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Abstract: The problem of minimizing the number of guards placed on vertices needed to guard a given simple
polygon (MINIMUM VERTEX GUARD problem) is NP-hard. This computational complexity opens two lines of in-
vestigation: the development of algorithms that determine approximate solutions and the determination of optimal
solutions for special classes of simple polygons. In this paper we follow the first line of investigation proposing an
approximation algorithm based on the general metaheuristic Genetic Algorithms to solve the MINIMUM VERTEX

GUARD problem.
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1 Introduction

The Art Gallery Problems are well-studied visibility
problems in Computational Geometry. The original
art gallery problem was introduced by Victor Klee,
in 1973, when he established the following problem:
How many stationary guards are needed to cover an
art gallery room with n walls? Informally the floor
plan of the art gallery room is modeled by a simple
polygon (simple closed polygon with its interior) P
and a guard is considered a fixed point in P with 27
range visibility. We say that a point = sees point y (or
y is visible to x) if the line segment connecting them
does not intersect the exterior of P. A set of guards
covers P, if each point of P is visible by at least one
guard. Thus, the art gallery problem deals with setting
a minimal number of guards in a gallery room whose
floor plan has polygonal shape, so that they could see
every point in the room. Two years later Chvétal es-
tablished the well known Art Gallery Theorem: | % |

3
guards are occasionally necessary and always suffi-
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cient to cover a simple polygon of n vertices. Nu-
merous variations of the original problem have been
considered and studied over the years, such as: where
must the guards be positioned (anywhere or in specific
positions, e.g., on vertices) what kind of guards are to
be used (e.g., stationary guards versus mobile guards)
and what assumptions are on the input polygon (such
as being orthogonal) (see [14]). An interesting variant
is the Orthogonal Art Gallery Theorem. This theo-
rem was first formulated and proved by Kahn et al,
in 1983. Tt states that |’ | guards are occasionally
necessary and always sufficient to cover an orthogo-
nal simple polygon of n vertices. Orthogonal simple
polygons (simple polygons whose edges meet at right
angles) are an important subclass of polygons. Indeed,
they are useful as approximations to polygons; and
they arise naturally in domains dominated by Carte-
sian coordinates, such as raster graphics, VLSI de-
sign, or architecture. Efficient algorithms, based on
the proofs of the above theorems, were developed to
cover both arbitrary and orthogonal simple polygons
with | % | and || guards, respectively. While this
number of guards is necessary in some cases, often
it is far more than it is needed to cover a particular
simple polygon. For instance, it is known that convex
polygons only require one guard. A variant of this



problem is the MINIMUM VERTEX GUARD (MVG)
problem, that is the problem of finding the minimum
number of guards placed on vertices (vertex-guards)
needed to cover a given simple polygon. This is a
NP-hard problem both for arbitrary and orthogonal
simple polygons [8, 12].

Our contribution. The computational complex-
ity of the MVG problem for simple polygons opens
two lines of investigation: the development of algo-
rithms that determine approximate solutions and the
determination of optimal solutions for special classes
of simple polygons. In this paper we follow the first
line of investigation proposing an approximation algo-
rithm based on the general metaheuristic Genetic Al-
gorithms to solve the MVG problem on simple poly-
gons. It is important to note that in spite of the pro-
posed algorithm can be applied to any kind of poly-
gon, in this work we only present experimental results
on orthogonal simple polygons. Our implementation
has been developed using the CGAL library [5]. The
paper is structured as follows: in the next section we
introduce some preliminary definitions and useful re-
sults. In section 3 we present a strategy, based on the
general metaheuristic Genetic Algorithms, to solve
the MVG problem on simple polygons. Section 4 is
devoted to present our experiments and results on or-
thogonal polygons. Finally, in section 5 we draw con-
clusions and future work.

2 Preliminaries

Let P be a simple polygon with n vertices,
Vg, V1, - --,Un—1. As in this paper we only deal with
simple polygons, we use the term polygon to refer to
a simple polygon. A vertex of P is called reflex if the
interior angle between its two incident edges is at least
m, otherwise it is called convex. We use r to represent
the number of reflex vertices of P. It has been shown
by O’Rourke that n = 2r + 4, for every orthogonal
simple polygon of n vertices. We assume, without
loss of generality, that the vertices of P are ordered
in a counterclockwise direction around the interior of
P. For p € P, we call visibility polygon of p, Vis(p),
the set of all points ¢ € P that are visible to p , i.e.,
Vis(p) = {¢ € P : p sees q}. We say that G, a
given a set of vertices of P, is a vertex-guard set of P
if they cover P, i.e., if J,cq Vis(v) = P. We denote
by |G| the cardinality of a vertex-guard set.

As stated before, the MVG problem is NP-hard
for polygons and a way deal with this computational
complexity is to develop approximation algorithms to
tackle the problem. In a general way, these algorithms
can be designed specifically to solve the problem (e.g.,
greedy constructive strategies) or can be based on gen-

eral metaheuristics. A metaheuristic is a general algo-
rithmic framework which can be applied to different
optimization problems with relatively few modifica-
tions to make them adapted to a specific problem. For
a comprehensive survey on metaheuristics see, e.g.,
[4, 7].

There are various works where approximation
algorithms (heuristics) were developed to solve the
MINIMUM SET GUARD (MSG) problem (e.g., [6],
[2], [13] and [9]). In recent works, metaheuristics
techniques have proven to behave very well in solving
the MSG problem [1] and the MAXIMUM HIDDEN
VERTEX SET problem [3] , which are, also, NP-hard
visibility problems. For that reason, in this paper we
propose an algorithm based on the metaheuristic Ge-
netic Algorithms (GA) for computing a small vertex-
guard set for a given polygon P.

3 Approximation Algorithm Based
on GA

Genetic Algorithms are technics that simulate the pro-
cesses of the natural evolution (biological). To solve
an optimization problem with the GA metaheuris-
tic it is necessary to specify the following compo-
nents: a genetic representation of the possible solu-
tions, called individuals or chromosomes, to the prob-
lem (Encoding); a way of creating an initial popula-
tion of possible solutions (/nitial Population); a func-
tion to evaluate the individuals and make the effect of
natural selection, sorting solutions according to their
“strength” (Objective or Fitness function); genetic op-
erators to alter the composition of the solutions (Selec-
tion, Crossover and Mutation) and the values of var-
ious parameters used by the genetic algorithm (e.g.,
population’s size, probability of the genetic operators,
population’s evaluation, population’s generation, ter-
mination condition).

In the next subsection we describe these compo-
nents designed for our problem.

3.1 GA’s Components Definition

Encoding. In our algorithm an individual (or chro-
mosome) I is represented by a chain of 0’s and 1’s,
with length n, i.e., I = gog1 ... gn—1, Where each el-
ement, g;, is called a gene. Each gene represents a
vertex of the polygon, i.e., the i*" gene represents the
vertex v; € P. The value of each gene is 0 or 1. If the
g; = 1 then the vertex v; is a vertex-guard; otherwise
(g; = 0) the vertex v; is not a vertex-guard (see Figure

1).
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Figure 1: An individual I (for an orthogonal polygon
with n = 20) and its representation. Black dots repre-
sent vertex-guards.

Initial Population. The population of a given gen-
eration/iteration consists of a set of individuals. The
total number of individuals in each population has to
be large enough to ensure diversity, but not too much
that damages the efficiency of the algorithm. In our
case it has been taken as the population size the num-
ber of reflex vertices of the polygon, r = ”774, linking
in this way the entrance of the problem with the ele-
ments of the metaheuristic. Thus, the population for
the generation ¢ in our algorithm is represented by:
P(t)y={I1§,1t,..., I'_,}, where each I! represents
an individual belonging to the population P(¢) and r
is the number of reflex vertices of the polygon P. Re-
member that, an individual represents a possible so-
lution for our problem, i.e, each individual must be a
vertex-guard set. It has been proven that being P a
polygon with r reflex vertices then r guards, placed
on the reflex vertices of P, are always sufficient and
occasionally necessary to guard P. Thus, in our algo-
rithm, being R = {ug,u1, ..., ur—1} the set of reflex
vertices of P, to create the initial population, P(0),
we generate each of the r individuals in the follow-
ing way: Vi € {0,...,r — 1}, if we R\{u;} form a
vertex-guard set we mark all the vertices of R\{u;}
has guards; otherwise we we mark all the vertices of
R has guards. For example, in Table 1 it is illustrated
the initial population, P(0), of the polygon exempli-
fied in Figure 2.

Table 1: Individuals of P(0)

Ig = 00010011001001010100 17 = 01010011000001010100
I = 01000011001001010100 I3 = 01010011001000010100
I3 = 01010001001001010100 ¢ = 01010011001001000100
I3 = 01010010001001010100 I7 = 01010011001001010100
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Figure 2: Polygon with n = 20.

Objective or Fitness Function. This function
should help us to make the best selection of individu-
als to be reproduced, so that it will assign lower values
to the solutions closer to the optimal one. In our case,
given an individual I, the fitness function, f(I), re-
turns the number of 1’s that exists in the chain that
represents it.

Selection. The selection method should choose the
best individuals to be reproduced. While there are
many different types of selection, we have realized a
comparative study taking into account two common
methods: the roulette wheel selection and the tourna-
ment selection (see, e.g. [11]). In any method choose
the two best individuals to be parents in crossover.

Crossover. Crossover operates on selected genes
from parent individuals and creates new individu-
als (children). While there are many different kinds
of crossover, we have realized a comparative study
with four different types of crossover: single point
crossover, two-point crossover, uniform crossover and
a variant of the single point crossover where the gen-
erated children cannot be clones of the parents (see,
e.g. [11]). In any crossover method we generate only
one child from the two parents. Crossover does not al-
ways occur, it occurs with a given probability, p.. The
value of p. is decided on the basis of trial and error,
however, p, is generally between 70% and 95%. We
use p. = 80%. Note that, the child resulting from any
of these crossover methods may not be valid (i.e., it
may not correspond to a guard-vertex set), see Figure
3, in this case the child is not accepted.

In these example, the obtained child is not valid,
because the polygon is not covered by the vertices vy,
Vg, V10, V13 and v17, as we can see in Figure 4. In this
Figure the covered part by those vertices is the shaded
zone.
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Figure 4: Invalid child.

Mutation. Since we use a binary representation, the
action of our mutation operation is relatively simple.
For each binary digit it merely flips it from zero to one
or vice versa, with a mutation probability p,,. These
probability of mutation, is decided on the basis of trial
and error, however it is usually less than 1%. In our
case we apply the mutation to the child obtained in
the crossover operation with p,, = 0.05. As in the
crossover, if the resultant individual is not valid we
do not accept it.

Population’s Generation. To generate a new popu-
lation we replace the worst individual of the popula-
tion by the child obtained at the crossover.

Population’s Evaluation. We consider the evalua-
tion of a population, i.e., the fitness of a population,
F(P(t)), as the minimum value of the objective func-
tion when applied to all individuals of the population,

ie., F(P(t) = min{ f(I}),..., f(I'_,)}.

Termination Condition. If in a sufficiently large
number of generations the fitness has not changed, we
can assume that we are close to optimal. Thus, we
consider as the termination condition that the fitness

[oTof1Tol1ToToToTol 1T tfolol1Toolo 1To 0]
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of the population F'(P(t)) remains unchanged for a
number of generations h. In our case, has been con-
sidered h = 500 (this value was chosen empirically).

3.2 Removing Redundant Vertex-Guards

After defining the GA’s components, we obtain an ap-
proximation algorithm, that allow us to get a vertex-
guard set, G. However, it can happen that some ele-
ments of GG are redundant, i.e., it may be possible that
exists a set U C G such that ey Vis(v)) = P.
Thus, we apply a post-processing step where we iter-
atively remove those guards. This post-processing is
done in the following way: for each v; € G, if P still
covered without v; we remove v; from G; otherwise it
remains in G.

4 Experiments and Results

According to section 3.1 we have various choices
for two of the GA’s parameters (the genetic opera-
tors: selection and crossover). The different combi-
nations produce eight methods (approximation algo-
rithms) (see Table 2). We have performed extensive
experiments to analyze to see which of the methods
best fits into our problem. In this section we relate our
results and conclusions from our experiments.

] Methods ‘

M; | Roulette Wheel and Single Point Crossover
Mo> | Roulette Wheel and Two-Point Crossover
M3 | Roulette Wheel and Uniform Crossover

My | Roulette Wheel and Variant of S.P. Crossover
M5 | Tournament and Single Point Crossover

My | Tournament and Two-Point Crossover

M~ | Tournament and Uniform Crossover

My | Tournament and Variant of S.P. Crossover

Table 2: The 8 different methods

We have implemented these methods on a PC us-
ing the CGAL library (version 3.2.1). Our software
works with Microsoft Windows XP with Microsoft
C++ compiler in Visual Studio 2005. The tests were
performed on a Windows XP PC with an Intel(R)
Core(TM)2 CPU 6400 2.13GHz, 1.00 GB of RAM.
Our experiments were realized on a large set of ran-
domly generated orthogonal polygons, generated by
the polygon generator developed by O’Rourke (for
evaluation of [10]). We analyze the eight methods
by comparing the number of vertex-guards, the time
spent and the number of iterations performed by each
of the eight methods. The following experiments were
realized with four sets of orthogonal polygons, each
one with 40 polygons of 30, 50, 70 and 100 vertex
polygons, respectively. In Tables 3 and 4 are exposed



the results obtained by the first four methods. These
tables present, the average number of vertex-guards,
the average runtime in seconds and the average num-
ber of iterations of the algorithm.

Table 3: Results obtained by M; and M

n My Mo
|G[ | Time [Iterations| |G[ | Time [Iterations
30 | 4725 | 1495 | 746.025 [4.625| 15.25 | 749.225
50 | 7.925 | 59.75 11509 |7.875| 59.1 1151.2
70 |10.675|162.325| 1789.5 |10.85|157.575| 1712.5
100|15.475| 421.8 2738.5 | 15.5 |401.875| 2601.8

Table 4: Results obtained by M3 and M,
M3 My
|G| [ Time [Iterations| |G| | Time [Iterations
30 | 4.625 | 14.125 | 724.425 |4575] 9.525 | 7352
50 | 7.775 | 548 | 11027 |7.775] 5025 | 1148.1
70 110.325|149.875| 1729.8 | 10.6 | 145.675| 1733.8
100 | 14.925|398.625 | 2745.4 |15.35|387.425| 2673.1

n

As we can see, in these first four methods there
are almost no differences between the average number
of vertex-guards obtained. But, M3 seems to be the
one that obtains slightly best solutions. Concerning
the average runtime, M, seems to be the best one.

In the following four cases, we analyze how the
different types of crossover behave, considering the
tournament selection. The obtained results are illus-
trated in Tables 5 and 6.

Table 5: Results obtained by M5 and Mg
]\45 ]\46
|G[ [ Time [Tterations| [G[ | Time [Iterations
30 | 4.7 14.05 | 712.85 4.75 14.4 740.175
50| 7.9 | 50.05 1035 7.9 | 48.725 985.7
70 [10.725]124.45| 1399.8 [10.725|122.075| 1394.2
100 15.7 | 3124 | 2058.2 | 15.55 | 296.85 1964

n

Table 6: Results obtained by M7 and Mg
My Ms
|G| [ Time [Iterations| |G[ | Time [Iterations
30 | 47 | 128 | 681425 | 475 | 7.1 | 684475
50 | 7.9 |44.975| 932.65 | 7.825 | 37.525 | 995.625
70 | 10.85 | 110.7 | 1269.5 |10.675| 99.475 | 1339.8
100 [ 15.025| 285.8 | 1994.4 |15.375[265.625| 1973.4

n

Again, in these four methods there are almost no
differences between the average number of vertex-
guards obtained. However, M7 and Mg seem to be
the methods that obtains slightly best solutions. Con-
cerning the average runtime, Mg seems to be the best
one.

Comparing the eight methods, we can notice that
the obtained results, concerning the average of |G|,
are approximately the same for all methods; and M3
is the method that seems to get a vaguely best solution.
Concerning the average runtime, Mg seems to be the
best method.

However, the comparison between the obtained
data by our eight methods only makes sense if a
statistical study is made to ensure the statistically
significance of results. So, first of all we have
studied the results related to the number of vertex-
guards. To check the data normality we applied the
Kolmogorov-Smirnof test (using the Statistics Tool-
box (Version 7.3) of the MATLAB software), and we
have obtained the following p-values for the method
My: 1.3471e7%%6, for n = 30 and 1.0754e~%%, for
n = 50,70 and 100. These values mean that there is
always a case that is non-normally distributed. So, we
used the Kruskal-Wallis test to compare our data. In
this test we declare that a result is significantly differ-
ent if the p-value is less than 0.05. The p-values re-
turned by the Kruskal-Wallis test are 0.9407, 0.9837,
0.6175 and 0.2108 for the data obtained with the poly-
gons with n = 30, 50, 70 and 100, respectively. So
we can say that there are no significantly differences
between the eight methods, regarding |G|.

According to the previous conclusion we pro-
ceed our statistical study concerning the run-
time. To check the data normality we applied the
Kolmogorov-Smirnof test, and we have obtained the
following p-values for the method My: 1.0754¢~936,
for n = 30,50, 70 and 100. Consequently, we used
again the Kruskal-Wallis test to compare our data.
The p-values returned by the Kruskal-Wallis test are
0, for the data obtained with the polygons with
n = 30,50,70 and 100. So we can conclude that
at least one methods is significantly different, con-
cerning the runtime. Then we performed a multiple
comparison test to determine which pairs of methods
are significantly different, and which are not (using
the MATLAB’s multcompare function). The answers
provided by the realized tests allow us to conclude that
My is always the best method. As, we want have to
find a compromise between the goodness of the solu-
tion obtained and the algorithm’s runtime we proceed
our study considering that the My is the algorithm that
obtains the best solutions.

It is important to note that all alternatives with re-
spect to parameters of the GA metaheuristic that could
be explored is almost infinite. We have attempted in
this work to find general references to these param-
eters, noting that a more exhaustive study in future
investigations might improve the obtained results.

Now, to conclude about the average of the mini-
mum number of vertex-guards needed to cover an or-



thogonal polygon with n vertices, we applied Mg to
eight sets of orthogonal polygons, each one with 40
polygons of 30, 50, 70, 100, 110, 130, 150 and 200
vertex polygons, respectively. The average of the ob-
tained results, concerning |G|, are exposed in Table
7.

[ Vertices[ 30 [ 50 | 70 [ 100 [110] 130 [ 150 [200 ]

| G| [475]7.825]10.675[15.375][17.2[20.25[23.375]31.2]

Table 7:

Then, using the least squares method, we ob-
tained the following linear adjustment (see Figure 5):
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Figure 5: Least Squares Method.

Thus, we can conclude that on average the mini-
mum number of vertex-guards needed to cover an or-
thogonal polygon P with n vertices is §.

5 Conclusions and Future Work

We designed and implemented eight approxima-
tion algorithms for solving the MINIMUM VERTEX
GUARD problem on polygons based on the general
metaheuristic Genetic Algorithms. We conducted an
experimental study of their performance on orthogo-
nal polygons, and we made a statistical study to elect
the best method. Then, using the elected algorithm
we concluded that on average the minimum number
of vertex-guards on an orthogonal polygon with n ver-
tices is 5. Since the Genetic Algorithms metaheuris-
tic have proven to behave well in solving the MVG
problem on orthogonal polygons, there are several di-
rections for further research. First of all, we intend
to develop a method that allows us to determine the
approximation ratio of the developed algorithms. We
plan, also, to apply the described techniques to arbi-
trary polygons.
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