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1 Facultad de Inforḿatica, Universidad Politécnica de Madrid, Spain
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Most illumination problems are solved considering light sources with unlimited illumination range. In this
paper, we consider light sources having a limited illumination ranged. We associate this restriction with good
illumination that was introduced by Canales et al. [1, 4]. We consider two related optimization problems. Given
n light sources in the plane, the first one computes the light sources’ minimum range so that a given pointp is
1-well illuminated. The second problem considers a line segment instead of a point and computes the minimum
illumination range to 1-well illuminate all the points in the line segment. We give aO(nlogn) time algorithm
for the first problem and anO(n3logn) worst case time algorithm for the second.
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1 Introduction, Related Works and Problem Definition

There are lots of different works related to visibility or illumination [3, 7, 8, 10] but most of them cannot be
applied to real life, since they deal with ideal concepts. We present some of these illumination problems adding
some restrictions to make them more realistic. In fact, cameras or robot vision systems, both have severe visibility
range restrictions since they cannot observe with sufficient detail far away objects. We will use a visibility
definition due to Ntafos [6]. Two pointsx andy in the plane are calledd-visibleif they are visible to each other
within a ranged. Let C(x, d) denote the circle of radiusd centered atx. If there are no obstacles in the plane,
thed-visible area of a pointx is C(x, d).

Consider a set ofn fixed light sources in the plane. We assume that there are no obstacles. We will also as-
sume that each light sourcefi has a limited illumination rangedi. Following this, a pointp is di-illuminated
by light sourcefi if d(fi, p) ≤ di whered(fi, p) is the euclidean distance betweenfi and p. Let F =
{(f1, d1), (f2, d2), . . . , (fn, dn)} denote the set ofn light sources and their respective illumination ranges.

Recently, Canales et al. [1, 4] introduced the concept oft-good illuminationand presented some related
algorithms. By definition, a pointp is t-well illuminated byF if there are, at least,t light sources in every half-
plane withp in its boundary that illuminatesp, 1 ≤ t ≤ n

2 . We will restrict our study to1-good illumination. Let
T (fa, fb, fc) denote the triangle formed by the light sourcesfa, fb andfc. Note that this definition understands
T (fa, fb, fc) as a closed region of the plane and its boundary will be denoted as∂T (fa, fb, fc). A point is 1-well
illuminated when it lies in the triangle formed by three light sources [1, 4]. 1-good illumination can also be found
under the concept of4-guarding [9] or well-covering [5].

Consider three light sourcesfa, fb andfc. If C(fi, di) is the circle of radiusdi centered atfi, then the light
sourcefi only di-illuminates points inC(fi, di), i ∈ {a, b, c}. Let Ad(fa, fb, fc) denote thed-illuminated area
by the light sourcesfa, fb andfc (see Figure 1(a)). It is easy to see thatAd(fa, fb, fc) = C(fa, da)∩C(fb, db)∩
C(fc, dc).

Definition 1.1 We say that a pointp is 1-well d-illuminated by the light sourcesfa, fb and fc if p ∈
A1

d(fa, fb, fc). A1
d(fa, fb, fc) = Ad(fa, fb, fc) ∩ T (fa, fb, fc) denotes the 1-welld-illuminated area byfa, fb

andfc.
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We can see an example of this definition in Figure 1. Notice that pointq is not 1-welld-illuminated, despite
the factq ∈ Ad(f1, f2, f3).
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Fig. 1: (a) A1
d(f1, f2, f3) is the shaded area, so eve-

ry point that lies in it is 1-welld-illuminated by light
sourcesf1, f2 andf3. (b) All points inT (f1, f2, f3) are
1-well illuminated sincedi ≥ L, i = 1, 2, 3.
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Fig. 2: (a) MIR to 1-well illuminate p is
dm = d(f2, p). (b) T (f1, f2, f3) ∈ MT (p) and
di = dm, i = 1, 2, 3.

This problem is interesting and has real applications such as the wireless sensor networking [5]. As we only
considerd-illumination, throughout this paper we will refer to it just as illumination. In the next sections we will
develop the main problem in this subject:finding the minimum illumination range (MIR) to 1-well illuminate an
object.

Our contribution. This paper is solely focused on limited 1-good illumination and it is organized as follows.
In section 2 we propose the algorithmMIR-Point to compute the minimum illumination range (MIR) needed to
1-well illuminate a point in the plane. In section 3 we propose the algorithmMIR-Segmentto calculate the MIR
to 1-well illuminate a line segment. All the proofs are omitted due to the lack of space.

2 Minimum Illumination Range (MIR) to 1-well Illuminate a Point

Let F be a set ofn light sources in the plane and their respective limited illumination ranges. Letdm denote
the MIR to 1-well illuminate a pointp. Our main goal is to find its value. By definition, if∃(fa, da), (fb, db),
(fc, dc) ∈ F : di ≥ dm, ∀i ∈ {a, b, c} andp ∈ T (fa, fb, fc) thenp is 1-well illuminated byfa, fb andfc.

Let p be a point in the plane which we want to 1-well illuminate. It is easy to see that we can only 1-well
illuminatep if it is in the convex hull of the light sources inF , CH(F ). Consider any pointp ∈ T (fa, fb, fc).
Suppose the light sourcefb is such thatd(fb, p) ≥ d(fi, p), i ∈ {a, c}. In order to 1-well illuminatep, we need
to calculate MIRdm =max{d(fi, p), i ∈ {a, b, c}}. In this example, MIRdm = d(fb, p) (see Figure 2(a)). This
way, we are always sure thatp is 1-well illuminated ifdi ≥ dm, i ∈ {a, b, c} (see Figure 2(b)).

Let MT (p) denote the set of triangles formed by three light sources that 1-well illuminatep and let their
MIR be dm. Each triangle inMT (p) is called a MIR triangle. Note that we can have several solutions to this
problem (several MIR triangles), this is, we can find more than one set of three lights whose MIR isdm, but we
are only interested in finding one solution. An efficient algorithm to 1-well illuminate a point considers the next
proposition.

Proposition 2.1 Letfp be the nearest light source to pointp. If MT (p) 6= ∅ then the light sourcefp is a vertex
of, at least, one MIR triangle.

2.1 Algorithm to 1-well illuminate a point

We now present an algorithm to find a MIR triangle that 1-well illuminatesp. Let F = {(f1, d1), (f2, d2),
. . . , (fn, dn)}, n ≥ 3, be the set ofn light sources in the plane and their respective illumination ranges. The idea
behind this algorithm is to divide the plane in two regions (A and B) and find the two light sources missing to
form a MIR triangle, sincefp is already one of its vertices (Proposition 2.1).
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Algorithm MIR-Point
Input : A setF of n light sources in the plane and their respective illumination ranges. Pointp which we want to 1-well

illuminate.
Output : MT , a MIR triangle formed by three light sources that 1-well illuminates pointp and its MIR isdm.

1. If p /∈ CH(F ) then p cannot be 1-well illuminated.

2. Letfp ∈ F be the nearest light source to pointp. Draw the straight linel joining pointsp andfp. This procedure divides
the plane in two regions (A andB).

3. Sort all the lights sources inA aroundp in the CCW direction. Repeat this procedure for the lights sources inB.

4. flag(a1) ← a1, a1 is the first light source sorted inA.

For i ← 2 to |A| do
If d(ai, p) < d(flag(ai−1), p) then flag(ai) ← ai.

Elseflag(ai) ← flag(ai−1).

5. ft ← null, dm ← −1.

Repeat
Rotatel centered atp until it reaches reaches a light sourcef .

If f ∈ A then ft ← flag(f).

Else If ft 6= null then
dt ← max{d(f, p), d(ft, p)}
If dt < dm or dm = −1 then
dm ← dt, MT ← T (fp, ft, f).

Until f = b|B|, b|B| is the last light source sorted inB.

Proposition 2.2 Given a setF = {(f1, d1), (f2, d2), . . . , (fn, dn)}, n ≥ 3, of n light sources in the plane,
their respective illumination ranges and a pointp in the plane, the algorithm MIR-Point finds one MIR triangle
that 1-well illuminatesp in O(nlogn) time.

3 Minimum Illumination Range (MIR) to 1-well Illuminate a Line Segment

Let dm be the MIR to 1-well illuminate the line segmentplpr with the light sourcesf1, f2, . . . , fn, n > 3.
Without loss of generality, suppose thatplpr is an horizontal line segment. Letpl be the leftmost point andpr the
rightmost point. If we want to 1-well illuminate every point in the line segment with the same three light sources,
all we have to do is find three of them that form a MIR triangle containingplpr. To determinedm we need to find
the greatest distance between one point of the segment and one of the three light sources. This way, we finddm

and the whole line segmentplpr is in the intersection of the three light sources’ illuminated areas, this is,plpr is
1-well illuminated (see Figure 3).
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Fig. 3: (a) MIR to 1-well illuminatep is dm = d(f2, p).
(b) T (f1, f2, f3) ∈ MT (p) anddi = dm, i = 1, 2, 3.
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Fig. 4: plpr is broken into thirteen segments:
s0 = plp1, . . . , s12 = p12pr. Dotted lines repre-
sent the light sources’ perpendicular bisectors.

We can also breakplpr into several consecutive line segmentss0 = plp1, s1 = p1p2, . . ., st−1 = pt−1pr and
compute, for each one of them, the MIR triangle that 1-well illuminates them. This way we will compute MIR
dj , 0 ≤ j ≤ t− 1 that each one of the three light sources needs to have to guarantee thatsi, i = 0, . . . , t − 1 is
1-well illuminated. In the end, it is clear that the MIR to 1-well illuminate the whole line segment is the maximum
MIR dj already found for each part.
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Lemma 3.1 If the MIR to 1-well illuminate the leftmost pointpl ∈ plpr is d0 then the MIR to 1-well illuminate
the whole segmentplpr is dm ≥ d0.

If plpr 6⊆ CH(F ) then our problem does not have a solution. As it was explained in section 2, we can find
MT ∈ MT (p0) with MIR d0 = d(fk, pl), wherefk is the furthest vertex inMT to pointpl. If MT /∈ MT (pr),
we need to find intersection pointspi that breakplpr into t consecutive line segments. LetF1 be the set of all the
light sources aboveplpr andF2 = F\F1. Let C be the set of the intersection points between the line segments
connectingF1 andF2 andplpr. Now letM be the set of all the intersections betweenplpr and the light sources’
perpendicular bisectors (see Figure 4). LetI = C∪M be the sorted union of all the intersection points according
to their x-coordinate. The setI breaksplpr into t consecutive segments:si = pipi+1, i = 0, . . . , t − 1 (we
assume thatp0 = pl andpt = pr). As p0 is already 1-well illuminated, we need to check the next intersection
pointp1.

Supposep1 ∈ C andp1 ∈ ∂MT . First we check wetherd0 is sufficient to 1-well illuminatep1 with MT
and update it if necessary. Then we need to findMT ∗ ∈ MT (p1) and calculate the MIRd1 as the greatest
distance fromp1 to one of its three light sources. The next step is to check if the next intersection point is 1-well
illuminated. Now suppose thatp1 ∈ C but p1 /∈ ∂MT . If MT ∈ MT (p1), all we have to do is actualized0 if
needed and check the next intersection point. Else ifMT /∈ MT (p1), we need to swap to another MIR triangle.
This procedure is the same as the explained above forp1 ∈ ∂MT . On the other hand, ifp1 ∈ M , this means that
existfu andfv ∈ F so thatp1 = plpr ∩ PerpendicularBisector(fu, fv). Let fk ∈ MT be the furthest light
source top1. If fk ∈ {fu, fv} and{fu, fv} /∈ MT , we might need to swap to another MIR Triangle. To check
this out, we need to findMT ∗ ∈ MT (p1) using the lights sources inF\{fk}. If MT ∗ 1-well illuminatesp1 with
the same MIR value thenMT ∗ replacesMT . Update the MIRd0 if necessary and calculate the MIRd1 as the
greatest distance fromp1 to one of the light sources inMT ∗.

If p1 = pt then we are done with the algorithm becauseplpr is 1-well illuminated. Otherwise, we continue
applying this process to the next intersection points until we find a MIR triangle that 1-well illuminatespr. When
we finally have pointpr 1-well illuminated,plpr is partitioned in several line segments. We know which MIR
triangles 1-well illuminate each part as well as the MIR to do so. This procedure is interesting because we can
1-well illuminate each part of the line segment without 1-well illuminating the whole line segmentplpr. For
example, when an artist is walking on a stage, we know which floodlights we need to turn on and what is the
MIR needed depending on the exact position of the artist. This algorithm can also be extended to polygonal lines
instead of line segments to simulate roads or itineraries.

Proposition 3.2 Given a setF = {(f1, d1), (f2, d2), . . . , (fn, dn)}, n ≥ 3, of n light sources in the plane
and their respective illumination ranges and a line segmentplpr, the algorithm MIR-Segment finds a set of MIR
triangles that 1-well illuminate the line segmentplpr in O(n3logn) time.
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2004), pp. 236–246.
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