|w1| = |w1ρ| = |w2ρ| = |w2| and we can write w1 ≡ y1 . . . yk and w2 ≡ z1 . . . zk with

y1, . . . , yk, z1 . . . , zk ∈ X. Using the two claims and by definition of µ we can construct

a unique path labeled by (w1, w2),

(ε, ε)
(y1,z1)
−−−−→µ (η1, η

′
1)

(y2,z2)
−−−−→µ (η2, η

′
2)

(y3,z3)
−−−−→µ . . .

(yk,zk)
−−−−→µ (ηk, η

′
k),

with all ηi, η
′
i ∈W . By Claim 2 it must be (ηk, η

′
k) = Rem(w1ρ,w2ρ). Since w1ρ ≡ w2ρ,

by definition of Rem we have (ηk, η
′
k) = (a, a) with a ∈ A1 ∪ . . .∪An ∪ {ε}, which means

that (w1, w2)δA ∈ L(M).

To prove that L(M) ∩ (K × K)δX ⊆ K= let w1, w2 be arbitrary words in K such

that (w1, w2)δX ∈ L(M). We can write w1 ≡ y1 . . . yq and w2 ≡ z1 . . . zr where

y1, . . . , yq, z1, . . . , zr ∈ X. So there is a path

(ε, ε)
(y1...yk,z1...zk)
−−−−−−−−−−→ (a, a)

in M where k = max{q, r}, yq+1 = . . . = yk = zr+1 = . . . = zk = $ and a ∈ A1 ∪ . . . ∪

An ∪ {ε}. By Claim 2 and since $ρ = ε, it is (a, a) = Rem(w1ρ,w2ρ) which implies that

w1 = w2 as elements of H and so (w1, w2)δX ∈ K=.

To prove that Kxi
⊆ L(Mi) let (w1, w2)δA ∈ Kxi

be arbitrary. We have (w1ρ)γi ≡

w2ρ and we write w1 ≡ y1 . . . yk, w2 ≡ z1 . . . zr with y1, . . . , yk, z1, . . . , zr ∈ X. We note

that r = |w2| = |w2ρ| = |(w1ρ)γi| > |w1ρ| = |w1| = t. Using the previous claims and by

definition of µ we can construct a unique path in Mi labeled by (w1$
r−k, w2),

(ε, ε)
(y1,z1)
−−−−→µ (η1, η

′
1)

(y2,z2)
−−−−→µ (η2, η

′
2) → . . .

(yk,zk)
−−−−→µ (ηk, η

′
k)

($,zk+1)
−−−−−→µ (ηk+1, η

′
k+1) → . . .

($,zr)
−−−−→µ (ηr, η

′
r),

with all ηj , η
′
j ∈ W . By Claim 2, (ηr, η

′
r) = Rem(w1ρ,w2ρ). If γi ∈ Y A∗ then, it

can be w1ρ ∈ A∗Y and so (ηr, η
′
r) = (ε, γi) ∈ Ti, or w1ρ ≡ w ka and then (ηr, η

′
r) =

( ka, kaγi) ∈ Ti as well. Otherwise we have γi ≡ jaγ′i and, since (w1ρ)γi ≡ w2ρ, there

are three possibilities: it may be w1ρ ≡ w′ jb and w2ρ ≡ w′ jcγ′i with jb ja = jc in

Sj , and so Rem(w1ρ,w2ρ) = ( jb, jcγ′i) ∈ Ti; it can also be w1ρ ≡ w′ kb (k 6= j) and

w2ρ ≡ w′ kbγi and then Rem(w1ρ,w2ρ) = ( kb, kbγi) ∈ Ti; finally it can be w1ρ ∈ A∗Y
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and then Rem(w1ρ,w2ρ) = (ε, γi) ∈ Ti. In any case (ηr, η
′
r) = Rem(w1ρ,w2ρ) ∈ Ti and

so (w1, w2)δX ∈ L(Mi).

To prove that L(Mi) ∩ (K × K)δX ⊆ Kxi
let w1, w2 ∈ K arbitrary such that

(w1, w2)δX ∈ L(Mi). We can write w1 ≡ y1 . . . yq and w2 ≡ z1 . . . zr where y1, . . . , yq,

z1, . . . , zr ∈ X. There is a path

(ε, ε)
(y1...yk,z1...zk)
−−−−−−−−−−→ (η, η′)

in Mi where k = max{q, r}, yq+1 = . . . = yk = zr+1 = . . . = zk = $ and (η, η′) ∈ Ti.

By Claim 2 we have (η, η′) = Rem(w1ρ,w2ρ). If γi ≡
jaγ′i then, by definition of Ti, we

have either (η, η′) = ( jb, jcγ′i) with jb ja = jc in Sj , or (η, η′) = ( kb, kbγi) with k 6= j,

or (η, η′) = (ε, γi). In the first case we have w1ρ ≡ w jb and w2ρ ≡ w jcγ′i for some

word w ∈ A∗ and so we can write (w1ρ)γi ≡ w jb jaγ′i ≡ w jcγ′i ≡ w2ρ which means that

w1xi = w2 in H. In the second case we have w1ρ ≡ w kb and w2ρ ≡ w kbγi for some word

w ∈ A∗ and so we can write (w1ρ)γi ≡ w kbγi ≡ w2ρ and again w1xi = w2 in H. In the

third case we have w1ρ ∈ A∗Y and so w2ρ ≡ w1ργi ≡ (w1ρ)γi which implies w2 = w1xi in

H. If we have γi ∈ Y A∗ then, by definition of Ti, it may be Rem(w1ρ,w2ρ) = ( ka, kaγi)

or Rem(w1ρ,w2ρ) = (ε, γi). In the first case we have w1ρ ≡ w ka and w2ρ ≡ w kaγi

which implies that (w1ρ)γi ≡ w kaγi ≡ w kaγi ≡ w2ρ and therefore w1xi = w2 in H. In

the second case we have w1ρ ∈ A∗Y and w2ρ ≡ w1ργi ≡ (w1ρ)γi which implies again

w2 = w1xi in H. So in any case (w1, w2)δX ∈ Kxi
and the inclusion is proved.

To conclude the proof of the theorem we observe that, since K= = L(M)∩(K×K)δA

and Kxi
= L(Mi) ∩ (K ×K)δA, K= and Kxi

are regular languages and so H1 is auto-

matic which implies that H is automatic. �

3 Corollaries and Questions

We have the following consequence of our result, which concerns free products of free

and finite semigroups:

Corollary 3.1 If S is a free product of semigroups that are either finite or free then any

finitely generated subsemigroup of S is automatic.

Proof. Let S = S1 ∗ . . . ∗ Sn ∗ T1 ∗ . . . ∗ Tm where S1, . . . , Sn are finite semigroups and

T1, . . . , Tm are free semigroups. Let H be an (infinite) subsemigroup of S. Suppose that

H is generated by A = {t1, . . . , tl} ⊆ S and, without loss of generality, that A ∩ S1 =

{t1, . . . , tk} (0 < k < l) . Since the semigroup U =< t1, . . . , tk > is a subsemigroup of S1

it is finite. Let H ′ be the semigroup generated by the finite set

A′ = {U1tk+1U
1, U1tk+2U

1, . . . , U1tlU
1}.

We observe that

A ∩ (S1 ∪ . . . ∪ Sn) ! A′ ∩ (S1 ∪ . . . ∪ Sn), A′ ∩ S1 = ∅
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and H\H ′ = U is finite. If A′ contains elements from S2 we can remove them the

same way obtaining a semigroup H ′′ generated by a set A′′ that does not contain ele-

ments from S1 ∪ S2 and such that H\H ′′ is finite. Repeating this process for every Si

that contains generators we will obtain a semigroup V generated by a set B such that

B ∩ (S1 ∪ . . . ∪ Sn) = ∅ and H\V is finite. Since V is in the conditions of the previous

theorem it is automatic. Since H\V is finite we can use Proposition 1.1 and conclude

the H is automatic. �

Corollary 3.2 Any finitely generated subsemigroup of a free product of finite semigroups

is automatic.

Proof. This is a particular case of the previous corollary, worth stating separately. �

We say that a semigroup is monogenic if it is generated by a single element and we

have the following result:

Corollary 3.3 Any finitely generated subsemigroup of a free product of monogenic semi-

groups is automatic.

Proof. A monogenic semigroup is either free or finite and so we can use Corollary 3.1.�

Defining a semigroup to be strongly automatic if all its finitely generated subsemi-

groups are automatic we may ask the following question:

Question 3.4 Is the free product of strongly automatic semigroups always strongly

automatic?

The answer to the same question for groups is ”yes” because we can use the Kurosh

Subgroup Theorem: If H is a subgroup of G1 ∗G2 then H is isomorphic to F ∗H1 ∗H2

where F is a free group, H1 is isomorphic to a subgroup of G1 and H2 is isomorphic to

a subgroup of G2. For semigroups it is still an open question.

By Proposition 1.2 the bicyclic monoid is strongly automatic and so we may also

consider the following question:

Question 3.5 Does Theorem 2.1 still hold if we allow generators to belong to factors

isomorphic to the bicyclic monoid?
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