Good Illumination with Limited Visibility

Manuel Abellanas* ${ }^{* 1}$, Antonio Bajuelos ${ }^{* * 2}$, Gregorio Hernández***1, and Inês Matos ${ }^{\dagger 2}$
${ }^{1}$ Facultad de Informática, Universidad Politécnica de Madrid, Spain
${ }^{2}$ Departamento de Matemática \& CEOC, Universidade de Aveiro, Portugal

Key words Computational Geometry, Art Gallery Problems, Illumination and Visibility Problems, Limited Range Visibility.

Most illumination problems are solved considering light sources with unlimited illumination range. In this paper, we consider light sources having a limited illumination range d. We associate this restriction with good illumination that was introduced by Canales et al. [1, 4]. We consider two related optimization problems. Given n light sources in the plane, the first one computes the light sources' minimum range so that a given point p is 1 -well illuminated. The second problem considers a line segment instead of a point and computes the minimum illumination range to 1 -well illuminate all the points in the line segment. We give a $\mathcal{O}(n \log n)$ time algorithm for the first problem and an $\mathcal{O}\left(n^{3} \log n\right)$ worst case time algorithm for the second.

Copyright line will be provided by the publisher

1 Introduction, Related Works and Problem Definition

There are lots of different works related to visibility or illumination [3, 7, 8, 10] but most of them cannot be applied to real life, since they deal with ideal concepts. We present some of these illumination problems adding some restrictions to make them more realistic. In fact, cameras or robot vision systems, both have severe visibility range restrictions since they cannot observe with sufficient detail far away objects. We will use a visibility definition due to Ntafos [6]. Two points x and y in the plane are called d-visible if they are visible to each other within a range d. Let $C(x, d)$ denote the circle of radius d centered at x. If there are no obstacles in the plane, the d-visible area of a point x is $C(x, d)$.

Consider a set of n fixed light sources in the plane. We assume that there are no obstacles. We will also assume that each light source f_{i} has a limited illumination range d_{i}. Following this, a point p is d_{i}-illuminated by light source f_{i} if $d\left(f_{i}, p\right) \leq d_{i}$ where $d\left(f_{i}, p\right)$ is the euclidean distance between f_{i} and p. Let $F=$ $\left\{\left(f_{1}, d_{1}\right),\left(f_{2}, d_{2}\right), \ldots,\left(f_{n}, d_{n}\right)\right\}$ denote the set of n light sources and their respective illumination ranges.

Recently, Canales et al. [1, 4] introduced the concept of t-good illumination and presented some related algorithms. By definition, a point p is t-well illuminated by F if there are, at least, t light sources in every halfplane with p in its boundary that illuminates $p, 1 \leq t \leq \frac{n}{2}$. We will restrict our study to 1 -good illumination. Let $T\left(f_{a}, f_{b}, f_{c}\right)$ denote the triangle formed by the light sources f_{a}, f_{b} and f_{c}. Note that this definition understands $T\left(f_{a}, f_{b}, f_{c}\right)$ as a closed region of the plane and its boundary will be denoted as $\partial T\left(f_{a}, f_{b}, f_{c}\right)$. A point is 1-well illuminated when it lies in the triangle formed by three light sources [1, 4]. 1-good illumination can also be found under the concept of \triangle-guarding [9] or well-covering [5].

Consider three light sources f_{a}, f_{b} and f_{c}. If $C\left(f_{i}, d_{i}\right)$ is the circle of radius d_{i} centered at f_{i}, then the light source f_{i} only d_{i}-illuminates points in $C\left(f_{i}, d_{i}\right), i \in\{a, b, c\}$. Let $A_{d}\left(f_{a}, f_{b}, f_{c}\right)$ denote the d-illuminated area by the light sources f_{a}, f_{b} and f_{c} (see Figure 1(a)). It is easy to see that $A_{d}\left(f_{a}, f_{b}, f_{c}\right)=C\left(f_{a}, d_{a}\right) \cap C\left(f_{b}, d_{b}\right) \cap$ $C\left(f_{c}, d_{c}\right)$.

Definition 1.1 We say that a point p is 1 -well d-illuminated by the light sources f_{a}, f_{b} and f_{c} if $p \in$ $A_{d}^{1}\left(f_{a}, f_{b}, f_{c}\right) . A_{d}^{1}\left(f_{a}, f_{b}, f_{c}\right)=A_{d}\left(f_{a}, f_{b}, f_{c}\right) \cap T\left(f_{a}, f_{b}, f_{c}\right)$ denotes the 1-well d-illuminated area by f_{a}, f_{b} and f_{c}.

[^0]We can see an example of this definition in Figure 1. Notice that point q is not 1 -well d-illuminated, despite the fact $q \in A_{d}\left(f_{1}, f_{2}, f_{3}\right)$.

Fig. 1: (a) $A_{d}^{1}\left(f_{1}, f_{2}, f_{3}\right)$ is the shaded area, so every point that lies in it is 1 -well d-illuminated by light sources f_{1}, f_{2} and f_{3}. (b) All points in $T\left(f_{1}, f_{2}, f_{3}\right)$ are 1-well illuminated since $d_{i} \geq L, i=1,2,3$.

(a)

(b)

Fig. 2: (a) MIR to 1-well illuminate p is $d_{m}=d\left(f_{2}, p\right)$. (b) $T\left(f_{1}, f_{2}, f_{3}\right) \in M_{T}(p)$ and $d_{i}=d_{m}, i=1,2,3$.

This problem is interesting and has real applications such as the wireless sensor networking [5]. As we only consider d-illumination, throughout this paper we will refer to it just as illumination. In the next sections we will develop the main problem in this subject: finding the minimum illumination range (MIR) to 1-well illuminate an object.

Our contribution. This paper is solely focused on limited 1-good illumination and it is organized as follows. In section 2 we propose the algorithm MIR-Point to compute the minimum illumination range (MIR) needed to 1-well illuminate a point in the plane. In section 3 we propose the algorithm MIR-Segment to calculate the MIR to 1 -well illuminate a line segment. All the proofs are omitted due to the lack of space.

2 Minimum Illumination Range (MIR) to 1 -well Illuminate a Point

Let F be a set of n light sources in the plane and their respective limited illumination ranges. Let d_{m} denote the MIR to 1 -well illuminate a point p. Our main goal is to find its value. By definition, if $\exists\left(f_{a}, d_{a}\right),\left(f_{b}, d_{b}\right)$, $\left(f_{c}, d_{c}\right) \in F: d_{i} \geq d_{m}, \forall i \in\{a, b, c\}$ and $p \in T\left(f_{a}, f_{b}, f_{c}\right)$ then p is 1-well illuminated by f_{a}, f_{b} and f_{c}.

Let p be a point in the plane which we want to 1 -well illuminate. It is easy to see that we can only 1 -well illuminate p if it is in the convex hull of the light sources in $F, C H(F)$. Consider any point $p \in T\left(f_{a}, f_{b}, f_{c}\right)$. Suppose the light source f_{b} is such that $d\left(f_{b}, p\right) \geq d\left(f_{i}, p\right), i \in\{a, c\}$. In order to 1-well illuminate p, we need to calculate MIR $d_{m}=\max \left\{d\left(f_{i}, p\right), i \in\{a, b, c\}\right\}$. In this example, MIR $d_{m}=d\left(f_{b}, p\right)$ (see Figure 2(a)). This way, we are always sure that p is 1 -well illuminated if $d_{i} \geq d_{m}, i \in\{a, b, c\}$ (see Figure 2(b)).

Let $M_{T}(p)$ denote the set of triangles formed by three light sources that 1-well illuminate p and let their MIR be d_{m}. Each triangle in $M_{T}(p)$ is called a MIR triangle. Note that we can have several solutions to this problem (several MIR triangles), this is, we can find more than one set of three lights whose MIR is d_{m}, but we are only interested in finding one solution. An efficient algorithm to 1-well illuminate a point considers the next proposition.

Proposition 2.1 Let f_{p} be the nearest light source to point p. If $M_{T}(p) \neq \emptyset$ then the light source f_{p} is a vertex of, at least, one MIR triangle.

2.1 Algorithm to 1-well illuminate a point

We now present an algorithm to find a MIR triangle that 1-well illuminates p. Let $F=\left\{\left(f_{1}, d_{1}\right),\left(f_{2}, d_{2}\right)\right.$, $\left.\ldots,\left(f_{n}, d_{n}\right)\right\}, n \geq 3$, be the set of n light sources in the plane and their respective illumination ranges. The idea behind this algorithm is to divide the plane in two regions (A and B) and find the two light sources missing to form a MIR triangle, since f_{p} is already one of its vertices (Proposition 2.1).

Algorithm MIR-Point

Input: A set F of n light sources in the plane and their respective illumination ranges. Point p which we want to 1 -well illuminate.
Output: MT, a MIR triangle formed by three light sources that 1 -well illuminates point p and its MIR is d_{m}.

1. If $p \notin C H(F)$ then p cannot be 1 -well illuminated.
2. Let $f_{p} \in F$ be the nearest light source to point p. Draw the straight line l joining points p and f_{p}. This procedure divides the plane in two regions (A and B).
3. Sort all the lights sources in A around p in the CCW direction. Repeat this procedure for the lights sources in B.
4. $\operatorname{flag}\left(a_{1}\right) \leftarrow a_{1}, a_{1}$ is the first light source sorted in A.

For $i \leftarrow 2$ to $|A|$ do
If $d\left(a_{i}, p\right)<d\left(f l a g\left(a_{i-1}\right), p\right)$ then $\operatorname{flag}\left(a_{i}\right) \leftarrow a_{i}$.
Else flag $\left(a_{i}\right) \leftarrow$ flag $\left(a_{i-1}\right)$.
5. $f_{t} \leftarrow$ null, $d_{m} \leftarrow-1$.

Repeat
Rotate l centered at p until it reaches reaches a light source f.
If $f \in A$ then $f_{t} \leftarrow f l a g(f)$.
Else If $f_{t} \neq$ null then

$$
\begin{aligned}
& d_{t} \leftarrow \max \left\{d(f, p), d\left(f_{t}, p\right)\right\} \\
& \text { If } d_{t}<d_{m} \text { or } d_{m}=-1 \text { then } \\
& d m \leftarrow d_{t}, M T \leftarrow T\left(f_{p}, f_{t}, f\right) .
\end{aligned}
$$

Until $f=b_{|B|}, b_{|B|}$ is the last light source sorted in B.
Proposition 2.2 Given a set $F=\left\{\left(f_{1}, d_{1}\right),\left(f_{2}, d_{2}\right), \ldots,\left(f_{n}, d_{n}\right)\right\}, n \geq 3$, of n light sources in the plane, their respective illumination ranges and a point p in the plane, the algorithm MIR-Point finds one MIR triangle that 1-well illuminates p in $\mathcal{O}(n \log n)$ time.

3 Minimum Illumination Range (MIR) to 1-well Illuminate a Line Segment

Let d_{m} be the MIR to 1 -well illuminate the line segment $\overline{p_{l} p_{r}}$ with the light sources $f_{1}, f_{2}, \ldots, f_{n}, n>3$. Without loss of generality, suppose that $\overline{p_{l} p_{r}}$ is an horizontal line segment. Let p_{l} be the leftmost point and p_{r} the rightmost point. If we want to 1 -well illuminate every point in the line segment with the same three light sources, all we have to do is find three of them that form a MIR triangle containing $\overline{p_{l} p_{r}}$. To determine d_{m} we need to find the greatest distance between one point of the segment and one of the three light sources. This way, we find d_{m} and the whole line segment $\overline{p_{l} p_{r}}$ is in the intersection of the three light sources' illuminated areas, this is, $\overline{p_{l} p_{r}}$ is 1-well illuminated (see Figure 3).

Fig. 3: (a) MIR to 1 -well illuminate p is $d_{m}=d\left(f_{2}, p\right)$. (b) $T\left(f_{1}, f_{2}, f_{3}\right) \in M_{T}(p)$ and $d_{i}=d_{m}, i=1,2,3$.

Fig. 4: $\overline{p_{l} p_{r}}$ is broken into thirteen segments: $s_{0}=\overline{p_{l} p_{1}}, \ldots, s_{12}=\overline{p_{12} p_{r}}$. Dotted lines represent the light sources' perpendicular bisectors.

We can also break $\overline{p_{l} p_{r}}$ into several consecutive line segments $s_{0}=\overline{p_{l} p_{1}}, s_{1}=\overline{p_{1} p_{2}}, \ldots, s_{t-1}=\overline{p_{t-1} p_{r}}$ and compute, for each one of them, the MIR triangle that 1 -well illuminates them. This way we will compute MIR $d_{j}, 0 \leq j \leq t-1$ that each one of the three light sources needs to have to guarantee that $s_{i}, i=0, \ldots, t-1$ is 1 -well illuminated. In the end, it is clear that the MIR to 1 -well illuminate the whole line segment is the maximum MIR d_{j} already found for each part.

Lemma 3.1 If the MIR to 1 -well illuminate the leftmost point $p_{l} \in \overline{p_{l} p_{r}}$ is d_{0} then the MIR to 1 -well illuminate the whole segment $\overline{p_{l} p_{r}}$ is $d_{m} \geq d_{0}$.

If $\overline{p_{l} p_{r}} \nsubseteq C H(F)$ then our problem does not have a solution. As it was explained in section 2, we can find $M T \in M_{T}\left(p_{0}\right)$ with MIR $d_{0}=d\left(f_{k}, p_{l}\right)$, where f_{k} is the furthest vertex in $M T$ to point p_{l}. If $M T \notin M_{T}\left(p_{r}\right)$, we need to find intersection points p_{i} that break $\overline{p_{l} p_{r}}$ into t consecutive line segments. Let F_{1} be the set of all the light sources above $\overline{p_{l} p_{r}}$ and $F_{2}=F \backslash F_{1}$. Let C be the set of the intersection points between the line segments connecting F_{1} and F_{2} and $\overline{p_{l} p_{r}}$. Now let M be the set of all the intersections between $\overline{p_{l} p_{r}}$ and the light sources' perpendicular bisectors (see Figure 4). Let $I=C \cup M$ be the sorted union of all the intersection points according to their x-coordinate. The set I breaks $\overline{p_{l} p_{r}}$ into t consecutive segments: $s_{i}=\overline{p_{i} p_{i+1}}, i=0, \ldots, t-1$ (we assume that $p_{0}=p_{l}$ and $p_{t}=p_{r}$). As p_{0} is already 1 -well illuminated, we need to check the next intersection point p_{1}.

Suppose $p_{1} \in C$ and $p_{1} \in \partial M T$. First we check wether d_{0} is sufficient to 1 -well illuminate p_{1} with $M T$ and update it if necessary. Then we need to find $M T^{*} \in M_{T}\left(p_{1}\right)$ and calculate the MIR d_{1} as the greatest distance from p_{1} to one of its three light sources. The next step is to check if the next intersection point is 1 -well illuminated. Now suppose that $p_{1} \in C$ but $p_{1} \notin \partial M T$. If $M T \in M_{T}\left(p_{1}\right)$, all we have to do is actualize d_{0} if needed and check the next intersection point. Else if $M T \notin M_{T}\left(p_{1}\right)$, we need to swap to another MIR triangle. This procedure is the same as the explained above for $p_{1} \in \partial M T$. On the other hand, if $p_{1} \in M$, this means that exist f_{u} and $f_{v} \in F$ so that $p_{1}=\overline{p_{l} p_{r}} \cap \operatorname{PerpendicularBisector~}\left(f_{u}, f_{v}\right)$. Let $f_{k} \in M T$ be the furthest light source to p_{1}. If $f_{k} \in\left\{f_{u}, f_{v}\right\}$ and $\left\{f_{u}, f_{v}\right\} \notin M T$, we might need to swap to another MIR Triangle. To check this out, we need to find $M T^{*} \in M_{T}\left(p_{1}\right)$ using the lights sources in $F \backslash\left\{f_{k}\right\}$. If $M T^{*}$ 1-well illuminates p_{1} with the same MIR value then $M T^{*}$ replaces $M T$. Update the MIR d_{0} if necessary and calculate the MIR d_{1} as the greatest distance from p_{1} to one of the light sources in $M T^{*}$.

If $p_{1}=p_{t}$ then we are done with the algorithm because $\overline{p_{l} p_{r}}$ is 1 -well illuminated. Otherwise, we continue applying this process to the next intersection points until we find a MIR triangle that 1-well illuminates p_{r}. When we finally have point $p_{r} 1$-well illuminated, $\overline{p_{l} p_{r}}$ is partitioned in several line segments. We know which MIR triangles 1-well illuminate each part as well as the MIR to do so. This procedure is interesting because we can 1 -well illuminate each part of the line segment without 1 -well illuminating the whole line segment $\overline{p_{l} p_{r}}$. For example, when an artist is walking on a stage, we know which floodlights we need to turn on and what is the MIR needed depending on the exact position of the artist. This algorithm can also be extended to polygonal lines instead of line segments to simulate roads or itineraries.

Proposition 3.2 Given a set $F=\left\{\left(f_{1}, d_{1}\right),\left(f_{2}, d_{2}\right), \ldots,\left(f_{n}, d_{n}\right)\right\}, n \geq 3$, of n light sources in the plane and their respective illumination ranges and a line segment $\overline{p_{l} p_{r}}$, the algorithm MIR-Segment finds a set of MIR triangles that 1-well illuminate the line segment $\overline{p_{l} p_{r}}$ in $\mathcal{O}\left(n^{3} \log n\right)$ time.

References

[1] M. Abellanas et al., Buena Iluminación in: Actas de las IV Jornadas de Matemática Discreta y Algorítmica, (Madrid 2004), pp. 236-246.
[2] V. Sacristán, Optimización Geométrica y Aplicaciones en Visibilidad, Ph.D. thesis, Universitat Politècnica de Catalunya (1997).
[3] T. Asano et al., Visibility in the plane in: Handbook of Computational Geometry, edited by in J.-R. Sack and J. Urrutia, (Elvevier, 2000), pp. 829-876.
[4] S. Canales, Métodos heurísticos en problemas geométricos. Visibilidad, iluminación y vigilancia, Ph.D. thesis, Universidad Politécnica de Madrid (2004).
[5] A. Efrat et al., Approximation Algorithms for Two Optimal Location Problems in Sensor Networks in: Proceedings of the 14th Annual Fall Workshop on Computational Geometry, (MIT 2004).
[6] S. Ntafos, Watchman routes under limited visibility. Computational Geometry: Theory and Applications Vol. 1, 3 (Elsevier 1992), pp. 149-170.
[7] J. O'Rourke, Art Gallery Theorems and Algorithms, (Oxford University Press 1987).
[8] T. Shermer, Recent Results in Art Galleries in: Proceedings of the IEEE 80, (1992), pp. 1384-1399.
[9] J. Smith and W. Evans, Triangle Guarding in: Proceedings of the 15 Canadian Conference on Computational Geometry, (2003), pp. 76-80.
[10] J. Urrutia, Art Gallery and Illumination Problems in: Handbook of Computational Geometry, edited by in J.-R. Sack and J. Urrutia, (Elsevier 2000), pp. 973-1027.

[^0]: * e-mail: mabellanas@fi.upm.es, supported by grant TIC2003-08933-C02-01
 ** e-mail: leslie@mat.ua.pt, supported by CEOC through Programa POCTI, FCT, co-financed by EC fund FEDER.
 *** e-mail: gregorio@fi.upm.es, supported by grant TIC2003-08933-C02-01
 \dagger e-mail: ipmatos@mat.ua.pt, supported by CEOC through Programa POCTI, FCT, co-financed by EC fund FEDER and partially supported by Calouste Gubenkian Foundation grant No. ????.

