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Abstract. A grid n-ogon is a n-vertex orthogonal polygon that may
be placed in a n

2
× n

2
unit square grid and that does not have collinear

edges. Given a grid n-ogon P , let |Π(P )| be the number of rectangles
that results when we partition P by extending the edges incident to
reflex vertices towards its interior. P is called Fat if |Π(P )| is maximal
for all grid n-ogons; P is called Thin if |Π(P )| is minimal for all grid
n-ogons. Thins with area 2r+1 are called Min-Area. We will show that
�n

6
� vertex guards are necessary to guard a Min-Area grid n-ogon and

present some problems related to Thins.

1 Introduction

Art Gallery problems represent a classic and very interesting field of Computa-
tional Geometry. The original art gallery problem was introduced by V. Klee in
1973 in a conference of Mathematics. He posed the following problem to V. Chv-
tal: How many stationary guards are needed to cover an art gallery room with
n walls? Informally the floor plan of the art gallery room is modeled by a simple
polygon (simple closed polygon with its interior) P and a guard is considered a
fixed point in P with 2π range visibility. We say that a point x sees point y (or
y is visible to x) if the line segment connecting them lies entirely in P . A set of
guards covers P , if each point of P is visible by at least one guard. Thus, the Art
Galery Problem deals with setting a minimal number of guards in a gallery room
whose floor plan has polygonal shape, so that they could see every point in the
room. Two years later Chvtal established the well known Chvátal Art Gallery
Theorem: �n

3 � guards are occasionally necessary and always sufficient to cover a
simple polygon of n vertices.

Many variants of the original art gallery problem have been considered and
studied over the years, see [4, 5, 9] for comprehensive surveys. An interesting vari-
ant is the Orthogonal Art Gallery Theorem. This theorem was first formulated
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and proved by Kahn et al, in 1983. It states that �n
4 � guards are occasionally

necessary and always sufficient to cover an orthogonal simple polygon of n ver-
tices. Orthogonal simple polygons (simple polygons whose edges meet at right
angles) are an important subclass of polygons. Indeed, they are useful as ap-
proximations to polygons; and they arise naturally in domains dominated by
Cartesian coordinates, such as raster graphics, VLSI design, or architecture. Ef-
ficient algorithms, based on the proofs of the above theorems, were developed to
cover both arbitrary and orthogonal simple polygons with �n

3 � and �n
4 � guards,

respectively. While this number of guards is necessary in some cases, often it is
far more than it is needed to cover a particular simple polygon. For instance, it is
known that convex polygons only require one guard. Similarly, depending on the
structure of a simple polygon the minimum number of guards may be smaller
than the estimated. A variant of this problem is the Minimum Vertex Guard
(MVG) problem, that is the problem of finding the minimum number of guards
placed on vertices (vertex guards) needed to cover a given simple polygon. This
is a NP-hard problem both for arbitrary and orthogonal simple polygons [2, 6].

Our contribution. This paper has as intention to introduce a subclass of
orthogonal polygons that presents sufficiently interesting characteristics that we
are studying and formalizing, in particular the way they can be guarded. Of
these polygons two classes stand out: the Fats and Thins. We think Fats and
Thins are representative of extremal behavior and they are used experimentally
to evaluate some approximated methods of resolution of the MVG problem [8].
The paper is structured as follows: in the next section we will present some
introductory definitions and useful results. In section 3, we will study the MVG
problem for a subclass of Thin grid n-ogons (the Min-Area) and in section 4
we will refer to some problems related to Thins.

2 Conventions, Definitions and Results

For every n-vertex orthogonal simple polygon (n-ogon for short), n = 2r + 4,
where r denotes the number of reflex vertices, e.g. [4]. A rectilinear cut (r-cut)
of an n-ogon P is obtained by extending each edge incident to a reflex vertex of
P towards the interior of P until it hits P ’s boundary. We denote this partition
by Π(P ) and the number of its pieces by |Π(P )|. Each piece is a rectangle and
so we call it a r-piece. A n-ogon that may be placed in a n

2 × n
2 square grid

and that does not have collinear edges is called grid n-ogon. We assume that the
grid is defined by the horizontal lines y = 1, . . . , y = n

2 and the vertical lines
x = 1, . . . , x = n

2 and that its northwest corner is (1, 1). Grid n-ogons that are
symmetrically equivalent are grouped in the same class [1]. A grid n-ogon Q is
called Fat iff |Π(Q)| ≥ |Π(P )|, for all grid n-ogons P . Similarly, a grid n-ogon Q
is called Thin iff |Π(Q)| ≤ |Π(P )|, for all grid n-ogons P . Let P be a grid n-ogon
with r reflex vertices, in [1] is proved that, if P is Fat then |Π(P )| = 3r2+6r+4

4 ,

for r even and |Π(P )| = 3(r+1)2

4 , for r odd; if P is Thin then |Π(P )| = 2r + 1.
There is a single Fat n-ogon (except for symmetries of the grid) and its form is
illustrated in fig. 1(a). However, the Thin n-ogons are not unique (see fig. 1(b)).



( )a (b) (c)

Fig. 1. (a) The unique Fat n-ogon, for n = 6, 8, 10, 12; (b) Three Thin 10-ogons; (c)
The unique Min-Area grid n-ogons, for n = 6, 8, 10, 12.

The area of a grid n-ogon is the number of grid cells in its interior. In [1] it
is proved that for all grid n-ogon P , with n ≥ 8, 2r + 1 ≤ A(P ) ≤ r2 + 3. A
grid n-ogon P is a Max-Area grid n-ogon iff A(P ) = r2 + 3 and it is a Min-
Area grid n-ogon iff A(P ) = 2r + 1. There exist Max-Area grid n-ogons for
all n, but they are not unique. However, there is a single Min-Area grid n-ogon
(except for symmetries of the grid) and it has the form illustrated in fig. 1(c).
Regarding Min-Area grid n-ogons, it is obvious that they are Thin n-ogons,
because |Π(P )| = 2r + 1 holds only for Thin n-ogons. However, this condition
is not sufficient for a grid n-ogon to be a Min-Area grid n-ogon.

Our aim is to study the MVG problem for grid n-ogons. Since Thin and
Fat n-ogons are the classes for which the number of r-pieces is minimum and
maximum, we think that they can be representative of extremal behavior, so
we started with them. We already proved that to cover any Fat grid n-ogon it
is always sufficient two π

2 vertex guards (vertex guards with π
2 range visibility)

and established where they must be placed [3]. Thins are much more difficult to
cover, on the contrary of what we might think once they have much fewer pieces
than Fats. Since Thin grid n-ogons are not unique, we intend to characterize
structural properties of classes of Thins that allow to simplify the problem study.
Up to now the only quite characterized subclass is the Min-Area grid n-ogons:
the subclass for which the number of grid cells is minimum.

3 Guarding Min-Area grid n-ogons

Given P , a Min-Area, we will denote by g(P ) the minimum number of vertex
guards that is needed to cover P . We will show not only that g(P ) = � r+2

3 � but
also in which vertices these guards must be placed.

Lemma 1. Two vertex guards are necessary to cover the Min-Area grid 12-
ogon. Moreover, the only way to do so is with the vertex guards v2,2 and v5,5.

Proof (Sketch).
This demonstration is based on the fact that the unit squares Q0 and Q1

will have to be guarded and that the only vertex guards that can do it and
simultaneously guard all the polygon are v2,2 and v5,5 (see fig. 2(a)).

��



Proposition 1. If we “merge” k ≥ 2 Min-Area grid 12-ogons, we will ob-
tain the Min-Area grid n-ogon with r = 3k + 1. More, k + 1 vertex guards
are necessary to cover it, and the only way to do so is with the vertex guards:
v2+3i,2+3i, i = 0, 1, . . . , k.

Proof. Let P be the Min-Area grid n-ogon with r = 7 reflex vertices. P can be
obtained “merging” two Min-Area grid 12-ogons (see fig. 2(b)).

( )a (b)

Q0

Q1

Fig. 2. (a) Min-Area grid 12-ogon; (b) Construction of the Min-Area grid 18-ogon
from two Min-Area grid 12-ogons.

By lemma 2 and as we can see, 3 vertex guards are necessary to cover P ,
and the only way to do that is with v2,2, v5,5 and v8,8. Thus, for k = 2, the
proposition is true. Let k ≥ 2, we will show that the proposition is true for k +1
(induction thesis), assuming that it is true for k (induction hypotheses).
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Fig. 3. Polygon P (“merge” of Q with the Min-Area grid 12-ogon).

By induction hypothesis, “merging” k Min-Area grid 12-ogons we obtain
Q, the Min-Area grid n-ogon with rq = 3k +1 reflex vertices. If we “merge” Q



with the Min-Area grid 12-ogon, we will obtain a polygon P (see fig. 3). P has
rp = 3k+4 reflex vertices and A(P ) = 2rp +1. Therefore, “merging” k +1 Min-
Area grid 12-ogons we obtain P , the Min-Area grid n-ogon with r = 3k + 4.
Furthermore, by induction hypotheses and from what we can observe in fig. 3,
we can conclude that k + 2 vertex guards are necessary to cover P . Moreover,
the only way to do so is with the vertex guards: v2+3i,2+3i, i = 0, 1, . . . , k + 1.

��
Proposition 2. � r+2

3 � vertex guards are always necessary to guard a Min-
Area grid n-ogon with r reflex vertices.

Proof. Let Pn be a Min-Area grid n-ogon with rn = n−4
2 reflex vertices. We

may easily check that 1, 2 and 2 vertex guards are necessary to guard Min-Area
grid n-ogons with rn = 1, 2, 3, respectively (see fig. 4).

Fig. 4. Min-Area grid n-ogons with r = 1, 2, 3.

Let rn ≥ 4. If rn ≡ 1 (mod 3) then, by proposition 1, the � rn+2
3 � vertex

guards v2+3i,2+3i, i = 0, 1, . . . , rn−1
3 , are necessary to cover Pn. Thus, we just

need to prove the following cases: rn ≡ 2 (mod 3) and rn ≡ 0 (mod 3).
In any case, Pn can be obtained, by Inflate-Paste (a complete process to

generate grid n-ogons, well described in [7]), from a Min-Area Qm with rm =
m−4

2 and such that rm = 3km + 1 (see fig. 5). The first case corresponds to
polygon Qm+2, in fig. 5, and rn = rm + 1. The second case corresponds to
polygon Qm+4, in fig. 5, and rn = rm + 2.

As we can see, in any case, is always necessary one more vertex guard, which
can be vrn+1,rn+1. Thus, � rm+2

3 � + 1 = � rn+2
3 � vertex guards are necessary to

guard Pn.
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r +4mr +2m

1 1 1
2 2 2
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Polygon Qm+2 Polygon Qm+4

Fig. 5. Min-Area grid n-ogons Qm, Qm+2 and Qm+4.
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Proposition 2 not only gives the guarantee of that � r+2
3 � vertex guards are

required to guard the Min-Area grid n-ogon with r reflex vertices, but also
establishes a possible positioning.

4 Some problems related to Thin n-ogons

As we saw in section 1, on the contrary of the FAT the Thin grid n-ogons are not
unique. In fact, 1 Thin 6-ogon exists, 2 Thin 8-ogons exist, 30 Thin 10-ogons
exist, 149 Thin 12-ogons exist, etc. Thus, it is interesting to evidence that the
number of Thin grid n-ogons (|Thin(n)|) grows exponentially. Will it exist some
expression that relates n to |Thin(n)|? Also, we can question on the value of the
area of the Thin grid n-ogon with maximum area (Max-Area-Thin n-ogon)
and if the Max-Area-Thin n-ogon is unique.

Denote by MAr the value of the area of “the” Max-Area-Thin n-ogon with
r reflex vertices. By observation we concluded that MA2 = 6, MA3 = 11, MA4 =
17 and MA5 = 24 (see Fig. 6(a)). Note that, MA2 = 6, MA3 = MA2 + 5,
MA4 = MA3 + 6 = MA2 + 5 + 6 and MA5 = MA4 + 7 = MA2 + 5 + 6 + 7.
From these observations it follows:

Conjecture 1. MAr = MA2 + 5 + 6 + 7 + . . . + (r + 2) = r2+5r−2
2 .

If conjecture 1 is true we can say the Thin grid n-ogon with maximum area
is not unique (see Fig. 6(b)).

( )a (b)

Fig. 6. (a) From left to right MA2 = 6, MA3 = 11, MA4 = 17, MA5 = 24; (b) Two
Thin 14-ogons with area 24, MA5 = 24.

Definition 1. A Thin n-ogon is called Spiral-Thin if its boundary consists of
two polygonal chains: a chain of reflex vertices and a chain of convex vertices.

From left to right in fig. 6(a), the second Spiral-Thin can be obtained from
the first by Inflate-Paste, the third Spiral-Thin can be obtained from the
second... So we believe that a Max-Area-Thin grid (n + 2)-ogon can always
be obtained from a Max-Area-Thin grid n-ogon. We intend to use the follow-
ing results and the Spiral-Thin grid n-ogons illustrated in fig. 6(a) to prove
conjecture 1.

The dual graph of Π(P ) captures the adjacency relation between pieces of
Π(P ). Its nodes are r-pieces and its non-oriented edges connect adjacent r-pieces,



i.e., r-pieces with a common edge. We will denote the dual graph of Π(P ) by
DG(Π(P ))

Lemma 2. Let P be a Thin (n + 2)-ogon. Then every grid n-ogon that yields
P by Inflate-Paste is also Thin.

The proof of this lemma is strongly based on the reverse process of Inflate-
Paste.

Proposition 3. Let P be a Thin grid n-ogon with r = n−4
2 ≥ 1 reflex vertices,

then DG(Π(P )) is a path graph (i.e., a tree with two nodes of vertex degree 1,
called leaves, and the other nodes of vertex degree 2) (see examples in fig. 7(a)).

The proof of this proposition is done by induction on r and uses lemma 2.

( )a (b)

Fig. 7. (a) Three Thin grid 10-ogon and respective dual graphs; (b) A grid 10-ogon
and respective dual graph.

Proposition 4. Let P be a grid n-ogon. If P is not Thin then DG(Π(P )) is
not a tree (see example in fig 7(b)).

Proposition 5. The unique convex vertices of a Thin grid n-ogon that could be
used to yield a Thin grid (n + 2)-ogon, by Inflate-Paste, are those which belong
to the r-pieces associated to the leaves of DG(Π(P )).

Lemma 2 and proposition 5 can be very useful in the generation, by Inflate-
Paste, of Thin grid n-ogons (n ≥ 8). Lemma 2 says that we must take a Thin
grid (n − 2)-ogon, and proposition 5 establishes that the only convex vertices
that can “work” are those which belong to the r-pieces associated to the leaves
of DG(Π(P )) (which are in number of 4). In this way we do not need to apply
Inflate-Paste to all the convex vertices of a Thin and then to check which of
the produced polygons are Thins. We just need to apply Inflate-Paste to 4
convex vertices and then check which of the produced polygons are Thins. So
the number of case analysis is significantly reduced (see fig 8).

Conjecture 2. There exists at least a Thin grid n-ogon for which � r
2�+ 1 vertex

guards are necessary to cover it.

It seems to us, with some certainty, that the Spiral-Thin grid n-ogons,
illustrated in fig. 6(a), require � r

2� + 1 vertex guards.
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Fig. 8. (a) The only convex vertices that could yield, by Inflate-Paste, Thin grid
14-ogons are v3, v4, v11 and v12 (in CCW order); (b) The only convex vertices, from
the first Spiral-Thin, that could yield the second are v3, v4, v9 and v10.

5 Conclusions and Further Work

We defined a particular type of polygons - grid n-ogons - and presented some
results and problems related to them. Of these problems, the guarding prob-
lems are the ones that motivate us more. We proved that � r+2

3 �, i.e., �n
6 � vertex

guards are necessary to guard any Min-Area grid n-ogon with r reflex ver-
tices. Moreover, we showed where these vertex guards could be placed. We are
investigating now how the ideas of this work may be further exploited to obtain
better approximate solutions to MVG problem. The next step is to characterize
structural properties of classes of Thins with the aim of simplifying our next
objective: study MVG problem for Thin grid n-ogons.
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