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Abstract. We propose two different methods for generating random or-
thogonal polygons with a given number of vertices. One is a polynomial
time algorithm and it is supported by a technique we developed to ob-
tain polygons with an increasing number of vertices starting from a unit
square. The other follows a constraint programming approach and gives
great control on the generated polygons. In particular, it may be used
to find all n-vertex orthogonal polygons with no collinear edges that can
be drawn in an n

2
× n

2
grid, for small n, with symmetries broken.

1 Introduction

Besides being of theoretical interest, the generation of random geometric objects
has applications that include the testing and verification of time complexity for
computational geometry algorithms, as observed by Zhu et al. in [15] and Auer
and Held in [2]. This has also been a major motivation for us. In particular,
we needed a sufficiently large number of varied orthogonal polygons to carry
out an experimental evaluation of the algorithm proposed in [13] for solving the
Minimum Vertex Guard problem for arbitrary polygons. This problem is that
of finding a minimum set G of vertices of the given polygon P such that each
point in the interior of P is visible from at least a vertex in G, belonging to the
Art Gallery problems [8, 16].

Polygons are one of the fundamental building blocks in geometric modelling
and they are used to represent a wide variety of shapes and figures in computer
graphics, vision, pattern recognition, robotics and other computational fields.
Some recent publications address uniform random generation of simple polygons
with given vertices, in the sense that a polygon will be generated with probability
1
T if there exist a total of T simple polygons with such vertices [2, 15]. Since no
polynomial time algorithm is known to solve the problem, researchers either try
to use heuristics [2] or restrict the problem to certain classes of polygons such
as monotone [15] or star-shaped [11].
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Programs for generating random orthogonal polygons have been developed
in LISP by O’Rourke et al. to perform experimental tests in the context of [10]
and independently by M. Filgueiras in Tcl/Tk (personal communication, 2003).
Recently, O’Rourke kindly made available his program to us. The main idea
behind it is to construct such a polygon via growth from a seed cell (i.e., unit
square) in a board, gluing together a given number of cells that are selected
randomly using some heuristics. Filgueiras’ method shares a similar idea though
it glues rectangles of larger areas and allows them to overlap. O’Rourke observed
that there is no easy way to control the final number of vertices of the polygon
with his program and that what is controlled directly is the area of the polygon,
i.e., the number of cells used. However the number of cells may change because
the program transforms the generated polygon when it has (non-overlapping)
collinear edges to remove such collinearity.

Our contribution. We propose two different methods for generating random or-
thogonal polygons with a given number of vertices. The first one is a polynomial
time algorithm. It is supported by a result we prove in this paper that every
orthogonal polygon may be obtained from the unit cell by employing a sequence
of Inflate-Cut transformations. The other method follows a constraint pro-
gramming approach, and explores the fact that the generation problem may be
modelled naturally as a constraint satisfaction problem in finite domains (CSP).
It gives control on other characteristics of polygons, though it is computationally
much more expensive. We have not yet tried to classify the degree of randomness
of the polygons constructed by our methods.

The paper is structured as follows. In section 2, we introduce basic con-
cepts and results about simple polygons and we describe how to obtain generic
orthogonal polygons from standardized orthogonal polygons (that we call grid
n-ogons). Then, in sections 3 and 4, we present our two methods for generating
grid n-ogons. We conclude giving some implementation details and empirical
results in section 5.

2 Background and Terminology

A simple polygon P is a region of a plane enclosed by a finite collection of
straight line segments forming a simple cycle. Non-adjacent segments do not
intersect and two adjacent segments intersect only in their common endpoint.
These intersection points are the vertices of P and the line segments are the
edges of P . This paper deals only with simple polygons, so that we call them just
polygons, in the sequel. A vertex is called convex if the interior angle between
its two incident edges is at most π; otherwise it is called reflex (or concave).
We use r to represent the number of reflex vertices of P . A polygon is called
orthogonal (or rectilinear) if its edges are either horizontal or vertical (i.e., if
edges meet at right angles). O’Rourke [9] has shown that n = 2r + 4 for every
n-vertex orthogonal polygon (n-ogon, for short). So, orthogonal polygons have
an even number of vertices.



Every n-vertex polygon P is well defined by the sequence of its vertices
v1, . . . , vn, given in counterclockwise (CCW) order. P will be locally to the left
of any edge ei traversed from vi to vi+1. All index arithmetic will be modulo n,
though we shall use n instead of 0, and ei = vivi+1.

We shall now describe how to obtain generic orthogonal polygons from stan-
dardized orthogonal polygons, that we call grid n-ogons.

2.1 Classes of Orthogonal Polygons

Definition 1. We say that an n-ogon P is in general position iff every horizon-
tal and vertical line contains at most one edge of P , i.e., iff P has no collinear
edges. For short, we call “grid n-ogon” each n-ogon in general position defined
in a n

2 × n
2 square grid.

Lemma 1. Each grid n-ogon has exactly one edge in every line of the grid.

Each n-ogon not in general position may be mapped to an n-ogon in general
position by ε-perturbations, for a sufficiently small constant ε > 0. Consequently,
we may restrict generation to n-ogons in general position.

Every n-ogon P in general position may be identified with a unique grid
n-ogon, as follows. We consider that the northwest point of the grid has coordi-
nates (1, 1). We order the horizontal edges of P by top-to-bottom sweeping and
we order its vertical edges by left-to-right sweeping. If we then assign to each
edge its order number, P gets identified with a single grid n-ogon, as shown in
Fig. 1. If Vi−1 and Hi are the numbers given to the vertical edge ei−1 and to

Fig. 1. Identifying three n-ogons with a single grid n-ogon, for n = 12.

its consecutive horizontal edge ei, then (Vi−1,Hi) is the vertex that corresponds
to vertex vi in the grid n-ogon. Each grid n-ogon identifies a class of n-ogons.
Given a grid n-ogon we may create an n-ogon that is an instance of its class
by randomly spacing the grid lines though preserving their ordering. When we
analysed the program by O’Rourke, we found that this idea was already there.
The number of classes may be further reduced if we group grid n-ogons that are
identical under symmetries of the square. In this way, the grid n-ogons in Fig. 2
represent the same class. We shall come back to this issue in sections 4 and 5.



Fig. 2. Eight grid n-ogons that are identical under symmetries of the square. From
left to right, we see images by clockwise rotations of 90◦, 180◦ and 270◦, by flips wrt
horizontal and vertical axes and flips wrt positive and negative diagonals.

3 The Inflate-Cut Algorithm

Fig. 3 illustrates a technique we developed to obtain grid (n + 2)-ogons from
a given grid n-ogon, that we called Inflate-Cut. The idea is that Inflate
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Fig. 3. Illustrating Inflate-Cut transformation. The two rectangles defined by the
center of C and the vertices of the leftmost vertical edge ((1, 1), (1, 7)) cannot be cut,
so that there remain the four possibilities shown.

grows the area of the grid n-ogon P constructed up to a given step and then
Cut removes a rectangle from it to create a new grid ogon, with n + 2 vertices
(i.e., with exactly one more reflex vertex). So, let vi = (xi, yi), for i = 1, . . . , n be
the vertices of P and C be a unit cell in its interior. Let (p, q) be the coordinates
of the northwest corner of C.

The Inflate transformation. The result of applying Inflate to P using C is a
new n-vertex orthogonal polygon P̃ with vertices ṽi = (x̃i, ỹi) given by x̃i = xi

if xi ≤ p and x̃i = xi +1 if xi > p, and ỹi = yi if yi ≤ q and ỹi = yi +1 if yi > q,
for i = 1, . . . , n. Two lines will be free in the new grid, namely x = p + 1 and
y = q + 1. They intersect in the center of inflated C, that will be the new reflex
vertex, when the Cut transformation is as we establish now.

The Cut transformation. Let ṽC = (p+1, q +1). Compute the four intersection
points defined by the straight lines x = p+1 and y = q+1 and the boundary of P̃



(i.e., the points where the four horizontal and vertical rays that start at ṽC first
intersect the boundary of P̃ ). Select one of these intersection points at random,
and call it s̃. Let ṽm be one of the two vertices on the edge of P̃ that contains s̃.
The rectangle defined by ṽC and ṽm may be cut if and only if it contains no
vertex of P̃ except ṽm. If the rectangle may be cut, let s̃′ be ṽC + (ṽm − s̃), and
remove ṽm from P̃ inserting instead s̃, ṽC , s̃′ if this sequence in CCW order (or
s̃′, ṽC , s̃, otherwise). If the rectangle cannot be cut, try to use in a similar way
either the other extreme of the edge that contains s̃ or the remaining intersection
points. Cut fails for C when no rectangle may be cut, as shown in Fig. 4.

C

Fig. 4. Cut fails for cell C. We get a grid ogon if we remove the black rectangle, but
this cut violates the preconditions of Cut, since the rectangle has two vertices of P .

The Inflate-Cut algorithm, given in Fig. 5 generates a random grid n-ogon
from the unit square (i.e., from the 4-ogon) using Inflate and Cut. The random

Input: The number of vertices n (must be even and ≥ 4).
Output: A random grid n-ogon P .

r := n/2-2;
P := {(1, 1), (1, 2), (2, 2), (2, 1)}; /* (i.e., the unit square) */
while r > 0 do

repeat
Select one grid cell C in the interior of P (at random);

Apply Inflate using C to obtain P̃ ;

Apply Cut to remove a rectangle (at random) from P̃ ;
while Cut fails for C;

P := P̃ ; r := r-1;
end

Fig. 5. The Inflate-Cut algorithm.

selections of C and of rectangles must avoid loops. There is always one cell that
may be inflated to continue the process. In fact, Cut never fails when the unit
cell C has an edge that is part of an edge of P .



The Inflate-Cut algorithm may be adapted to generate all grid n-ogons,
for a given n, instead of one at random. Proposition 1 states the completeness of
Inflate-Cut. Its proof is not immediate, as indicated by the example in Fig. 6.

Proposition 1. For each grid (n+2)-ogon, there is a grid n-ogon that yields it
by Inflate-Cut, for all even n ≥ 4.

Fig. 6. The inverse of Inflate-Cut transformation: finding a grid n-ogon that yields
a given grid (n +2)-ogon. The rightmost polygon is the unique grid 16-ogon that gives
rise to this 18-ogon, if we employ Inflate-Cut.

The major ideas of our proofs are illustrated in Fig. 7. They were inspired by
work about convexification of simple polygons, and, in particular, by a recent
paper by O. Aichholzer et al. [1]. This topic was introduced by Paul Erdös [4]
who conjectured that a nonconvex polygon would become convex by repeatedly
reflecting all its pockets simultaneously across their lids. This conjecture was
later corrected by Nagy [12], who showed the Erdös-Nagy theorem that requires
that pockets be flipped one by one.

A
B

pocket

pocket

Fig. 7. The two leftmost grids show a grid 18-ogon and its pockets. The shaded rect-
angles A and B are either leaves or contained in leaves of the tree associated to the
horizontal partitioning of the largest pocket. The rightmost polygon is an inflated grid
16-ogon that yields the represented grid 18-ogon, if Cut removes rectangle B.

Any nonconvex polygon P has at least one concavity, or pocket. A pocket
is a maximal sequence of edges of P disjoint from its convex hull except at the
endpoints. The pocket’s lid is the line segment joining its endpoints. Pockets of n-
ogons, together with their lids, define simple polygons that are almost orthogonal
except for an edge. We may render them orthogonal by introducing two artificial
edges, as shown in Fig. 7. Let Π be the decomposition of an orthogonalized



pocket into rectangles obtained by extending the horizontal edges incident to
its reflex vertices until they hit the boundary. Then, we consider the dual graph
of Π , that captures the adjacency relation between pieces of Π . Its nodes are
the pieces of Π and its edges connect adjacent pieces. Such a graph is always a
tree and every leaf that does not contain the artificial horizontal edge contains
(or is itself) a rectangle that might have been removed by Cut. Now, at most
one leaf contains the artificial horizontal edge. Moreover, if the tree consists of
a single node (rectangle), it trivially meets the conditions of Cut.

Though, this proof shares ideas of a proof of Meisters’ Two-Ears Theorem [7]
by O’Rourke, we were not aware of this when we wrote it. Another concept
– mouth – helped us refine Cut and reduce the number of possible ways of
generating a given (n + 2)-ogon.

Definition 2. (Toussaint [14]) A vertex vi of P is said to be a principal vertex
provided that no vertex of P lies in the interior of the triangle (vi−1, vi, vi+1)
or in the interior of the diagonal (vi−1, vi+1). A principal vertex vi of a simple
polygon P is called mouth if the diagonal (vi−1, vi+1) is an external diagonal,
i.e., the interior of (vi−1, vi+1) lies in the exterior of P .

We are not aware of any work that uses this concept as we do. Nevertheless,
Inflate-Cut is somehow doing the reverse of an algorithm given by Toussaint
in [14] that computes the convex hull of a polygon globbing-up mouths to suc-
cessively remove its concavities

For orthogonal polygons, we would rather define rectangular mouths, saying
that a reflex vertex vi is a rectangular mouth of P iff the interior of the rectangle
defined by (vi−1, vi, vi+1) is contained in the exterior of P and contains no other
vertices of P . To justify the correction of our technique, we observe that when we
apply Cut to obtain a grid (n + 2)-ogon, the vertex ṽC (that was the center the
inflated grid cell C) is always a rectangular mouth of the resulting (n + 2)-ogon.
In sum, we may rephrase the One-Mouth Theorem by Toussaint [14] and show
Proposition 2.

Proposition 2. Each grid n-ogon has at least one rectangular mouth, for n ≥ 6.

4 A Constraint Programming Approach

The method we have described can be easily adapted to generate all grid n-ogons,
for small values of n. For instance, by applying Inflate-Cut to all cells in
the polygon and considering all possibilities of cutting rectangles, for each cell.
It is difficult to see how to eliminate symmetric solutions, or even if that is
possible. Clearly, we would like to eliminate the possibility of generating them.
The number of grid n-ogons grows exponentially with n, so that it does not make
sense the comparison of solutions to filter out symmetric ones. To make matters
worse, the same n-ogon may be generated from a unit square by performing
similar transformations, though in a different order. It is easy to locally detect
and break some symmetries: if a given n-ogon is symmetric, then we would
possibly not apply Inflate-Cut to cells that are in symmetric positions.



A major advantage of the following approach is the ability to control the
generated polygons by imposing constraints in addition to a basic core that
translates the notion of grid n-ogon. In particular, it is possible to completely
break symmetry during search through constraints. Several approaches and tech-
niques have been proposed (e.g, [5, 6]) for similar purposes, in recent years.

For certain applications, as for example, to check conjectures, it is also im-
portant to restrict the generated polygons (e.g., to constrain their area, the
number of consecutive reflex vertices, the length of their edges, etc). This second
approach gives this kind of control.

4.1 A Simple Constraint Satisfaction Model

Let us define a grid n-ogon by giving the sequence

(X1, Y1), (X1, Y2), (X2, Y2), (X2, Y3), (X3, Y3), . . . , (Xk, Yk), (Xk, Y1)

of its vertices, for example, in CCW order, with k = n
2 . So, to generate grid

n-ogons we have to find ordered sequences X1, X2, . . . , Xk and Y1, Y2, . . . , Yk,
such that Yi ∈ 1..k, Xi ∈ 1..k, for all i, with all Xi’s and Yi’s distinct (for the
polygon to be in general position). Additional constraints must be imposed to
guarantee that non-adjacent edges will not intersect. As there is a single edge per
line, we just have to avoid intersections between each vertical edge and all hori-
zontal edges that are non-adjacent to it. When the vertices are ordered as above,
e1+2j = (X1+j , Y1+j), (X1+j , Y2+j) and e2+2j = (X1+j , Y2+j), (X2+j , Y2+j) de-
fine the polygon’s edges, for j = 0, . . . , k − 1, being k + 1 ≡ 1. For all j, the
vertical edge e1+2j does not intersect any non-adjacent horizontal edge e2+2j′ if
and only if (1) holds for j′ ∈ {0, . . . , k − 1} \ {j − 1, j},

X1+j − X1+j′

X2+j′ − X1+j′
/∈ [0, 1] ∨ Y2+j′ − Y1+j

Y2+j − Y1+j
/∈ [0, 1] (1)

To encode these constraints as finite domain constraints, we get more disjunctive
constraints

A − B

C − B
/∈ [0, 1] ≡ (C > B ∧ (A ≤ B ∨ A ≥ C)) ∨ (C < B ∧ (A ≥ B ∨ A ≤ C))

the model being actually declaratively simple but computationally too complex.

5 Experimental Evaluation

We have developed prototype implementations of the Inflate-Cut method and
of this constraint programming model. For Inflate-Cut, we may show that our
implementation (in the C language) uses linear space in the number of vertices
and runs in quadratic time in average. Fig. 8 shows some empirical results. To
achieve this, it keeps the vertices of P in a circular doubly linked list, its area
(i.e., the number of cells) and the total number of cells of P in each horizontal
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Fig. 8. Average time performance of our implementation of Inflate-Cut. It yields a
random grid 1000-ogon in 1.6 seconds in average (AMD Athlon Processor at 900 MHz).

grid line, this also in a linked list. To compute the coordinates (p, q) that identify
cell C, it first uses these counters to find row q and then left-to-right and top-
to-bottom sweeping techniques to find column p and the four delimiting edges.
Moreover, it first checks whether Cut will succeed for C and performs explicitly
Inflate only if it does. To check whether a rectangle may be cut it performs a
rotational sweep of the vertices of P .

As concerns the second method, we developed a prototype implementation
using CLP(FD) [3] for SICStus Prolog together with a simple graphical inter-
face written in Tcl/Tk to output the generated polygons and interact with the
generator. This program may be used to generate either an n-ogon at random
or all n-ogons by backtracking, for very small n.

To break symmetries we added additional constraints to the CSP model
described above. First we required that X1 = 1. This means that amongst all
sequences that are circular permutations of v1, . . . , vn, we choose the one that
defines v1 as the highest vertex in the leftmost vertical edge of P . Then, we
require that P �LEX σ(P ), for all σ ∈ D4, where D4 is the group defined by
the eight symmetries of the square grid and �LEX is the lexicographic order. If
we refer back to Fig. 2, this means that only the second polygon there would
be generated. On the other hand, if we add P = σ(P ), for all σ in a subgroup
S of D4, the generator yields polygons that exhibit all the symmetries in S.
Our implementation has been mainly used by us to test some conjectures about
orthogonal polygons (for n < 20) and to construct symmetrical n-ogons (for
n < 90). Global constraints were used to implement this ordering constraint and
those preventing intersections of non-adjacent edges. Nevertheless, we think that
efficiency could still be improved by exploring geometric features of the solutions
to the problem and adding redundant constraints to reduce the search.

Since the number of polygons grows exponentially with n, and we need poly-
gons with a larger number of vertices, the empirical results indicate that it may
be impractical to use our second method to produce a relevant tests set to the
algorithm described in [13]. So, Inflate-Cut algorithm has some important
advantages.



6 Conclusions

Two different methods were proposed for generating random orthogonal poly-
gons with a given number of vertices. One allows for great control on the form of
polygons, but is computationally too expensive. The other is a polynomial time
algorithm and seems more adequate for the generation of random polygons, pro-
vided no special features are sought, apart from the desired number of vertices.
Similar ideas may be explored to generate random simple polygons.
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