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Abstract

We survey results concerning automatic structures for semigroup construc-

tions, providing references and describing the corresponding automatic struc-

tures. The constructions we consider are: free products, direct products, Rees

matrix semigroups, Bruck-Reilly extensions and wreath products.

1 Introduction

The notion of “automaticity” has been widely studied in groups (see [2] and [8]

for example), and some progress has been made in understanding the notion in the

wider context of semigroups. Many results about automatic semigroups concern

automaticity of standard semigroups constructions. We survey these results for free

products, direct products, Rees matrix semigroups, Bruck-Reilly extensions and

wreath products.

Some references on automatic semigroups are [6] (introduction), [26] (geometric

aspects and p-automaticity), [18], [19], [20] (computational and decidability aspects),

[5], [10], [12] (semigroup constructions), [13] (other notions of “automaticity” for

semigroups) and [11], [15] (examples).
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We start by introducing the definitions we require. Given a non empty finite

set A, which we call an alphabet, we denote by A+ the free semigroup generated

by A consisting of finite sequences of elements of A, which we call words, under

the concatenation; and by A∗ the free monoid generated by A consisting of A+

together with the empty word ε, the identity in A∗. Let S be a semigroup and

ψ : A → S a mapping. We say that A is a finite generating set for S with respect

to ψ if the unique extension of ψ to a semigroup homomorphism ψ : A+ → S is

surjective. For u, v ∈ A+ we write u ≡ v to mean that u and v are equal as words

and u = v to mean that u and v represent the same element in the semigroup i.e.

that uψ = vψ. We say that a subset L of A∗, usually called a language, is regular

if there is a finite state automaton accepting L. To be able to deal with automata

that accept pairs of words and to define automatic semigroups we need to define the

set A(2, $) = ((A ∪ {$}) × (A ∪ {$}))\{($, $)} where $ is a symbol not in A (called

the padding symbol) and the function δA : A∗ × A∗ → A(2, $)∗ defined by

(a1 . . . am, b1 . . . bn)δA =



















ε if 0 = m = n

(a1, b1) . . . (am, bm) if 0 < m = n

(a1, b1) . . . (am, bm)($, bm+1) . . . ($, bn) if 0 ≤ m < n

(a1, b1) . . . (an, bn)(an+1, $) . . . (am, $) if m > n ≥ 0.

Let S be a semigroup and A a finite generating set for S with respect to ψ :

A+ → S. The pair (A,L) is an automatic structure for S (with respect to ψ) if

• L is a regular subset of A+ and Lψ = S,

• L= = {(α, β) : α, β ∈ L, α = β}δA is regular in A(2, $)+, and

• La = {(α, β) : α, β ∈ L, αa = β}δA is regular in A(2, $)+ for each a ∈ A.

We say that a semigroup is automatic if it has an automatic structure.

We say that the pair (A,L) is an automatic structure with uniqueness (with

respect to ψ) for a semigroup S, if it is an automatic structure and each element in

S is represented by an unique word in L (the restriction of ψ to L is a bijection).

It is known (see [6]) that, any automatic semigroup admits an automatic structure

with uniqueness.

We say that a semigroup is prefix-automatic or p-automatic if it has an automatic

structure (A,L) such that the set

L′
= = {(w1, w2)δA : w1 ∈ L,w2 ∈ Pref(L), w1 = w2}

is also regular, where

Pref(L) = {w ∈ A+ : ww′ ∈ L for some w′ ∈ A∗}.
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We will now present a result from [14] useful to obtain automatic structures for

the constructions considered in the sections following.

We say that T is a subsemigroup of S of finite Rees index if the set S − T is

finite.

Proposition 1.1 Let S be a semigroup with a subsemigroup T of finite Rees index.

Then S is automatic if and only if T is automatic.

From an automatic structure (A,L) for T , an automatic structure for S can be

easily obtained. Take C to be a finite set of new symbols in bijection with the

elements of S − T , A′ = A ∪ C and L′ = L ∪ C. The pair (A′, L′) is an automatic

structure for S.

The converse is not so trivial. We start from an automatic structure with unique-

ness (A,L) for S. It was shown in [14] that there exists a constant k such that every

element of the set {α ∈ sub(L) : k ≤ |α| < 2k} maps to an element of T . The

generating set B for S is

{bα : α ∈ sub(L), k ≤ |α| < 2k} ∪ {cα : α ∈ L, |α| < k, α ∈ T}

where the bα and cα are new symbols such that each bα and each cα maps to the

same element of T as the corresponding α. The regular language K is obtained as

follows. We take U = {α ∈ L : α represents an element of T} and let φ : U → B∗

be defined by

αφ =

{

cα for |α| < k

ba1...ak
bak+1...a2k

. . . ba(l−1)k+1...alk
balk+1...ar

for |α| ≥ k

with k ≤ r− lk < 2k and α ≡ a1a2 . . . ar. Note that αφ = α in T . Taking K = Uφ,

the pair (B,K) is an automatic structure for T .

In sections two, three and four we present results about automaticy for free prod-

ucts, direct products and Rees matrix semigroups, respectively. We omit the proofs

and just describe briefly how to obtain the corresponding automatic structures. In

sections five and six we present results from [9] about automaticity of Bruck-Reilly

extensions and wreath products, respectively.

2 Free Products

If S1 and S2 are semigroups with presentations 〈A1|R1〉 and 〈A2|R2〉 respectively

(where A1 ∩ A2 = ∅), then their free product S1 ∗ S2 is the semigroup defined by

the presentation 〈A1 ∪ A2|R1 ∪ R2〉. The elements of the product can bee seen
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as sequences s1 . . . sm of elements of S1 ∪ S2 such that two consecutive elements

do not belong to the same factor. The product of sequences s1 . . . sm, s′1 . . . s
′
n is

the concatenation s1 . . . sms
′
1 . . . s

′
n if sm and s′1 do not belong to the same factor;

otherwise it is s1 . . . sm−1ss
′
2 . . . s

′
n, where s is the product of sm by s′1 in their

common factor.

Free products of semigroups and monoids were considered in [6]. For semigroups

the following was shown:

Theorem 2.1 Let S1 and S2 be semigroups. Then S1 ∗ S2 is automatic if and only

if both S1 and S2 are automatic.

The proof of this theorem give us the automatic structures. Suppose that S1

and S2 are automatic semigroups, with automatic structures with uniqueness, say

(A1, L1) and (A2, L2) respectively, with A1 and A2 disjoint sets. Taking A = A1∪A2

and

L = (L1 ∪ {ε})(L2L1)
∗(L2 ∪ {ε}) − {ε},

we obtain a pair (A,L) which is an automatic structure for the semigroup free

product S1 ∗ S2. Conversely, suppose that S1 ∗ S2 is automatic with an automatic

structure (A,L). Letting

B = {a ∈ A : a represents an element of S1},

the pair (B,L ∩B+) is an automatic structure for S1.

The monoid free product is not the same as the semigroup free product. It is

the same as the group free product and can be seen as the semigroup free product

with the identity subgroups amalgamated. For monoids we have the following:

Theorem 2.2 The monoid free product M = M1 ∗M2 is automatic if and only if

both monoids M1 and M2 are automatic.

One implication was proved in [6]. Suppose that (A1, L1) and (A2, L2) are auto-

matic structures with uniqueness for M1 and M2 respectively, with A1∩A2 = {e}, e

representing the identity element of each Mi, e ∈ Li (i = 1, 2), and Li = Li −{e} ⊆

(Ai − {e})+ (i = 1, 2). Taking A = A1 ∪ A2 and

L = {e}(L1 ∪ {ε})(L2L1)
∗(L2 ∪ {ε}),

the pair (A,L) is an automatic structure for M .

The converse was shown in [12], answering a question formalized in [6]. Finite

generating sets Ai for Mi, i = 1, 2, give us a finite generating set A = A1 ∪A2 for M
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with respect to an homomorphism ψ. It is possible to obtain an automatic structure

(A,L) for M such that every element of S is represented by a unique element of L.

The pair (A,L(Mi)), where L(Mi) = {w ∈ L : wψ ∈Mi}, is an automatic structure

for Mi, i = 1, 2.

3 Direct products

The first result about direct products was obtained for monoids in [6] where the

authors have shown:

Theorem 3.1 If M1 and M2 are automatic monoids, then their direct product M1×

M2 is automatic.

Since we have the identities, an automatic structure for the product can be obtained

from automatic structures for the factors in a natural way. We can start from auto-

matic structures with uniqueness (A1, L1) and (A2, L2) for M1 and M2 respectively,

with A1 ∩ A2 = ∅, ei ∈ Ai, ei representing the identity element of Mi, ei ∈ Li, and

Li − {ei} ⊆ (Ai − {ei})
+ (i = 1, 2). Let Li denote Li − {ei} and let A = A1 ∪ A2.

For words α ≡ a1 . . . an ∈ L1 and β ≡ b1 . . . bm ∈ L2, we define the word α]β ∈ A+

by

α]β =











a1b1 . . . anbn if n = m,

a1b1 . . . anbne1bn+1 . . . e1bm if n < m,

a1b1 . . . ambmam+1e2 . . . ane2 if n > m.

If σ : A(2, $)∗ → A∗ is the homomorphism defined by

(a, b) 7→ ab, (a, $) 7→ ae2, ($, b) 7→ e1b,

then α]β = (α, β)δAσ. Let

L = {α]β : α ∈ L1, β ∈ L2} = (L1 × L2)δAσ.

The pair (A,L) is an automatic structure for M = M1 ×M2.

Semigroups were then considered in [5] where the authors have proved the fol-

lowing:

Theorem 3.2 Let S and T be automatic semigroups.

(i) If S and T are infinite, then S× T is automatic if and only if S2 = S

and T 2 = T .

(ii) If S is finite and T is infinite, then S × T is automatic if and only if

S2 = S.
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In [25], there were established necessary and sufficient conditions for the direct

product of semigroups to be finitely generated:

Proposition 3.3 Let S and T be two semigroups. If both S and T are infinite then

S×T is finitely generated if and only if both S and T are finitely generated, S2 = S

and T 2 = T . If S is finite and T is infinite then S × T is finitely generated if and

only if S2 = S and T is finitely generated.

Using this result, Theorem 3.2 has the following equivalent formulation:

Theorem 3.4 The direct product of automatic semigroups is automatic if and only

if it is finitely generated.

The answer to the following converse question is not known even for groups: If

the direct product G1 × G2 is automatic are both factors G1 and G2 necessarily

automatic?

Without the identities it is still possible to obtain automatic structures for the

product, starting from automatic structures for the factors, although the method is

not so natural.

For case (i) in Theorem 3.2, the general ideia is to start from two automatic

structures, say (A,L) and (B,K), for the factors S and T and then modify them,

using the fact that S2 = S (and T 2 = T ) to control the length of the words in the lan-

guages, in order to obtain new automatic structures. From the modified automatic

structures, say (A′, L′) and (B′, K ′), an automatic structure (X, J) for the product

S × T can be obtained by just taking X = A′ × B′ and J = {(u1, v1), . . . , (up, vp) :

(ui, vi) ∈ X, u1 . . . up ∈ L′, v1 . . . vp ∈ K ′}.

For case (ii) we can assume that S = {s1, . . . , sm} and take an alphabet A =

{a1, . . . , am} to represent the elements in S. Given an automatic structure (B,K)

for T , the set X = A × B is a generating set for S × T . Now, taking J =

{(u1, v1) . . . (up, vv) : (ui, vi) ∈ X, v1 . . . vp ∈ K}, the pair (X, J) is an automatic

structure for the product S × T (the details can be found in [5]).

4 Rees matrix semigroups

The Rees matrix semigroup S = M[U ; I, J ;P ] over the semigroup U , with P =

(pji)j∈J,i∈I a matrix with entries in U , is the semigroup with the support set I ×

U × J and multiplication defined by (l1, s1, r1)(l2, s2, r2) = (l1, s1pr1l2s2, r2) where

(l1, s1, r1), (l2, s2, r2) ∈ I × U × J . We say that U is the base semigroup of the Rees

matrix semigroup S.
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We can obtain an automatic structure for a Rees matrix semigroup S by using

the automatic structure for its base semigroup U , as shown in [10]. We observe that

the case where U is a group, was firstly considered in [7].

Theorem 4.1 Let S = M[U ; I, J ;P ] be a Rees matrix semigroup. If U is an auto-

matic semigroup and if S is finitely generated then S is automatic.

This theorem has the following equivalent formulation:

Theorem 4.2 Let S = M[U ; I, J ;P ] be a Rees matrix semigroup, where I, J are

finite sets and U\V is finite, where V is the ideal of U generated by the entries of

the matrix P . If U is an automatic semigroup then S is automatic.

In fact, it is described in [10] how to obtain an automatic structure for the

semigroup S1 = M[U 1; I, J ;P ] from an automatic structure with uniqueness for V

(U 1 stands for the monoid obtained from U by adding an identity). But note that,

since S is finitely generated, I, J and U − V are finite, and so, using Proposition

1.1, an automatic structure for S can then be obtained from an automatic structure

for U .

We start from an automatic structure with uniqueness (B,K) for V , where

B = {b1, . . . , bn} is a set of semigroup generators for V . Then we write each bh (h ∈

N = {1, . . . , n}) as bh = shpρhλh
s′h where sh, s

′
h ∈ U 1, ρh ∈ J, λh ∈ I. Let S1 =

M[U 1; I, J ;P ]. Given (l, s, r) ∈ I × V × J we can write s = bα1 . . . bαh
where

bα1 . . . bαh
is a word in K. So we can write

(l, s, r) = (l, sα1 , ρα1)(λα1 , s
′
α1
sα2 , ρα2) . . . (λαh

, s′αh
, r).

Since U 1\V is finite and non empty we can write U 1\V = {x1, . . . , xm} with m ≥ 1.

We define a set A = C ∪D of semigroup generators for S1 by

C = {cli : l ∈ I, i ∈ N} ∪ {dij : i, j ∈ N} ∪ {ejr : j ∈ N, r ∈ J},

D = {flhr : l ∈ I, h ∈ {1, . . . ,m}, r ∈ J}

with
ψ : A+ → S1, cli 7→ (l, si, ρi), dij 7→ (λi, s

′
isj, ρj),

ejr 7→ (λj, s
′
j, r), flhr 7→ (l, xh, r).

Defining the language L = L1 ∪D to represent the elements of S1 with

L1 = {clα1dα1α2 . . . dαh−1αh
eαhr : bα1 . . . bαh

∈ K,h ≥ 1, l ∈ I, r ∈ J},

the pair (A,L) is an automatic structure for S1.

It was also shown in [10] that, in some particular situations, it is possible to

obtain an automatic structure for the base semigroup, from the automatic structure

for the construction.
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Theorem 4.3 Let S = M[U ; I, J ;P ] be a semigroup, and suppose that there is an

entry p in the matrix P such that pU 1 = U . If S is automatic then U is automatic.

We start from an automatic structure with uniqueness (A,L) for the semigroup

S1 = M[U 1; I, J ;P ], where A = {a1, . . . , an} is a generating set for S1 with respect

to

ψ : A+ → S1, ah 7→ (ih, sh, jh) (h = 1, . . . , n).

The set

B = {b1, . . . , bn} ∪ {cji : j ∈ J, i ∈ I}

is a generating set for U 1 with respect to

φ : B+ → U 1; bh 7→ sh, cji 7→ pji (h = 1, . . . , n, j ∈ J, i ∈ I).

Without loss of generality we can assume that p11 = p. Let

L11 = L ∩ ({1} × U 1 × {1})ψ−1.

Let

f : A+ → B+; aα1aα2 . . . aαh
7→ bα1cjα1 iα2

bα2 . . . cjαh−1
iαh
bαh

.

Taking K = L11f , the pair (B,K) is an automatic structure with uniqueness for U 1

with respect to φ.

Theorem 4.4 Let S = M[U ; I, J ;P ] be a Rees matrix semigroup. If S is prefix-

automatic then U is automatic.

We start from a prefix-automatic structure with uniqueness (A,L) for S (see

[26]). We define A,ψ,B, φ, L11, f and K as above just replacing U 1 by U and S1

by S in the definitions, and assume that ψ �A is injective. The pair (B,K) is a

(prefix-)automatic structure with uniqueness for U with respect to φ.

5 Bruck-Reilly extensions

Let T be a monoid and θ : T 7→ T be a monoid homomorphism. The set

N0 × T × N0

with the operation defined by

(m, t1, n)(p, t2, q) = (m− n+ k, (t1θ
k−n)(t2θ

k−p), q − p+ k) (k = max{n, p}),
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where θ0 denotes the identity map on M , is called the Bruck–Reilly extension of T

determined by θ and is denoted by BR(T, θ). The semigroup BR(T, θ) is a monoid

with identity (0, 1T , 0), denoting by 1T the identity of T . This is a generalization of

the constructions from [3, 17, 21], also considered in [1].

Theorem 5.1 If T is a finite monoid, then any Bruck–Reilly extension of T is

automatic.

Proof. Let T = {t1, . . . , tl} and let T = {t1, . . . , tl} be an alphabet in bijection

with T . We define the alphabet A = {b, c} ∪ T and the regular language

L = {cmtbn : m,n ≥ 0, t ∈ T}

on A. Defining the homomorphism

ψ : A+ → BR(T, θ); t 7→ (0, t, 0), c 7→ (1, 1T , 0), b 7→ (0, 1T , 1)

it is clear that A is a generating set for BR(T, θ) with respect to ψ and, in fact,

given an element (m, t, n) ∈ N0 × T × N0, the unique word in L representing it is

cmtbn.

In order to prove that (A,L) is an automatic structure with uniqueness for

BR(T, θ) we only have to prove that, for each generator a ∈ A, the language La is

regular. To prove that Lb is regular we observe that

(cmtib
n)b = (m, ti, n)(0, 1T , 1) = (m, ti, n+ 1) = cmtib

n+1

and so we can write

Lb =
l

⋃

i=1

{(cmtib
n, cmtib

n+1)δA : n,m ∈ N0}

=
l

⋃

i=1

({(c, c)}∗ · {(ti, ti)} · {(b, b)}
∗ · {($, b)})

which is a finite union of regular languages and so is regular. With respect to Lc we

have

(cmt)c = (m, t, 0)(1, 1T , 0) = (m+ 1, tθ, 0) = cm+1tθ,

(cmtbn+1)c = (m, t, n+ 1)(1, 1T , 0) = (m, t, n) = cmtbn (n,m ∈ N0; t ∈ T )
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and so we can write

Lc =
l

⋃

i=1

{(cmti, c
m+1tiθ)δA : m ∈ N0}∪

l
⋃

i=1

{(cmtib
n+1, cmtib

n)δA : m,n ∈ N0}

=
l

⋃

i=1

({(c, c)}∗ · {(ti, c)($, tiθ)})∪

l
⋃

i=1

({c, c)}∗ · {(ti, ti)} · {(b, b)}
∗ · {(b, $)})

and we conclude that Lc is a regular language as well.

We now fix an arbitrary t ∈ T and prove that Lt is regular. For any words

cmtαb
n, cptβb

q ∈ L we have

cmtαb
nt = cptβb

q

if and only if m = p, n = q, and tα(tθn) = tβ, because

cmtαb
nt = (m, tα, n)(0, t, 0) = (m, tα(tθn), n).

Since T is finite the set {tθn : n ∈ N0} is finite as well. Taking j to be minimum

such that the set Cj = {k ≥ j : tθj = tθk+1} is non empty and k to be the minimum

element of Cj, we will now show that

{tθn : n ∈ N0} = {t, tθ, . . . , tθj, . . . , tθk}.

Given n ≥ j we have n = j + h with h ≥ 0 and, dividing h by k + 1 − j, we obtain

n = j + q(k + 1 − j) + r with q ≥ 0 and 0 ≤ r < k + 1 − j. We now prove, by

induction on q, that tθj+r+q(k+1−j) = tθj+r for q ≥ 0. For q = 0 it holds trivially and

for q > 0 we have

tθj+r+q(k+1−j) = tθj+r+k+1−j+(q−1)(k+1−j) = (tθr)(tθk+1)(tθ(q−1)(k+1−j))

= (tθr)(tθj)(tθ(q−1)(k+1−j)) = tθj+r+(q−1)(k+1−j).

We can then write

Lt =

j−1
⋃

n=0

{(cmtαb
n, cmtα(tθn)bn)δA : m ∈ N0, tα ∈ T}∪

k
⋃

n=j

{(cmtαb
n+q(k+1−j), cmtα(tθn)bn+q(k+1−j))δA : m, q ∈ N0, tα ∈ T}

=

j−1
⋃

n=0

({(c, c)}∗ · {(tα, tα(tθn)) : tα ∈ T} · {(b, b)}∗)∪

k
⋃

n=j

({(c, c)}∗ · {(tα, tα(tθn)) : tα ∈ T} · {(b, b)n} · {(b, b)k+1−j}∗)
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and since all sets in this union are regular we conclude that Lt is regular as well. �

From now on we assume that T is an automatic monoid and we fix an automatic

structure (X,K) with uniqueness for T , whereX = {x1, . . . , xn} is a set of semigroup

generators for T with respect to the homomorphism

φ : X+ → T.

We define the alphabet

A = {b, c} ∪X (1)

to be a set of semigroup generators for BR(T, θ) with respect to the homomorphism

ψ : A+ → BR(T, θ), xi 7→ (0, xiφ, 0), c 7→ (1, 1T , 0), b 7→ (0, 1T , 1),

and the regular language

L = {ciwbj : w ∈ K; i, j ∈ N0} (2)

on A+, which is a set of unique normal forms for BR(T, θ), since we have (ciwbj)ψ =

(i, wφ, j) for w ∈ K, i, j ∈ N0. As usual, to simplify notation, we will avoid explicit

use of the homomorphisms ψ and φ, associated with the generating sets, and it

will be clear from the context whenever a word w ∈ X+ is being identified with an

element of T , with an element of BR(T, θ) or considered as a word. In particular,

for a word w ∈ X+ we write wθ instead of (wφ)θ, seeing θ also as a homomorphism

θ : X+ → T , and we will often write (i, w, j) instead of (i, wφ, j) for i, j ∈ N0.

For (A,L) to be an automatic structure for BR(T, θ) the languages

Lb = {(ciwbj, ciwbj+1)δA : w ∈ K; i, j ∈ N0},

Lc = {(ciwbj+1, ciwbj)δA : w ∈ K; i, j ∈ N0}∪

{(ciw1, c
i+1w2)δA : w1, w2 ∈ K; i ∈ N0;w2 = w1θ},

Lxr
={(ciw1b

j, ciw2b
j)δA : (w1, w2)δX ∈ Kxrθj ; i, j ∈ N0} (xr ∈ X),

must be regular. The language Lb is regular, since we have

Lb = {(c, c)}∗ · {(w,w)δX : w ∈ K} · {(b, b)}∗ · {($, b)},

but there is no obvious reason why the languages Lc and Lxr
should also be regular.

We will consider particular situations where (A,L) is an automatic structure for

BR(T, θ).

Theorem 5.2 If T is an automatic monoid and θ : T → T ; t 7→ 1T then BR(T, θ)

is automatic.
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To show this we use the notion of padded product of languages and an auxiliary

result whose proof can be found in [9]. Fixing an alphabet A, and given two regular

languages M,N in (A∗ × A∗)δ, the padded product of languages M and N is

M �N = {(w1w
′
1, w2w

′
2)δ : (w1, w2)δ ∈M, (w′

1, w
′
2)δ ∈ N}

The result is the following:

Lemma 5.3 Let A be an alphabet and let M,N be regular languages on (A∗×A∗)δ.

If there exists a constant C such that, for any two words w1, w2 ∈ A∗ we have

(w1, w2)δ ∈M ⇒ ||w1| − |w2|| ≤ C,

then the language M �N is regular.

Proof. of Theorem 5.2 To show that the pair (A,L) defined by (1) and

(2) is an automatic structure for BR(T, θ) we just have to prove that the languages

Lc and Lxr
(xr ∈ X) are regular. But now, denoting by w1T

the unique word in K

representing 1T , we have

Lc ={(ciwbj+1, ciwbj)δA : w ∈ K; i, j ∈ N0} ∪ {(ciw, ci+1w1T
)δA : w ∈ K; i ∈ N0}

=({(c, c)}∗ · {(w,w)δX : w ∈ K} · {(b, b)}∗ · {(b, $)})∪

(({(c, c)}∗ · {($, c)}) � (K × {w1t
})δX),

which is a regular language by Lemma 5.3. We have

Lxr
={(ciwbj, ciwbj)δA : w ∈ K, i ∈ N0, j ∈ N}∪

{(ciw1, c
iw2)δA : (w1, w2)δX ∈ Kxr

; i ∈ N0}

=({(c, c)}∗ · {(w,w)δX : w ∈ K} · {(b, b)}+)∪

({(c, c)}∗ ·Kxr
)

because, for any ciwbj ∈ L with j ≥ 1, we have

(ciwbj)xr = (i, w, j)(0, xr, 0) = (i, w(xrθ
j), j) = (i, w, j) = ciwbj

and for ciw ∈ L we have

(ciw)xr = (i, w, 0)(0, xr, 0) = (i, wxr, 0).

Therefore Lxr
is also a regular language and so BR(T, θ) is automatic. �

Theorem 5.4 If T is an automatic monoid and θ is the identity in T then BR(T, θ)

is automatic.
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Proof. We use the generating set A defined by equation (1) but we now define

L = {cibjw : w ∈ K} observing that, since θ is the identity, for any xr ∈ X, we have

xrc = (0, xr, 0)(1, 1T , 0) = (1, xrθ, 0) = (1, xr, 0) = (1, 1T , 0)(0, xr, 0) = cxr,

xrb = (0, xr, 0)(0, 1T , 1) = (0, xr, 1) = (0, xrθ, 1) = (0, 1T , 1)(0, xr, 0) = bxr.

The language L is regular and it is a set of unique normal forms for BR(T, θ). Also

the languages

Lb ={(cibjw, cibj+1w)δA : w ∈ K; i, j ∈ N0}

=({(c, c)}∗ · {(b, b)}∗ · {($, b)}) � {(w,w)δX : w ∈ K},

Lc ={(cibj+1w, cibjw)δA : w ∈ K; i, j ∈ N0}∪

{(ciw, ci+1w)δA : i ∈ N0, w ∈ K}

=(({(c, c)}∗ · {(b, b)}∗ · {(b, $)}) � {(w,w)δX : w ∈ K})∪

(({(c, c)}∗ · {($, c)}) � {(w,w)δX : w ∈ K}),

Lxr
={(cibjw1, c

ibjw2)δA : (w1, w2)δX ∈ Kxr
}

=({(c, c)}∗ · {(b, b)}∗) ·Kxr

are regular, by Lemma 5.3, and so (A,L) is an automatic structure for BR(T, θ). �

We say that a semigroup T is of finite geometrical type (fgt) (see [26]) if for every

t1 ∈ T , there exists k ∈ N such that the equation

xt1 = t2

has at most k solutions for every t2 ∈M .

To prove next theorem we will use the following two auxiliary results from [9]:

Lemma 5.5 Let T be a fgt monoid with an automatic structure with uniqueness

(X,K). Then for every w ∈ X+ there is a constant C such that (w1, w2)δX ∈ Kw

implies ||w1| − |w2|| < C.

Lemma 5.6 Let S be a finite semigroup, X be a finite set and ψ : X+ → S be a

surjective homomorphism. For any s ∈ S the set sψ−1 is a regular language.

Theorem 5.7 Let T be a fgt automatic monoid and let θ : T → T be a monoid

homomorphism. If Tθ is finite then BR(T, θ) is automatic.

Proof. We will prove that the pair (A,L) defined by (1) and (2) is an automatic

structure for BR(T, θ). We have

Lc ={(ciwbj+1, ciwbj)δA : w ∈ K; i, j ∈ N0}∪

{(ciw1, c
i+1w2)δA : w1, w2 ∈ K; i ∈ N0;w2 = w1θ}
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and, since the language

{(ciwbj+1, ciwbj)δA : w ∈ K; i, j ∈ N0} =

{(c, c)i}∗ · {(w,w)δX : w ∈ K} · {(b, b)}∗ · {(b, $)}

is regular, we just have to prove that the language

M = {(ciw1, c
i+1w2)δA : w1, w2 ∈ K; i ∈ N0;w2 = w1θ}

is also regular. For any t ∈ Tθ let wt be the unique word in K representing t. Let

N ={(w1, w2)δX : w1, w2 ∈ K;w2 = w1θ} =
⋃

t∈Tθ

{(w1, w2)δX : w1, w2 ∈ K;w2 = w1θ = t} =

⋃

t∈Tθ

{(w1, wt)δX : w1 ∈ K;w1 ∈ (tθ−1)φ−1} =

⋃

t∈Tθ

(((tθ−1)φ−1 ∩K) × {wt})δX .

We can define ψ : X+ → Tθ; w 7→ wφθ and, since Tθ is finite, for any t ∈ Tθ, we

can apply Lemma 5.6 and conclude that (tθ−1)φ−1 = tψ−1 is regular. Therefore, N

is a regular language and, since we have

M ={(ciw1, c
i+1w2)δA : (w1, w2)δX ∈ N ; i ∈ N0} =

({(c, c)}∗ · {($, c)}) �N,

by Lemma 5.3, M is a regular language as well. We will now prove that the language

Lxr
= {(ciw1b

j, ciw2b
j)δA : (w1, w2)δX ∈ Kxrθj ; i, j ∈ N0}

is regular. Since Tθ is finite we can, as in the proof of Lemma 5.1, take j, k to be

minimum with xrθ
j = xrθ

k+1 and j ≤ k, and we have xrθ
j+r+q(k+1−j) = xrθ

j+r for

j ≤ j + r < k + 1 and q ≥ 0. Therefore, we can write

Lxr
=

j−1
⋃

n=0

{(ciw1b
n, ciw2b

n)δA : (w1, w2)δX ∈ Kxrθn ; i ∈ N0}∪

k
⋃

n=j

{(ciw1b
n+q(k+1−j), ciw2b

n+q(k+1−j))δA : (w1, w2)δX ∈ Kxrθn ; i, q ∈ N0}

=

j−1
⋃

n=0

({(c, c)}∗ · (Kxrθn � {(b, b)}∗))∪

k
⋃

n=j

({(c, c)}∗ · (Kxrθn � ({(b, b)n} · {(b, b)k+1−j}∗))).
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Since T is fgt, by Lemma 5.5 there is a constant C such that

(w1, w2)δX ∈ Kxrθn ⇒ ||w1| − |w2|| < C

for any n = 0, . . . , k, and therefore we can apply Lemma 5.3 and we conclude that

Lxr
is a regular language. �

Since automatic groups are characterized by the fellow traveller property and

Bruck–Reilly extensions of groups are somehow “almost groups” the following is a

natural question: Is a Bruck–Reilly extension of a group automatic if and only if it

has the fellow traveller property?

6 Wreath products

We consider the automaticity of the wreath product of semigroups, S wrT , in the

case where T is a finite semigroup. We start by giving the necessary and sufficient

conditions, obtained in [23], for the wreath product, to be finitely generated, when

T is finite. Finite generation of the wreath product is related to finite generation of

the diagonal S-act. We use the conditions obtained for the case where the diagonal

S-act is not finitely generated to prove that, in this case, the wreath product S wrT

is automatic whenever it is finitely generated and S is an automatic semigroup.

We start by giving the definitions we require. If S is a semigroup and X is a

set, then the set SX of all mappings X → S forms a semigroup under component-

wise multiplication of mappings: for f, g ∈ SX , fg : X → S; x 7→ (xf)(xg);

this semigroup is called the Cartesian power of S by X. If S has a distinguished

idempotent e, then the support of f ∈ SX relative to e is defined by

suppe(f) = {x ∈ X : xf 6= e}.

The set

S(X)e = {f ∈ SX : | suppe(f)| <∞}

is a subsemigroup of SX ; it is called the direct power of S relative to e (the subscript

e is usually omitted). If X is finite of size n then SX and S(X)e coincide, and they

are isomorphic to the semigroup S(n) consisting of n-tuples of elements of S under

the component-wise multiplication. In this context, we write S (X)e even if S has no

idempotents; we can think of this as computing supports with respect to an identity

adjoined to S.

The unrestricted wreath product SWrT of two semigroups is the set ST ×T under

multiplication

(f, t)(g, u) = (f tg, tu),
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where tg ∈ ST is defined by

(x) tg = (xt)g.

Let e ∈ S be a distinguished idempotent. The (restricted) wreath product Se wrT

(with respect to e) is the subsemigroup of SWrT generated by the set {(f, t) ∈

SWrT : | suppe(f)| <∞} (again the subscript e is often omitted).

The wreath product S wrT coincides with the unrestricted wreath product SWrT

in the case where T is finite, as observed in [27, Chapter 3].

An action of a semigroup S on a set X is a mapping X × S → X, (x, s) 7→ xs,

satisfying (xs1)s2 = x(s1s2). The set X, together with an action, is called an S-act.

It is said to be generated by a set U ⊆ X if US1 = X, and finitely generated if there

exists a finite such U .

The diagonal act of a semigroup S is the set S × S with the action (s1, s2)s =

(s1s, s2s). The diagonal acts of infinite groups, free semigroups, free commutative

semigroups and completely simple semigroups are not finitely generated. On the

other hand, the diagonal act of the full transformation monoid TN on positive integers

can be generated by a single element; see [4]. In [22] the authors give an example

of an infinite, finitely presented monoid with a finitely generated diagonal act.

We will only state the conditions obtained in [23] for the case where T is finite

and S is infinite.

Proposition 6.1 Let S be an infinite semigroup and let T be a finite non-trivial

semigroup. If the diagonal S-act is finitely generated then S wrT is finitely generated

if and only if the following conditions are satisfied:

(i) S2 = S and T 2 = T ;

(ii) S is finitely generated.

If the diagonal S-act is not finitely generated then S wrT is finitely generated if and

only if the following conditions are satisfied:

(i) S2 = S;

(ii) S is finitely generated;

(iii) every element of T is contained in the principal right ideal generated

by a right identity.

We will now consider the automaticity of the wreath product S wrT in the case

where T is finite. In the case where S is also finite, S wrT is finite as well, and,

in particular, it is automatic. We will consider the case where S is infinite and the

diagonal S-act is not finitely generated.
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Theorem 6.2 If S and T are semigroups satisfying the following conditions:

(i) T is finite;

(ii) S is automatic;

(iii) the diagonal S-act is not finitely generated;

(iv) the wreath product S wrT is finitely generated;

then S wrT is automatic.

To prove this theorem we will need some notation and a result from [10]. A

generalized sequential machine (gsm for short) is a six-tuple A = (Q,A,B, µ, q0, T )

where Q, A and B are finite sets, (called the states, the input alphabet and the

output alphabet respectively), µ is a (partial) function from Q× A to finite subsets

of Q × B+, q0 ∈ Q is the initial state and T ⊆ Q is the set of terminal states. We

can read (q′, u) ∈ (q, a)µ in the following way: if A is in state q and receives input

a, then it can move into state q′ and output u.

We can interpret A as a directed labelled graph with vertices Q, and an edge

q
(a,u)
−−→ q′ for every pair (q′, u) ∈ (q, a)µ. For a path

π : q1
(a1,u1)
−−−−→ q2

(a2,u2)
−−−−→ q3 . . .

(an,un)
−−−−→ qn+1

we define

Φ(π) = a1a2 . . . an, Σ(π) = u1u2 . . . un.

For q, q′ ∈ Q, u ∈ A+ and v ∈ B+ we write q
(u,v)
−−→+ q′ to mean that there exists a

path π from q to q′ such that Φ(π) ≡ u and Σ(π) ≡ v, and we say that (u, v) is the

label of the path. We say that a path is successful if it has the form q
(u,v)
−−→+ t with

t ∈ T .

The gsm A induces a mapping ηA : P(A+) −→ P(B+) from subsets of A+ into

subsets of B+ defined by

XηA = {v ∈ B+ : (∃u ∈ X)(∃t ∈ T )(q0
(u,v)
−−→+ t)}.

It is well known that if X is regular then so is XηA; see [16]. Similarly, A induces

a mapping ζA : P(A+ × A+) −→ P(B+ ×B+) defined by

Y ζA = {(w, z) ∈ B+ ×B+ : (∃(u, v) ∈ Y )(w ∈ uηA & z ∈ vηA)}.

The next lemma asserts that, under certain conditions, this mapping also pre-

serves regularity.
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Lemma 6.3 Let A = (Q,A,B, µ, q0, T ) be a gsm, and let πA : (A∗ × A∗)δA −→

A∗ × A∗ be the inverse of δA. Suppose that there is a constant C such that for any

two paths α1, α2 in A, we have

|Φ(α1)| = |Φ(α2)| =⇒ ||Σ(α1)| − |Σ(α2)|| ≤ C. (3)

If M ⊆ (A+ × A+)δA is a regular language in A(2, $)+ then N = MπAζAδB is a

regular language in B(2, $)+.

Also the following simple fact, from [9], will be used in our proof.

Lemma 6.4 Let S be an automatic semigroup such that S2 = S. Then S has an

automatic structure with uniqueness (A,K) such that K ∩ A = ∅.

Proof of Theorem 6.2. We assume, without loss of generality, that T =

{t1, . . . , tm} with m > 1. By using Proposition 6.1 we know that S is finitely

generated and S2 = S. So, by Theorem 3.2, we conclude that the direct product

S|T | is automatic. Let (F,K) be an automatic structure for S |T | with uniqueness

with F = {f1, . . . , fk}. Since S2 = S, we can use Lemma 6.4, and assume that K

does not have words of length 1. Given t ∈ T , using again Proposition 6.1, there is a

right identity e ∈ T such that t = eq for some q ∈ T . So we can define a generating

set

Y = {e1, . . . , em} ∪ {q1, . . . , qm}

for T such that ti = eiqi for i = 1, . . . ,m and e1, . . . , em represent (not necessarily

distinct) right identities in T . We define a new alphabet A by

A = {(f, ei) : f ∈ F, i = 1, . . . ,m} ∪ {(f, qi) : f ∈ F, i = 1, . . . ,m}

and a language L on A by

L =
⋃

i=1,...,m

{(fα1 , ei) . . . (fαn−1 , ei)(fαn
, qi) : fα1 . . . fαn

∈ K}.

We will prove that the pair (A,L) is an automatic structure for S wrT (with unique-

ness). To see that A generates S wrT and that L is a set of unique representatives

for S wrT we observe that, given (f, ti) ∈ S wrT there is only one word fα1 . . . fαn

in K such that f = fα1 . . . fαn
. So there is only one word in L representing (f, ti)

which is

(fα1 , ei) . . . (fαn−1 , ei)(fαn
, qi).

To prove that L is a regular language we now define a gsm A such that KηA = L.

Let

A = (Q,F,A, µ, q0, {χ})

18



with Q = {q0, . . . , qm} ∪ {χ}, where q0 is the initial state, χ is the only final state

and µ is a partial function from Q× F to finite subsets of Q× A+ defined by:

(q0, f)µ={(qi, (f, ei))} (i = 1, . . . ,m),

(qi, f)µ={(qi, (f, ei)), (χ, (f, qi)))} (i = 1, . . . ,m).

We will now prove that L(f,er) is a regular language, for (f, er) ∈ A. If we define

L
(i)
(f,er) = L(f,er) ∩ (A+ · {(f, qi) : f ∈ F} × A+)δA (i = 1, . . . ,m)

then we can write

L(f,er) =
⋃

i=1,...,m

L
(i)
(f,er)

and it suffices to prove that, for each i ∈ {1, . . . ,m}, the language L
(i)
(f,er) is regular.

To achieve that, we will use Lemma 6.3. We start by showing that

L
(i)
(f,er) = Kw̄πF ζAδA ∩ (A+ · {(f, qi) : f ∈ F} × A+ · {(f, qi) : f ∈ F})δA

where w̄ is the word in K that represents qif ∈ S |T |. Let

(fα1 , ei) . . . (fαn−1 , ei)(fαn
, qi), (fβ1 , ej) . . . (fβs−1 , ej)(fβs

, qj) ∈ L.

Then

((fα1 , ei) . . . (fαn−1 , ei)(fαn
, qi), (fβ1 , ej) . . . (fβs−1 , ej)(fβs

, qj))δA ∈ L
(i)
(f,er)

⇔ fα1 . . . fαn

qif = fβ1 . . . fβs
& eiqier = ejqj

⇔ fα1 . . . fαn

qif = fβ1 . . . fβs
& eiqi = ejqj

⇔ fα1 . . . fαn

qif = fβ1 . . . fβs
& ti = tj

⇔ (fα1 . . . fαn
, fβ1 . . . fβs

)δF ∈ Kw̄ & i = j

⇔ ((fα1 , ei) . . . (fαn−1 , ei)(fαn
, qi), (fβ1 , ej) . . . (fβs−1 , ej)(fβs

, qj))δA ∈

Kw̄πF ζAδA ∩ (A+ · {(f, qi) : f ∈ F} × A+ · {(f, qi) : f ∈ F})δA

We conclude, by Lemma 6.3, that L
(i)
(f,er) is a regular language. For a generator

(f, qr) ∈ A will we prove that L(f,qr) is regular in a similar way. We can write

L(f,qr) =
⋃

i=1,...,m

L
(i)
(f,qr)

where

L
(i)
(f,qr) = L(f,qr) ∩ (A+ · {(f, qi) : f ∈ F} × A+)δA (i = 1, . . . ,m).

We let i ∈ {1, . . . ,m} arbitrary and we will prove that L
(i)
(f,qr) is a regular language.

Let j the unique element in {1, . . . ,m} such that eiqiqr = ejqj and let w̄ be the word

in K that represents qif ∈ S |T |. Let

(fα1 , ei) . . . (fαn−1 , ei)(fαn
, qi), (fβ1 , ek) . . . (fβs−1 , ek)(fβs

, qk) ∈ L.
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Then

((fα1 , ei) . . . (fαn−1 , ei)(fαn
, qi), (fβ1 , ek) . . . (fβs−1 , ek)(fβs

, qk))δA ∈ L
(i)
(f,qr)

⇔ fα1 . . . fαn

qif = fβ1 . . . fβs
& eiqiqr = ekqk

⇔ (fα1 . . . fαn
, fβ1 . . . fβs

)δF ∈ Kw̄ & eiqiqr = ekqk & k = j

⇔ ((fα1 , ei) . . . (fαn−1 , ei)(fαn
, qi), (fβ1 , ek) . . . (fβs−1 , ek)(fβs

, qk))δA ∈

Kw̄πF ζAδA ∩ (A+ · {(f, qi) : f ∈ F} × A+ · {(f, qj) : f ∈ F})δA

We can use again Lemma 6.3 to conclude that, for each i, the language

L
(i)
(f,qr) = Kw̄πF ζAδA ∩ (A+ · {(f, qi) : f ∈ F} × A+ · {(f, qj) : f ∈ F})δA

is regular. �

In the case where the semigroups S and T are monoids, necessary and sufficient

conditions for the wreath product S wrT to be finitely generated are given in [24].

Proposition 6.5 Let S and T be monoids, and let G be the group of units of T .

Then the wreath product S wrT is finitely generated if and only if both S and T are

finitely generated, and either S is trivial, or T = V G for some finite subset V of T .

By using this result, our theorem has the following consequence:

Corollary 6.6 Let S be an automatic monoid and T be a finite monoid. Then the

wreath product S wrT is automatic.

Proof. We assume that S is not trivial. We can apply Proposition 6.5, with V = T ,

and so S wrT is finitely generated. Moreover, the three conditions in Proposition

6.1, for the case where the diagonal S-act is not finitely generated, hold trivially

since S and T are monoids. The proof of our theorem is based on these conditions

and therefore the wreath product S wrT is automatic. �

It is still an open question whether or not the wreath product S wrT is automatic

when it is finitely generated. Of course, from the above result, it only remains to

consider the case where the diagonal S-act is finitely generated. In [24] and [27]

we can find some examples of wreath products with finitely generated diagonal S-

act which, as the authors observe, is in some way the less common case. Another

interesting problem is that of the automaticity of the wreath product in the case

where the semigroup T is also infinite. A natural starting point here is to use

Proposition 6.5 and investigate the case where S and T are monoids.
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[10] L. Descalço and N. Ruškuc, On automatic Rees matrix semigroups, Comm.

Algebra 30 (2002), 1207–1226.

[11] , Subsemigroups of the bicyclic monoid, Internat. J. Algebra Comput.

15 (2005), 37–57.

[12] A. J. Duncan, E. F. Robertson, and N. Ruškuc, Automatic monoids and change
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