
 Universidade de Aveiro
2009

Departamento de Matemática

Ana Mafalda
de Oliveira Martins

Optimização Geométrica em Problemas de
Visibilidade: Soluções Metaheurísticas e Exactas

Geometric Optimization on Visibility Problems:
Metaheuristic and Exact Solutions

 Universidade de Aveiro

2009
Departamento de Matemática

Ana Mafalda
de Oliveira Martins

Optimização Geométrica em Problemas de
Visibilidade: Soluções Metaheurísticas e Exactas

Geometric Optimization on Visibility Problems:
Metaheuristic and Exact Solutions

 Dissertação apresentada à Universidade de Aveiro para cumprimento dos
requisitos necessários à obtenção do grau de Doutor em Matemática, realizada
sob a orientação científica do Doutor Antonio Leslie Bajuelos Domínguez,
Professor Auxiliar do Departamento de Matemática da Universidade de Aveiro

Apoio financeiro da FCT e do FSE no
âmbito do III Quadro Comunitário de
Apoio.

o júri

presidente Doutor Casimiro Adrião Pio
Professor Catedrático do Departamento de Ambiente e Ordenamento da Universidade de Aveiro

 Doutor Jesus Garcia López de Lacalle

Professor Catedrático da Universidade Politécnica de Madrid, Espanha

 Doutor Pedro Manuel Rangel Santos Henriques

Professor Associado da Escola de Engenharia da Universidade do Minho

 Doutora Maria Rosália Dinis Rodrigues

Professora Associada do Departamento de Matemática da Universidade de Aveiro

 Doutor Adriano Martins Lopes

Professor Auxiliar da Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa

 Doutor Antonio Leslie Bajuelos Dominguez

Professor Auxiliar do Departamento de Matemática da Universidade de Aveiro (Orientador)

agradecimentos

Em primeiro lugar ao Professor Doutor Antonio Leslie Bajuelos que permitiu a
realização desta tese e a supervisionou. A minha gratidão pela orientação
estimulante, conselhos preciosos, ensinamentos e confiança demonstrada.
Obrigada!

À Universidade de Aveiro que em tudo facilitou o desenvolvimento desta
dissertação.

À Fundação para a Ciência e Tecnologia pela atribuição de uma bolsa de
doutoramento que abrangeu todo o tempo da tese que se apresenta.

Aos Professores Gregorio Hernández e Santiago Canales pelo apoio, incentivo
e colaboração nos trabalhos desenvolvidos que se tornaram fundamentais na
realização deste trabalho.

Agradeço ainda à Inês Pereira e à Bárbara Oliveiros que em tantos momentos
me ajudaram e que muito contribuíram para esta tese.

Quero ainda render uma homenagem especial à minha colega e amiga
Margarida Corte-Real pela enorme contribuição que deu para esta tese. As
suas sugestões e esclarecimentos foram, também, determinantes na
elaboração do texto, tornando-o claro e preciso. Muitíssimo obrigada!

Aos meus pais pelos valores e ensinamentos que me deram para enfrentar
questões da vida, uma vez que uma tese não é apenas produto de
investigação, orientação e apoios.

Às minhas irmãs que apesar de estarem longe estiveram sempre tão perto.

Por fim agradeço a todos os meus amigos que me acompanharam durante
todo este tempo.

palavras-chave

Geometria Computacional, Problemas de Visibilidade, Problema da Galeria de
Arte, Optimização Geométrica, Métodos de Aproximação, Metaheurísticas.

resumo

Os problemas de visibilidade têm diversas aplicações a situações reais. Entre
os mais conhecidos, e exaustivamente estudados, estão os que envolvem os
conceitos de vigilância e ocultação em estruturas geométricas (problemas de
vigilância e ocultação). Neste trabalho são estudados problemas de visibilidade
em estruturas geométricas conhecidas como polígonos, uma vez que estes
podem representar, de forma apropriada, muitos dos objectos reais e são de
fácil manipulação computacional. O objectivo dos problemas de vigilância é a
determinação do número mínimo de posições para a colocação de dispositivos
num dado polígono, de modo a que estes dispositivos consigam “ver” a
totalidade do polígono. Por outro lado, o objectivo dos problemas de ocultação
é a determinação do número máximo de posições num dado polígono, de
modo a que quaisquer duas posições não se consigam “ver”. Infelizmente, a
maior parte dos problemas de visibilidade em polígonos são NP-difíceis, o que
dá origem a duas linhas de investigação: o desenvolvimento de algoritmos que
estabelecem soluções aproximadas e a determinação de soluções exactas
para classes especiais de polígonos. Atendendo a estas duas linhas de
investigação, o trabalho é dividido em duas partes.

Na primeira parte são propostos algoritmos aproximados, baseados
essencialmente em metaheurísticas e metaheurísticas híbridas, para resolver
alguns problemas de visibilidade, tanto em polígonos arbitrários como
ortogonais. Os problemas estudados são os seguintes: “Maximum Hidden
Vertex Set problem”, “Minimum Vertex Guard Set problem”, “Minimum Vertex
Floodlight Set problem” e “Minimum Vertex k-Modem Set problem”. São
também desenvolvidos métodos que permitem determinar a razão de
aproximação dos algoritmos propostos. Para cada problema são
implementados os algoritmos apresentados e é realizado um estudo estatístico
para estabelecer qual o algoritmo que obtém as melhores soluções num tempo
razoável. Este estudo permite concluir que as metaheurísticas híbridas são,
em geral, as melhores estratégias para resolver os problemas de visibilidade
estudados. Na segunda parte desta dissertação são abordados os problemas
“Minimum Vertex Guard Set”, “Maximum Hidden Set” e “Maximum Hidden
Vertex Set”, onde são identificadas e estudadas algumas classes de polígonos
para as quais são determinadas soluções exactas e/ou limites combinatórios.

keywords

Computational Geometry, Visibility Problems, Art Gallery Problem, Geometric
Optimization, Approximation Methods, Metaheuristics.

abstract

Visibility problems have several applications to real-life problems. Among the
most distinguished and exhaustively studied visibility problems are the ones
involving concepts of guarding and hiding on geometrical structures (guarding
and hiding problems). This work deals with visibility problems on geometrical
structures known as polygons, since polygons are appropriate representations
of many real-world objects and are easily handled by computers. The objective
of the guarding problems studied in this thesis is to find a minimum number of
device positions on a given polygon such that these devices collectively ''see''
the whole polygon. On the other hand, the goal of the hiding problems is to find
a maximum number of positions on a given polygon such that no two of these
positions can “see" each other. Unfortunately, most of the visibility problems on
polygons are NP-hard, which opens two lines of investigation: the development
of algorithms that establish approximate solutions and the determination of
exact solutions on special classes of polygons. Accordingly, this work is divided
in two parts where these two lines of investigation are considered.

The first part of this thesis proposes approximation algorithms, mainly based on
metaheuristics and hybrid metaheuristics, to tackle some visibility problems on
arbitrary and orthogonal polygons. The addressed problems are the Maximum
Hidden Vertex Set problem, the Minimum Vertex Guard Set problem, the
Minimum Vertex Floodlight Set problem and the Minimum Vertex k-Modem Set
problem. Methods that allow the determination of the performance ratio of the
developed algorithms are also proposed. For each problem, the proposed
algorithms are implemented and a statistical study is performed to determine
which of the developed methods obtains the best solution in a reasonable
amount of time. This study allows to conclude that, in general, the hybrid
metaheuristics are the best approach to solve the studied visibility problems.
The second part of this dissertation addresses the Minimum Vertex Guard Set
problem, the Maximum Hidden Set problem and the Maximum Hidden Vertex
Set problem, where some classes of polygons are identified and studied and
for which are determined exact solutions and/or combinatorial bounds.

Contents

Contents . i

List of Figures . v

List of Tables . xiii

List of Algorithms . xvii

1 Introduction 1

1.1 Visibility Problems . 5

1.1.1 Terminology and Definitions . 6

1.1.2 Guarding and Hiding Problems . 8

1.2 Structure of the Thesis . 12

I Approximation Strategies for Visibility Problems 17

2 Approximation Methods 21

2.1 Metaheuristics . 21

2.1.1 Simulated Annealing . 24

2.1.2 Genetic Algorithms . 29

2.2 Hybrid Metaheuristics . 35

3 Maximum Hidden Vertex Set Problem 39

3.1 Problem Description . 40

3.2 Approximation Methods . 41

3.2.1 Greedy Strategies . 41

3.2.2 Simulated Annealing Strategy . 43

3.2.3 Genetic Algorithms Strategy . 45

3.3 Greedy-Sequential Strategy for the Minimum Clique Partition Problem . . 49

3.4 Experiments and Results . 51

3.4.1 Arbitrary Polygons . 51

3.4.1.1 Analysis of the SA Parameters 51

i

ii CONTENTS

3.4.1.2 Comparison of the four strategies 54

3.4.2 Orthogonal Polygons . 57

3.4.2.1 Analysis of the SA Parameters 58

3.4.2.2 Comparison of the four strategies 59

3.5 Concluding Remarks . 63

4 Minimum Vertex Guard Set Problem 65

4.1 Problem Description . 66

4.2 Approximation Methods . 68

4.2.1 Pre-processing Step . 68

4.2.2 Greedy Strategy . 68

4.2.3 Simulated Annealing Strategy . 70

4.2.4 Genetic Algorithms Strategy . 72

4.2.5 Hybrid Strategies . 76

4.3 Greedy Strategies for visibility-independent sets 77

4.4 Experiments and Results . 79

4.4.1 Arbitrary Polygons . 80

4.4.1.1 Analysis of the SA Parameters 80

4.4.1.2 Analysis of the GA Parameters 87

4.4.1.3 Comparison of the five strategies 91

4.4.2 Orthogonal Polygons . 95

4.4.2.1 Analysis of the SA Parameters 96

4.4.2.2 Analysis of the GA Parameters 102

4.4.2.3 Comparison of the five strategies 105

4.5 Concluding Remarks . 109

5 Minimum Vertex Floodlight Set Problem 111

5.1 Problem Description . 111

5.2 Approximation Methods . 114

5.2.1 Pre-processing Step . 115

5.2.2 Simulated Annealing Strategy . 116

5.2.3 Genetic Algorithms Strategy . 118

5.2.4 Hybrid Strategies . 120

5.3 Greedy Strategy for floodlight visibility-independent sets 120

5.4 Experiments and Results . 122

5.4.1 Orthogonal Polygons . 122

5.4.1.1 Analysis of the SA Parameters 123

5.4.1.2 Comparison of the four strategies 130

CONTENTS iii

5.5 Concluding Remarks . 133

6 Minimum Vertex k-Modem Set Problem 135

6.1 Problem Description . 136

6.2 k-Modem Visibility Polygon . 139

6.3 Approximation Method . 146

6.4 Experiments and Results . 148

6.4.1 Arbitrary Polygons . 148

6.4.2 Orthogonal Polygons . 151

6.5 Concluding Remarks . 153

II Visibility Problems on Special Classes of Polygons 155

7 A Subclass of Orthogonal Polygons: the grid n-ogons 159

7.1 Conventions, Definitions and Results . 159

7.2 More Results on grid n-ogons . 164

7.2.1 Spiral grid n-ogons . 174

7.2.2 Some Problems related to Thin grid n-ogons 179

7.2.2.1 Max-Area-Thin grid n-ogon 179

7.2.2.2 Classifying Thin grid n-ogons 180

7.3 Visibility Problems on grid n-ogons . 187

7.3.1 Minimum Vertex Guard Set Problem on grid n-ogons 188

7.3.1.1 Fat grid n-ogons . 188

7.3.1.2 Thin grid n-ogons . 188

7.3.2 Maximum Hidden Vertex Set Problem on grid n-ogons 200

7.3.2.1 Thin grid n-ogons . 200

7.4 Concluding Remarks . 203

8 Spiral and Histogram Polygons 205

8.1 Maximum Hidden Vertex Set and Maximum Hidden Set Problems . . . 205

8.1.1 Spiral Polygons . 205

8.1.2 Histogram Polygons . 208

8.2 Concluding Remarks . 210

9 Conclusions 213

Bibliography 219

iv CONTENTS

List of Figures

1.1 A spiral polygon (reflex chain in bold). 7

1.2 (a) The point x sees y and does not see z; (b) The visibility polygon of x. . . . 8

1.3 A guarding set of the polygon P . 8

2.1 General scheme of a genetic algorithm. 29

2.2 Example of the roulette wheel selection method (from [112]). 32

2.3 (a) SA is an additional genetic operator; (b) SA replaces the mutation operator. 37

2.4 Three different ways to use trajectory methods in population based techniques

in a pipeline fashion. 38

3.1 (a) Triangular saw polygons; (b) Staircase polygons. 40

3.2 A 20-vertex polygon and (a) V is(v2, P) and HR2 = {HR1
2,HR2

2}; (b) V is(v5, P)

and HR5 = {HR1
5,HR2

5,HR3
5,HR4

5}. 41

3.3 A 10-vertex polygon and its visibility graph. 42

3.4 An element Si ∈ S (for a 20-vertex polygon) and its representation. Red dots

represent hidden vertices. 43

3.5 Solution Validation. Red dots represent hidden vertices. 44

3.6 An individual I (for a 25-vertex polygon) and its representation. Red dots

represent hidden vertices. 46

3.7 Polygon with n = 10 and its initial population. 47

3.8 Single point crossover. 47

3.9 Single point crossover and child validation. 48

3.10 Mutation. 49

3.11 A clique partition (with four cliques) of VG(P). 50

3.12 Multiple comparison tests, of the six cases, for n = 50, 100, 150 and 200 (arbi-

trary polygons). 53

3.13 Solutions obtained with the strategies M1,M2,M3 and M4 (arbitrary polygons). 55

3.14 Multiple comparison tests of the four methods (arbitrary polygons). 55

3.15 Least Squares Method (arbitrary polygons). 56

v

vi LIST OF FIGURES

3.16 Example of a tested arbitrary polygon with n = 100. Clique partition obtained

with algorithm A1 and hidden vertex sets obtained with: (a) method M1 and

(b) method M3. 57

3.17 The C and H sets in a saw polygon, with n = 20, obtained with A1 and M3. . 57

3.18 Multiple comparison tests, of the six cases, for n = 50, 100, 150 and 200 (or-

thogonal polygons). 59

3.19 Solutions obtained with the the strategies M1,M2,M3 and M4 (orthogonal

polygons). 60

3.20 Multiple comparison tests of the four methods (orthogonal polygons). 61

3.21 Least Squares Method (orthogonal polygons). 62

3.22 Example of a tested orthogonal polygon with n = 100. Clique partition ob-

tained with algorithm A1 and hidden vertex sets obtained with: (a) method

M1 and (b) method M3. 63

3.23 The C and H sets in a staircase polygon, with n = 20, obtained with A1 and

M3. 63

4.1 Three 12-vertex arbitrary polygons: (a) requires 3 guards; (b) require 4 guards. 66

4.2 Two 12-vertex orthogonal polygons: (a) requires 3 guards; (b) requires 1 guard. 67

4.3 An element Si ∈ S (for a polygon with n = 20) and its representation. 70

4.4 Generation of Sj , a neighbour of Si: (a) Sj is a worse solution; (b) Sj is a

better solution. 71

4.5 Initial solution. 71

4.6 Polygon with n = 20 (r = 7) and its initial population. 73

4.7 Single point crossover. 74

4.8 Two-point crossover. 74

4.9 Uniform crossover. 74

4.10 Generation of an invalid child. 75

4.11 Mutation. 75

4.12 First hybrid strategy. 76

4.13 Second hybrid strategy. 77

4.14 Visibility-independent set. Green dots represent visibility-independent points. . 77

4.15 Multiple comparison tests, of SA Cases 1, 2 and 3 (arbitrary polygons). 85

4.16 Multiple comparison tests, of SA Cases 4, 5 and 6 (arbitrary polygons). 85

4.17 Multiple comparison tests, of SA Cases 7, 8 and 9 (arbitrary polygons). 85

4.18 Solutions obtained with strategies M1,M2,M3, M4 and M5 (arbitrary polygons). 93

4.19 Multiple comparison tests of the five methods (arbitrary polygons). 93

4.20 Least Squares Method (arbitrary polygons). 94

LIST OF FIGURES vii

4.21 IS and G sets (represented by black and red dots, respectively) obtained with

A2 and M5 on arbitrary polygons with: (a) n = 50 ; (b) n = 100. 95

4.22 IS and G sets (represented by black and red dots, respectively) obtained with

A2 and M5 on arbitrary polygons with: (a) n = 150 and (b) n = 200. 95

4.23 Multiple comparison tests, of SA Cases 1, 2 and 3 (orthogonal polygons). . . . 100

4.24 Multiple comparison tests, of SA Cases 4, 5 and 6, for n = 30, 50, 70 and 100

(orthogonal polygons). 100

4.25 Multiple comparison tests, of SA Cases 7, 8 and 9 (orthogonal polygons). . . . 101

4.26 Solutions obtained with strategies M1,M2,M3, M4 and M5 (orthogonal poly-

gons). 106

4.27 Multiple comparison tests of the five methods (orthogonal polygons). 107

4.28 Least Squares Method (orthogonal polygons). 108

4.29 IS and G sets (represented by black and red dots, respectively) obtained with

A2 and M5 on orthogonal polygons with: (a) n = 50 ; (b) n = 100. 109

4.30 IS and G sets (represented by black and red dots, respectively) obtained with

A2 and M5 on orthogonal polygons with: (a) n = 150 and (b) n = 200. 109

5.1 Illuminating an orthogonal polygon with the top-left illumination rule. 113

5.2 Illuminating an orthogonal polygon with the four illumination rules. 113

5.3 Vertex floodlights: (a) TL-floodlight; (b) TR-floodlight; (c) BL-floodlight and

(d) BR-floodlight. 113

5.4 Orthogonal polygons that require b3n−4
8 c floodlights. 113

5.5 Visibility polygons of a BR-floodlight and a TL-floodlight. 115

5.6 An element Sl ∈ S for a 16-vertex orthogonal and its representation. 116

5.7 Initial Solution. 117

5.8 On the left a 20-vertex orthogonal polygon P and all possible floodlights; on

the right the initial population for P . 119

5.9 Floodlight visibility-independent set of an orthogonal polygon. 121

5.10 Multiple comparison tests of: (a) Cases 1, 2 and 3; (b) Cases 4, 5 and 6. 128

5.11 Multiple comparison tests of Cases 7, 8 and 9. 128

5.12 Solutions obtained with strategies M1,M2,M3, and M4. 131

5.13 Multiple comparison tests of the five methods. 132

5.14 Least Squares Method. 132

5.15 FIS and F sets obtained on a 100-vertex orthogonal polygon with the methods

A1 and: (a) M2; (b) M4. 133

6.1 (a) The 2-modem placed on x covers y but it does not cover z; (b) V is2(x, P). 137

6.2 The vertices of a monotone polygon projected onto a line. 138

viii LIST OF FIGURES

6.3 A n-vertex monotone polygon requiring d n
2k+2e k-modems [9]. 138

6.4 Rays and one of the critical vertices of P . 140

6.5 (a) Rays and intersection points; (b) Labelled segments. 140

6.6 Route for the construction of: (a) V is1(x, P) and (b) V is2(x, P). 141

6.7 (a) V is1(x, P) and (b) V is2(x, P). 141

6.8 Rules to label the critical vertices (shaded zones represent int(P)). 142

6.9 Labelled critical vertices. 142

6.10 Rule to label the intersection points, which are relative interior points of edges

of P (shaded zones represent int(P)). 143

6.11 Labelled intersection points. 143

6.12 First labelled edge. 143

6.13 Labelled segments. 143

6.14 Three rays, one ray with two critical vertices and two rays with one critical

vertex. 144

6.15 Intersection Points. 144

6.16 Rule to label the intersection points. 145

6.17 Region covered by a k-modem in a orthogonal 30-vertex polygon: (a) k = 2

and (b) k = 4. 145

6.18 A 20-vertex arbitrary polygon P and: (a) V is2(x, P); (b) V is4(x, P); (c)

V is6(x, P). 146

6.19 A 100-vertex arbitrary polygon P and: (a) V is2(x, P); (b) V is4(x, P); (c)

V is6(x, P). 146

6.20 A 100-vertex arbitrary polygon P and: (a) V is2(x, P); (b) V is4(x, P); (c)

V is6(x, P). 146

6.21 Linear adjustment k = 2: (a) arbitrary polygons; (b) monotone arbitrary poly-

gons. 150

6.22 Linear adjustment k = 4: (a) arbitrary polygons; (b) monotone arbitrary poly-

gons. 150

6.23 Linear adjustment k = 2: (a) orthogonal polygons; (b) grid monotone orthog-

onal polygons. 152

6.24 Linear adjustment k = 4: (a) orthogonal polygons; (b) grid monotone orthog-

onal polygons. 153

7.1 A n-ogon P and its Π(P) partition. 160

7.2 A grid n-ogon merged into a (n2 +2)× (n2 +2) square grid and the free staircase

neighborhood for each of its convex vertices [124]. 161

LIST OF FIGURES ix

7.3 The four grid 14-ogon that may be constructed if Inflate-Paste is applied

to the given 12-ogon, extending the vertical edge that ends at vertex v10 [124]. 161

7.4 The three 12-ogons on the left are mapped in the grid 12-ogon on the right.

And the three 12-ogons on the left can be obtained from the grid 12-ogon on

the right [124]. 162

7.5 Eight gridn-ogons that are symmetrically equivalent. From left to right, we see

images by clockwise rotations of 90◦, 180◦ and 270◦, by flips wrt horizontal and

vertical axes and flips wrt positive and negative diagonals [124]. 162

7.6 The unique Fat n-ogons, for n = 6, 8, 10 and 12. 163

7.7 Three Thin 10-ogons. 163

7.8 A family of grid n-ogons with Max-Area, for r = 2, 3, 4 and 5. 163

7.9 A sequence of Max-Area n-ogons, for r = 6. 163

7.10 The unique grid Min-Area grid n-ogons, for r = 1, 2, 3 and 4. 163

7.11 On the left is the Fat grid 14-ogon, it has area 27. On the right is a 14-ogon

with area 28, which is the maximum for n = 14. 163

7.12 Thin grid 12-ogon with area 15, where the area of the Min-Area grid 12-ogon

is equal to 9. 163

7.13 A n-ogon P and: (a) partition ΠH(P); (b) partition Π(P). 164

7.14 A n-ogon P and: (a) GΠH(P); (b) GΠ(P). 164

7.15 On the right we can see two grid 14-ogons that can result from the application

of Inflate-Paste to the 12-ogon on the left, extending the vertical edge that

ends at vertex v10. In the top-right polygon the number of internal vertices

increases in one unit and in the bottom-right polygon this number is maintained.165

7.16 Three Thin grid 10-ogon and respective dual graphs. 166

7.17 6-ogon P , Π(P) and GΠ(P). 166

7.18 The two possible types of rectangles (shaded) that correspond to leaves in

GΠH(P), being P a grid n-ogon. 166

7.19 (a) p ∈ vsv; (b) R3 with three boundary edges and one interior edge and (c)

Construction of GΠ(P). 167

7.20 (a) R = R1 is of Type 2; (b) Removal of R = R1 and (c) v is not a vertex of R2.167

7.21 Four hypotheses to the edges of R2. 168

7.22 (a) Case b) cannot take place; (b) R2 corresponds to a leaf in GΠ(Q). 168

7.23 (a) Paste operation; (b) Construction of GΠ(P). 169

7.24 A grid 10-ogon and respective dual graph. 169

7.25 Subgraph of GΠ(P). 169

7.26 The r-pieces of a Thin: (a) Type 1 ; (b) Type 2 ; (c) Type 3. 170

7.27 The r-pieces of a Thin, from left to right: (a) Type 1 ; (b) Type 2 ; (c) Type 3. . 171

x LIST OF FIGURES

7.28 FSN (vi) (free staircase neighborhood of vi). 171

7.29 The three possibilities for the center of C, c = (xc, yc): (a) situation (1); (b)

situation (2); (c) situation (3). 172

7.30 Inflate operation. 172

7.31 Paste operation. 172

7.32 The only convex vertices that could yield, by Inflate-Paste, the illustrated

Thin grid 14-ogons are v3, v4, v11 and v12. 173

7.33 A Thin grid n-ogon with r = 4; on the left is represented its dual graph GΠ(P)

and on the right its skeleton. 174

7.34 Reflex (in bold) and convex chains. 175

7.35 Grid n-ogon with r = 1. 175

7.36 On the left it is illustrated Case 1, i.e., eH(c1) ≡ urc1; and on the right Case

2, that is, eH(c1) ≡ c1c2. 176

7.37 A sequence of Spiral grid 10-ogons. 176

7.38 Rectangles that might be glued by Paste to yield Q. 177

7.39 Rectangles glued to P . 178

7.40 From left to right: Case a), Case b), Case c) and Case d). 179

7.41 Rectangles glued by Paste to yield Q. 179

7.42 (a) From left to right MA2 = 6,MA3 = 11,MA4 = 17,MA5 = 24; (b) Two

Thin 14-ogons with area 24, MA5 = 24. 180

7.43 Thin grid n-ogon with r = 4 and its skeleton. 180

7.44 Thin grid n-ogons with 4 reflex vertices and respective chains. 183

7.45 Constructing the Thin grid 12-ogon from the chains:(a) c = 1001 and (b)

c = 1110. 183

7.46 Constructing a Thin grid 12-ogon from the chains:(a) c = 1001 and (b) c = 1110.184

7.47 (a) The chain that represents the Thin after the horizontal and vertical reflec-

tions is c = 111011; (b) The chain that represents the Thin after the vertical

reflection is c = 1001. 185

7.48 Guarded Fat grid 14-ogon. 188

7.49 (a) Removing “line 3”; (b)“Constructing” P . 189

7.50 Min-Area grid n-ogons with r = 1, 2, 3 and 4. 190

7.51 Min-Area grid n-ogon with r = 5. 190

7.52 (a) Polygon P̃2; (b) Applying induction hypotheses to P̃2. 191

7.53 (a) Polygon P2 completely covered; (b) Rectangle R; (c) Quadrilaterals Q1 and

Q2. 192

7.54 Min-Area grid 12-ogon. 193

7.55 Visibility Regions. 193

LIST OF FIGURES xi

7.56 Min-Area grid 12-ogon. 193

7.57 Visibility Regions. 193

7.58 Construction of the Min-Area grid 18-ogon from two Min-Area grid 12-ogons. . 194

7.59 Polygon P (“merging” Q with the Min-Area grid 12-ogon). 194

7.60 Min-Area grid n-ogons with r = 1, 2 and 3. 195

7.61 Min-Area grid n-ogons Qm, Qm+2 and Qm+4. 195

7.62 (a) CR0; (b) CRk and (c) CRi, with i 6= 0, k. 196

7.63 (a) CR0; (b) CRr and (c) CRi, i ∈ {1, ..., r − 1}. 197

7.64 (a) CRi, i ∈ {1, ..., r − 1}; (b) CR0 and (c) CRr. 198

7.65 Spiral n-ogons with r odd. 198

7.66 Spiral n-ogons with r even. 199

7.67 Two Thin grid n-ogons, its skeletons and the chains C1 and C2 (C1 in bold). . 201

7.68 Two Thin grid n-ogons and marked hidden vertices (C1 in bold). 201

7.69 On the left v1
2k−2 is reflex and on the right it is convex. 201

7.70 The shaded zones are not visible by the marked vertices. 202

7.71 The shaded zones are not visible by the marked vertices. 202

8.1 An example of a spiral polygon with its reflex chain. 205

8.2 Bounds for h. Black dots represent hidden vertices. 206

8.3 Placement of hidden vertices (the black dots represent vertices marked as hidden).207

8.4 Decomposition into pieces A and B. 207

8.5 Hidden points on a spiral polygon. 208

8.6 Histogram polygon. 209

8.7 Pyramid polygon. 209

8.8 Histogram decomposition. 210

8.9 Hidden points on histograms polygons. 210

xii LIST OF FIGURES

List of Tables

2.1 Example of the roulette wheel selection method. 32

3.1 Studied cases for SA. 52

3.2 Results obtained with Case 1, Case 2 and Case 3 (T0 = n) on arbitrary polygons. 52

3.3 Results obtained with Case 4, Case 5 and Case 6 (T0 = 1000) on arbitrary

polygons. 52

3.4 Results obtained with M1, M2, M3 and M4 (arbitrary polygons). 54

3.5 Average number of hidden vertices (arbitrary polygons). 56

3.6 Results obtained with Cases 1, Case 2 and Case 3 (T0 = n) on orthogonal

polygons. 58

3.7 Results obtained with Cases 4, Case 5 and Case 6 (T0 = 1000) on orthogonal

polygons. 58

3.8 Results obtained with M1, M2, M3 and M4 (orthogonal polygons). 60

3.9 Average number of hidden vertices (orthogonal polygons). 62

4.1 Studied cases for SA. 80

4.2 Results obtained with SA Cases 1, 2 and 3 (T0 = n) on arbitrary polygons. . . 81

4.3 Results obtained with SA Cases 4, 5 and 6 (T0 = 500) on arbitrary polygons. . 81

4.4 Results obtained with SA Cases 7, 8 and 9 (T0 = n
4) on arbitrary polygons.) . . 82

4.5 Multiple comparison tests, of SA Cases, for 30-vertex arbitrary polygons. . . . 82

4.6 Multiple comparison tests, of SA Cases, for 50-vertex arbitrary polygons. . . . 83

4.7 Multiple comparison tests, of SA Cases, for 70-vertex arbitrary polygons. . . . 83

4.8 Multiple comparison tests, of SA Cases, for 100-vertex arbitrary polygons. . . . 83

4.9 Results obtained with SA Case 1, with and without the use of the dominance

matrix (arbitrary polygons). 87

4.10 Studied cases for GA. 87

4.11 Results obtained with GA Case 1 (arbitrary polygons). 88

4.12 Results obtained with GA Case 2 (arbitrary polygons). 88

4.13 Results obtained with GA Case 3 (arbitrary polygons). 88

xiii

xiv LIST OF TABLES

4.14 Results obtained with GA Case 4 (arbitrary polygons). 88

4.15 Results obtained with GA Case 5 (arbitrary polygons). 88

4.16 Results obtained with GA Case 6 (arbitrary polygons). 88

4.17 Results obtained with GA Case 7 (arbitrary polygons). 89

4.18 Results obtained with GA Case 8 (arbitrary polygons). 89

4.19 Results obtained with GA Cases 8, 8.1 and 8.2 (arbitrary polygons). 90

4.20 Results obtained with GA Case 8.2, with and without the use of the dominance

matrix (arbitrary polygons). 91

4.21 Results obtained with M1, M2 and M3 (arbitrary polygons). 92

4.22 Results obtained with M4 and M5 (arbitrary polygons). 92

4.23 Average of the minimum number of vertex guards (arbitrary polygons). 94

4.24 Results obtained with SA Cases 1, 2 and 3 (T0 = n) on orthogonal polygons. . 96

4.25 Results obtained with SA Cases 4, 5 and 6 (T0 = 500) on orthogonal polygons. 96

4.26 Results obtained with SA Cases 7, 8 and 9 (T0 = n
4) on orthogonal polygons. . 97

4.27 Multiple comparison tests, of SA Cases, for 30-vertex orthogonal polygons. . . 97

4.28 Multiple comparison tests, of SA Cases, for 50-vertex orthogonal polygons. . . 98

4.29 Multiple comparison tests, of SA Cases, for 70-vertex orthogonal polygons. . . 98

4.30 Multiple comparison tests, of SA Cases, for 100-vertex orthogonal polygons. . . 98

4.31 Results obtained with GA Case 1 (orthogonal polygons). 102

4.32 Results obtained with GA Case 2 (orthogonal polygons). 102

4.33 Results obtained with GA Case 3 (orthogonal polygons). 102

4.34 Results obtained with GA Case 4 (orthogonal polygons). 102

4.35 Results obtained with GA Case 5 (orthogonal polygons). 102

4.36 Results obtained with GA Case 6 (orthogonal polygons). 102

4.37 Results obtained with GA Case 7 (orthogonal polygons). 103

4.38 Results obtained with GA Case 8 (orthogonal polygons). 103

4.39 Results obtained with GA Cases 8, 8.1 and 8.2 (orthogonal polygons). 104

4.40 Results obtained with GA Case 8.2, with and without the use of the dominance

matrix (orthogonal polygons). 105

4.41 Results obtained with M1, M2 and M3 (orthogonal polygons). 106

4.42 Results obtained with M4 and M5 (orthogonal polygons). 106

4.43 Average of the minimum number of vertex guards (orthogonal polygons). . . . 108

5.1 Studied cases for SA. 123

5.2 Results obtained with SA Cases 1, 2 and 3 (T0 = n). 123

5.3 Results obtained with SA Cases 4, 5 and 6 (T0 = 500). 124

5.4 Results obtained with SA Cases 7, 8 and 9 (T0 = n
4). 125

LIST OF TABLES xv

5.5 Multiple comparison tests, of SA Cases, for 30-vertex orthogonal polygons. . . 125

5.6 Multiple comparison tests, of SA Cases, for 50-vertex arbitrary polygons. . . . 125

5.7 Multiple comparison tests, of SA Cases, for 70-vertex arbitrary polygons. . . . 126

5.8 Multiple comparison tests, of SA Cases, for 100-vertex arbitrary polygons. . . . 126

5.9 Results obtained with SA Case 1, with and without the use of the dominance

matrix. 130

5.10 Results obtained with M1 and M2. 130

5.11 Results obtained with M3 and M4. 131

5.12 Average of the minimum number of vertex floodlights. 132

6.1 Results obtained for k = 2 on: (a) arbitrary polygons and (b) monotone arbi-

trary polygons. 149

6.2 Results obtained for k = 4 on: (a) arbitrary polygons and (b) monotone arbi-

trary polygons. 149

6.3 Results obtained for k = 2 on: (a) orthogonal polygons and (b) grid monotone

orthogonal polygons. 151

6.4 Results obtained for k = 4 on: (a) orthogonal polygons and (b) grid monotone

orthogonal polygons. 151

9.1 Studied problems on arbitrary polygons. 215

9.2 Studied problems on orthogonal polygons. 215

9.3 Studied problems on monotone arbitrary polygons. 215

9.4 Studied problems on monotone grid n-ogons polygons. 216

9.5 Guarding problem on grid n-ogons polygons. 217

9.6 Hiding problem on grid n-ogons polygons. 217

9.7 Hiding problems on spiral and histogram polygons. 218

xvi LIST OF TABLES

List of Algorithms

2.1 Iterative (minimization) local search algorithm 23

2.2 Simulated Annealing Algorithm (for a minimization problem) 25

2.3 Basic GA . 30

3.1 Determining H from the hidden regions (method M1) 42

3.2 Generation of I0
i , i ∈ {0, . . . , n− 1} . 46

3.3 Algorithm to determine a clique partition from the vertex vk 51

4.1 Greedy strategy (method M1) . 69

4.2 Removing Redundant Vertices . 69

4.3 Computing IS (greedy algorithm A1) . 79

5.1 Computing FIS (greedy algorithm A1) . 122

8.1 Algorithm to place hidden vertices . 207

xvii

xviii LIST OF ALGORITHMS

Chapter 1

Introduction

This dissertation aims at studying a set of problems related to the visibility subfield, a central

area of the computational geometry field. In a restrictive sense, computational geometry can be

defined as a branch of computer science devoted to the study of algorithms that can be stated

in geometric terms. According to many authors (for instance, [102]) it is common to date the

beginning of this research area to the 1970s with the work of Shamos and very particularly

with his doctoral dissertation. Since then, many researchers were fascinated by the challenges

posed by the geometric problems. There have been many research by the scientific community

dedicated to this topic, reflected in many seminars, conferences or university courses, as well

as books and journals. Overviews of key concepts and results in computational geometry are

provided in the handbooks by Sack and Urrutia [113] and by Goodman and O’Rourke [66].

Some more classical literature in this field can be found in the books by Preparata and

Shamos [109], Edelsbrunner [45], Pach [106] and Toussaint [128]. A recent book by Berg et

al. [39] is seen as a well-accepted introduction to computational geometry.

In a certain sense, the euclidean geometry can be regarded as a historical precedent of

the current algorithmic geometry, because Euclides built his geometric objects using a tool

set (the ruler and the compass) that can perform certain primitive or basic operations. After

Euclides, while some mathematicians had studied the constructive possibilities of diverse tool

sets, others were worried about how to reduce the number of steps in the constructions, being,

this way, the precursors of the current interest on computational geometry in the design of

geometric algorithms and the analysis of its complexity [7, 109,127].

However, the computational geometry cannot only be considered “daughter” of the eu-

clidean geometry. The strength with which it emerged, and is maintained today, has to do not

only with its relation with geometry, and mathematics in general, but especially with its con-

nection with computer science. Computational geometry skilfully combines the use of classic

algorithmic paradigms with the deep analysis of the geometric structure of the problems. The

metrics and combinatorial characteristics of the geometric problems allow, through the use of

1

2 Introduction

the algorithmic techniques and appropriate data structures, to reduce the solution complexity,

sometimes in a surprising way. Consider, for instance, the elegance of the solution given by

Megiddo [95] for the classical problem of finding the smallest circle enclosing n given points on

the plane, for which the brute-force approach has time complexity O(n4). Megiddo obtained

an algorithm of time complexity O(n) by applying an interesting algorithmic scheme that

cleverly exploits the problem metric properties. In fact, it can be said that computational

geometry, in addition to using well-known algorithm design paradigms, such as divide and

conquer or dynamic programming, has created its own paradigms, the most notorious of them

being sweeping (line sweep, topological sweep, and so on). Relatively to the data structures

used in computational geometry, things are not very different, for example, the balanced bi-

nary search trees gave rise to specialized structures particularly suited for handling geometric

data, such as the segment tree or the doubly connected edge lists (DCEL) [7].

As we can see, computational geometry contemplates the development of geometric al-

gorithms. Since it is wished to develop efficient algorithms, it is also necessary to study and

analyze the performance of these algorithms. In this study it is adopted the real Random

Access Machine (RAM) computational model [109]. Note that the analysis of the geometric

algorithms performance establishes another relation with computer science, since this analysis

is related to the computational complexity theory, which is a main subfield of the computer

sciences.

Over the past years many efficient algorithms (and data structures) for geometric prob-

lems have been developed. Nevertheless, many of these algorithms have no direct effect in

practical geometrical computing, because they are more efficient than other solutions for only

huge problem instances. Consequently, they are predominantly considered as contributions

to the investigation of the complexity of a geometric problem. On the other hand, many

other algorithms are efficient for reasonable problem sizes but they are not very useful in

practice yet, because the correct implementation of even the simplest of these algorithms can

be extremely difficult. There are two main problems that need to be dealt with to close

the gap between the theoretical results and the practical implementations. First, there is

the dissimilarity between fast floating-point arithmetic, normally used in practice, and exact

arithmetic over the real numbers, assumed in theoretical papers (precision problem). Second,

there is the lack of explicit handling of degenerate cases in theoretical papers (degeneracy

problem) [39, 57, 114]. Concerning the precision problem, in theoretical papers the proof of

the correctness of an algorithm frequently relies on exact computations, however, in general,

replacing exact arithmetic by imprecise floating-point arithmetic does not work. Regarding

the degeneracy problem, often the theoretical papers exclude degenerate configurations in the

input of the algorithms they described. Simple examples of configurations that are considered

as degenerate are the existence of duplicate points or the existence of three collinear points

Introduction 3

in a given point set. In theory, this approach of excluding degeneracies is justified with the

argument that degenerate cases are very unlikely if the input set is randomly chosen over

the real numbers. However, in practice degenerate inputs occur frequently. For example,

the coordinates of geometric objects can not be randomly chosen on R, but lie on a grid, for

instance, they can be created by clicking on a window of a graphical interface [57]. In addition

to the precision and degeneracy problems, advanced algorithms bring about the difficulty to

understanding and to coding them.

For the aforementioned reasons, it is unreasonable for users to implement geometric

algorithms from scratch. As a result, computational geometry libraries, providing correct

and efficient reusable implementations, are undoubtedly necessary. The development of such

libraries represents a large effort by the computational geometry community. Some examples

of computational geometry libraries are the Computational Geometric Algorithms Library

(CGAL) [2], the Library of Efficient Data Types and Algorithms (LEDA) [96,97], the Wykobi

Computational Geometry Library (www.wykobi.com), the FastGeo Computational Geometry

Library (www.partow.net/projects/fastgeo) and the Graph Drawing Toolkit (GDToolkit) [1,

40]. Among the developed computational geometry libraries, the CGAL library is the most

used (see, e.g., [136]). This is reflected, for example, in the incorporation of the 2D and 3D

Delaunay triangulations of CGAL in the well-known MATLAB software (version R2009a).

The unstoppable progress of computational geometry can be explained not only by the

development of the computer sciences, but also by its applicability in diverse and current

fields such as location problems (e.g., [31]), geographic information systems (e.g. [81]) or

biological applications (e.g., [46]), in particular molecular modelling (e.g. [79]). These are

merely representative examples of the good results arising from the application of compu-

tational geometry techniques. In the present, it is notorious the interest in studying and

solving applied problems in this area. Within the geometric problems with application, the

visibility problems are doubtless of great interest and updated, due to its applicability in areas

such as computer graphics (e.g., [42,43]), pattern recognition (e.g., [103]), computer vision or

robotics (e.g., [111]), for example, motion planning (e.g., [12, 35, 116]). Another interesting

and promising application of visibility problems is its employment in the treatment planning

of a radiation therapy in cancer patients [72].

The interest for visibility problems started, according to Honsberg [71], in response to

a question posed by Victor Klee in 1973. Klee’s question was: How many guards are always

sufficient to cover the interior of a n-wall art gallery room? This problem is today known

as the original Art Gallery Problem. Soon after that, Vasek Chvátal [34] established what

became known as the Art Gallery Theorem: bn3 c guards are always sufficient and occasionally

necessary to cover any simple polygon with n edges. The problem and theorem have this

designation because a polygon can be seen as the floor plan of an art gallery room and its

4 Introduction

points can be considered as suitable places for view elements, such as guards, cameras or light

sources. Since the publication of this result, many researches on art gallery problems, visibility

problems on polygons, have been done by mathematicians and computer scientists. A basic

reference in this topic is that of O’Rourke [101] who, in 1987, published a book devoted to

these problems. This publication gave a further encouragement to the study of these problems,

as well as many variations of the original Art Gallery Problem. Two comprehensive survey

papers were also written on this subject, one in 1992 by T. Shermer [119] and, a second one, in

2000 by J. Urrutia [129]. Since then, a large number of papers in this area have appeared and

some important problems have been solved. Recently, a book completely devoted to visibility

algorithms in two dimensions was written by Ghosh [63].

Many variations of the original Art Gallery Problem are NP-hard (see, e.g., [101, 119,

129]), which does not leave “space” to the design of exact algorithms of reasonable complexity

and the need of the development of approximate algorithms. Due to this, the computational

complexity of these problems usually opens two lines of investigation: (1) the development of

algorithms that establish approximate solutions or (2) the determination of optimal solutions

on special classes of simple polygons. According to Urrutia [129], the first line of investigation

has not been sufficiently undertaken in the study of art gallery problems. The first result

on this line of investigation was published in 1987, where it is established a O(n5 log n) time

approximation algorithm that finds a vertex guarding set that is at most O(log n) times

the minimum number of vertex guards needed to cover a polygon [64]. This work was later

taken and extended over by Eidenbenz [50] who designed approximation algorithms for several

variations of terrain guarding problems. More recent approximation results are due to Efrat

et al. [48] who devise provable approximation schemes for problems that arise in optimization

of sensor networks, Bottino and Laurentini [27] who propose a location incremental technique

to approximate the minimum number of sensors able to cover the edges of a polygon (Edge

Covering problem), Amit et al. [11] who analyze heuristics in the number of guards needed to

cover a polygon and Packer [107] who present heuristics to compute multiple watchmen routes.

Another approach tackled by Erdem and Sclaroff [54] and Tomás, Bajuelos and Marques

[125,126] obtains approximate solutions for the problem of finding a vertex guarding set with

minimum cardinality (Minimum Vertex Guard Set problem), by transforming Minimum

Vertex Guard Set instances into Minimum Set Cover instances, using decompositions

of the polygon. Following the same approach, Couto, Souza and Rezende [36] proposed

an algorithm to find an optimal solution to the Orthogonal Art Gallery Problem refining

discretizations of the polygon. The authors say that an upper bound on the maximum number

of iterations effected by the algorithm is O(n4) and that this establishes the convergence.

However, each iteration can take exponential time since it needs to solve an instance of the

Set Cover Problem. To our knowledge, there are only two works where metaheuristics

Introduction 5

strategies are used to solve visibility problems [4, 5], which derive from Canales doctoral

dissertation [30]. In these works the metaheuristics techniques proved to behave very well in

solving the problem of finding a guarding set with minimum cardinality (Minimum Guard

Set problem).

Concerning the second line of investigation, a lot of research has been done. For example,

some of the above cited books, such as [101], [129] and [119], present several problems on

special classes of polygons. Worman and Keil [134] have also developed an exact algorithm to

place the minimum number of guards with rectangular visibility on orthogonal polygons, whose

time complexity is O(n17). In this problem, besides considering a special class of polygons,

they also restricted the way the points see each other. Nilsson and Wood [100] gave a linear

time algorithm to find the minimum number of guards necessary to guard a spiral polygon.

Besides these cited works, the majority of the works presented in subsection 1.1.2, where some

visibility problems are presented, follows this line of investigation.

Among the most distinguished and exhaustively studied visibility problems are the guard-

ing and hiding problems, which are the categories of visibility problems studied in this thesis.

These problems are NP-hard or it is strongly believed that they are NP-hard. For this rea-

son, the study of the problems follows the two lines of investigation stated above and, in this

way, this dissertation is divided in two parts. In the first one it is proposed approximation

algorithms. Since the two cited above works, that use metaheuristics strategies to solve visi-

bility problems, have proven to behave very well, the present dissertation directs its efforts in

this approach of investigation, using approximation algorithms mainly based on metaheuris-

tics. Besides, only some of the above cited approximation algorithms have been implemented

and, in any case, no experimental results comparing the cardinalities of the solution provided

by the algorithms with the optimal solution have been presented. In this dissertation all the

proposed approximation algorithms were implemented and some techniques for evaluating

the quality of the approximate solutions were developed. In the second part it is studied and

presented exact solutions of some guarding and hiding problems on special classes of polygons.

In the next section some basic concepts related to polygons and visibility are introduced,

some of the known visibility problems and the problems treated in this work are briefly

described (section 1.1) and how their study is organized throughout this thesis (subsection

1.2).

1.1 Visibility Problems

As stated before, the interest on visibility problems started when Victor Klee, in 1973, stated

the original Art Gallery Problem. In the abstract version of this problem, the floor plan of

the art gallery room is modelled by a simple polygon P and a guard is considered a fixed point

6 Introduction

on P with 2π range of visibility and cannot see through the walls. Therefore, in the following

subsection some general terminology and definitions related to polygons and visibility, neces-

sary for the comprehension of this thesis, are given. More specific terminology and definitions

will be introduced throughout the thesis.

1.1.1 Terminology and Definitions

Definition 1.1 A polygonal chain is defined as an ordered sequence of points v0, v1, . . . , vn−1,

with n ≥ 3, called vertices, together with the set of line segments e0 = v0v1, e1 = v1v2, . . .,

en−2 = vn−2vn−1, designated by edges. The polygonal chain is closed if the first and the last

vertices are also connected by a line segment, i.e., if the line segment en−1 = vn−1v0 exists.

The polygonal chain is simple if the only intersection of edges are those at common endpoints

of consecutive edges.

A simple closed polygonal chain divides the plane in two regions, an unbounded one,

called the exterior region, and a bounded one, the interior. In this area, a simple polygon is

usually defined as follows:

Definition 1.2 A simple polygon P is defined as the simple closed polygonal chain together

with its interior.

The points vi, with i = 0, 1, . . . , n− 1, are designated by vertices of P . The set of

these vertices is denoted by VP , that is, VP = {v0, v1, . . . , vn−1}. The line segments ei, with

i = 0, 1, . . . , n− 1, are named the edges of P and form the boundary of P . The interior of

the polygon P , the boundary and the exterior are denoted by int(P), ∂P and ext(P), re-

spectively. Thus, P = int(P) ∪ ∂P . In the sequel, a polygon with n vertices is also called a

n-vertex polygon or a n-gon, for short. Since this work only deals with simple polygons, the

term “polygon” is used instead of “simple polygon”. Unless stated otherwise, the vertices of a

polygon P are assumed to be in counterclockwise (CCW) order so that the int(P) lies to the

left as one goes through ∂P . All index arithmetic is mod n, implying a cyclic order of the

points, with v0 following vn−1 since (n− 1) + 1 ≡ n ≡ 0 (mod n).

Definition 1.3 A vertex vi is called reflex if the interior angle between its two incident edges

is greater than π. Otherwise, it is called convex.

A polygonal chain is called reflex chain if its vertices are all reflex (all except the vertices

at the end of the chain). A polygonal chain is called convex chain if its vertices are all convex.

Definition 1.4 A polygon is a spiral if its boundary can be divided in a reflex chain and

a convex chain.

Introduction 7

Note that, a spiral polygon can be expressed as an ordered sequence of vertices u1, u2, ...,

ur, c1, c2, ..., cn−r where the ui’s are reflex vertices and the ci’s are convex vertices. Thus, the

reflex chain is the polygonal chain cn−r, u1, ..., ur, c1 and the convex chain is the polygonal

chain c1, c2, ..., cn−r (see Figure 1.1).

u
1

u
2 u

r

c
1

c
2

c
n r-

Figure 1.1: A spiral polygon (reflex chain in bold).

Definition 1.5 A polygon is called orthogonal if its internal angles have range of π
2 or 3π

2 .

An orthogonal polygon can also be defined as a polygon whose edges are all parallel to

a pair of orthogonal axes in the plane. O’Rourke [101] showed that n = 2r + 4 for every

orthogonal polygon with n vertices, where r is the number of reflex vertices. Consequently,

orthogonal polygons have an even number of vertices.

Orthogonal polygons are of great interest. Indeed, most “real life” buildings and galleries

are “orthogonal” [129]. Moreover, this kind of polygons arises naturally in certain applications,

such as Very Large Scale Integration (VLSI) design and computer graphics. Due to its interest

in real applications, all the problems studied in this dissertation contemplate this class of

polygons. In the sequel, the terms “arbitrary polygon” and “orthogonal polygon” are used

to mean a polygon (without restrictions) and a polygon belonging to the class of orthogonal

polygons, respectively. Throughout this thesis, an orthogonal polygon with n vertices is also

called n-ogon, for short.

Since the problems studied in this thesis are visibility problems, some visibility concepts

will follow.

Definition 1.6 Let P be a polygon and x, y ∈ P . The point x sees the point y (or y is visible

from x) if the segment xy does not intersect the exterior of P , that is, if xy ∩ P = xy.

Definition 1.7 Let P be a polygon and x ∈ P . The set of all points of P visible from x, that

is, the set V is(x, P) = {y ∈ P : x sees y} is called visibility polygon of x.

Figure 1.2 illustrates the last two concepts.

8 Introduction

x

z

y

(a)

x

Vis x,P()

(b)

Figure 1.2: (a) The point x sees y and does not see z; (b) The visibility polygon of x.

Definition 1.8 A set of guards G ⊂ P covers P if each point of P is visible by at least one

guard, that is, if
⋃
x∈G V is(x, P) = P . In this case, G is called a guarding set of P .

Figure 1.3 illustrates a polygon P and a guarding set of P . If, in a set of guards, the

guards are replaced by light sources (that emit light in all directions) the term visibility is

usually replaced by illumination. The use of the terms illuminates and guards/covers follows

the notion that the view element is a light source or a guard, respectively [129]. The guarding

problems are also known as illumination problems.

Figure 1.3: A guarding set of the polygon P .

The Klees’s question can then be reformulated as: How many guards/lights are always

sufficient to guard/illuminate the interior of a n-vertex polygon?

1.1.2 Guarding and Hiding Problems

As said before, in 1975, Chvátal [34] established the next result: bn3 c guards/lights are always

sufficient and occasionally necessary to cover/illuminate a simple polygon with n vertices.

Avis and Toussaint [15] developed an efficient algorithm to cover n-vertex polygons with bn3 c
guards. But while the established number of guards is always sufficient to cover any n-vertex

polygon, for many polygons this number is clearly too large (for example, on convex polygons).

Introduction 9

This reasoning justifies the following variation of the original problem: given a polygon P with

n vertices, determine the minimum number of guards necessary to cover it (Minimum Guard

Set problem). Aggarwal [8] showed that this problem is NP-hard.

After the first result of Chvátal, the study of several variations of the problem started start

multiply. They are known as guarding problems. Another category of visibility problems, also

studied in the literature, are the hiding problems that, besides being theoretical attractive, also

have practical applications (e.g. [51, 117]). These problems concern with hiding a maximum

number of objects from each other in a given geometric configuration. The problems of hiding

objects have application, for example, in computer games, where each player needs to find and

collect, or destroy, as many objects as possible. Another application, described by Eidenbenz

in [49], is the partition of an area into lots for house building, which uses the three-dimensional

version of the problem: hiding points in polyhedra terrains. The hiding problems can also

have computer graphics applications, for example, on the hidden surface determination and

hidden line removal.

The guarding and hiding problems are among the most distinguished and exhaustively

studied visibility problems. In these problems a geometric configuration is given as input, such

as a polygon, a line arrangement, a set of polygons in three-dimensional space or a polyhedra.

As, in this dissertation, the input of the studied problems is a polygon, we will not focus on

geometric configurations rather than polygons. In fact, the studied guarding problems deal

with finding a minimum number of guards/lights positions on a given polygon, such that these

guards/lights collectively see the whole polygon and the hiding problems deal with finding a

maximum number of positions on a given polygon, such that no two of these positions can

see each other.

To a comprehensive study of the guarding problems the reader is referred to the books

and surveys that were mentioned earlier in this chapter, namely [101, 119, 129]. Here only

some of them, considered significant in the scope of this thesis, will be pointed out.

One of the variations of the original guarding problem was to change the assumptions

on the polygons under study. Kahn et al. [77], for example, have proven the Orthogonal Art

Gallery Theorem. It states that bn4 c guards are occasionally necessary and always sufficient

to cover an orthogonal polygon with n vertices, while Edelsbrunner et al. [47] showed that

this number of guards could be placed in linear time. Rather than change the assumptions on

the input polygons, a different variant was to restrict the positions of the guards, for instance,

a vertex guard is defined to be a guard located at a vertex; in contrast, guards who have

no restriction on their location are named point guards. A different variant is to change the

part of the polygon that must be guarded. Laurentini [83], for instance, has introduced and

explored the edge covering problem, where the guards are required to observe the edges of the

10 Introduction

polygon (metaphorically, the paintings on the walls of the art gallery and not necessarily every

point of the gallery). According to O’Rourke [101], J. Malkelvitch and D. Wood independently

suggested other two variants. In the first one they focused their attention on the visibility

outside a polygon and, in the second one, the visibility is considered both inside and outside

a polygon. The art gallery problem for the exterior of a polygon has been called the fortress

problem (metaphorically, the polygon represents a fortress, and it is wished to see any enemy

that comes closer). Likewise, when one wishes to see simultaneously both the inside and the

outside of a polygon the problem is called the prison-yard problem, because one must watch

both people outside, trying to break in, and people inside, trying to break out.

Another major research line derived from the original Art Gallery Problem has arisen

when regions (inside a polygon), rather than just points, are considered as elements of guard

sets. A point is called visible from a region if it is visible from a point in that region. This

notion of visibility is known as weak visibility, to contrast with strong visibility, where a point

is called visible from a region if it is visible from every point of that region [14]. Toussaint [14]

was the first to propose these types of guards when he introduced the concept of edge guards,

followed by the mobile guards of O’Rourke [104] and the diagonal guards of Shermer [118].

These three types of guards are not in stationary positions, they are allowed to patrol line

segments on a polygon P : the edge guards, the individual edges of P ; the mobile guards

can patrol either an edge or a diagonal (a line segment between nonadjacent vertices) of the

polygon and the diagonal guards are allowed to patrol diagonals.

Throughout the years, the developments in the study of visibility problems denote a

progressive interest in addressing more realistic problems. In the works of Bose et al. [26],

Estivill-Castro et al. [55], Abello et al. [6] and Steiger and Streinu [121] it is no longer con-

sidered that the light sources emit in all directions, or that the guards can patrol around

themselves in all directions. They present illumination problems, in which the light sources

have a restricted angle of illumination, which are called floodlights, and the respectively prob-

lems are known as floodlight problems. These ones are quite natural and they capture scenarios

involving guards or security cameras with restricted angle of vision (for a comprehensive sur-

vey see [129]). More recent works on floodlights problems are due to Dietel et al. [41] and

Cary et al. [32].

A recent variant of the art gallery problem was introduced by Aichholzer et al. [9] and

Fabila-Monroy, Vargas and Urrutia [56]. In this new variant, the view element, instead of

being modelled as a light source, is modelled as a wireless device whose signal can be trans-

mitted through a given number k of walls. The authors designated these wireless devices

by k-modems. The parameter k represents the strength of the signal emitted by the modem.

This generalization of the art gallery problem can have a great potential in wireless networking

applications.

Introduction 11

Regarding the hiding problems, the initial problem can be viewed as the “inverse” prob-

lem of the original guarding problem: given a polygon P , the problem is to find a hidden set of

points on P that is of maximum cardinality. This problem was introduced by Shermer [117]

in 1989. In the same work, he showed that this problem is NP-hard, regardless of whether

the hidden set is or not restricted to vertices, both on arbitrary and orthogonal polygons. He

also obtained some combinatorial bounds for h, the maximum cardinality of any set of hidden

points. In particular, he showed that: if P is a polygon with r reflex vertices then h ≤ r + 1.

Shermer also showed that the maximum size of a hidden set of vertices on a polygon of n

vertices is at most
⌊
n
2

⌋
, being this bound tight as the previous one. On orthogonal polygons

the upper bound is n−2
2 , both for hidden points and hidden vertices, and this bound is reached

on a special class of orthogonal polygons, designated by staircase polygons.

Later on, Hurtado [73] extended the notion of hiding points on other geometric config-

urations. If F is a family of disjoint sets on the plane, a set of points H is called a hidden

set for F if it is contained in the complement of the union of the elements of F and if the

segment, joining any two points of H, intersects some set of F . If F is a family of n disjoint

segments on the plane, Hurtado, Serra and Urrutia [74] proved that F admits a hidden set

of points of size at least
√
n and that there are sets of segments that do not admit sets of

hidden points of size greater than 2
√
n. Hurtado [73] also obtained results on hiding points

in families of triangles, rectangles and hexagons.

Eidenbenz [49] studied the three-dimensional version of the initial hiding problem: hiding

points in polyhedra terrains. Eidenbenz was interested in finding the precise number and an

optimal placement of people to be hidden, being given a terrain with n vertices. He proved

that this new variation is also NP-hard, regardless of whether the hidden set is or is not

restricted to vertices. Eidenbenz also studied the variation where it is allowed, as input,

polygons with holes, which is also NP-hard (independently of knowing if the set is limited to

the vertices).

A combination of the two classic problems (original Art Gallery Problem and initial

hiding problem) was also introduced and studied by Shermer [117]. This problem consists on

finding a hidden guarding set of minimum cardinality, where a hidden guarding set is defined

as a set of guard positions in a given polygon such that no two guards see each other and such

that every point of the polygon is seen by at least one guard. The point and vertex variants of

this problem gave rise to very different results. Shermer proved that every polygon admits a

hidden guard set. However, if the hidden set is restricted to vertices, not every polygon admits

such a set. Moreover, the determination that such a hidden guard set exists is NP-hard. He

also showed that finding a hidden guard set of minimum cardinality is NP-hard. Later on,

Eidenbenz [51] defined two variations of this problem by allowing polygons with or without

12 Introduction

holes or by letting the input be a polyhedra terrain.

1.2 Structure of the Thesis

As we can see, the original art galley problem gave rise to a huge amount of variants. Most of

these guarding problems are either NP-hard or it is strongly believed that they are NP-hard

(see e.g. [129]). On the other hand, as far as we know, the hiding problems, studied so far,

are NP-hard. As said before, for such problems there are usually two lines of investigation:

(1) the development of algorithms that find approximate solutions or (2) the determination

of optimal solutions on special classes of polygons.

In this dissertation, some of the visibility problems are studied following the first line of

investigation and/or the second line of investigation. Although each one of these problems

is formalized and explained in detail in the beginning of the respective chapter, a general

summary is presented now. The studied guarding problems are: the Minimum Vertex

Guard Set problem; the Minimum Vertex Floodlight Set problem and the Minimum

Vertex k-Modem Set problem. The studied hiding problems are: the Maximum Hidden

Set and the Minimum Vertex Guard Set problems.

Minimum Vertex Guard Set problem. The Minimum Vertex Guard Set problem

asks for a minimum number of vertex guards needed to cover a given polygon P . A set G ⊂ VP
of vertices of P is called a vertex guarding set for P if the vertices cover P . The Minimum

Vertex Guard Set problem is denoted by MVGS(P) and it is stated as follows:

MVGS(P)

Input: A polygon P with n vertices.

Question: What is the minimum number of vertex guards necessary to cover P?

This problem is NP-hard both for arbitrary polygons [84] and for orthogonal polygons

[115].

Minimum Vertex Floodlight Set problem. Given an orthogonal polygon P , the Mini-

mum Vertex Floodlight Set problem consists on finding the minimum number of orthog-

onal floodlights (light sources with π
2 angle of illumination) placed on vertices of P necessary

to illuminate it. A given set F ⊂ VP of vertices of P is called a vertex orthogonal floodlighting

set (vertex floodlighting set, for short) for P if the floodlights illuminate P . The Minimum

Vertex Floodlight Set problem is denoted by MVFS(P) and it is formally defined as:

MVFS(P)

Input: An orthogonal polygon P with n vertices.

Introduction 13

Question: What is the minimum number of vertex orthogonal floodlights necessary to

illuminate P?

It is strongly believed that the MVFS(P) problem is NP-hard [129].

Minimum Vertex k-Modem Set problem. A k-modem is a wireless modem whose signal

strength is k, that is, its signal is strong enough to transmit a stable signal through at most

k walls along a straight line. Being P a polygon, a covering vertex k-modem set is a set of

k-modems, placed on vertices of P , such that the k-modems cover P . The Minimum Vertex

k-Modem Set problem asks for a vertex k-modem set of minimum cardinality. This problem

is denoted by MVkMS(P, k) and it is stated as follows:

MVkMS(P, k)

Input: A polygon P with n vertices and a number k of walls.

Question: What is the minimum number of vertex k-modems necessary to cover P?

As for the MVFS(P) problem, it is strongly believed that this problem is NP-hard [9].

Maximum Hidden Set problem: Given a polygon P , two points on P are called hidden

points if they do not see each other. A set H ⊂ P of points of P is called a hidden set for

P if any two points of H do not see each other. The Maximum Hidden Set problem asks

for a maximum number of hidden points on a given polygon P . The problem as denoted by

MHS(P) and it is stated as follows:

MHS(P)

Input: A polygon P with n vertices.

Question: What is the maximum number of hidden points on P?

This problem is NP-hard both for arbitrary and orthogonal polygons [117].

Maximum Hidden Vertex Set problem: If a hidden set H is restricted to the vertices of

P , H is called a hidden vertex set. The Maximum Hidden Vertex Set problem is denoted

by MHVS(P) and it is formalized as follows:

MHVS(P)

Input: A polygon P with n vertices.

Question: What is the maximum number of hidden vertices on P?

Like the MHS(P) problem, this problem is also NP-hard both for arbitrary and orthog-

onal polygons [117].

These problems are studied following the two lines of investigation stated above and, in

14 Introduction

this way, this dissertation is divided in two parts. In the first one, which is called “Appro-

ximation Strategies for Visibility Problems”, it is proposed approximation algorithms, based

mainly on metaheuristics. In the second part, which is called “Visibility Problems on Special

Classes of Polygons”, it is studied and presented exact solutions on special classes of polygons.

The first part is divided in five chapters, from Chapter 2 to Chapter 6, and the second

one consists of Chapters 7 and 8.

In Chapter 2 a brief introduction to approximation methods is presented. The general

metaheuristics simulated annealing and genetic algorithms, which are the metaheuristic tech-

niques used to tackle the problems under study, are succinctly described in section 2.1. This

chapter ends with a short introduction to hybrid metaheuristics (section 2.2).

Chapters 3, 4, 5 and 6 deal with the MHVS(P), MVGS(P), MVFS(P) and MVkMS(P)

problems, respectively. In each one of these chapters the corresponding problem is formally

defined, approximation algorithms are proposed and experimental results are described.

In Chapter 3, the MHVS(P) problem is described (section 3.1) and four approximation

algorithms to determine a hidden vertex set, whose cardinality approximates the maximal

number of hidden vertices on a given polygon P , are presented (section 3.2). The first two

are greedy strategies designed specifically to solve the MHVS(P) problem (subsection 3.2.1)

and the other two are based on the simulated annealing and genetic algorithms metaheuristics

(subsections 3.2.2 and 3.2.3, respectively). As the optimal solution for the MHVS(P) prob-

lem is unknown, in section 3.3 it is developed a method (based on the determination of an

approximate solution of the Minimum Clique Partition problem) to determine an upper

bound for it. This method allows to get the performance ratio of the developed approxima-

tion algorithms. Section 3.4 describes the experiments made over a large set of randomly

generated polygons (arbitrary and orthogonal). In this section it is also presented a statistical

comparative study of the obtained experimental results to select the best strategy. Then,

using the selected method, more experiments were made in order to get some conclusions

about its performance.

In Chapter 4 the MVGS(P) problem is presented (section 4.1) and five approximation

algorithms to tackle it are developed (section 4.2). The first is a greedy algorithm (subsection

4.2.2), the second is based on the simulated annealing metaheuristic (subsection 4.2.3), the

third is based on the genetic algorithms metaheuristic (subsection 4.2.4) and the last two are

hybrid algorithms, based on the simulated annealing and genetic algorithms metaheuristics

(subsection 4.2.5). As the optimal solution for the MVGS(P) problem is not known, in section

4.3 it is developed a method that allows to determine a lower bound for it. This method

permits to get the performance ratio of the developed approximation strategies. Section 4.4

describes the experiments made over a large set of randomly generated polygons (arbitrary

and orthogonal). In this section it is also presented a statistical comparative study of the

Introduction 15

obtained experimental results to select the best strategy. As before, the performance of this

strategy is analyzed with more experiments.

In Chapter 5 the MVFS(P) problem is described (section 5.1) and four approxima-

tion algorithms are developed (section 5.2). The first is based on the simulated annealing

metaheuristic (subsection 5.2.2), the second is based on the genetic algorithms metaheuris-

tic (subsection 5.2.3) and the last two are hybrid algorithms based on used metaheuristics

(subsection 5.2.4). In section 5.3 it is presented a method to determine a lower bound for

the unknown optimal solution. This method permits to get the performance ratio of the

approximation algorithms. In section 5.4 the experiments made over a large set of randomly

generated orthogonal polygons are described. After a statistical comparative study of the

obtained experimental results, the best strategy is selected. With this strategy, approximate

solutions to the MVFS(P) problem are determined.

Finally, the last chapter of the first part deals with the problem of minimizing the number

of k-modems necessary to cover a given polygon P , which is described in subsection 6.1. Note

that, to tackle this problem, a necessary and fundamental step is to determine the region

covered by a k-modem located at a point x on a polygon P , denoted by V isk(x, P). Unlike

the determination of V is(x, P), and as far as we know, no algorithm has been developed

so far to determine this region. Therefore, in first place, it is presented an algorithm to

calculate the k-modem visibility region of a k-modem placed on x ∈ P , for any k ∈ N0 (section

6.2). Then, in section 6.3, an approximation algorithm is developed in order to determine a

vertex k-modem set, whose cardinality approximates the minimal number of vertex k-modems

needed to cover a given polygon P . This approximation algorithm is a hybrid metaheuristic

technique that combines the genetic algorithms and simulated annealing metaheuristics. For

this problem, the approximation solutions were obtained for 2-modems and 4-modems on

monotone and non-monotone arbitrary polygons and orthogonal polygons (section 6.4).

The second part, Part II, is almost all devoted to the study of problems on orthogonal

polygons. In Chapter 7 a subclass of orthogonal polygons - the grid n-ogons - is addressed.

These polygons were defined by Tomás and Bajuelos [24, 124] and they appear to exhibit

interesting characteristics. Besides, they were used experimentally to evaluate approximation

methods for the resolution of some guarding problems [36, 37, 126]. In section 7.1 some def-

initions and known results related to them are briefly presented. Section 7.2 is devoted to

the study of new results related to this kind of polygons, mainly related to structural proper-

ties. In section 7.3, for some special classes of polygons, the optimal solution of the following

problems is determined: MVGS(P), where P is a Fat grid n-ogon, a Min-Area grid n-ogon

and a Spiral grid n-ogon and MHVS(P), where P is a Thin grid n-ogon. In Chapter 8 the

MHVS(P) and MHS(P) problems, where P is a spiral or a histogram polygon, are studied.

16 Introduction

Finally, general conclusions and future work are discussed in Chapter 9.

Some of the presented results were obtained in collaboration with other authors and they

have led to several publications and conference presentations. In particular, the material of

Chapter 3 appeared in [17]. The content of Chapter 4 was presented in [21, 22]. The subject

of Chapter 6 was presented in [23]. The content of Chapter 7 appeared in [16, 18, 19, 91–94]

and [20] is related to Chapter 8.

Part I

Approximation Strategies for

Visibility Problems

17

19

Introduction

This part of the dissertation is divided in five chapters. In the first chapter it is made a short

introduction to approximation methods. Each of the other chapters is dedicated to the study of

a visibility problem. The addressed problems are: the Maximum Hidden Vertex Set problem,

MHVS(P) (Chapter 3); the Minimum Vertex Guard Set problem, MVGS(P) (Chapter 4);

the Minimum Vertex Floodlight Set problem, MVFS(P) (Chapter 5); and Minimum Vertex

k-Router Set problem, MVkMS(P, k) (Chapter 6), where P is an arbitrary or an orthogonal

polygon. These four problems are NP-hard or it is strongly believed that they are NP-hard.

This means that finding exact and efficient methods to solve them is very unlikely. Thus, this

part of the dissertation is devoted to the study of approximation algorithms, mainly based

on the general metaheuristics simulated annealing and genetic algorithms, to tackle these

problems. In this way, following the first line of investigation proposed for problems with this

computational complexity (see Chapter 1).

The proposed algorithms were implemented in C/C++, using the MS Visual Studio

2005, on top of the Computational Geometric Algorithms Library (CGAL) 3.2.1 [2]. The

CGAL package mostly used was the 2D Regularized Boolean Set-Operations package [60]

and it was decided to use exact arithmetic (which is extremely slow), since the floating-point

arithmetic in spite of being faster than the exact arithmetic, leads to precision problems (see

Chapter 1). In the performed implementations, a special attention was given to the treatment

of degenerate cases that often are not treated in the theoretical papers. As an example, a

particular attention was given to the existence of three or more collinear points in a set of

points, since it is a situation that arises in orthogonal polygons very often.

The computational tests were performed on a PC featuring a Intel(R) Core (TM)2 CPU

6400 at 2.66 GHz and 1 GB of RAM. For each problem, extensive experiments were conducted

with the algorithms developed to tackle it. These experiments were performed on a large set

of randomly generated polygons, arbitrary and orthogonal. The arbitrary polygons were gen-

erated using the CGAL’s function random polygon 2. According to [69], the implementation

of this function is based on the method of eliminating self-intersections in a polygon by using

the so-called “2-opt” moves. Such a move eliminates an intersection between two edges by

reversing the order of the vertices between the edges. No more than O(n3) of these moves

are required to simplify a polygon defined on n points [86]. Intersecting edges are detected

using a simple sweep through the vertices and then one intersection is chosen at random to

eliminate after each sweep. Therefore, the worse-case running time is O(n4 log n). To gen-

erate orthogonal polygons it was used the polygon generator developed by Joseph O’Rourke

(personal communication 2002).

For each problem (and consequently, in each chapter) there is a section where it is studied

20

which of the developed approximation methods obtains the best solutions in a reasonable

time. However, the simple comparison of two or more values (e.g., averages, medians) might

be different according to the statistical distributions. So, it is necessary to perform a general

statistical study to ensure the maximum statistical power of the results, i.e., determining

whether the conclusions are meaningful and not just noise [10]. In order to obtain that, in

first place, it was applied the Kolmogorov-Smirnof test to check the data normality. Since,

in all performed studies the distribution of the data sets was found not to be normality

distributed, the statistical tests that were used then were the non-parametric. Since it was

intended to perform several independent group comparisons, it was used the Kruskal-Wallis

test. This test permits to ensure statistical difference in the results, with a higher statistical

power than ANOVA when data do not come from a normal population [90, 132]. When at

least a data sample is significantly different than the others, multiple comparison tests were

used to determine which pairs of results were significantly different, and which were not. A

significance level of 0.05 was used for all tests.

Chapter 2

Approximation Methods

In the forthcoming chapters approximate solutions are presented, metaheuristic solutions in-

cluded, for geometric optimization on visibility problems for which it is either known or

strongly believed they are NP-hard. Therefore, in this section it is presented a brief intro-

duction to metaheuristics and hybrid metaheuristics techniques.

2.1 Metaheuristics

A combinatorial optimization problem consists of 1: given a discrete, finite or countably

infinite, solution (or search) space S, where each element, called candidate solution, is an

admissible solution to the problem and an objective function f : S → R, determine x∗ ∈ S
such that f(x∗) ≤ f(x) ∀x ∈ S (minimization problem) or f(x∗) ≥ f(x) ∀x ∈ S (maximiza-

tion problem). In minimization problems, x∗ is called a globally minimal solution (or global

minimum) and in maximization problems, x∗ is called a globally maximal solution (or global

maximum). A global minimum/maximum is also called a globally optimal solution or simply

an optimal solution. The set of all globally optimal solutions is denoted by S∗.

Frequently, these combinatorial problems are easy to state but very difficult to solve.

Due to its practical importance, many algorithms have been developed to tackle them, which

can be classified as either exact algorithms or approximate algorithms. Exact algorithms

are guaranteed to find an optimal solution for every finite size instance of a combinatorial

optimization problem. Yet, many of the interesting and important combinatorial optimization

problems areNP-hard, that is, it is strongly believed that no polynomial time algorithm exists

to solve it to optimality. For a detailed study of computational complexity see Garey and

Johnson [61]. In the case of NP-hard problems, and in the worst case, exponential time is

necessary to find the optimal solution. Thus, for NP-hard problems, the performance of exact

algorithms is not satisfactory. In this way, for practical purposes, if optimal solutions cannot

1Other definitions are possible, which are equivalent to the one described here.

21

22 Approximation Methods

be obtained in a reasonable computational time, one of the possibilities to tackle the problem

is to sacrifice the guarantee of finding optimal solutions in exchange for getting good solutions

in a reasonable computational time. Consequently, the use of approximate algorithms to

solve combinatorial optimization problems has received more and more attention in the last

years. Approximate algorithms, often also called heuristic methods or simply heuristics, seek

to obtain “good” solutions, that is, near-optimal solutions at relatively low computational

cost.

According to Blum and Roli [25], among the basic heuristic methods, it is usual to dis-

tinguish between constructive methods and local search methods. Constructive algorithms

generate solutions by adding to an initially empty partial solution, components until a so-

lution is complete. The greedy heuristics are a well-known class of this type of heuristics,

characterized by taking always the best immediate, or local, solution while finding an an-

swer. Constructive algorithms are usually faster than local search heuristics, but frequently

they return worse solutions. Local search algorithms start from some initial solution and

iteratively they try to replace the current solution by a better solution in a properly defined

neighbourhood of the current solution. A neighbourhood is formally defined as [29]:

Definition 2.1 A neighbourhood structure is a function N : S → 2|S| that assigns to every

s ∈ S a set of neighbours N (s) ⊂ S. N (s) is called the neighbourhood of s.

Often, neighbourhood structures are implicitly defined by specifying the changes that

must be applied to a solution s in order to generate all its neighbours. The application of

such an operator that produces a neighbour s′ ∈ N (s) of a solution s is commonly called a

move. After defining a neighbour structure it is possible to define locally solutions.

A locally minimal solution (or local minimum) with respect to a neighbourhood structure

N is a solution x̂ such that f(x̂) ≤ f(y) ∀y ∈ N (x̂). If f(x̂) < f(y) ∀y ∈ N (x̂), x̂ is called a

strict locally minimal solution. A locally maximal solution (or local maximum) with respect to

a neighbourhood structure N is a solution x̂ such that f(x̂) ≥ f(y) ∀y ∈ N (x̂). In a similar

way, if f(x̂) > f(y) ∀y ∈ N (x̂), x̂ is called a strict locally maximal solution. A local minimum

or a local maximum is also called a locally optimal solution or a local optimum.

The most simple local search method works by iteratively improving a given solution x

by choosing a solution y from N (x), as long as possible. A general scheme of an iterative

minimization local search algorithm is illustrated in Algorithm 2.1. The weak point of this

method is that it strongly depends on the initial generated solution and it stops as soon as

it finds a local optimum. Thus, it often cannot find good locally optimal solutions. As a

consequence, its performance is usually quite unsatisfactory. A deterministic iterative mini-

mization local search algorithm partitions the search space S into basins of attraction of local

minima. The basins of attraction of local minimum x̂ ∈ S is the set of all solutions S∗ ⊂ S

Approximation Methods 23

for which the search terminates in x̂ when it starts in an element x ∈ S∗.

Algorithm 2.1 Iterative (minimization) local search algorithm

1. Generate an initial solution x ∈ S
2. repeat

3. Generate y ∈ N (x) ⊂ S
4. Evaluate δ = f(y)− f(x)

5. if δ < 0 then

6. x← y

7. end if

8. until f(x) ≤ f(y),∀y ∈ N (x)

A different type of approximation methods, which attempts to bypass these problems was

proposed. These methods try to combine basic heuristics in higher level framework, in order to

efficiently and effectively explore a solution space, and are usually called metaheuristics [29].

The term metaheuristic derives from the two Greek words heuristic and meta: heuristic de-

rives from the verb heuriskein, which means “to find”, while the suffix meta means “beyond,

in an upper level”. Since the metaheuristic concept is very general, it is very difficult to give

a precise definition of what a metaheuristic exactly is. However, an usually and accepted

definition is: “A metaheuristic is a set of algorithmic concepts that can be used to define

heuristic methods applicable to a wide set of different problems. In other words, a metaheuris-

tic can be seen as a general-purpose heuristic method designed to guide an underlying problem

specific heuristic (e.g., local search algorithm or constructive heuristic) toward promising re-

gions of the solution space containing high-quality solutions. A metaheuristic is therefore a

general algorithmic framework which can be applied to different optimization problems with

relatively few modifications to make them adapted to a specific problem” [44]. Examples of

metaheuristics include Ant Colony Optimization (ACO), Genetic Algorithms (GAs), Iterated

Local Search (ILS), Simulated Annealing (SA), and Tabu Search (TS).

There are two very important concepts in metaheuristics, called intensification and di-

versification. Intensification usually refers to the carefully and intensively search around a

good solution (that is, the exploitation of good solutions), while diversification refers to the

ability to guide the search to unvisited regions (that is, the exploration of the search space).

A good balance between these two goals is important because a search should intensively

explore areas of the search space with high quality solutions and move to unexplored areas of

the search space when necessary (see, e.g., [29, 87]).

It is usual to classify metaheuristics according to the number of solutions used at the

same time (for other classifications see, e.g., [25]). This classification divides metaheuristics

into trajectory methods and population-based methods. Trajectory methods are algorithms

24 Approximation Methods

that work on a single solution at any time; they share the property that the search process

describes a trajectory in the solution space. These methods include all metaheuristics that

are based on local search, such as simulated annealing search, tabu search and iterated local

search. Population-based metaheuristics, on the contrary, perform search processes which can

be described as the evolution of a set of solutions (as for example in genetic algorithms). This

classification allows a clear description of the algorithms. Currently, there is a trend to the

hybridization of methods in the direction of the integration of single point search algorithms

in population-based ones.

In this dissertation two metaheuristics are used: the simulated annealing metaheuristic

and the genetic algorithms metaheuristic; the first one is a trajectory method, while the second

one is a population-based method. Besides, the combination of these two metaheuristics

is performed resulting in hybrid metaheuristics. In subsections 2.1.1 and 2.1.2 the main

principles of simulated annealing and genetic algorithms metaheuristics are described (for a

detailed introduction to these and other metaheuristics see, for instance, [65]). In subsection

2.2 it is presented a brief overview on hybridization of metaheuristics.

2.1.1 Simulated Annealing

Simulated Annealing (SA) is usually known as being the oldest among the metaheuristics.

This strategy is based on the analogy between simulation of the annealing of solids and the

problem of solving large combinatorial optimization problems. Metropolis et al. [98] developed

a method, which simulates the evolution to thermal equilibrium of a solid for a fixed value

of the temperature. This inspired Kirkpatrick et al. [80] and, independently, Černý [130]

to develop the SA method as a (trajectory) local search algorithm to solve combinatorial

optimization problems. Without loss of generality, the description of the method is going

to be done assuming minimization problems. It is commonly said that SA is one of the first

algorithms that has an explicit strategy to escape from locally optimal solutions (see, e.g. [25]).

For that, SA introduces a control parameter T , designated by temperature, whose initial value

should be high and should decrease during the search process. The search process is done

according to the execution of several iterations of the algorithm until a termination condition

is achieved. The control parameter T allows, with a certain probability, moves to solutions

y ∈ S whose objective function (or cost function) values are worse than the objective function

value of the current solution x ∈ S, called uphill moves. This probability is usually called

acceptance function and it is evaluated according to (see, e.g., [29]):

p(T, x, y) = e−
δ
T , where δ = f(y)− f(x). (2.1)

By equation 2.1, we can see that the probability of accepting uphill moves is controlled

Approximation Methods 25

by two factors: T and δ = f(y)− f(x). On one hand, at a fixed δ, the lower T is, the lower

the probability of uphill moves. Thus, along the search process (i.e., along the algorithm iter-

ations) it is more difficult to accept uphill moves. On the other hand, at a fixed temperature,

the higher δ is, the lower the probability to accept a move from x to y. Note that, to equal

values of δ, the probability of accepting uphill moves is greater for high values of T . In the

limit case T =∞, any worsening in the objective function is accepted and, in the limit case

T = 0, any increase in the objective function is rejected and the algorithm would have the

normal scheme of an iterative local search algorithm. The basic outline of the SA algorithm

is illustrated in Algorithm 2.2.

Algorithm 2.2 Simulated Annealing Algorithm (for a minimization problem)

1. Generate an initial solution x ∈ S
2. Set the initial temperature T0

3. k ← 0

4. repeat

5. for i = 1 to N(Tk) do

6. Generate y ∈ N (x) ⊂ S
7. Evaluate δ = f(y)− f(x)

8. if δ < 0 then

9. x← y // y replaces x

10. else

11. x← y with probability p(Tk, x, y,) // see Equation 2.1

12. end if

13. end for

14. k ← k + 1

15. Decrease temperature Tk
16. until termination condition met

The algorithm starts by generating an initial solution x ∈ S, which can be randomly

or heuristically constructed, and by initializing the temperature value T0. Being N(Tk) the

number of iterations for temperature Tk, at each one a new solution y ∈ N (x) is randomly

generated. If y is better than x, then y is accepted as the current solution. Otherwise (the

move from x to y is an uphill move), y is accepted with a probability computed according

to Equation 2.1. Usually, the implementation of the acceptance function is done as follows:

a real number u is randomly generated, following the U(0, 1) distribution; if u ≤ p(T, x, y),

then the new solution y is accepted as the current solution, otherwise y is rejected. Finally,

the value of Tk is decreased at each algorithm iteration k. The algorithm continues this way

until the termination condition is met.

26 Approximation Methods

Regarding the search process, we can see that the algorithm is the result of two combined

strategies: random walk and iterative improvement [25]. In the first phase of the search

(random walk), the bias toward improvements is low and it is permitted the exploration of

the search space. However, this behaviour is slowly decreased, leading the search to converge

to a (local) minimum (iterative improvement).

Therefore, given an optimization problem it is necessary to adapt it to the SA scheme,

which is obtained by specifying the following parameters [30]:

1. Specific Parameters (of the problem):

• representation of the solution space;

• objective function;

• neighbourhood of a solution;

• initial solution.

2. Generic Parameters (of the SA strategy):

• initial temperature (T0);

• temperature decrement rule;

• number of iterations at each temperature (N(Tk));

• termination condition.

It is presented, next, some practical issues concerning the aforementioned parameters.

Specific Parameters

For a combinatorial optimization problem the solution space and the objective function

are already defined. Thus, depending on the problem, the representation of its admissible

solutions should be chosen in a way that it is easy to apply the SA strategy. Concerning the

objective function, the SA needs to calculate this function for each new generated solution. In

the interest of the overall computational efficiency, it is important that the evaluations of the

objective function should be performed efficiently, especially because in many applications this

evaluation is computationally intensive [110]. Even when the objective function is computed

efficiently, the large number of new solutions required by the SA method can consume a

vast amount of CPU time. According to [67], there are various techniques to speed-up this

evaluation. One of these techniques, called surrogate function swindle, approximates the

difference in the objective functions δ instead of calculating both f(x) and f(y). Sometimes

it is also possible to calculate f(y) from the cost of a current solution f(x) or, if it is very

expensive to determine the cost of a solution, a estimation of that cost can be obtained.

The neighbourhood of a solution must be done carefully because the solution generator

must, on one hand, introduce small random changes and, on the other hand, allow all admis-

sible solutions to be achieved. But, the generation mechanism is necessarily problem-specific

Approximation Methods 27

and it must be compatible with the chosen representation of the solutions. For combinatorial

problems, it is common to permute a small, randomly chosen, part of the solution [110].

The construction of the initial solution should be fast and, if possible, the initial solution

should be a “good” starting point. Often, the fastest way of producing an initial solution is

to generate it randomly. Another possibility is to adopt constructive heuristics such as greedy

heuristics (specific to the problem) [25,29].

Generic Parameters

This set of parameters is called, by some authors, annealing schedule or cooling schedule

(see, e.g., [3, 110]).

“The annealing schedule determines the degree of uphill movement permitted during the

search and is, thus, critical to the algorithm’s performance. The principle underlying the

choice of a suitable annealing schedule is easily stated - the initial temperature should be high

enough to “melt” the system completely and should be reduced towards its “freezing point”

as the search progresses - “but choosing an annealing schedule for practical purposes is still

something of a black art”” [110].

Annealing schedules can be grouped into two broad classes: static and dynamic schedules

(see, e.g., [3]). In a static cooling schedule the parameters are fixed, that is, they cannot be

changed during execution of the algorithm. In a dynamic cooling schedule the parameters

are adaptively changed during execution of the algorithm. As mentioned before, the generic

parameters are the initial temperature (T0), the temperature decrement rule, the number of

iterations at each temperature (N(Tk)) and the termination condition.

Initial temperature (T0)

In general, it might be said that one of the properties that must be verified by any search

method is that it should not be dependent of the initial solution. In this way, it would be

advisable that simulated annealing starts from a high initial temperature, with which it will

go through solutions different from the initial one (random walk). Nevertheless, it does not

seem suitable to consider, for T0, fixed values regardless of the problem. In this sense, the

literature advises to carry on different analysis to choose T0, since its value may depend, to a

large extent, on the problem to solve [30]. For instance, for the Minimum Vertex Guard

Set problem where the input is a n-vertex polygon, it could be considered:

1. an initial temperature that is dependent on the number of vertices of the polygon:

T0 = f(n), where n is the number of vertices of the polygon; or

2. a constant initial temperature: T0 = c, where c ∈ R+ is chosen from some previous

experimental tests.

28 Approximation Methods

Temperature decrement rule

The choice of an appropriate temperature decrement rule is crucial for the performance

of the algorithm. The temperature decrement rule defines the value of T at each algorithm

iteration k, Tk+1 = Q(Tk, k), where Q(Tk, k) is a function of the temperature and of the

algorithm iteration number [25].

One temperature decrement rule of great theoretical interest is the one that follows a

logarithmic law: Tk+1 = T0
log(1+k) , usually designated by Classical Simulated Annealing (CSA).

This logarithmic law guarantees the converge to an optimal solution [62]. Unfortunately, it

is not feasible in applications, because it is too slow for practical purposes. Its convergence

time is likely to exceed the time needed to find an optimal solution by exhaustive search.

Therefore, faster temperature decreases are adopted in applications. For instance, Szu and

Hartley [122] proposed a fast convergence, called Fast Simulated Annealing (FSA), using

the temperature decrement rule Tk+1 = T0
1+k , which was improved by Ingber [75] using the

temperature decrement rule Tk+1 = T0

ek
, called Very Fast Simulated Annealing (VFSA).

Yao [135] proposed a new temperature decrement rule Tk+1 = T0

exp(ek)
, designated by New

Simulate Annealing (NSA). However, this temperature decrease has the opposite drawback

of the CSA decrease, since it converges so fast that it does not do an “exhaustive” search of

the optimal solution.

Finally, according to many authors, among the different temperature decreases that

appear in the literature, one of the most used follows a geometric law: Tk+1 = αTk, where

α ∈ [0, 1].

Number of iterations at each temperature (N(Tk))

According to the literature, a constant number of iterations at each temperature is the

most used. Alternatively, the number of iterations can be dynamically changed. For example,

at high temperatures a large value of iterations can be used to explore the search space and,

at low temperatures, a smaller value of iterations can be used.

Termination condition

Based on various SA experiments for solving optimization problems, different types of

termination conditions are proposed in the literature. Some of them regard the value of the

temperature. Theoretically, the search process should stop when a frozen state is reached,

i.e., when Tk = 0. However, much before reaching this value, the probability e−
δ
T to accept a

move to a worse solution is practically null. As a result it is possible, in general, to finish the

search with a final temperature, Tf , greater than zero without quality loss in the solution.

Clearly, the lower the final temperature is, the closer the final solution will be to the optimum.

In this case, however, the response time of the algorithm increases considerably [30].

Another type of termination conditions considers the final temperature by fixing the

Approximation Methods 29

number of temperatures values to be used or the total number of solutions to be generated.

Another possible termination criteria is to halt the search when it ceases making progress.

Lack of progress can be defined in very different ways but a frequently basic definition is:

no improvement (i.e., no new best solution) registered in the last l consecutive values of

temperatures combined with the acceptance ratio of solutions falling below a given (small)

value ε [28, 110].

2.1.2 Genetic Algorithms

Genetic Algorithms (GAs) were proposed by Holland [70] and are population-based search

methods. They are a particular class of evolutionary algorithms that use techniques/concepts

inspired by evolutionary biology, such as, chromosomes, genes, selection and crossover also

known by recombination, to solve optimization problems. GAs are implemented as a computer

simulation in which a population of abstract representations of candidate solutions of an

optimization problem evolves toward better solutions. Each representation is called individual,

chromosome or genotype and a solution is called phenotype (see, e.g., [82]). The evolution

usually starts from an initial population of randomly generated individuals. These individuals

are evaluated with a function that indicates the adaptation degree of the individual to the

environment (in biological terms) or it is an indicator of the solution quality (in optimization

terms). From this initial situation several iterations are made in each of those a new population

is generated from the previous one, by applying the genetic operators selection, crossover and

mutation on the individuals (described later). Commonly, the algorithm terminates when

either a given number of generations was produced or a satisfactory fitness level was reached

for the population. The final population, if the algorithm converges properly, will be composed

of good individuals, the best of these is the solution achieved by the algorithm (see Figure

2.1). As in the previous subsection, the description of the method is done, without loss of

generality, assuming minimization problems.

Generation

of the initial

population

Population

evaluation

Termination

condition

Selection

Crossover

Mutation

Best

individuals

Yes

Generate

new population

No

Solution

Figure 2.1: General scheme of a genetic algorithm.

30 Approximation Methods

GAs have numerous variants due to different parametrization settings and implementa-

tions. The structure of a basic Genetic Algorithm (GA) is illustrated in Algorithm 2.3.

Algorithm 2.3 Basic GA
1. t← 0

2. Initialize P (t)

3. while termination condition not met do

4. Evaluate P (t)

5. Selection on P (t)

6. Recombine P (t)

7. Mutate P (t)

8. t← t+ 1

9. Generate P (t) from P (t− 1)

10. end while

Taking into account the above, a genetic algorithm has the following components/param-

eters [30]:

1. Genetic representation of the candidate solutions to the problem - Encoding

2. Creation of an initial population of admissible solutions - Initial population.

3. Definition of a function to evaluate the individuals and make the effect of natural selec-

tion, by sorting the solutions according to their “strength” - Fitness function.

4. Genetic operators to change the composition of the solutions - Selection, Crossover, and

Mutation.

5. Definition of various parameters used by the genetic algorithm (e.g., population size,

probability of the genetic operators, population evaluation, population generation, ter-

mination condition).

Some practical issues concerning these components will follow.

Encoding

It is necessary to define an abstract genetic representation to the admissible solutions

of the problem. As said before, these representations are called individuals, chromosomes or

genotypes, whereas the solutions that are encoded by individuals are called phenotypes. This

is to differentiate between the representation of solutions and solutions themselves, what is one

of the distinctive features of the GA approach. The most used representations of solutions are

strings made up from an alphabet A. The elements of these strings are called genes. According

to [112], the representation of the solutions by binary strings (A = {0, 1}) is in some sense

the best one and, although this idea has been changed, it is still frequently convenient from a

mathematical point of view. Although in many applications other representations are possible

Approximation Methods 31

and used, it is the binary case which is assumed in the sequel.

Initial population

The population for a given generation consists of a set of individuals. The major questions

to consider are firstly the size of the population and, secondly, the method by which the

individuals are chosen [112]. Concerning the size of the population, the idea is to get a

compromise between efficiency and effectiveness. The total number of individuals in each

population has to be large enough to ensure sufficient room for exploring the search space

effectively, but not so much that might damage the efficiency of the algorithm in a way

that no solution is achieved in a reasonable amount of time. Most GAs algorithms work

with populations of fixed size having in consideration this compromise. Concerning how the

population is chosen, according to [112], it is nearly almost assumed that initialization should

be done randomly. However, some works showed that including high quality solutions in the

initial population can help a GA to find better solutions faster than a randomly generated

initial population.

Fitness Function

The fitness function should help to make the selection of the best individuals to be

reproduced (i.e., to be recombined) and it should assign higher values to the solutions closer to

the optimal one(s). The value of the fitness function can be related to the value of the objective

function or some other kind of quality measure [25]. The evaluation of the fitness function for

complex problems is often the most expensive part of GAs. In real world problems one single

function evaluation may require several hours, or even several days, of complete simulation.

In this case, it may be necessary to replace an exact evaluation for an approximated fitness

that is computationally efficient.

Genetic operators (selection, crossover, and mutation)

The selection operator should choose the best individuals to be reproduced. This operator

does not produce new individuals. It determines which are the individuals that will leave

offspring, and in what amount, for the next generation [30]. Many selection methods have

been proposed to accomplish this idea, including roulette-wheel selection, stochastic universal

selection, ranking selection and tournament selection. Since the roulette-wheel selection and

the tournament selection are the most used, they are described below. For details about other

selection methods the reader must refer to [76,112,133], for instance.

The basic idea of selection is that it should base their decisions on the fitness of the indi-

viduals. The original scheme, and the most commonly known, is the roulette-wheel method.

In this method the individuals are given a probability of being selected that is proportional to

their fitness. Then, based on these probabilities, k individuals are randomly chosen to be the

32 Approximation Methods

reproduction candidates (i.e, parents in crossover) [112]. The roulette wheel selection scheme

can be implemented as follows [76].

1. Evaluate the fitness, fi , of each individual i in the population.

2. Compute the probability (slot size), pi , of selecting each member of the population

pi = fi∑M
j=1 fj

, where M is the population size.

3. Calculate the cumulative probability, qi , for each individual: qi =
∑i

j=1 pj .

4. Generate a uniform random number, r ∈ (0, 1]. If r < q1 then select the first individual,

x1; else select the individual xi such that qi − 1 < r ≤ qi.
5. Repeat step 4 k times to create k reproduction candidates (i.e., k parents to be used in

crossover).

To illustrate the method, imagine a roulette wheel where all the individuals of the pop-

ulation are placed. To each individual, a roulette wheel section is assigned, whose size is

proportional to the individual fitness. The bigger the fitness value, the larger the section size.

To select an individual, the wheel is spined and it stops in a section. The individual that is

assigned to that section is chosen to be a parent in the crossover. This procedure is repeated

until k individuals have been selected [76,133].

Table 2.1 and Figure 2.2 provide a simple example of the roulette wheel selection method.

In this example, there is a population with five individuals (M = 5) with fitness values

{32, 9, 17, 17, 25}, respectively. If, for example, the numbers 0.13 and 0.68 are randomly

generated, the individuals 1 and 4 are selected.

Individual # 1 2 3 4 5

Fitness, fi 32 9 17 17 25

Probability, pi 0.32 0.09 0.17 0.17 0.25

Cumulative probability, qi 0.32 0.41 0.58 0.75 1.00

Table 2.1: Example of the roulette wheel selection method.

0.00

0.75

0.58 0.41

0.32

1

2

3

4

5

Figure 2.2: Example of the roulette wheel selection method (from [112]).

Another used selection scheme is the tournament selection (according to [133] this is one

of the most popular and effective selection schemes). In tournament selection, m individuals

Approximation Methods 33

are randomly picked from the population and compared with each other in a tournament.

The individual with the highest fitness value in the group of the m individuals is selected

as the parent. The most widely used value of m is 2 [76]. Using this selection scheme, k

tournaments are required to choose k individuals.

After selection, the selected individuals are recombined (or crossed over) to create new,

hopefully better individuals, called children. Crossover is the recombination of two parents

to produce new individuals (it is also possible to recombine more than two parents, but is

more unusual) [25]. It operates on selected genes from parent individuals and creates new

child individuals.

The crossover of two selected individuals is simply a matter of replacing some of the genes

in one parent for the corresponding genes of the other. In the GAs literature, many crossover

methods have been proposed, but several of them are problem-specific. In this section a few

generic (problem independent) crossover operators, such as single point crossover or one-point

crossover, two-point crossover and uniform crossover are introduced.

Suppose that there are 2 parents A and B, each one having 6 genes, that is, A =

a0a1a2a3a4a5 and B = b0b1b2b3b4b5, with ai, bi ∈ {0, 1}. In single point crossover, a randomly

selected position (gene) of the two parents, called crossover point, is chosen and the parents

are split at that crossover point. Finally, two children are created by exchanging the parents

tails. Assuming that the crossover point is 3, the children are the strings C1 = a0a1a2a3b4b5

and C2 = b0b1b2b3a4a5. In two-point crossover, two crossover points are randomly selected

and the fragment between these two points is exchanged with the corresponding fragment

of the second individual. Assuming that the crossover points are 1 and 3, the children are

C1 = a0a1b2b3a4a5 and C2 = b0b1a2a3b4b5. A m-point crossover, with m > 1, can be defined

in a similar way. Notice that, from the two generated children we can consider only one.

Uniform crossover is an operator that decides (with a given probability) which parent

will contribute to each of the gene values of the child chromosomes. This allows the parent

chromosomes to be mixed at the gene level rather than the segment level (as in the case of

single and two-point crossover). If the probability is 50%, approximately half of the genes of

the child are inherited from one parent and the other half from the other.

Finally, according to [112], one of the keys to good performance is to maintain the

diversity of the population as long as possible. A popular technique to achieve this goal is

not to allow children that are merely clones of the parents (i.e., copies of the parents). The

disadvantage of this technique is the need to compare each parent with the new children,

what has computational efforts. However, some steps can be performed to reduce the chance

of cloning before the children are generated. For example, with single point crossover, the

two strings 1101001 and 1100010 will only generate clones if the crossover point is any of the

34 Approximation Methods

first three positions. So, before applying crossover, the selected parents should be examined

to find suitable crossover points. This requires to compute an “exclusive-OR” (XOR) string

between the parents so that only positions between the outermost 1s of the XOR string should

be considered as crossover points. In the example above, the XOR string is 0001011 and, as

previously stated, only the crossover points 3, 4 and 5 will give rise to a different string.

To conclude, it is necessary to say that the crossover does not occur always, it only

occurs with a certain probability, pc. The value of pc usually is set experimentally and it has,

in general, a high value.

Finally, The mutation operator causes self-adaptation of individuals. In a binary rep-

resentation, the action of mutation is relatively simple. It merely flips a randomly selected

binary digit (or each) from zero to one or vice versa, with a certain probability pm [112]. The

value of pm is usually set experimentally and should generally be a fairly low value.

It is often suggested that in GAs the simplest mechanism to diversify the population,

and to ensure that it is possible to explore the entire search space, is the mutation opera-

tor. As stated above, the simple form of a mutation operator just performs a small random

perturbation of an individual, introducing a kind of “noise” (see, e.g., [25]).

Several authors have suggested some adaptive mutations, for example, the use of different

pm values at different gene positions and the variation of pm values according to the diversity

in the population (measured in terms of the fitness variation).

Population evaluation

The evaluation of a population, i.e., the population fitness, measures the improvement of

the genetic algorithm [78]. There are several ways to calculate it, an usual one is to consider the

minimum value of the fitness function when applied to all individuals of the population [30],

that is, designating the population fitness by F (P (t)),

F (P (t)) = min{f(x1), f(x2), . . . , f(xM)},

where f denotes the fitness function and M the population size.

Population generation

After the new offspring solutions (children) are created, using crossover and mutation,

there is the need to place them into the parental population. It is expected that these children

are among the fittest ones in the population, since the parent individuals have already been

selected according to their fitness. In this way, it is expected that the population will grad-

ually, on average, increase its fitness. Some of the most common replacement or population

generation techniques are outlined below (it was adopted the overview given by Reeves [112],

which is, in our opinion, a good overview).

Approximation Methods 35

The original population generation is a generational approach, in which selection, crossover

and mutation are applied to a population with M individuals until a new set of M individuals

are generated. This set became the new population. Subsequently, the elitist and population

overlaps approaches were introduced. The first one ensures the survival of the best individ-

ual obtained so far, by preserving it and replacing the remaining (M − 1) individuals with

new strings. In the second one, a fraction G, called the generation gap, of the population

is replaced at each generation. Finally, the well-known steady-state reproduction has been

proposed, in which only one new (or sometimes two) individual is generated at each iteration.

In this case it is necessary to select the individuals of the population to be deleted. Some

GAs assume that parents are replaced by their children, others delete the worst member of

the population, and, finally, another approach deletes according to the chromosome “age”.

Termination condition

Like the SA metaheuristic, GAs do not stop as soon as they find a local optimum.

Theoretically these algorithms can run for ever. In this way, a termination condition is needed

in practice. Common termination conditions are to set a limit on the number of generations

or on the computer clock time. Another criteria, related to the first one, is to track the

population fitness and to stop, for example, if, in a sufficiently large number of generations,

this fitness has not changed, since it can be assumed that the solution is close to optimal [30].

Finally, to conclude about GAs, it is necessary to say that they often have to deal with

inadmissible individuals. For example, admissible individuals can be recombined and the new

generated individual(s) might be inadmissible. There are basically three different ways to

handle with inadmissible individuals. The first one is to reject them, the second one is to

penalize them in the fitness function and the third possibility consists of trying to repair them

(see, e.g., [25]).

2.2 Hybrid Metaheuristics

Along the last years it became evident that the concentration on a single metaheuristic is very

restrictive for advancing when tackling both academic and practical optimization problems.

Many examples have showed that different hybridid metaheuristics have provided powerful

search algorithms and successful applications, see e.g. [25, 29, 123]. Although there is not a

precise definition of the term hybrid metaheuristic, in this work it was adopted the definition

in the broad sense of integration of a metaheuristic related concept with other techniques

(possibly other metaheuristics). According to Blum and Roli [25] three different types of

hybrid metaheuristics can be distinguished. In the first one there is exchange of information

among several optimization techniques, the second one consists of integrating metaheuristic

with exact methods and in the third one components from one metaheuristic are included into

36 Approximation Methods

another metaheuristic. The first type of hybridization is related to cooperative and parallel

search, which typically consists of parallel implementations of metaheuristics, the second type

is related to the combination of metaheuristics with techniques which are typical of other fields,

such as operations research and artificial intelligence. Since the main goal of this chapter is

to provide an overview of the core ideas and strategies of metaheuristics, the third type of

hybridization will be briefly described. Readers interested in this and in the other types of

hybridizations are referred to, e.g., [25, 29,87,123].

Concerning the third type of hybridization, a well-known way of hybridization is the use

of trajectory methods into population-based techniques. Indeed, the most successful applica-

tions of population-based methods make use of local search procedures. The reason for that

becomes clear when the strong points of population-based methods and the trajectory meth-

ods are analyzed. Remember that there are two main, complementary, forces (concepts) that

determine the behaviour of a metaheuristic, intensification (exploitation) and diversification

(exploration). Diversification ensures that many and different regions of the search space are

“visited”, whereas intensification guarantees a carefully and intensively search within those

regions, allowing to obtain high quality solutions. To guarantee an efficiently exploration

of a search space there must be an appropriate balance between these two concepts. While

all metaheuristics are driven by these two forces, some of them have a clear tendency to

intensification and others to diversification.

A natural way to ensure the exploration of the search space is to start the search from

multiple solutions. Since population-based metaheuristics deal with a set of solutions rather

than with a single solution, they provide an intrinsic and natural way for exploring the search

space. Another way to provide diversification is to generate new individuals in “unvisited”

regions, which is also done by this type of metaheuristics by means of the application of

certain operators to the population. For instance, recombining solutions to obtain new ones

enable guided steps in the search space. These steps are generally larger than the ones made

by trajectory methods, because a solution resulting from a recombination usually differs more

from the parents than a solution resulting from a predecessor solution, obtained by applying a

move in a trajectory method. Although trajectory methods can also perform large steps, unlike

the previous ones, these steps are not usually guided. It can be said that they are “blind”.

From this brief overview it can be said that the main driven force of population-based methods

is diversification, which allows to find promising areas in the search space. Concerning the

trajectory methods, their strength is found in the way they exploit a promising region in the

search space. With these methods a promising area is searched in a more structured way than

with population-based strategies, because their driving component is the local search. Thus,

the danger of being close to good solutions and “lose” them is lower than in the population-

based methods.

Approximation Methods 37

In summary, population-based methods are better in identifying promising areas on vast

and complex search spaces, whereas trajectory methods are better in exploiting those promis-

ing areas. In other words, population-based metaheuristics are mainly guided by diversifi-

cation, while intensification guides trajectory methods. Thus, the idea of combining these

two complementary forces, diversification and intensification, is a good reason to hybridize

population-based and trajectory metaheuristics and seek to incorporate the strengths and

eliminate weaknesses of both types of methods [89].

There are many ways to use trajectory methods in population based techniques. For

example, when GAs are used to solve an optimization problem, instead of using blind genetic

operators acting regardless the fitness of the original individual, it can be used a trajectory

method that considers an individual as its initial solution and then replaces the original

individual by the improved one. This trajectory method can be, for instance, “placed” between

two standard genetic operators or can replace a standard genetic operator (see Figure 2.3).

Generation

of the initial

population

Population

evaluation

Termination

condition

Selection

Crossover

SA

Generate

new population

No

Mutation

Yes
Best

individuals

Solution

(a)

Generation

of the initial

population

Population

evaluation

Termination

condition

Selection

Crossover

SA

Generate

new population

No

Yes
Best

individuals

Solution

(b)

Figure 2.3: (a) SA is an additional genetic operator; (b) SA replaces the mutation operator.

Another popular way to use trajectory methods in population based techniques is to

apply these methods one after another, each one using the output of the previous one as its

own input, acting in a pipeline fashion. For example, the typical evolution of a GA is that,

after a certain amount of time, the population is quite uniform, the fitness of the population

is no longer decreasing and the chances to produce better individuals is very low. In other

words, the search process has been trapped in a basin of attraction from which the probability

to escape is very low. It is interesting to exploit this basin of attraction in order to find its

optimal point. As stated before, exploitation is the main strength of trajectory methods, so

it is more efficient to use these methods, for example, iterative local search or SA, to perform

this exploitation (see Figure 2.4 (a)). It is also possible to use a trajectory method, such as

SA, to generate a “good” initial population for GAs (see Figure 2.4 (b)). Another possibility

is to use SA to improve a population obtained by a GA (see Figure 2.4 (c)).

38 Approximation Methods

GA
Population

to exploit

Iterative local

search

Solution

(a)

GA

SA
Initial

Population

Solution

(b)

SA

GA
Population

to improve

Solution

(c)

Figure 2.4: Three different ways to use trajectory methods in population based techniques in

a pipeline fashion.

Here only some examples of combinations of population-based and trajectory methods

were presented. The interested readers on further combinations are referred to 0sman and

Laporte review [105], which contains more than 50 references, or to [38] that not only present

hybridizations of SA and GAs metaheuristics, but also have various references to other works

that deal with the hybridization of SA and GAs metaheuristics.

Note that, as examples for the hybridizations of population-based and trajectory meth-

ods, we considered the the GAs and SA metaheuristics because these are the ones used in this

work and whose parameters were described in section 2.1.

Chapter 3

Maximum Hidden Vertex Set

Problem

This chapter focuses on hidden problems. These problems deal with finding the maximum

number of points on a given geometric configuration, such that no two of these points see each

other. In this class of visibility problems, if the input is a polygon P , there are two problems:

the Maximum Hidden Set problem and the Maximum Hidden Vertex Set problem [50].

The Maximum Hidden Set problem asks for a set S of maximum cardinality of points in the

interior or on the boundary of a given polygon, such that no two points of S see each other.

The Maximum Hidden Vertex Set problem asks for a set S of maximum cardinality of

vertices of a given polygon, such that no two vertices of S see each other. Shermer [117]

proved that both problems are NP-hard both on arbitrary and orthogonal polygons. In this

chapter, the Maximum Hidden Vertex Set problem, MHVS(P), is studied.

The chapter is divided in five sections. In the first one, section 3.1, the problem is

described and formalized. In section 3.2 four approximation algorithms to determine approx-

imate solutions to the problem are presented. The first two are greedy strategies designed

specifically to solve the MHVS(P) problem (subsection 3.2.1) and the other two algorithms

are based on the simulated annealing and genetic algorithms metaheuristics (subsections 3.2.2

and 3.2.3, respectively). Since the optimal solution for the MHVS(P) problem is unknown,

in section 3.3 it is developed a method to determine an upper bound for it. This method

allows to get the performance ratio of the developed approximation algorithms. In section

3.4 are described the computational experiments made over a large set of randomly generated

polygons (arbitrary and orthogonal). In section 3.5 some conclusions are presented.

Let, finally, mention that some of the results appearing in this chapter have been pub-

lished in [17].

39

40 Maximum Hidden Vertex Set Problem

3.1 Problem Description

Definition 3.1 Let P be a polygon. A hidden set for P is set of points on P such that no

two points of the set are visible to each other. That is, a hidden set for P is a set S such that

S ⊂ P and ∀p, q ∈ S, p 6= q ⇒ [pq] ∩ P 6= [pq].

An element of a hidden set is designated by hidden point.

Definition 3.2 Let P be a polygon. A hidden vertex set for P is a hidden set S for P

such that each element of S is a vertex of P . A hidden vertex set for P is denoted by H and

an element of H is designated by hidden vertex.

Shermer [117] proved that on arbitrary and orthogonal polygons, with n vertices, the

size of a hidden vertex set of maximum cardinality can be as large as, but not exceed, dn2 e
and n−2

2 , respectively. These tight bounds can be achieved on triangular saw polygons and

on staircase polygons, respectively (see Figure 3.1).

(a) (b)

Figure 3.1: (a) Triangular saw polygons; (b) Staircase polygons.

But although it is possible to hide the above established number of vertices on some

polygons, for many others these numbers are clearly too large. This reasoning justifies the al-

gorithmic Maximum Hidden Vertex Set problem, which formally is denoted by MHVS(P)

and can be stated as follows:

MHVS(P)

Input: A polygon P with n vertices.

Question: What is the maximum number of hidden vertices on P?

Shermer proved that this problem is NP-hard both on arbitrary and orthogonal polygons

[117]. Thus, in this work, approximation methods were developed to tackle it. These methods

are described in the next section.

Maximum Hidden Vertex Set Problem 41

3.2 Approximation Methods

Four approximation algorithms were designed to determine a hidden vertex set H, whose

cardinality approximates the maximal number of hidden vertices on given polygon P . The

first two, designated by M1 and M2, are greedy algorithms. The other two, called M3 and M4,

are based on the general metaheuristics Simulated Annealing (SA) and Genetic Algorithms

(GAs), respectively.

3.2.1 Greedy Strategies

A natural approach to find a hidden vertex set H is to do so in a greedy way, that is: add

hidden vertices one by one until H (which initially is empty) is achieved, selecting at each

step a hidden vertex from the set of vertices of P , according to some rule. Two different

rules were applied to select the hidden vertices. Therefore, there are two different greedy

algorithms: M1 and M2. Below are defined some concepts which will be necessary to explain

these algorithms.

Definition 3.3 Being vi a vertex of a polygon P , a sub-polygon (region) of P whose points

are not seen by vi is called hidden region of vi. The set of all hidden regions of vi is denoted

by HRi. That is,

HRi = P \V is(vi, P) = {HR1
i , . . . ,HR

k
i },

where HRji , with j ∈ {1, . . . , k} is a hidden region of vi (see Figure 3.2).

v
0

v
18

v
17

v
16

v
9

v
7

v
6

v
1

v
8

v
10

v
11

v
14

v
13 v

12

v
19

1

2
HR

2

2
HR

v
5

v
4

v
3

v
2

v
15

Vis v ,P(
2

)

(a)

Vis v ,P(
5

)

1

5
HR

2

5
HR

3

5
HR

4

5
HR

v
0

v
18

v
17

v
16

v
9

v
7

v
6

v
5

v
4

v
3

v
2

v
8

v
10

v
11

v
15

v
14

v
13 v

12

v
19

v
1

(b)

Figure 3.2: A 20-vertex polygon and (a) V is(v2, P) and HR2 = {HR1
2,HR2

2}; (b) V is(v5, P)

and HR5 = {HR1
5,HR2

5,HR3
5,HR4

5}.

A graph G = (V,E) consists of a finite, nonempty, set V and a set E whose elements are

subsets of V of size 2, that is, {u, v}, where u, v ∈ V . The elements of V are called vertices

or nodes and the elements of E are called edges. An edge {u, v} can also be denoted by uv.

Two nodes u and v are called adjacent if uv ∈ E.

42 Maximum Hidden Vertex Set Problem

Definition 3.4 The visibility graph of a polygon P is defined as: VG(P) = (V,E), where

V = {v | v is a vertex of P} and E = {uv | the vertices u and v are visible on P} [119]. Fig-

ure 3.3 illustrates a polygon and its visibility graph.

Figure 3.3: A 10-vertex polygon and its visibility graph.

Now, the description of the two methods, M1 and M2, will follow.

Method M1. The rule that gives rise to method M1 is based on the hidden region concept

(definition 3.3). Based on some experiments, it was observed that, in most cases, the convex

vertices are those that have more hidden regions. Therefore, convex vertices are selected

one by one, according to the cardinality of its hidden region set and the area of its visibility

polygon. In this way, the set H is built. See Algorithm 3.1 for a complete description of

method M1.

Algorithm 3.1 Determining H from the hidden regions (method M1)

Input: A polygon P with n vertices and VG(P)

Output: A hidden vertex set, H

1. H ← ∅
2. Vconv ← {vi ∈ VP | vi is convex}
3. for each vi ∈ Vconv do

4. determine V is(vi, P) and |HRi|
5. end for

6. while Vconv 6= ∅ do

7. Choose vi from Vconv with more hidden regions; and, in the event of a tie, choose the

one whose the area of V is(vi) is smaller

8. H ← H ∪ {vi}
9. Delete vi (and all vertices seen by vi) from Vconv

10. end while

11. return H

In the algorithm described above, the calculating of VG(P) is done as a pre-processing

step and is made according to the algorithm developed by Hershberger [68] of time complexity

O(n2). The calculating of V is(vi, P) is made according to the linear algorithm of Lee [85].

Maximum Hidden Vertex Set Problem 43

Method M2. The second rule is based on the number of vertices seen by each vertex. Thus,

the method M2 is similar to M1. The main differences are: in step 2, where it is considered

the set of all vertices of P , VP , instead of the set of convex vertices; and in step 7, where

instead of selecting the convex vertex that has more hidden regions, is chosen the vertex that

sees less vertices.

3.2.2 Simulated Annealing Strategy

As stated in Chapter 2, subsection 2.1.1, to solve an optimization problem with the SA

metaheuristic it is necessary to identify the following parameters: 1. Specific Parameters

(of the problem): solution space, objective function, neighbourhood of each solution and initial

solution; 2. Generic Parameters (of the annealing strategy): initial temperature (T0),

temperature decrement rule, number of iterations at each temperature (N(Tk)) and termination

condition. Below, are described how these parameters were defined to suit the MHVS(P)

problem.

1. Specific Parameters

Solution space. The solution space, set S, to the MHVS(P) problem is the set of all hidden

vertex sets for P . Therefore, S is finite and can be represented by S = {S1, S2, . . . , Sm},
where Si = vi0v

i
1 . . . v

i
n−1 for i = 1, . . . ,m. In this way, each element of S (i.e., each candidate

solution), Si, is represented by a chain with length n, where vij , with j ∈ {0, . . . , n− 1},
represents the vertex vj ∈ VP and its value is 0 or 1. If vij = 1 then the vertex vj is marked

as a hidden vertex; otherwise (vij = 0) the vertex vj is marked as not hidden. In order to

illustrate these notions an example is presented in Figure 3.4.

v
0

v
18

v
17

v
16

v
9

v
7

v
6

v
5

v
4

v
3

v
2

v
1

v
8

v
10

v
11

v
15

v
14

v
13 v

12

v
19

1 0 0 0 1 0 1 0 0 1 0 1 0 01 0 0 0 0 1

i

v
0

i

v
1

i

v
2

i

v
19

i
S

Figure 3.4: An element Si ∈ S (for a 20-vertex polygon) and its representation. Red dots

represent hidden vertices.

44 Maximum Hidden Vertex Set Problem

Objective function. The objective function f : S → N assigns to each element of S a

natural value. For each Si ∈ S, f is defined by f(Si) =
∑n−1

j=0 v
i
j . In this way, f(Si) is equal

to the cardinality of the hidden vertex set represented by the chain Si.

Neighbourhood of each solution. According to SA, for each candidate solution Si ∈ S,

an element Sj ∈ S, called neighbour of Si, must be obtained in order to be analyzed in the

next iteration. In our case, given Si = vi0, . . . , v
i
n−1, a natural number t ∈ [0, n−1] is randomly

generated (following a uniformly distribution) and then if:

• vit = 1 then vjt is set to 0 (that is, vjt = 0) and this new solution is accepted with a

probability because it is a worse solution.

• vit = 0 then vjt is set to 1 (that is, vjt = 1). If this new solution is an admissible

(or valid) solution, then it is accepted since the solution was improved; else, in the

developed algorithm, the obtained solution is repaired (or validated) and it is accepted

with a probability.

The validation process is done in the following way: all hidden vertices are marked as

not hidden if vt sees them, in other words, if vjk = 1 and vt sees vk then the value of vjk is

changed to 0. Note that, this validation process always worsen the solution that is why the

new solution is accepted with a probability. For example, suppose that we want to obtain

a neighbour of the solution Si illustrated in Figure 3.4. Suppose, also, that the randomly

generate number is t = 16. The resulting neighbour Sj is invalid because the vertex v16 is

seen by the vertices v0, v2 and v15. Thus, in the validation process the vertices v0, v2 and v15

are marked as not hidden (see Figure 3.5, for illustration).

j

v
16

j

v
18

j

v
12

j

v
9

1 0 0 0 0 0 0 0 0 0 0 0 1 0 01 1 1 1 1

v
0

v
0

v
18

v
18

v
16

v
16

v
9

v
9

v
2

v
2

v
15

v
15

v
12

v
12

0 0 0 0 0 0 0 0 0 0 0 0 1 0 00 1 1 0 1

Validation

Invalid Neighbour Valid Neighbour

j
S

j
S

j

v
15

j

v
16

j

v
18

j

v
12

j

v
9

j

v
2

j

v
0

Figure 3.5: Solution Validation. Red dots represent hidden vertices.

Initial solution. The initial solution that the SA strategy needs to tackle the MHVS(P)

problem is an element of S, which is designated by S0, and is the first solution to be analyzed.

Maximum Hidden Vertex Set Problem 45

In the developed algorithm, it was considered S0 = 10 . . . 0, that is, the vertex v0 is marked

as hidden and the remainder are labelled as not hidden.

2. Generic Parameters

Initial temperature (T0). Following the idea described in Chapter 2, subsection 2.1.1, a

comparative study has been performed taking into account two different types of T0:

1. An initial temperature that depends on the number of vertices of the polygon P , i.e.,

T0 = f(n). In the conducted study it was considered T0 = n;

2. A constant initial temperature, i.e., T0 = c, with c ∈ R+. In the performed study it was

chosen T0 = 1000.

Temperature decrement rule. Remember that the value of the temperature at each

iteration k, Tk, is established by the temperature decrement rule. An analysis was made on

three different types of rules (see Chapter 2, subsection 2.1.1):

1. Tk+1 = T0
1+k (Fast Simulated Annealing (FSA) decrease);

2. Tk+1 = T0

ek
(Very Fast Simulated Annealing (VFSA) decrease) and

3. Tk+1 = αTk, where 0 < α < 1 (Geometric decrease). In the performed study it was

chosen α = 0.9.

Number of iterations at each temperature (N(Tk)). In the developed algorithm it was

considered N(Tk) = dTke, this ensures that there are more iterations while the temperatures

are high, when the solutions are still far from optimal.

Termination condition. The chosen termination condition consists of finishing the search

when the temperature is less than or equal to 0.005, i.e, Tf = 0.005. Clearly for lower tem-

peratures the obtained solution will be closer to the optimum, but the response time of the

algorithm will increase considerably.

3.2.3 Genetic Algorithms Strategy

As stated in Chapter 2, subsection 2.1.2, to solve an optimization problem with the GA

metaheuristic it is necessary to specify the following parameters: encoding, initial population,

fitness function, genetic operators (selection, crossover and mutation) and the value of various

parameters used by the genetic algorithm (e.g., population size, probability of the genetic

operators, population evaluation, population generation, termination condition). Next, it is

explained how these parameters were delineated to suit the MHVS(P) problem.

46 Maximum Hidden Vertex Set Problem

Encoding. In the developed algorithm an individual I is represented by a chain of 0’s and

1’s, with length n, i.e., I = g0g1 . . . gn−1. Each gene represents a vertex of the polygon, that

is, the ith gene gi represents the vertex vi ∈ VP , and its value is 0 or 1. If gi = 1 then the

vertex vi is marked as a hidden vertex; otherwise (gi = 0) the vertex vi is marked as not

hidden (see Figure 3.6). Note that, the genetic representation of an individual I is similar to

the representation of a candidate solution Si in the SA strategy.

0 0 0 1 1 1 1 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01I

g
0

g
3

g
5

g
7

g
9

g
11

g
18

g
24

v
3

v
11

v
5

v
7

v
9

v
18

Figure 3.6: An individual I (for a 25-vertex polygon) and its representation. Red dots repre-

sent hidden vertices.

Initial population. It has been taken as the population size the number of vertices of the

polygon, linking in this way the problem input with the metaheuristic components. Thus,

the population for the generation t is represented by: P (t) = {It0, It1, . . . , Itn−1}, where each Iti
represents an individual belonging to the population P (t) and n is the number of vertices of

the polygon P .

Remember that an individual represents a candidate solution to the MHVS(P) problem,

i.e., each individual must be a hidden vertex set. Thus, to create the initial population, P (0),

each of the n individuals is generated in the following way: ∀i ∈ {0, . . . , n− 1}, the vertex vi
and all the vertices on P that form with vi a hidden vertex set are marked as hidden. See

Algorithm 3.2, for illustration.

Algorithm 3.2 Generation of I0
i , i ∈ {0, . . . , n− 1}

1. gi ← 1 and gj ← 0, ∀j 6= i // H = {vi}
2. for j = 0 to n− 1 do

3. if vj ∪H is a hidden vertex set then

4. gj ← 1 // H = H ∪ {vj}
5. end if

6. end for

For example, in Figure 3.7 it is illustrated a polygon with 10 vertices and its initial

Maximum Hidden Vertex Set Problem 47

population, P (0) = {I0
0 , I

0
1 , . . . , I

0
9}.

v
0

v
9

v
7

v
6

v
5

v
4

v
3

v
2

v
1

v
8

Individuals of (0)Pop

Figure 3.7: Polygon with n = 10 and its initial population.

Fitness function. Remember that the fitness function should help to make the selection of

the best individuals to be reproduced, so that it should assign higher values to the solutions

closer to the optimal one(s). This function was defined in a similar way to the objective

function defined for the SA strategy. For each I, f is defined by f(I) =
∑n−1

i=0 gi, that is, f(I)

represents the cardinality of the hidden vertex set represented by I.

Selection. The selection method should choose the best individuals to be reproduced. Al-

though there are various different types (see Chapter 2, subsection 2.1.2) of selection, in the

developed algorithm it was used the roulette wheel selection to choose the two best individuals

to be parents in crossover.

Crossover. Crossover operates on selected genes from parent individuals and creates new

individuals (children). In the developed algorithm was used the single point crossover (see

Chapter 2, subsection 2.1.2). In this type of crossover two children are often created and

inserted into the new population, but sometimes only one child is created. It was used the

single point crossover to generate only one child (see Figure 3.8, for illustration).

Parents Child

1 1 1 1 0 1 1 1 } 0 1 0 1 0 1 1 1

0 0 0 0 0 0 01

t

Figure 3.8: Single point crossover.

Remember that crossover does not always occur, it occurs with a certain probability, pc.

It was used pc = 0.8 (this value was experimentally chosen). Note that the child resulting

from this type of crossover may not be valid, that is, it may not correspond to a hidden vertex

48 Maximum Hidden Vertex Set Problem

set. In the developed algorithm it was chosen to repair or validate it. For that, the best tail,

which is the tail that has more 1’s, is fixed and the other tail is changed as follows. Suppose

that the selected gene is gt, t ∈ {0, . . . , n− 1}, and that the worst tail has m genes. Two cases

may take place: (i) the worst tail is the first one (ii) the worst tail is the second one. In the

case:

(i) for each i ∈ {0, . . . ,m− 1}, if gi = 1 and vi is not seen by any vertex represented in the

second tail, then the value 1 is maintained, otherwise its value is changed to 0.

(ii) for each i ∈ {0, . . . ,m−1}, if gt+i+1 = 1 and vt+i+1 is not seen by any vertex represented

in the first tail, then the value 1 is maintained, otherwise its value is changed to 0.

Figure 3.9 exemplifies case (2). In this example, t = 8 and we can see that the generated

child is not valid, since v9 and v11 are seen by v8. The worst tail is the second one and it

has m = 11 elements. Since g9 = 1 and v9 is seen by the vertex v8, its value is changed to

0; g11 = 1 and v11 is seen by the vertex v8, so its value is changed to 0; and g18 = 1 and v18

is not seen by any vertex represented in the first tail, so its value remains 1. Thus, the new

child is now 10100100100000000010, which is a valid individual.

1 0 1 1 1 1 1 10 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 01 1 }1 1 1

v
5

v
5

v
8

v
8

Child

0 0 0 0 0 0 0 01 1 11 0 1 1 10 0 0 0

0
g

9
g

1
g

8
g

19
g

Validation

Parents

Invalid ChildValid Child

v
0

v
0

v
2

v
2

v
18

v
18

v
9

v
9

v
11

v
11

t = 8

Figure 3.9: Single point crossover and child validation.

Mutation. In the developed algorithm the mutation operator merely flips a randomly se-

lected binary digit from zero to one or vice versa, as shown in Figure 3.10. Such as the

crossover, the mutation does not always occur, but it occurs with a certain probability, pm.

In the developed algorithm the mutation is applied to the child obtained on the crossover

operation, with pm = 0.05 (this value was experimentally chosen) as follows: a natural num-

ber t ∈ [0, n − 1] is randomly generated (following a uniformly distribution). If gt = 1 then

Maximum Hidden Vertex Set Problem 49

its value is changed to 0; otherwise (gt = 0) its value is changed to 1 only if the resultant

individual is valid (i.e., if the resultant individual represents a hidden vertex set).

1 1 0 1 1 0 1 0 0 1 1 0 1 1 1 0Before:

After: 1 1 0 1 1 0 0 0 0 1 1 0 1 1 1 0

t

Figure 3.10: Mutation.

Population generation. To generate a new population it was used a steady-state repro-

duction (see Chapter 2, subsection 2.1.2), where the worst individual of the population is

replaced by the child obtained on the crossover operation.

Population evaluation. The fitness of a population was considered as the maximum value

of the fitness function when applied to all individuals of the population, i.e., F (P (t)) =

max{f(It0), . . . , f(Itn−1)}.

Termination condition. If in a sufficiently large number of generations the fitness has not

changed, it can be assumed that the solution is close to optimal (see Chapter 2, subsection

2.1.2). Thus, for the termination condition it was considered that if the fitness of the popu-

lation F (P (t)) remains unchanged for a number of generations h, the search should stop. To

define this parameter, several tests were made varying the value of h. It was observed that

from h = 5000 the quality of the solution does not improve much. So, it was chosen h = 5000

in the developed algorithm.

In the sequel, the GA strategy is, sometimes, designated by M4.

3.3 Greedy-Sequential Strategy for the Minimum Clique Par-

tition Problem

Since the MHVS(P) problem is NP-hard, its optimal solution is unknown. So, if one can not

compute the optimal value, how can one expect to prove that the output of the approximation

algorithms are near it? As Amit, Mitchell and Packer [11], in this work it was conducted an

experimental analysis of their performance. For that, it was developed a method to compute

an upper bound on the optimal number of hidden vertices for each instance in our experiments.

Remember that the visibility graph VG(P) of a polygon P is the graph of the visibility

relation of the vertices of P (see Definition 3.4). A clique partition of VG(P) is defined as

follows.

50 Maximum Hidden Vertex Set Problem

Definition 3.5 A set C is a clique partition of VG(P) = (V,E) if its elements are disjoint

subsets Vi of V , where each vertex on Vi sees all vertices on Vi and
⋃
Vi = V . The elements

of C are called cliques. Figure 3.11 illustrates a polygon P and a clique partition of VG(P).

Figure 3.11: A clique partition (with four cliques) of VG(P).

It is easy to see that, for each element of C at most one vertex can be hidden on P , so

|C| ≥ |H|, ∀C,H. Easily it can be concluded that c(P) ≥ h(P), where h(P) is the number of

hidden vertices in a maximum-cardinality hidden vertex set of P and c(P) is the number of

cliques in a minimum-cardinality clique partition of VG(P). Thus, c(P) is an upper bound

on the optimal number of hidden vertices on P .

However, the problem of determining this upper bound, Minimum Clique Partition

(MCP) problem, is also NP-hard [52]. So, it was developed an algorithm to determine

approximate solutions (which will be described below).

Let |C| be the cardinality of an approximate solution of the MCP problem

|H| ≤ h(P) ≤ c(P) ≤ |C|,∀P. (3.1)

If there is a constant c ∈ R+ such that |H| ≥ 1
c × |C|, for any polygon P , it can be said

that the approximation algorithm used to obtain H has an approximation ratio of c [13]. In

other words, the approximate solution |H| is at least 1
c times the optimal solution h(P). In

fact,

|H| ≥ 1
c
× |C| ⇒ |H| ≥ 1

c
× h(P). (3.2)

The developed approximation algorithm is a greedy-sequential constructive strategy,

which is designated by A1. In this strategy, first n clique partitions of VG(P) are deter-

mined, each one from each of the vertices of P (see Algorithm 3.3). In the end, the partition

with fewer elements is the solution returned by the algorithm.

Maximum Hidden Vertex Set Problem 51

Algorithm 3.3 Algorithm to determine a clique partition from the vertex vk
1. C ← ∅
2. j = k

3. repeat

4. Determine a clique from vj , Cj = {vj , vj+1, . . . , vi}
5. C ← C ∪ Cj
6. j ← (i+ 1) mod n

7. until j 6= k

In this way, the application of the algorithms described in section 3.2 (greedy and meta-

heuristics based strategies) together with this method A1, to each instance in our experiments,

gives provable performance bounds in terms of approximation ratios.

Remark that in the performed experiments, given a polygon P , the main objective is

to find a large hidden vertex set H and a small clique partition C. The obtained set H

approximates the optimal number of hidden vertices, h(P), with approximation ratio |C|
|H| .

Note that if a clique partition set C and a hidden vertex set H are found, such that |C| = |H|,
then H is an optimal hidden vertex set.

3.4 Experiments and Results

To understand which of the described approximation strategies yields the best approximate

solutions in a reasonable time, they were implemented and their behavior was tested over a

large set of randomly generated polygons. In the next two subsections, subsections 3.4.1 and

3.4.2, it will be reported the results and conclusions from the accomplished experiments on

arbitrary and orthogonal polygons, respectively.

3.4.1 Arbitrary Polygons

The experiments described in this section were performed over four sets of randomly generated

arbitrary polygons, each one with 50 polygons of 50, 100, 150 and 200-vertex polygons.

3.4.1.1 Analysis of the SA Parameters

According to section 3.2.2, there are several choices for two of the SA parameters: the initial

temperature (T0) and the temperature decrement rule. The different combinations of their

values give rise to six cases (see Table 3.1), which are going to be analyzed to find the

combination that best fits into the MHVS(P) problem.

52 Maximum Hidden Vertex Set Problem

SA Cases

Case 1 T0 = n and Tk+1 = T0
1+k

(FSA decrease)

Case 2 T0 = n and Tk+1 = T0
ek (VFSA decrease)

Case 3 T0 = n and Tk+1 = αTk−1 (Geometric decrease, α = 0.9)

Case 4 T0 = 1000 and Tk+1 = T0
1+k

(FSA decrease)

Case 5 T0 = 1000 and Tk+1 = T0
ek (VFSA decrease)

Case 6 T0 = 1000 and Tk+1 = αTk−1 (Geometric decrease, α = 0.9)

Table 3.1: Studied cases for SA.

These six cases were analyzed by comparing the number of hidden vertices, the runtime

and the number of iterations performed by each of them. Table 3.2 presents the results

obtained with the first three cases. In this table it is exhibited the average time of pre-

processing in seconds, PP, the average number of hidden vertices, |H|, the average runtime

in seconds, Time, and the average number of algorithm iterations, Iterations.

Case 1 (FSA dec.) Case 2 (VFSA dec.) Case 3 (Geometric dec.)
n PP (sec.) |H| Time (sec.) Iterations |H| Time (sec.) Iterations |H| Time (sec.) Iterations

50 0.34 13.96 0.02 9999.00 6.72 < 0.001 10.00 9.60 < 0.001 88.00

100 1.84 27.40 0.06 19999.00 11.68 < 0.001 10.00 16.56 < 0.001 94.00

150 5.32 40.50 0.18 29999.00 17.68 < 0.001 11.00 22.28 0.02 98.00

200 11.98 53.86 0.26 39999.00 22.76 < 0.001 11.00 28.14 < 0.001 101.00

Table 3.2: Results obtained with Case 1, Case 2 and Case 3 (T0 = n) on arbitrary polygons.

In these first three cases the best solution, concerning the average number of hidden

vertices, seems to be obtained with Case 1. So, the best solution seems to correspond to

the FSA temperature reduction (which is the slowest temperature reduction) with a larger

number of iterations and a greater response time.

In the following three cases, it is going to be analyzed how the different types of temper-

ature decreasing behave, being T0 constant (see Table 3.3).

Case 4 (FSA dec.) Case 5 (VFSA dec.) Case 6 (Geometric dec.)
n PP (sec.) |H| Time (sec.) Iterations |H| Time (sec.) Iterations |H| Time (sec.) Iterations

50 0.34 13.96 0.68 199999.00 6.52 0.02 13.00 9.60 0.02 116.00

100 1.84 27.40 0.88 199999.00 11.92 < 0.001 13.00 16.66 0.02 116.00

150 5.32 40.48 1.08 199999.00 17.48 < 0.001 13.00 22.28 0.04 116.00

200 11.98 53.84 1.36 199999.00 22.30 < 0.001 13.00 28.54 0.04 116.00

Table 3.3: Results obtained with Case 4, Case 5 and Case 6 (T0 = 1000) on arbitrary polygons.

As the number of vertices of the analyzed polygons is 50, 100, 150 and 200, it has been

chosen a constant value T0 = 1000 (this value was experimentally chosen). This way, we have

Maximum Hidden Vertex Set Problem 53

a constant value much greater than any n value and considered large enough so that we can

see how the algorithm behaves with a high initial temperature. As can be seen, in these three

cases the best solution seems to be obtained with Case 4. Thus, the best solution apparently

corresponds, again, to the FSA temperature reduction, with a larger number of iterations and

a greater response time.

Comparing the six cases we can notice that the obtained average of |H| is almost equal

for the Cases 1 and 4, Cases 2 and 5 and Cases 3 and 6. That is, no matter the type of T0, the

averages of |H| are identical for FSA, VFSA and geometric temperature reductions. Besides,

the Cases 1 and 4 seem to be the strategies that obtain the best solutions, followed by Cases

3 and 6, and finally it looks like Cases 2 and 5 obtain the worst solutions.

However, as stated before, the comparison between the results obtained with the six cases

only makes sense if a statistical study is made to ensure its statistically significance. First of

all the results concerning to the number of hidden vertices have been studied.

The analysis of the data normality showed that the data obtained with Case 1 were always

non-normally distributed (p-value < 0.001 < 0.05, for n = 50, 100, 150 and 200). So, it was

applied the Kruskal-Wallis test, which showed that there was a significant difference between

the six cases with respect to |H|, for n = 50, 100, 150 and 200 (p-value< 0.001< 0.05). So,

multiple comparison tests were performed to determine which pairs of results were significantly

different, and which were not. The multiple comparison tests allowed to sort the six cases, in

ascending order on |H|, as follows (see Figure 3.12, in this figure Venn diagrams are illustrated

where each ellipse represents the cases that are not significantly different):

• for n = 50, 100, 150 and 200:

– Cases 2 and 5, with no significant differences between them;

– Case 3 and 6, with no significant differences between them;

– Cases 1 and 4, with no significant differences between them.

Case 1

Case 4

Case 2

Case 5

Case 3

Case 6

BestWorst

Figure 3.12: Multiple comparison tests, of the six cases, for n = 50, 100, 150 and 200 (arbitrary

polygons).

As can be noticed, using the multiple comparison tests, a significant difference was not

found between the number of hidden vertices obtained by the best cases (Cases 1 and 4). So,

54 Maximum Hidden Vertex Set Problem

the statistical analysis proceeded regarding the runtime.

This analysis was made in a similar way and allowed to conclude that Case 1 is signifi-

cantly faster than Case 4, for n = 50, 100, 150 and 200. Given that it is desired a compromise

between the goodness of the solution obtained and the algorithm runtime, Case 1 was chosen

to be method M3.

3.4.1.2 Comparison of the four strategies

In this section are going to be analyzed and compared the results obtained with the four

developed approximation techniques: the greedy strategies M1 and M2, the SA strategy M3

and the GA strategy M4. Table 3.4 presents the results obtained with these strategies. These

results, as in Tables 3.2 and 3.3, are: the average time of pre-processing in seconds, PP ;

the average number of hidden vertices, |H|; the average runtime in seconds, Time; and the

average number of algorithm iterations, Iterations.

M1 M2 M3 M4
n PP |H| Time Iter. |H| Time Iter. |H| Time Iter. |H| Time Iter.

50 0.34 12.10 0.04 12.10 13.58 < 0.001 13.58 13.96 0.02 9999 13.48 0.12 5135.90

100 1.84 24.18 0.18 24.18 27.12 < 0.001 27.12 27.40 0.06 19999 26.32 0.22 5724.80

150 5.32 35.12 0.52 35.12 39.88 < 0.001 39.88 40.50 0.18 29999 38.46 0.22 6629.30

200 11.98 46.62 0.66 46.62 52.68 < 0.001 56.68 53.86 0.26 39999 50.32 0.24 7585.60

Table 3.4: Results obtained with M1, M2, M3 and M4 (arbitrary polygons).

Comparing the results obtained with the greedy strategies, M1 and M2, it can be no-

ticed that M2 is faster and seems to obtain better solutions. Concerning the metaheuristic

strategies, M3 and M4, it can be seen that M3 appears to be faster (except for 200-vertex

polygons) and it seems to obtain better solutions (except for 50-vertex polygons, where the

obtained solutions look to be similar).

So, relatively to greedy strategies the method M2, seems to be the best one. Concerning

the metaheuristic strategies, the method M3 appear to be better than M4. Comparing, now,

the results obtained with M2 and M3, we can see that although M3 is slower, the average

of hidden vertices obtained with it looks to be slightly higher (especially for n = 150 and

n = 200).

As a conclusion, M3 seems to be the best technique, since the obtained average of hidden

vertices is the best and M2 is the only method that is faster than it. If only the obtained

solutions are contemplated it seems that the best approximation technique is M3, the second

best is M2, followed by M4, and finally the worst is M1 (see Figure 3.13).

Maximum Hidden Vertex Set Problem 55

Figure 3.13: Solutions obtained with the strategies M1,M2,M3 and M4 (arbitrary polygons).

As in the analysis of the SA Cases, a statistical study was conducted to ensure the

statistically significance of the results. In this way, first of all the results related to |H| have

been studied. As we already know, the data obtained with M3 is non-normally distributed,

for n = 50, 100, 150 and 200 (see the previous subsection). Thus, the Kruskal-Wallis test has

been used, which showed that there was a significant difference between the four methods

concerning |H|, for n = 50, 100, 150 and 200 (p-value< 0.001< 0.05, for n = 50, 100, 150 and

200). Therefore, multiple comparison tests were performed, whose results allowed to conclude

that (see Figure 3.14, in this figure Venn diagrams are illustrated where each ellipse represents

the methods that are not significantly different):

• for n = 50, the best method is M3 with no significant differences from methods M2 and

M4 and the worst method is M1.

• for n = 100, 150 and 200, the best method is M3 with no significant differences from

method M2 and the worst method is M1.

M
1

M
4

M
3

M
2

BestWorst

(a) n = 50

M
1 M

4
M

3M
2

Worst Best

(b) n = 100 and n = 150

M
1 M

4

M
3

M
2

Worst Best

(c) n = 200

Figure 3.14: Multiple comparison tests of the four methods (arbitrary polygons).

Thus, it can be concluded that no significant differences were found between methods M3

and M2, although we observed, in Table 3.4, that M3 seems to get slightly better results in the

56 Maximum Hidden Vertex Set Problem

average of the number of hidden vertices. For this reason, a statistical study has been made

concerning the runtime. This study was made in a similar way and it allowed to conclude

that the method M2 only is significantly faster than M3 for 200-vertex polygons. Once again,

and since it is desired a compromise between the goodness of the solution obtained and the

algorithm runtime, the method M3 was considered the best method.

Now, to conclude about the average of the maximum number of vertices that can be

hidden in a n-vertex arbitrary polygon, it was applied the selected method (method M3) to

eight sets of arbitrary polygons, each one with 50 polygons of 30, 50, 70, 100, 110, 130, 150

and 200 vertex polygons. The average of the obtained results, concerning |H|, is exposed in

Table 3.5.

Vertices 30 50 70 100 110 130 150 200

|H| 8.54 13.96 19.12 27.40 29.50 35.64 40.50 53.86

Table 3.5: Average number of hidden vertices (arbitrary polygons).

Then, using the least squares method, the following linear adjustment was obtained, with

a correlation factor of 0.9997 (see Figure 3.15):

f(x) = 0.2668x+ 0.5494 ≈ x

3.74
+ 0.5494 ≈ x

3.74
.

Figure 3.15: Least Squares Method (arbitrary polygons).

Thus, it can be concluded that on average, and approximately, the maximum number

of hidden vertices on an arbitrary polygon P with n vertices was observed to be d n
3.74e. In

order to get a quantitative measure on the quality of the calculated |H|, the minimum clique

partitions were computed, to our instances (the eight sets of polygons described above). The

ratio between the minimum clique partition C and the larger hidden vertex-set H never

exceeded 1.62 (with an average of 1.33 for the universe of 320 polygons). This implies that

the algorithm M3 has an approximation ratio less than or equal to 1.62.

Maximum Hidden Vertex Set Problem 57

Figure 3.16 shows a snapshot of one of the 100-vertex arbitrary polygons that has been

tested with our software (the black dots represent the obtained hidden vertices).

(a) (b)

Figure 3.16: Example of a tested arbitrary polygon with n = 100. Clique partition obtained

with algorithm A1 and hidden vertex sets obtained with: (a) method M1 and (b) method M3.

In Figure 3.16(a) it is illustrated the minimum clique partition obtained with A1 (see

section 3.3), |C| = 35, and the solution obtained with the worst method (M1), |H| = 23. In

Figure 3.16(b)) it illustrated the minimum clique partition obtained with A1 and the solution

obtained with the best strategy (M3), |H| = 27. Figure 3.17 shows a 20-vertex saw polygon

that has been tested with our software. In this figure, it is illustrated the clique partition

obtained with A1, |C| = 10, and the solution obtained with M3, |H| = 10. Note that in this

example, |C||H| = 1, that is, M3 obtained the optimal solution (the black dots represent the

obtained hidden vertices).

Figure 3.17: The C and H sets in a saw polygon, with n = 20, obtained with A1 and M3.

3.4.2 Orthogonal Polygons

In this subsection, as in subsection 3.4.1, it will be analyzed the six cases, resulting from the

choice of the SA parameters (see Table 3.1), to select the one that best fits on the MHVS(P)

58 Maximum Hidden Vertex Set Problem

problem for orthogonal polygons. After that, the results obtained with the four developed

strategies will be studied. Like for arbitrary polygons, the experiments for randomly generated

orthogonal polygons were performed with four sets of orthogonal polygons, each one with 50

polygons of 50, 100, 150 and 200 vertex polygons.

3.4.2.1 Analysis of the SA Parameters

Table 3.6 shows the results obtained with the first three cases. As we can see, such as on

arbitrary polygons, in these three cases the best solutions seem to be obtained in Case 1.

So, the best solution appears to correspond to the slowest temperature reduction, with a

larger number of iterations and a greater response time. In table 3.7 are presented the results

obtained with Cases 4, 5 and 6. As we can observe, in these three cases the best solution

seems to correspond, once more, to the slowest temperature reduction, with a larger number

of iterations and a greater response time.

Case 1 Case 2 Case 3
n PP (sec.) |H| Time (sec.) Iterations |H| Time (sec.) Iterations |H| Time (sec.) Iterations

50 0.62 13.52 0.08 9999.00 5.86 < 0.001 10.00 8.84 < 0.001 88.00

100 3.3 26.86 0.08 19999.00 10.64 < 0.001 10.00 15.16 < 0.001 94.00

150 8.68 39.70 0.18 29999.00 15.08 < 0.001 11.00 20.12 0.02 98.00

200 17.80 53.16 0.22 39999.00 19.64 < 0.001 11.00 25.60 0.02 101.00

Table 3.6: Results obtained with Cases 1, Case 2 and Case 3 (T0 = n) on orthogonal polygons.

Case 4 Case 5 Case 6
n PP (sec.) |H| Time (sec.) Iterations |H| Time (sec.) Iterations |H| Time (sec.) Iterations

50 0.62 13.52 0.68 199999.00 6.04 < 0.001 13.00 9.32 < 0.001 116.00

100 3.30 26.88 1.00 199999.00 10.36 < 0.001 13.00 15.22 < 0.001 116.00

150 8.68 39.74 1.08 199999.00 15.10 0.04 13.00 21.00 0.02 116.00

200 17.80 53.24 1.30 199999.00 19.34 0.03 13.00 26.28 0.02 116.00

Table 3.7: Results obtained with Cases 4, Case 5 and Case 6 (T0 = 1000) on orthogonal

polygons.

Comparing the six cases, we can see that the solutions are almost equal for Cases 1 and

4 and for Cases 2 and 5 (except for n = 50), that is, independently of the type of T0, the

results are identical for FSA and VFSA decreases. We can also notice that Case 6 seems to

be better than Case 3. As on arbitrary polygons, it appears that, in spite of the algorithm

response time being higher, a slow reduction of the temperature improves the solution. As

a conclusion, if we are looking for a solution closer to the optimum, it looks like to be more

suitable to choose a slow decreasing of the temperature.

Maximum Hidden Vertex Set Problem 59

Next it is going to be presented the performed statistical study to ensure the statistically

significance of the results. First of all it was performed a study concerning |H|. For Case 1,

the underlying distribution of the number of hidden vertices was found not to be normally

distributed (the p-value returned by the Kolmogorov-Smirnof test was less than 0.001, for

n = 50, 100, 150 and 200). So, the Kruskal-Wallis test has been used, whose results allowed to

conclude that there was a significant difference between the six cases concerning |H| (p-value<

0.001<0.05, for n = 50, 100, 150 and 200).

Then, multiple comparison tests were performed, whose results showed that the cases

arranged in ascending order, on |H|, are (see Figure 3.18, in this figure are illustrated Venn

diagrams where each ellipse represents the cases that are not significantly different):

• for n = 50, 100, 150 and 200:

– Cases 2 and 5, with no significant differences between them;

– Case 3 and 6, with no significant differences between them;

– Cases 1 and 4, with no significant differences between them.

Case 1

Case 4

Case 2

Case 5

Case 3

Case 6

BestWorst

Figure 3.18: Multiple comparison tests, of the six cases, for n = 50, 100, 150 and 200 (orthog-

onal polygons).

From the multiple comparison tests, it can be concluded that Cases 3 and 6 do not obtain

significantly different solutions, in spite of our observing that Case 6 gets better results in the

average of the number of hidden vertices (see Tables 3.6 and 3.7). It can, also, be concluded

that the best cases (Cases 1 and 4), concerning |H|, do not obtain significantly differences. So,

the statistical study proceeds regarding the runtime. This study was made in a similar way and

allowed to conclude that Case 1 is always significantly faster than Case 4 for n = 50, 100, 150

and 200. For this reason Case 1 was chosen to be the method M3.

3.4.2.2 Comparison of the four strategies

Table 3.8 presents the results obtained with the four approximation methods on orthogonal

polygons.

60 Maximum Hidden Vertex Set Problem

M1 M2 M3 M4
n PP |H| Time Iter. |H| Time Iter. |H| Time Iter. |H| Time Iter.

50 0.62 12.46 0.06 12.46 12.88 < 0.001 12.88 13.52 0.08 9999 13.12 0.06 5288.00

100 3.30 25.10 0.20 25.10 25.40 < 0.001 25.40 26.86 0.08 19999 25.32 0.08 6061.50

150 8.68 36.52 0.28 36.52 37.88 < 0.001 37.88 39.70 0.18 29999 37.30 0.14 6703.60

200 17.80 48.40 0.62 48.40 50.08 < 0.001 50.08 53.16 0.22 39999 48.88 0.40 7945.90

Table 3.8: Results obtained with M1, M2, M3 and M4 (orthogonal polygons).

Comparing the results obtained with the greedy strategies, M1 and M2, it can be noted

that M2 is faster and the obtained solutions are apparently similar for n = 50 and n = 100

and they are slightly better for higher values of n, namely n = 150 and n = 200. Concerning

the metaheuristic strategies, M3 and M4, we can see that M3 is faster for n = 200 and the

average of hidden vertices obtained with it seems to be better (except for 50-vertex polygons,

where the obtained solutions look to be similar).

So, the method M2 seems to be the best of the greedy strategies. Concerning the meta-

heuristic strategies the method M3 appears to be better than M4. Comparing, now, the

results obtained with M2 and M3, we can see that, although the M3 is slower, the average of

hidden vertices obtained with it looks to be higher (especially for n = 150 and n = 200).

Summing up, it seems that M3 is the method for which the obtained average number of

hidden vertices is the best and the only method, that is faster than it, is M2. In terms of

the obtained solutions, the second best method seems to be M2, followed by M4, and, finally,

the worst looks to be M1. In Figure 3.19, we can see that M3 stands out among the other

strategies, mainly for n ≥ 100.

Figure 3.19: Solutions obtained with the the strategies M1,M2,M3 and M4 (orthogonal poly-

gons).

The performed statistical study to ensure the statistically significance of the results fol-

Maximum Hidden Vertex Set Problem 61

lows. First of all it was performed a study concerning |H|. As we already know, the data

obtained with method M3 is non-normally distributed, for n = 50, 100, 150 and 200. Thus, the

Kruskal-Wallis test has been used, which showed that there was a significant difference between

the four methods, for n = 50, 100, 150 and 200 (p-value<0.001<0.05, for n = 50, 100, 150 and

200). So, multiple comparison tests were performed, whose results allowed to sort the four

methods, in ascending order on |H|, as follows (see Figure 3.20, in this figure are illustrated

Venn diagrams where each ellipse represents the methods that are not significantly different):

• for n = 50:

– M1, with no significant differences from M2;

– M2, with no significant differences from M4;

– M4, with no significant differences from M2 and M3;

– M3, with no significant differences from M4.

• for n = 100:

– M1, with no significant differences from M2 and M4;

– M3, with significant differences from the other three methods.

• for n = 150 and n = 200:

– M1, with no significant differences from M4;

– M4, with with no significant differences from M1 and M2;

– M2, with with no significant differences from M4;

– M3, with significant differences from the other three methods.

M
1 M

4

M
3M

2

BestWorst

(a) n = 50

M
1

M
4

M
3M

2

BestWorst

(b) n = 100

M
1 M

4
M

3

M
2

BestWorst

(c) n = 150 and 200

Figure 3.20: Multiple comparison tests of the four methods (orthogonal polygons).

As we can see, M3 obtains solutions significantly better than the other methods, except

for n = 50, where M3 is not significantly different from M4. So it was concluded that the best

method is M3.

Now, to infer about the average of the maximum number of vertices that can be hidden

on an orthogonal polygon, M3 (which was considered the best method) was applied to eight

sets of orthogonal polygons, each one with 50 polygons of 30, 50, 70, 100, 110, 130, 150 and

62 Maximum Hidden Vertex Set Problem

200 vertex polygons, respectively. The average of the obtained results, concerning |H|, is

shown in Table 3.9.

Vertices 30 50 70 100 110 130 150 200

|H| 8.5 13.52 18.68 26.86 29.58 34.72 39.70 53.16

Table 3.9: Average number of hidden vertices (orthogonal polygons).

Then, using the least squares method, the following linear adjustment was obtained, with

a correlation factor of 0.9999 (see Figure 3.21):

f(x) = 0.2631x+ 0.4624 ≈ x

3.80
+ 0.4624 ≈ x

3.80
.

Figure 3.21: Least Squares Method (orthogonal polygons).

Thus, it can be concluded that on average, and approximately, the maximum number

of hidden vertices on an orthogonal polygon P with n vertices is d n
3.80e. In order to get

a quantitative measure on the quality of the calculated |H| the minimum clique partitions

were computed, to our instances (the eight sets of polygons described above). The ratio

between minimum clique partition C obtained with A1 and the larger H (see section 3.3)

never exceeded 1.54 (with an average of 1.29 for the universe of 320 polygons). That implies

that our algorithm has an approximation ratio less than or equal to 1.54.

Figure 3.22 shows a snapshot of one of the 100-vertex orthogonal polygons that has

been tested with our software. In Figure 3.22(a) it is illustrated the minimum clique partition

obtained with A1 (see section 3.3), |C| = 37, and the solution obtained with the worst method

(M1), |H| = 23. In Figure 3.22(b)) are illustrated the minimum clique partition obtained with

A1 and the solution obtained with the best strategy (M3), |H| = 28. The black dots represent

the obtained hidden vertices.

Maximum Hidden Vertex Set Problem 63

(a) (b)

Figure 3.22: Example of a tested orthogonal polygon with n = 100. Clique partition obtained

with algorithm A1 and hidden vertex sets obtained with: (a) method M1 and (b) method M3.

Figure 3.23 shows a 20-vertex staircase polygon that has been tested with our software.

In this Figure, it is illustrated the clique partition obtained with A1, |C| = 10, and the solution

obtained with M3, |H| = 10. Note that, in this example, |C||H| = 1, that is, M3 obtained the

optimal solution (the black dots represent the obtained hidden vertices).

Figure 3.23: The C and H sets in a staircase polygon, with n = 20, obtained with A1 and

M3.

3.5 Concluding Remarks

Four approximation algorithms were designed and implemented to tackle the Maximum Hid-

den Vertex Set problem on polygons. The first two, M1 and M2, are greedy strategies,

and the other two, M3 and M4, are based on the general metaheuristics simulated annealing

and genetic algorithms, respectively. It was also developed a method to compute clique parti-

tions, whose cardinality approximates the minimum clique partition of the visibility graph of

a polygon, allowing to obtain provable performance bounds in terms of approximation ratios.

64 Maximum Hidden Vertex Set Problem

From the performed computational experiments it can be concluded that:

(1) Concerning the analysis of the SA parameters, both for arbitrary and orthogonal poly-

gons, the election of the initial temperature was not influential and though the FSA

temperature reduction increases the response time of the algorithm, it improves the

obtained solutions. So, if we are looking for a solution closer to the optimum, it seems

to be more suitable to choose a slow decreasing of the temperature. Note, however,

that Tf was considered equal to 0.005. Clearly, if this value is reduced, the solutions

obtained by the algorithms will be improved. And, this improvement is likely to be more

evident for those cases that are farther from find the optimal solution, that is, for faster

temperature decreases (VFSA and Geometric decreases). Therefore, if an acceptable

and rapid solution is wished, this will be possible to obtain by reducing the value of Tf
and using a rapid decrease. It is also important to note that all alternatives regarding

the parameters of the SA metaheuristic that could be explored are almost “infinite”. In

this work it was attempted to find references for these parameters, noting that a more

exhaustive study in future investigations might improve the obtained results.

(2) As to the four approximation algorithms, the best one is method M3, both for arbitrary

and orthogonal polygons. It can also be concluded that on average, and approximately,

the maximum number of vertices that can be hidden on a given arbitrary or orthogonal

polygon, with n vertices, was observed to be d n
3.74e or d n

3.80e, respectively. The hidden

vertex sets obtained with M3 can be considered very satisfactory in the sense that they

were always close to optimal. This method has an approximation ratio less than or equal

to 1.62, for arbitrary polygons, and less than or equal to 1.54, for orthogonal polygons.

As a conclusion, the metaheuristic SA proved to behave very well in solving the Maximum

Hidden Vertex Set problem.

Chapter 4

Minimum Vertex Guard Set

Problem

The Minimum Vertex Guard Set problem is a variant of the original Art Gallery Problem,

which is the pioneer of the guarding problems. These problems have been extensively studied

in the context of the Art Gallery Problems in Computational Geometry. The original Art

Gallery Problem was proposed by Victor Klee in 1973: How many stationary guards are

sufficient to cover an art gallery room with n walls?. Informally an art gallery is modelled

by a polygon P with n edges and a guard is considered a fixed point on P with 2π range

visibility. A set of guards covers a room if each point of the room could be seen by at least one

guard. Thus, this problem deals with setting a minimal number of guards on a gallery room

with a polygonal shape, so that they could see every point in the room. Many variations of

this problem have been studied over the years, such as: where the guards may be positioned

(anywhere or in specific positions, e.g., vertices), what kind of guards are to be used (e.g.,

stationary guards versus mobile guards), whether only the boundary or all the interior of the

polygon must be guarded, and what assumptions are made on the input polygon (such as

being orthogonal). The variant studied in this chapter is the problem of finding the minimum

number of guards placed on vertices (vertex guards) needed to cover a given polygon P , which

is NP-hard both for arbitrary and orthogonal polygons [8, 115].

The chapter is divided in five sections. In section 4.1 the problem is described and for-

malized. In section 4.2 five approximation algorithms to tackle the problem are developed.

The first is a greedy algorithm (subsection 4.2.2), the second is based on the simulated an-

nealing metaheuristic (subsection 4.2.3), the third on the genetic algorithms metaheuristic

(subsection 4.2.4) and the last two are hybrid algorithms, based on the simulated anneal-

ing and genetic algorithms metaheuristics (subsection 4.2.5). As the optimal solution for the

MVGS(P) problem is not known, in section 4.3 it is developed a method that allows to get the

65

66 Minimum Vertex Guard Set Problem

performance ratio of the developed approximation strategies. In section 3.5 some conclusions

are presented.

Finally, let us mention that some of the results presented in this chapter have been

published in [21,22].

4.1 Problem Description

Let P be a polygon with n vertices, v0, v1, . . . , vn−1. Remember that, being p ∈ P , the set

of all points q ∈ P that are visible to p is called visibility polygon of p and it is denoted by

V is(p, P). That is, V is(p, P) = {q ∈ P : p sees q}.
For any given fixed polygon P , there is a minimum number of guards that is necessary

to cover it. For example, we can easily see that 3 guards are needed to cover the 12-vertex

polygon illustrated in Figure 4.1 (a). An obvious question that arises is: is 3 the number of

guards always sufficient to cover any 12-vertex polygon? The answer is: No! As we can see,

the 12-vertex polygon illustrated in Figure 4.1 (b) requires 4 guards. So, what is the minimum

number of guards that is ever sufficient to guard any polygon with 12 vertices?

(a) (b)

Figure 4.1: Three 12-vertex arbitrary polygons: (a) requires 3 guards; (b) require 4 guards.

This is what the original Art Gallery Problem asks for: Given n, it must be expressed as

function of n, the smallest number of guards that is sufficient to cover any n-vertex polygon.

This number is said to be necessary and sufficient for coverage: necessary for at least one

n-vertex polygon and sufficient for any n-vertex polygon.

Let P be a polygon with n vertices. Let g(P) be the smallest number of guards needed

to cover P :

g(P) = min{|S| : S ⊂ P, P =
⋃
x∈S

V is(x, P)}.

Denote by G(n) the maximum of g(P) over all polygons with n vertices:

G(n) = max{g(P) : P ∈ Pn}, where Pn denotes the set of all polygons with n vertices.

Thus, G(n) guards always suffice to cover any n-vertex polygon, and are necessary to

cover at least one n-vertex polygon. We will rewrite this as: G(n) guards are always sufficient

Minimum Vertex Guard Set Problem 67

and occasionally necessary, or just sufficient and necessary. So, Klee’s original Art Gallery

Problem is to determine G(n) [102].

The first proof that G(n) = bn3 c was given by Chvátal and is known as the Art Gallery

Theorem [34]. Three years later Fisk gave a simpler proof for this bound [59].

Concerning orthogonal polygons, the Orthogonal Art Gallery Theorem was first formu-

lated and proved by Kahn et al. [77]. It states that, if the study is restricted to orthogonal

polygons G(n) = bn4 c. That is, bn4 c guards are occasionally necessary and always sufficient

to cover any orthogonal polygon with n vertices. Figure 4.2 shows two 12-vertex orthogonal

polygons, which require 3 guards (Figure 4.2 (a)) and 1 guard (Figure 4.2 (b)).

(a) (b)

Figure 4.2: Two 12-vertex orthogonal polygons: (a) requires 3 guards; (b) requires 1 guard.

The Art Gallery and the Orthogonal Art Gallery theorems give a combinatorial solution

since they respond to the generality of the polygons with n vertices (arbitrary and orthogonal).

However, as stated above, not all the polygons with n vertices require the established number

of guards. This reasoning justifies the following algorithmic problem: given a n-vertex polygon

P (arbitrary or orthogonal) determine the minimum number of guards necessary to cover it.

This problem is designated by Minimum Guard Set problem and it is NP-hard both for

arbitrary and orthogonal polygons [8, 115]. If the guards are restricted to the vertices of P

(vertex guards), the combinatorial bounds established by the above theorems remain valid.

Besides, the algorithmic problem of finding the minimum number of vertex guards needed

to cover a given polygon is also NP-hard for arbitrary polygons [84] and for orthogonal

polygons [115]. This variant of the Minimum Guard Set problem is recognized as the

Minimum Vertex Guard Set problem.

Definition 4.1 A given set G of vertices of P is a vertex guarding set for P if they cover

P , i.e., if
⋃
v∈G V is(v, P) = P . A vertex guarding set for P is denoted by G and its cardinality

by |G|.

The Minimum Vertex Guard Set problem will be denoted by MVGS(P) and can be

stated as follows:

MVGS(P)

Input: A polygon P with n vertices.

Question: What is the minimum number of vertex guards necessary to cover P?

68 Minimum Vertex Guard Set Problem

Given that the MVGS(P) problem is NP-hard, in this chapter it will be proposed some

approximation methods to tackle it. A useful result related to this problem, and which will

be used to develop the approximation methods, was proven by Urrutia [129]:

Proposition 4.1 Let P be a polygon with r reflex vertices. Then r guards, placed on the

reflex vertices of P , are always sufficient and occasionally necessary to cover P .

In the next section the proposed approximation methods will be described.

4.2 Approximation Methods

Five approximation algorithms were developed to determine a vertex guarding set G, whose

cardinality approximates the minimal number of vertex guards needed to cover a given polygon

P . The first is a greedy algorithm, which is designated by M1; the second is based on the

simulated annealing metaheuristic, which is called M2; the third is based on the genetic

algorithms metaheuristic, which is named M3 and the last two are hybrid algorithms, which

are called M4 and M5.

4.2.1 Pre-processing Step

As the visibility polygon of each of the vertices of the polygon will be needed more than once

along the five approximation algorithms, a pre-processing step is performed to compute and

store the visibility polygons of the vertices , that is, V is(vi, P) is computed and stored, for all

vi ∈ VP . This information will decrease the algorithms’ runtime because each time a vertex

visibility polygon is required it is not necessary to calculate it again. To compute the visibility

polygon of vi, it was implemented the linear algorithm developed by Lee [85].

4.2.2 Greedy Strategy

A natural way to find a vertex guarding set is to do so with a greedy algorithm. Remember

that that, this type of algorithms is simple, straightforward and most of the times quite

efficient. In general, a greedy algorithm starts with a candidate set C and with an initially

empty solution G. Then the candidates are added one by one until a solution is obtained,

selecting a candidate from C in each step according to a certain rule. By proposition 4.1, it

is clear that C can be defined as the set of reflex vertices of P and for each vi ∈ C we only

add it to G if the points seen by vi are not seen by the vertices already on G.

The method described above allows to obtain a vertex guarding set G, whose cardinality

approximates the minimal number of vertex guards needed to guard a given polygon P .

However it may be possible to find a set U ⊂ G such that
⋃
v∈G\U V is(v, P) = P . So, after

Minimum Vertex Guard Set Problem 69

the described greedy strategy we iteratively remove those redundant guards. This is done in

the following way: for each vi ∈ G, if P is covered by G \ {vi}, then vi is removed from G;

otherwise it remains as part of the set G (see Algorithms 4.1 and 4.2 for detailed descriptions).

Algorithm 4.1 Greedy strategy (method M1)

Input: A polygon P with n vertices;

a vector with V is(vi, P), for i = 0, . . . , n− 1.

Output: A vertex guarding set, G

1. G← ∅
2. Create a vector with the reflex vertices of P , Vr
3. G← Vr[0]

4. i← 1

5. while ((i < |Vr|) and (P is not covered)) do

6. if V is(Vr[i], P) 6⊂
⋃
v∈G V is(v, P) then

7. G← G ∪ {Vr[i]}
8. end if

9. if
⋃
v∈G V is(v, P) = P then

10. P is covered

11. end if

12. end while

13. Remove redundant vertices from G // see Algorithm 4.2

14. return G

Algorithm 4.2 Removing Redundant Vertices
Input: A polygon P with n vertices;

a vertex guarding set, G ′ = {v1, . . . , vk};
a vector with V is(vi, P), for i = 0, . . . , n− 1.

Output: A vertex guarding set, G

1. G← G ′

2. for i = 1 to k do

3. if
⋃
v∈G\{vi} V is(v, P) = P then

4. G← G \ {vi}
5. end if

6. end for

7. return G

In the sequel, the greedy strategy is, sometimes, designated by M1.

70 Minimum Vertex Guard Set Problem

4.2.3 Simulated Annealing Strategy

Like in subsection 3.2.2 in Chapter 3, next it will be described how the SA parameters are

defined to suit the MVGS(P) problem. Note that, after defining the SA parameters, an

approximation algorithm is obtained that allows to get a vertex guarding set G. However, as

in method M1, it may be possible that some elements of G are redundant. Thus, the final

step of the SA strategy is the removal of these elements (see Algorithm 4.2).

1. Specific Parameters

Solution space. The solution space, set S, to the MVGS(P) problem is the set of all vertex

guarding sets for P . Therefore, S is a finite set and can be represented by S = {S1, S2, . . . , Sm},
where each Si is defined in a similar way to the one defined for the MHVS(P) problem (see

subsection 3.2.2). That is, Si = vi0v
i
1 . . . v

i
n−1 for i = 1, . . . ,m. In this way, each candidate

solution Si is represented by a chain of length n, where vij , j ∈ {0, . . . , n− 1}, represents the

vertex vj ∈ P and its value is 0 or 1. If vij = 1 then the vertex vj is a vertex guard; otherwise

(vij = 0) the vertex vj is not a vertex guard. In order to illustrate these notions, a small

example is presented in Figure 4.3.

S
i

0 1 100 0 0 00 0 0 0 0 0 0 1 10 00

i

v
0

i

v
1

i

v
10

i

v
15

i

v
17

i

v
19

v
1

v
17

v
15

v
10

Figure 4.3: An element Si ∈ S (for a 20-vertex polygon) and its representation. Filled dots

represent the vertex guards.

Objective function. The objective function f : S → N assigns to each element of S a

natural value. For each Si ∈ S, the function f is defined by f(Si) =
∑n−1

j=0 v
i
j , representing

the cardinality of the vertex guarding set.

Neighbourhood of each solution. For the MVGS(P) problem the generation of a neigh-

bour Sj of candidate solution Si ∈ S is done as follows. Let Si = vi0 . . . v
i
n−1 ∈ S, a natural

number t ∈ [0, n− 1] is randomly generate (following a uniformly distribution), and then if:

• vit = 1 then vjt is set to 0, i.e., vjt = 0. If this new solution is a valid one, then it is

accepted since the solution was improved; else the obtained solution is discarded.

Minimum Vertex Guard Set Problem 71

• vit = 0 then vjt is set to 1, i.e., vjt = 1, and this new solution is accepted with a probability,

since it is a worse solution.

Figure 4.4 exemplifies the generation of two neighbours of the solution illustrated in

Figure 4.3.

j
S

åå
-
=

-
= =>=

i

k

n

ki

j

k

n

kj
vSfvSf

1

0

1

0
)()(

v
17

v
1

v
10

v
15

v
16

j

v
10

j

v
1

j

v
15

j

v
17

j

v
19

0 1 100 0 0 00 0 0 0 0 0 0 1 10 00

i

v
0

i

v
1

i

v
10

i

v
15

i

v
17

i

v
19

0 1 100 0 0 00 0 0 0 0 0 0 1 11 00

t = 16

i
S

(a)

åå
-
=

-
= =<=

i

k

n

ki

j

k

n

kj
vSfvSf

1

0

1

0
)()(

v
17

v
1

v
10

0 1 100 0 0 00 0 0 0 0 0 0 1 10 00

i

v
0

i

v
1

i

v
10

i

v
15

i

v
17

i

v
19

0 1 100 0 0 00 0 0 0 0 0 0 0 10 00

t = 15

j

v
10

j

v
1

j

v
15

j

v
17

j

v
19

j
S

i
S

(b)

Figure 4.4: Generation of Sj , a neighbour of Si: (a) Sj is a worse solution; (b) Sj is a better

solution.

Initial solution. For the initial solution, in view of the proposition 4.1, all reflex vertices of

P were considered as vertex guards. Figure 4.5 exemplifies the initial solution of the polygon

illustrated in Figure 4.3.

S
0

1 1 1 1 11 0 0 0 0 0 00 0 0 0 0 1 00

v
17

v
1

v
10

v
15v

13

v
0

v
14

Figure 4.5: Initial solution.

72 Minimum Vertex Guard Set Problem

2. Generic Parameters

Initial temperature (T0). A comparative study was performed taking into account two

different types of T0:

1. An initial temperature dependent on the number of vertices of the polygon P , T0 = f(n)

(in the study was considered T0 = n and T0 = n
4);

2. A constant initial temperature: T0 = 500.

Temperature decrement rule. As for the MHVS(P) problem (see subsection 3.2.2), an

analysis was made on three different types of temperature decrement rules:

1. Tk+1 = T0
1+k (Fast Simulated Annealing (FSA) decrease);

2. Tk+1 = T0

ek
(Very Fast Simulated Annealing (VFSA) decrease) and

3. Tk+1 = αTk, where 0 < α < 1 (Geometric decrease). In the performed study it was

chosen α = 0.9.

Number of iterations at each temperature (N(Tk)). As for the MHVS(P) problem

(see subsection 3.2.2), for the MVGS(P) problem was chosen N(Tk) = dTkd and this ensures

that there are more iterations while the temperatures are high, i.e., when the solutions are

still far from optimal.

Termination condition. As stated in subsection 2.1.1, theoretically, the search process

should stop when a frozen state is achieved, i.e., when Tk = 0. Nevertheless, generally, it is

possible to finish with a final temperature, Tf , greater than zero without quality loss in the

solution. For instance, the search can be halted when it ceases to make progress. Lack of

progress can be defined in different ways, but a useful basic definition is: no improvement (i.e.

no new best solution) registered in the last l consecutive series of temperatures, combined

with the acceptance ratio falling below a given (small) value ε [28]. In this sense, the termi-

nation condition chosen for the developed algorithm consists in finishing the search when the

temperature is less than or equal to 0.005 or when during the last l = 3000 consecutive series

of temperatures no new better solution is obtained and the percentage of accepted solutions

is less than ε = 2% (the values of l and ε were chosen experimentally).

4.2.4 Genetic Algorithms Strategy

As in subsection 3.2.3, it will follow the description of how the GA parameters are defined

to suit the MVGS(P) problem. As in the greedy and SA strategies, the final step of the GA

strategy is the removal of the redundant vertex guards elements (see Algorithm 4.2).

Minimum Vertex Guard Set Problem 73

Encoding. The genetic representation of the candidate solutions to the MVGS(P) problem

is similar to the representation of each candidate solution, Si, on SA strategy (see previous

subsection). An individual I is represented by a chain of 0’s and 1’s, with length n, i.e.,

I = g0g1 . . . gn−1, where each element gi (gene) represents a vertex of the polygon. That is,

the ith gene represents the vertex vi ∈ P and its value is 0 or 1. If gi = 1 then the vertex vi

is marked as a vertex guard; otherwise (gi = 0) the vertex vi is not a vertex guard

Initial population. Here it was chosen for the population size the number of reflex vertices

of the polygon, in this way linking the problem input with the elements of the metaheuristic.

Thus, the population for the generation t is represented by: P (t) = {It0, It1, . . . , Itr−1}, where

each Iti represents an individual belonging to the population P (t) and r is the number of reflex

vertices of the polygon P .

Concerning the initial population, remember that an individual represents a candidate

solution for the MVGS(P) problem, i.e., each individual must be a vertex guarding set. By

Proposition 4.1, being P a polygon with r reflex vertices, r guards placed on the reflex vertices

of P are always sufficient to cover P . Thus, let R = {u0, u1, . . . , ur−1} be the set of reflex

vertices of P . To create the initial population, P (0), each of the r individuals is generated

in the following way: ∀i ∈ {0, . . . , r − 1}, if R \ {ui} is a vertex guarding set all the vertices

of R \ {ui} are marked as vertex guards; otherwise the vertices of R are marked as vertex

guards. For example, Figure 4.6 presents a polygon with 20 vertices and its initial population,

P (0) = {I0
0 , I

0
1 , . . . , I

0
6}.

Individuals of (0)Pv
3

v
18

v
16

v
9

v
5

v
4

v
2

v u
0
=

0

v
8

v
11

v
12

v
19

v u
1
=

1

v
6

v
7

v u
10

=
2

v u
13

=
3

v u
15

=
5

v u
17

=
6

v u
14

=
4

Figure 4.6: Polygon with n = 20 (r = 7) and its initial population.

Fitness function. This function was defined in a similar way to the objective function

defined for SA strategy. For each I, f is defined by f(I) =
∑n−1

i=0 gi, representing the cardi-

nality of the vertex guarding set. Note that this function does not assigns higher values to

the solutions closer to the optimal one(s), as described in Chapter 2, subsection 2.1.2. On

the contrary, it assigns lower values to the solutions closer to the optimal one(s), however the

used selection methods were changed in order to reflect this behaviour.

74 Minimum Vertex Guard Set Problem

Selection. In the developed algorithm it was made a comparative study taking into account

the two common methods: roulette wheel selection and tournament selection (see Chapter

2, subsection 2.1.2). The roulette wheel selection was used to choose two individuals to be

parents in crossover. In the employed roulette wheel method the probability of an individual

be selected to be parent is inversely proportional to its fitness, that is, the lower the fitness

is, the higher the probability of being selected. For that, in the implementation of roulette

wheel selection scheme described in Chapter 2 (subsection 2.1.2) fi was replaced by 1
fi

. In

the tournament selection, m individuals are randomly selected and the best one is chosen for

parenthood. This selection scheme is performed k times to choose k parents. It was used a

binary approach (m = 2) to select two individuals to be parents in crossover (k = 2). In this

way, two pairs of individuals are randomly selected and then the parents are the individuals

with the lowest fitness value in each pair.

Crossover. A comparative study was done with four different types of crossover: single

point crossover, two-point crossover, uniform crossover and a variant of the single point

crossover where the generated children cannot be clones of the parents (see Chapter 2, subsec-

tion 2.1.2). In any crossover method we only generate one child from two parents (see Figures

4.7, 4.8 and 4.9).

Remember that the uniform crossover decides, with some probability, which parent will

contribute to each of the gene values of the child chromosomes. The chosen probability was

0.5, which allows that approximately half of the child genes are inherited from one parent and

the other half from the other.

1 1 1 1 0 1 1 1 } 0 1 0 1 0 1 1 1

Parents Child

0 1 0 0 0 0 0 0

Figure 4.7: Single point crossover.

0 1 0 0 0 0 0 0

1 1 1 1 0 1 1 1 } 0 1 1 1 0 0 0 0

Parents Child

Figure 4.8: Two-point crossover.

00 1 0 0 0 0 0

1 1 1 1 0 1 1 1 } 0 1 0 0 0 1 0 1

Parents Child

Figure 4.9: Uniform crossover.

For the crossover probability was chosen pc = 0.8 (this value was chosen experimentally).

Note that the child resulting from any of the described crossover methods may not be valid

(i.e., it may not correspond to a vertex guarding set), see Figure 4.10, in this case it was

decided not to accept the child.

Minimum Vertex Guard Set Problem 75

10 0 00 00

00 00 0 1 10 100 0 00 00

}
Parents

Two-Point

Crossover

Child

0

00 0 0 0010 0 0 0 00 0 0 0

Invalid Child

0 00 0 0 0 0 0 0 0 01

v
1

v
13

v
17

v
15

v
1

v
13

v
0

v
1

v
13

t
2
= 18

v
10

0

0

10

11 0

t
1
= 2

0

Figure 4.10: Generation of an invalid child.

Mutation. Since a binary encoding is used, the action of the mutation operation is relatively

simple. For each gene it merely flips its value from zero to one or vice versa, with a mutation

probability pm (see Figure 4.11).

v
1

v
13

v
0

v
15

v
14

v
11

v
13

v
0

v
4

v
14

Mutation
Child (Valid) Child after Mutation

v
1

v
13

v
0

v
15

v
14

v
1

v
13

v
0

v
15

v
14

1 1 00 0 0 000 0 0 0 0 111 0 000 1 0 00 0 0 001 0 0 0 0 101 0 00 0

Figure 4.11: Mutation.

In the developed algorithm the mutation is applied to the child obtained with the

crossover operation, with pm = 0.05 (this value was experimentally chosen). As in the crossover,

if the resultant individual is not valid it is discarded.

Population generation. As there are many different ways to generate a new population,

it was used a common one: select the worst individual of the population and replace it by the

child obtained at the crossover (steady-state reproduction).

76 Minimum Vertex Guard Set Problem

Population evaluation. The fitness of a population was considered as the minimum value

of the fitness function when applied to all individuals of the population, that is, F (P (t)) =

min{f(It0), . . . , f(Itn−1)}.

Termination condition. For the termination condition it was considered that if the fitness

of the population F (P (t)) remains unchanged for a number of generations h, the search will

stop. To define this parameter, several tests were made varying the value of h. It was

observed that from h = 500 the quality of the solution does not improve much. So, it was

chosen h = 500 in the developed algorithm.

4.2.5 Hybrid Strategies

To solve the Minimum Vertex Guard Set problem it was, also, developed two different

combinations of GAs and SA metaheuristics, that is, two different hybrid metaheuristics.

Although there are many different ways to hybridize these two metaheuristics, in this work

it was chosen two different hybridizations (Chapter 2, section 2.2). In the first one, for the

initial population of a genetic algorithm, r individuals are generated, which are obtained by

running a SA strategy r times. Figure 4.12 illustrates this method. In this way, it can be

observed how a GA behaves on including high quality solutions in the initial population.

Generation

of the initial

population

with SA

Population

evaluation

Termination

condition

Selection

Crossover

Generate

new population

No

Mutation

Yes
Best

individuals

Solution

Figure 4.12: First hybrid strategy.

In the second method, a SA strategy is used as a genetic operator of a GA strategy.

As the standard genetic operators, this one occurs with a certain probability psa. In the

experimental evaluation was used psa = 0.01 (see Figure 4.13). This allows to observe how a

GA behaves on reinforcing the intensification/exploitation during the search process.

Minimum Vertex Guard Set Problem 77

Generation

of the initial

population

Population

evaluation

Termination

condition

Selection

Crossover

SA

Generate

new population

No

Mutation

Yes
Best

individuals

Solution

Figure 4.13: Second hybrid strategy.

4.3 Greedy Strategies for visibility-independent sets

As previously mentioned, the MVGS(P) problem is NP-hard both for arbitrary and orthog-

onal polygons [8,115], so its optimal solution is unknown. Such as for the MHVS(P) problem

(see Chapter 3, section 3.3), it was conducted an experimental analysis on the performance

of the develloped algorithms. For that, it was developed a method to compute a lower bound

on the optimal number of vertex guards for each instance in the performed experiments.

First, it was considered the concept of visibility-independent set.

Definition 4.2 Let P be a n-vertex polygon. A visibility-independent set is a finite set

of points on P , IS ⊂ P , such that the visibility polygons of its elements are pairwise disjoint,

i.e., ∀p, q ∈ IS, V is(p, P) ∩ V is(p, P) = ∅. Its elements are called visibility-independent

points and its cardinality is denoted by |IS| [11].

The example given in Figure 4.14 illustrates a visibility-independent set of cardinality 3.

Figure 4.14: Visibility-independent set. Green dots represent visibility-independent points.

It is easy to verify that no single vertex guard is able to see more than one point of IS,

consequently ∀G, IS, |G| ≥ |IS| . It can be easily concluded that g(P) ≥ is(P), where g(P)

78 Minimum Vertex Guard Set Problem

is the number of vertex guards in a minimum-cardinality of a vertex guarding set of P and

is(P) is the number of points in a maximum-cardinality of a visibility-independent set of P .

Thus, is(P) is a lower bound on the optimal number of vertex guards on P .

Nevertheless, the problem of determining this lower bound is also NP-hard [11]. So, it

was developed approximation algorithms to determine approximate solutions (which will be

described later on). Let |IS| be the cardinality of an approximate solution

|IS| ≤ is(P) ≤ g(P) ≤ |G|,∀P. (4.1)

If there is a constant c ∈ R+ such that |G| ≤ c× |IS|, for any polygon P , it can be said

that the approximation algorithm used to obtain G has an approximation ratio of c [13]. In

other words, the approximate solution |IS| is at most c times the optimal solution g(P). In

fact,

|G| ≤ c× |IS| ⇒ |G| ≤ c× g(P). (4.2)

As stated above, approximation algorithms were developed to find visibility-independent

sets. These algorithms are greedy strategies, that is, they start with a set of candidates C

(not visibility-independent), then they add visibility-independent points one by one until a

solution IS is obtained (IS initially is an empty set), selecting in each step a point from the

candidate set C, according to a certain rule.

The candidate set used is the one proposed by Amit, Mitchell, and Packer [11], which is

C = C1 ∪ C2, where C1 denotes the convex vertices of P and C2 denotes the midpoints of the

edges incident on two reflex vertices. Concerning the rule to select the points, it was applied

three different alternatives which result in three different greedy algorithms: A1 , A2 and A3.

Algorithm A1: For each candidate ci ∈ C, the area of V is(ci, P) is calculated. In each step

the candidate, whose visibility polygon has the smallest area, is selected.

Algorithm A2: For each candidate ci ∈ C, V is(ci, P) is computed. The number of inter-

sections with the visibility polygons of the other candidates is calculated. In each step the

candidate that has the smallest number of intersections is selected.

Algorithm A3: For each candidate ci ∈ C, the number of candidates it sees is determined.

In each step the candidate that sees the smallest number of points in C is selected. This

method is one of the methods developed in [11].

In all these algorithms, after adding a point to IS, are removed from C all the candidates

cj such that V is(cj , P) intersects the union of the visibility polygons of the elements of IS.

Minimum Vertex Guard Set Problem 79

The algorithms stop when the set C is empty. Algorithm A1 is illustrated below.

Algorithm 4.3 Computing IS (greedy algorithm A1)

Input: A polygon P with n vertices

Output: A visibility-independent set, IS

1. IS ← ∅
2. C ← C1 ∪ C2

3. for each c ∈ C do

4. calculate the area of V is(c, P)

5. end for

6. while C 6= ∅ do

7. choose the ci ∈ C whose V is(ci, P) has the smallest area

8. IS ← IS ∪ {ci}
9. remove ci from C and all cj ∈ C such that V is(ci, P) ∩

⋃
is∈IS 6= ∅

10. end while

11. return IS

Algorithms A2 and A3 are very similar to this one, the main differences are in steps 4

and 7. It turns out that A2 and A3 obtain the best and the worst results, respectively, both

for orthogonal and arbitrary polygons.

The application of the greedy strategy, the SA strategy, the GA strategy and the hybrid

strategies together with A1, to each instance in our experiments, gives provable performance

bounds in terms of approximation ratios. In the performed experiments, given a polygon P ,

the main objective is to find a small vertex guarding set G and a large visibility-independent

set IS; the obtained set G approximates the optimal number of vertex guards g(P) with

approximation ratio |G|
|IS| . Note that, if a visibility-independent set IS and a vertex guarding

set G are found, such that |IS| = |G|, then G is an optimal vertex guarding set.

4.4 Experiments and Results

To identify which of the described approximation strategies yields the best approximate solu-

tions in a reasonable time, they were implemented and its behaviour was tested over a large

set of randomly generated polygons. In the next two subsections, subsections 4.4.1 and 4.4.2,

it will be discussed the results and the conclusions from the accomplished experiments on

arbitrary and orthogonal polygons, respectively.

80 Minimum Vertex Guard Set Problem

4.4.1 Arbitrary Polygons

To choose the SA and the GA parameters that best fit on the MVGS(P) problem, the experi-

ments were made over four sets of polygons, each one formed by 40 polygons of 30, 50, 70 and

100 vertex polygons. To analyze the four methods, four sets of polygons were used, each one

formed by 40 polygons of 50, 100, 150 and 200. To analyze the SA and the GA parameters

the experiments were performed on polygons with fewer vertices due to the time of execution,

which is relatively high for some cases. Our computational tests showed that to choose these

parameters it would be sufficient to make experiments with polygons of up to 100 vertices.

The other choices (related with the dimension of the sets of polygons), although not being

theoretically justified, were dictated by practical reasons.

4.4.1.1 Analysis of the SA Parameters

According to section 4.2.3, there are several choices for two of the SA parameters: the initial

temperature (T0) and the temperature decrement rule. The different combinations of the

parameters values result into nine cases (see Table 4.1).

Cases

Case 1 T0 = n and Tk+1 = T0
1+k

(FSA decrease)

Case 2 T0 = n and Tk+1 = T0
ek (VFSA decrease)

Case 3 T0 = n and Tk+1 = αTk−1 (α = 0.9) (Geometric decrease, α = 0.9)

Case 4 T0 = 500 and Tk+1 = T0
1+k

(FSA decrease)

Case 5 T0 = 500 and Tk+1 = T0
ek (VFSA decrease)

Case 6 T0 = 500 and Tk+1 = αTk−1 (Geometric decrease, α = 0.9)

Case 7 T0 = n
4

and Tk+1 = T0
1+k

(FSA decrease)

Case 8 T0 = n
4

and Tk+1 = T0
ek (VFSA decrease)

Case 9 T0 = n
4

and Tk+1 = αTk−1 (Geometric decrease, α = 0.9)

Table 4.1: Studied cases for SA.

These nine cases were analyzed by comparing the number of vertex guards, the runtime

and the number of iterations performed by each one of them. Tables 4.2, 4.3 and 4.4 presents

the results obtained with the Cases 1 and 2, Cases 3 and 4 and Cases 5 and 6, respectively.

These tables, as can be seen, show the average time of pre-processing in seconds (PP), the

average number of vertex guards (|G|), the average runtime in seconds (Time) and the average

number of iterations of the algorithm (Iter.).

In the first three cases, the selection of the initial temperature depends on the input of

the problem, that is, it depends on n, number of vertices of P . It was considered T0 = n, may

be ground for future research studying the behaviour of approximation method for non-linear

functions in the initial temperature.

Minimum Vertex Guard Set Problem 81

Case 1 (FSA dec.) Case 2 (VFSA dec.) Case 3 (Geometric dec.)
n

PP |G| Time Iter. PP |G| Time Iter. PP |G| Time Iter.

30 0.12 5.40 16.40 4798.60 0.10 5.77 1.400 9.00 0.25 5.92 7.550 83.00

50 0.42 8.55 51.27 6550.90 0.35 9.30 4.97 10.00 0.60 9.65 24.45 88.00

70 0.65 11.80 108.75 7718.50 0.725 13.20 10.95 10.00 1.50 13.35 53.525 91.00

100 1.90 16.97 243.52 10162.00 1.80 18.65 24.35 10.00 1.90 18.92 117.275 94.00

Table 4.2: Results obtained with SA Cases 1, 2 and 3 (T0 = n) on arbitrary polygons.

As we can see, the best solution appears to correspond to a slow decrease in temperature

(FSA decrease) with a larger number of iterations and a higher response time, i.e., the best

solution in these first three cases seems to be obtained by Case 1.

In the following three cases it is going to be analyzed how the different types of tem-

perature decreasing behave, being T0 constant. As the number of vertices of the analyzed

polygons is 50, 100, 150 and 200, it was chosen a constant value T0 = 500. This way, we have

a constant value greater than any n value and considered small enough so that the algorithm

is executed in a reasonable time.

Case 4 (FSA dec.) Case 5 (VFSA dec.) Case 6 (Geometric dec.)
n

PP |G| Time Iter. PP |G| Time Iter. PP |G| Time Iter.

30 0.07 4.95 233.72 39686.00 0.05 5.925 19.40 12.00 0.10 6.12 122.02 110.00

50 0.47 7.80 452.67 39001.00 0.37 9.27 38.52 12.00 0.30 9.42 233.55 110.00

70 0.87 11.12 726.10 39434.00 0.77 13.17 61.70 12.00 0.70 13.20 366.25 110.00

100 1.77 15.57 1133.70 39447.00 1.90 18.200 94.35 12.00 1.92 19.32 564.72 110.00

Table 4.3: Results obtained with SA Cases 4, 5 and 6 (T0 = 500) on arbitrary polygons.

As we can see, the best solution in these three cases seems to be achieved by Case

4. Comparing these last three cases with the first three for the same type of temperature

decrease, that is, Case 1 with Case 4, Case 2 with Case 5 and Case 3 with Case 6. We can

see that the solutions provided by Case 4 seem to be better than the solutions provided by

Case 1, although in Case 4 the algorithm runtime and the number of iterations also increase.

Concerning Cases 2 and 5, appears that the obtained solutions are almost equal, being Case 5

slower. Finally, Case 3 is faster than Case 6 and seems to obtain slightly better solutions, for

n = 30 and 100, being almost equal for n = 50 and n = 70. We can also see that, in general,

if a solution nearer to the optimal one is searched, then it seems that it is more suitable to

choose an initial temperature regardless n and a slow temperature decrease (Case 4).

It should be noted that it should be expected that a geometrical decrease would pro-

duce better solutions than a rapid decrease (VFSA), what does not happen. The reason for

this behaviour is the elimination of redundant vertex guards, so that the results have not

82 Minimum Vertex Guard Set Problem

considerable differences.

In the next cases it is going to be analyzed how the three temperature decreases behave if

the initial temperature depends on n. Here it was considered T0 = n
4 . This value was chosen

because it not only links T0 with the algorithm input, but also it is lower than n, and it was

wished to see how the algorithm behave under these conditions.

Case 7 (FSA dec.) Case 8 (VFSA dec.) Case 9 (Geometric dec.)
n

PP |G| Time Iter. PP |G| Time Iter. PP |G| Time Iter.

30 0.10 5.55 4.65 1399.00 0.125 5.67 0.52 8.00 0.07 5.92 1.97 69.00

50 0.40 9.02 16.45 2399.00 0.35 8.70 2.07 8.00 0.17 9.40 6.85 74.00

70 0.72 12.77 38.05 3399.00 0.75 12.325 4.70 9.00 0.70 13.70 15.07 78.00

100 1.92 18.27 85.42 4592.00 1.82 17.90 11.07 9.00 1.85 19.07 33.47 81.00

Table 4.4: Results obtained with SA Cases 7, 8 and 9 (T0 = n
4) on arbitrary polygons.)

Observing these last three cases we verify, surprisingly, that for an initial temperature

T0 = n
4 the solutions seem to improve slightly when the decrease of the temperature is fast

(VFSA), particularly for n = 100. Again, the reason for this behaviour is the removal of

redundant vertex guards. If this removal does not take place the results will reverse (the

number of redundant guards is much greater in Case 8 than in Cases 7 and 9). Nevertheless,

this improvement cannot be observed if the decrease of the temperature is slower and T0 = 500

(Case 4), that seems to be the best case of the first six cases.

As always, a statistical study was carried out. The analysis of the data normality showed

that the data obtained with Case 1 were always non-normally distributed (p-value<0.001<

0.05, for n = 30, 50, 70 and 100). The p-values returned by the Kruskal-Wallis tests were less

than 0.001 for the data obtained with the polygons with n = 30, 50, 70 and 100, respectively

(note that, all p-values are less than 0.05). Then multiple comparison tests were performed

to determine which pairs of averages were significantly different, and which were not. The

answers provided by these tests are presented in Tables 4.5, 4.6, 4.7 and 4.8. The sign “+”

indicates that the sample data (concerning |G|) is significantly different and the sign “-”

indicates otherwise.

Methods Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9

Case 1 • - - - - + - - -

Case 2 - • - + - - - - -

Case 3 - - • + - - - - -

Case 4 - + + • + + - + +

Case 5 - - - + • - - - -

Case 6 + - - + - • - - -

Case 7 - - - - - - • - -

Case 8 - - - + - - - • -

Case 9 - - - + - - - - •

Table 4.5: Multiple comparison tests, of SA Cases, for 30-vertex arbitrary polygons.

Minimum Vertex Guard Set Problem 83

Methods Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9

Case 1 • - + - - - - - -

Case 2 - • - + - - - - -

Case 3 + - • + - - - + -

Case 4 - + + • + + + + +

Case 5 - - - + • - - - -

Case 6 - - - + - • - - -

Case 7 - - - + - - • - -

Case 8 - - + + - - - • -

Case 9 - - - + - - - - •

Table 4.6: Multiple comparison tests, of SA Cases, for 50-vertex arbitrary polygons.

Methods Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9

Case 1 • + + - + + - - +

Case 2 + • - + - - - - -

Case 3 + - • + - - - - -

Case 4 - + + • + + + + +

Case 5 + - - + • - - - -

Case 6 + - - + - • - - -

Case 7 - - - + - - • - -

Case 8 - - - + - - - • +

Case 9 + - - + - - - + •

Table 4.7: Multiple comparison tests, of SA Cases, for 70-vertex arbitrary polygons.

Methods Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9

Case 1 • + + - - + + - +

Case 2 + • - + - - - - -

Case 3 + - • + - - - - -

Case 4 - + + • + + + + +

Case 5 - - - + • - - - -

Case 6 + - - + - • - + -

Case 7 + - - + - - • - -

Case 8 - - - + - + - • -

Case 9 + - - + - - - - •

Table 4.8: Multiple comparison tests, of SA Cases, for 100-vertex arbitrary polygons.

The multiple comparison tests, also, allowed to conclude that:

• for n = 30, concerning

– Cases 1, 2 and 3. The best is Case 1 not significantly different from Cases 2 and

Case 3; the worst is Case 3 with no significant differences from Cases 1 and 2 (see

Figure 4.15 (a));

– Cases 4, 5 and 6. The best is Case 4 with significant differences from Cases 5 and

6; the worst is Case 6 with no significant differences from Case 5 (see Figure 4.16);

– Cases 7, 8 and 9. The best is Case 7 with no significant differences from Cases 8

and 9; the worst is Case 9 with no significant differences from Cases 7 and 8 (see

84 Minimum Vertex Guard Set Problem

Figure 4.17 (a));

– the nine cases. The best is Case 4, with no significant differences from Cases 1 and

7; the worst is Case 6, with no significant differences from Cases 2, 3, 5, 7 , 8 and

9.

• for n = 50, concerning

– Cases 1, 2 and 3. The best is Case 1 with no significant differences from Case 2 and

significantly better than Case 3; the worst is Case 3 with no significant differences

from Case 2 (see Figure 4.15 (b));

– Cases 4, 5 and 6. The best is Case 4 with significant differences from Cases 5 and

6; the worst is Case 6 with no significant differences from Case 5 (see Figure 4.16);

– Cases 7, 8 and 9. The best is Case 8 with no significant differences from Cases 7

and 9; the worst is Case 9 with no significant differences from Cases 7 and 8 (see

Figure 4.17 (a));

– the nine cases. The best is Case 4, with no significant differences from Case 1; the

worst is Case 3, with no significant differences from Cases 2, 5, 6, 7 and 9.

• for n = 70, concerning

– Cases 1, 2 and 3. The best is Case 1 with significant differences from Cases 2 and

3; the worst is Case 3 with no significant differences from Case 2 (see Figure 4.15

(c));

– Cases 4, 5 and 6. The best is Case 4 with significant differences from Cases 5 and

6; the worst is Case 5 with no significant differences from Case 6 (see Figure 4.16);

– Cases 7, 8 and 9. The best is Case 8 with no significant differences from Case 7 and

significantly better than Case 9; the worst is Case 9 with no significant differences

from Case 7 (see Figure 4.17 (b));

– the nine cases. The best is Case 4, with no significant differences from Case 1; the

worst is Case 9, with no significant differences from Cases 2, 3, 5, 6, and 7.

• for n = 100, concerning

– Cases 1, 2 and 3. The best is Case 1 with significant differences from Cases 2 and

3; the worst is Case 3 with no significant differences from Case 2 (see Figure 4.15

(c));

– Cases 4, 5 and 6. The best is Case 4 with significant differences from Cases 5 and

6; the worst is Case 6 with no significant differences from Case 5 (see Figure 4.16);

– Cases 7, 8 and 9. The best is Case 8 with no significant differences from Cases 7

and 9; the worst is Case 9 with no significant differences from Case 7 and 8 (see

Figure 4.17 (c));

Minimum Vertex Guard Set Problem 85

– the nine cases. The best is Case 4, with no significant differences from Case 1; the

worst is Case 6, with no significant differences from Cases 2, 3, 5, 7, and 9.

As can be noticed, using the multiple comparison tests, for T0 = n and n small (n = 30)

the selection of the rule to decrease the temperature is not influential on the obtained solutions,

however when n increases the best solutions are obtained when the temperature decrease is

slow (FSA) (see Figure 4.15). For T0 = 500 the best solutions always correspond to slow a

temperature decrease (see Figure 4.16). Finally, for T0 = n
4 , the temperature decrease does

not influence the obtained solutions (except for n = 70) (see Figure 4.17).

Case 2

Case 3

Case 1

Worst and Best

(a) n = 30

C
a
s
e
 2Case 3

Case 1

BestWorst

(b) n = 50

Case 2

Case 3

Case 1

BestWorst

(c) n = 70 and 100

Figure 4.15: Multiple comparison tests, of SA Cases 1, 2 and 3 (arbitrary polygons).

Case 5

Case 6

Case 4

BestWorst

n = 30, 50, 70 and 100

Figure 4.16: Multiple comparison tests, of SA Cases 4, 5 and 6 (arbitrary polygons).

Case 8

Case 9

Case 7

Worst and Best

(a) n = 30, 50

C
a
s
e
 7Case 9

Case 8

BestWorst

(b) n = 70

Case 8

Case 9

Case 7

Worst and Best

(c) n = 100

Figure 4.17: Multiple comparison tests, of SA Cases 7, 8 and 9 (arbitrary polygons).

Notice that for all types of initial temperature T0 it should be expected that a geometrical

86 Minimum Vertex Guard Set Problem

decrease would produce better solutions than a fast decrease (VFSA), what does not happen.

We can see that the obtained solutions have not significant differences (except when T0 = n
4

and n = 70). As stated before, the reason for this behaviour is the elimination of redundant

vertex guards.

Concerning the nine cases, if the temperature decrease is slow, the best solutions are

obtained with T0 = 500 and T0 = n. If the temperature decrease is fast or geometric the

initial temperature does not have influence, despite the observation that they seem to obtain

different solutions (see Tables 4.2, 4.3 and 4.4). It can also be concluded that the best

solutions are obtained with Case 4 for n = 30, 50, 70 and 100 and a significant difference was

not found between the number of vertex guards obtained with this case and Case 1. Despite

the observation that in Tables 4.2 and 4.3, Case 4 seems to outperform Case 1 in relation to

the average of |G|, for n = 30, 50 and 100. So, the statistical analysis proceeded regarding the

runtime. This analysis was made in a similar way and it allowed to conclude that Case 1 is

significantly faster than Case 4, for n = 30, 50, 70 and 100. Given this, Case 1 was selected to

be the best case.

Concluding, if a solution nearer to the optimal one is searched, then it is more suitable

to choose a slow temperature decrease (FSA decrease) and an initial temperature T0 = n.

Notice, however, that the rapid decreases are useful when faster, but also worse, solutions

are wished. Remember that, it is necessary to choose a simulated annealing strategy for the

hybrid methods. Case 8 is the fastest case and although the returned number of vertex guards

is worse, it is still acceptable. So, this case is the most appropriated to be used in the hybrid

methods.

Improvements

After the accomplishment of this study, it was found that the runtime of the best case

(Case 1) could be improved. Remember that, when a worse neighbour Sj of a solution Si is

generated, it is necessary to check if the new generated solution is valid (see subsection 4.2.3).

For that, it is verified if
⋃
v∈Si\{vt} V is(v, P) = P , where t ∈ {0, 1, . . . , n − 1} is a randomly

generated number. Besides in the step where the redundant guards are detected and deleted it

necessary to check if
⋃
v∈G\{vi} V is(v, P) = P , for each vi ∈ G (see Algorithm 4.1). Hence, it

seems that the running time of simulated annealing strategy could be improved if a dominance

matrix is computed in the pre-processing step. Next, this concept will be defined.

Definition 4.3 Let P be a polygon with n vertices and vi, vj ∈ VP . The vertex vi dominates

the vertex vj (or, vj is dominated by vi) if V is(vj , P) ⊂ V is(vi, P).

Definition 4.4 Let P be a polygon with n vertices. The dominance matrix of P is a n×n
matrix A, where ∀i, j ∈ {0, . . . , n− 1}, A[i, j] = 1, if the vertex vi ∈ VP dominates the vertex

vj ∈ VP ; and A[i, j] = 0, otherwise.

Minimum Vertex Guard Set Problem 87

The dominance matrix could improve the runtime of the above described algorithms

because each time that it necessary to see if G \ {vi}, with vi ∈ G, is still a vertex guarding

set, being G a vertex guarding set: first, it is checked if vi is dominated by some other vertex

of G, that is, if A[i, j] = 1, for some vj ∈ G. If so, then it is known that G \ {vi} is a vertex

guarding set, and it is not necessary to determine if
⋃
v∈G\{vi} V is(v, P) = P (what is much

time consuming).

In this way, the calculation of A was included in the pre-processing step and new results

were obtained with Case 1, which was elected the best case. Table 5.9 shows the results

obtained with Case 1, with and without the dominance matrix.

Case 1 (without dominance matrix) Case 1 (with dominance matrix)
n

PP |G| Time Iter. PP |G| Time Iter.

30 0.12 5.40 16.40 4798.60 1.27 5.35 13.85 4733.00

50 0.42 8.55 51.27 6550.90 3.30 8.47 41.75 6205.20

70 0.65 11.80 108.75 7718.50 6.47 11.80 92.70 7874.90

100 1.90 16.97 243.52 10162.00 12.97 16.52 200.32 9942.00

Table 4.9: Results obtained with SA Case 1, with and without the use of the dominance

matrix (arbitrary polygons).

Clearly, we can see that the runtime improves when the dominance matrix is employed.

Although the pre-processing time increases, the overall time (pre-processing time plus run-

time) is improved when the dominance matrix is employed. Given that, Case 1 with the

calculation of the dominance matrix in the pre-processing step was selected to be method M2.

4.4.1.2 Analysis of the GA Parameters

According to section 4.2.4, there are various choices for two of the GA parameters: the

selection and the crossover operators. The different combinations produce eight cases (see

Table 4.10).

Cases

Case 1 Roulette Wheel Selection and Single Point Crossover

Case 2 Roulette Wheel Selection and Two-Point Crossover

Case 3 Roulette Wheel Selection and Single Uniform Crossover

Case 4 Roulette Wheel Selection and Variant of Single Point Crossover

Case 5 Tournament Selection and Single Point Crossover

Case 6 Tournament Selection and Two-Point Crossover

Case 7 Tournament Selection and Single Uniform Crossover

Case 8 Tournament Selection and Variant of Single Point Crossover

Table 4.10: Studied cases for GA.

88 Minimum Vertex Guard Set Problem

The eight cases were analyzed by comparing the number of vertex guards, the runtime

and the number of iterations. In Tables 4.11, 4.12, 4.13, and 4.14 are exposed the results

obtained with the first four methods. Note that, the tables show the average time of pre-

processing in seconds (PP), the average number of vertex guards (|G|), the average runtime

in seconds (Time) and the average number of iterations of the algorithm (Iterations).

n PP (sec.) |G| Time (sec.) Iterations

30 0.02 5.27 19.22 740.02

50 0.45 8.40 72.30 1134.30

70 0.65 11.72 190.05 1763.20

100 1.87 17.00 504.52 2690.30

Table 4.11: Results obtained with GA Case

1 (arbitrary polygons).

n PP (sec.) |G| Time (sec.) Iterations

30 0.02 5.35 18.87 709.75

50 0.42 8.40 72.17 1130.40

70 0.80 11.67 177.05 1632.40

100 1.90 16.92 468.55 2532.55

Table 4.12: Results obtained with GA Case

2 (arbitrary polygons).

n PP (sec.) |G| Time (sec.) Iterations

30 0.075 5.275 17.625 685.225

50 0.175 8.275 68.825 1098.900

70 0.750 11.575 171.300 1641.600

100 1.775 16.900 460.450 2604.400

Table 4.13: Results obtained with GA Case

3 (arbitrary polygons).

n PP (sec.) |G| Time (sec.) Iterations

30 0.15 5.22 10.70 721.20

50 0.37 8.25 60.35 1145.00

70 0.72 11.75 158.50 1632.20

100 1.85 16.77 443.95 2529.50

Table 4.14: Results obtained with GA Case

4 (arbitrary polygons).

As we can see, in these first four methods there are almost no differences on the average

number of vertex guards. So, the different types of crossover seem to have not influence on

the obtained solutions (number of vertex guards) when the roulette wheel selection is used.

Concerning the average runtime, Case 4 seems to be the best one. Thus the variant of the

single point seems to improve the algorithm runtime.

In the following four cases, it is analyzed how the different types of crossover behave,

when the tournament selection is used. The obtained results are shown in Tables 4.15, 4.16,

4.17, and 4.19.

n PP (sec.) |G| Time (sec.) Iterations

30 0.02 5.35 17.32 686.20

50 0.27 8.50 60.90 1009.70

70 0.67 12.00 142.97 1399.60

100 1.75 16.85 384.77 2173.10

Table 4.15: Results obtained with GA Case

5 (arbitrary polygons).

n PP (sec.) |G| Time (sec.) Iterations

30 0.17 5.35 16.80 682.87

50 0.22 8.45 59.30 973.17

70 0.72 11.85 138.52 1355.80

100 1.82 17.00 365.60 1033.40

Table 4.16: Results obtained with GA Case

6 (arbitrary polygons).

Minimum Vertex Guard Set Problem 89

n PP (sec.) |G| Time (sec.) Iterations

30 0.07 5.30 16.72 680.52

50 0.40 8.47 57.40 958.10

70 0.82 11.77 130.12 1296.80

100 1.90 16.82 321.32 1822.50

Table 4.17: Results obtained with GA Case

7 (arbitrary polygons).

n PP (sec.) |G| Time (sec.) Iterations

30 0.02 5.20 9.05 709.42

50 0.25 8.37 44.92 985.80

70 0.67 11.62 110.97 1324.70

100 1.80 16.90 310.50 1987.70

Table 4.18: Results obtained with GA Case

8 (arbitrary polygons).

Again, in these four methods there are almost no differences on the average number of

vertex guards. However, Case 8 seems to be the method that obtains slightly better solutions,

with the exception of n = 100. Concerning the average runtime, Case 8, also, seems to be

the best one. Once more, the crossover method seems to have no influence on the obtained

solutions, however it seems that the variant of the single point seems to improve the algorithm

runtime.

Comparing the eight methods, we notice that the obtained results are approximately the

same for all methods (concerning |G|). Concerning the average runtime, Case 8 seems to be

the best method. So it does not matter which selection and the crossover operators used,

concerning the obtained solutions. But, it seems that the variant of the single point improves

the algorithm runtime.

A statistical study was performed. To compare the average number of vertex guards

it was used the non-parametric Kruskall-Wallis tests because the Kolmogorov-Smirnof tests

showed that the data obtained with Case 1 were always non-normally distributed (p-value<

0.001< 0.05, for n = 30, 50, 70 and 100). As expected, the Kruskal-Wallis tests showed that

there were no significant differences among the eight cases regarding |G|, for n = 30, 50,

70 and 100 (p-value = 0.9676 ≥ 0.05, for n = 30, p-value = 0.9665 ≥ 0.05, for n = 50,

p-value = 0.9191 ≥ 0.05, for n = 70 and p-value = 0.9933 ≥ 0.05, for n = 100).

According to the previous conclusion, a statistical analysis was made regarding the run-

time. Since the data obtained with Case 1 were always non-normally distributed (p-value<

0.001 < 0.05, for n = 30, 50, 70 and 100), the Kruskal-Wallis tests were used again. These

tests established that at least one case is significantly different, concerning the runtime

(p-value < 0.001 < 0.05, for n = 30, 50, 70 and 100). So, multiple comparison tests were

performed to determine which pairs of methods were significantly different, and which were

not. The results provided by these tests allowed to conclude that: for n = 30, Case 8 is the

fastest case with no significant difference from Case 4 and it is significantly faster than the

other cases; for n = 50, Case 8 is significantly faster than all the other cases; for n = 70, Case

8 is the fastest case with no significant difference from Case 7 and significantly better than the

other cases; and finally, for n = 100, Case 8 is the fastest case with no significant difference

90 Minimum Vertex Guard Set Problem

from Cases 6 and 7 and significantly faster than the other cases. According to these results,

Case 8 was considered the best case of all.

Remember that, there are other parameters that can be changed in the GAs meta-

heuristic, for instance, the genetic operator mutation (see section 4.2.4). It was decided to

experiment two different mutation operations in the selected case, Case 8, to see how the

algorithm behaves.

Up to now the mutation operation that was applied was to flip all the gene values from

zero to one or vice versa, with a probability of 5% (pm = 0.05), as described in section 4.2.4.

Now, two different mutations are going to be tested:

• The first one consists in randomly selecting one gene and then flip its value from zero

to one or vice versa, with a probability of 5%. This case is designated by Case 8.1.

• The second one consists in applying the mutation described in section 4.2.4, but with a

probability of 5%. That is, the mutation described in section 4.2.4 will not occur always,

it will only occur with a probability of 5%. For that, it is generated a randomly real

number U ∈ [0, 1], following an uniform distribution, and then if U ≤ 0.05 the mutation

happen; otherwise it does not happens. This case is designated by Case 8.2.

Table 4.19 shows the results obtained with Case 8, Case 8.1 and Case 8.2.

Case 8 Case 8.1 Case 8.2
n

PP |G| Time Iter. PP |G| Time Iter. PP |G| Time Iter.

30 0.02 5.20 9.05 709.42 > 0.001 5.45 4.47 652.65 0.12 5.42 3.45 618.62

50 0.25 8.37 44.92 985.80 0.25 8.62 17.92 812.30 0.32 8.52 17.97 758.12

70 0.67 11.62 110.97 1324.70 0.67 11.92 40.50 982.32 0.67 11.82 42.02 918.25

100 1.80 16.90 310.50 1987.70 1.92 17.05 117.12 1362.80 1.77 17.12 121.65 1257.70

Table 4.19: Results obtained with GA Cases 8, 8.1 and 8.2 (arbitrary polygons).

As we can see, it seems that there are almost no differences on the average number of

vertex guards. However, concerning the average runtime, Case 8 seems to be the worst one.

A statistical study was performed. To compare the average number of vertex guards

it was used the non-parametric Kruskall-Wallis tests, because the Kolmogorov-Smirnof tests

showed that the data obtained with Case 8 were always non-normally distributed (p-value<

0.001< 0.05, for n = 30, 50, 70 and 100). As expected, the Kruskal-Wallis tests showed that

there were no significant differences among the three cases regarding |G|, for n = 30, 50, 70

and 100 (p-value = 0.4088 ≥ 0.05, for n = 30, p-value = 0.5028 ≥ 0.05, for n = 50, p-value =

0.6494 ≥ 0.05, for n = 70 and p-value = 0.8084 ≥ 0.05, for n = 100).

According to the previous conclusion, a statistical analysis was made regarding the run-

time. Since the data obtained with Case 8 were always non-normally distributed (p-value<

0.001 < 0.05, for n = 30, 50, 70 and 100), the Kruskal-Wallis tests were used again. These

Minimum Vertex Guard Set Problem 91

tests established that at least one case is significantly different, concerning the runtime

(p-value < 0.001 < 0.05, for n = 30, 50, 70 and 100). So, multiple comparison tests were

performed to determine which pairs of methods were significantly different, and which were

not. The results provided by these tests allowed to conclude that: for n = 30, 50, 70 and 100,

Case 8 is significantly slower than Case 8.1 and 8.2 and a significant difference was not found

between the runtime of Cases 8.1 and 8.2. According to these results, Cases 8.1 and 8.2 are

not significantly different. Case 8.2 was selected as the case to be used.

Improvements

As for the analysis of the SA parameters, it was found that the runtime of Case 8.2 could

be improved if the dominance matrix was used. Here, it is possible to use the dominance

matrix in the generation of the initial population and in the step where the redundant guards

are detected and removed. Consequently, the calculation dominance matrix of P was included

in the pre-processing step and new results were obtained with Case 8.2. Table 4.20 show the

results obtained with Case 8.2, with and without the dominance matrix.

Case 8.2 (without dominance matrix) Case 8.2 (with dominance matrix)
n

PP |G| Time Iterations PP |G| Time Iterations

30 0.12 5.42 3.45 618.62 1.25 5.35 3.92 611.72

50 0.32 8.52 17.97 758.12 3.35 8.62 16.20 735.27

70 0.67 11.82 42.02 918.25 6.30 11.77 40.55 916.10

100 1.77 17.12 121.65 1257.70 12.77 16.90 122.50 1311.30

Table 4.20: Results obtained with GA Case 8.2, with and without the use of the dominance

matrix (arbitrary polygons).

As we can see, when the dominance matrix is employed the runtime seems to be slightly

better for n = 30, 70 and 100. However, the overall time (pre-processing time plus runtime) is

not improved. Given this, Case 8.2, without the calculation of the dominance matrix in the

pre-processing step, was selected to be the method M3.

Remember that it is necessary to choose a genetic algorithm for the hybrid methods, it

was Case 8.2, without the calculation of the dominance matrix in the pre-processing step, i.e,

method M3, that was chosen to be used in the hybrid methods.

4.4.1.3 Comparison of the five strategies

This section proceeds with the analysis and evaluation of the results obtained with the five

approximation methods: M1, greedy strategy; M2, SA strategy; M3, GA strategy and the

hybrid strategies which are going to be denoted by M4 (the strategy in which the initial

population of a GA is generated by a SA algorithm) and M5 (the strategy in which a SA

92 Minimum Vertex Guard Set Problem

strategy is a genetic operator). Remember that, for the hybrid strategies is necessary to

choose a SA strategy and a GA strategy. As stated above, the selected SA strategy was

the SA Case 8, i.e., method M2, and the the selected GA strategy was the GA Case 8.2, ,

i.e., method M3. Experiments were made with the methods M4 and M5, with and without

the calculation of the dominance matrix on the pre-processing step and it was concluded that

using the dominance matrix these methods were faster. So all the results related to the hybrid

strategies where obtained using the dominance matrix.

The methods M1, M2, M3, M4 and M5 were applied over four sets of arbitrary polygons,

each one with 40 polygons with 50, 100, 150 and 200 vertex polygons. The obtained results

are tabulated in Tables 4.21 and 4.22.

M1 M2 M3
n

PP |G| Time Iterations PP |G| Time Iterations PP |G| Time Iterations

50 0.30 8.32 0.62 19.97 3.30 8.47 41.75 6205.20 0.32 8.52 17.97 758.12

100 1.95 16.82 3.30 44.32 12.97 16.52 200.32 9942.00 1.77 17.12 121.65 1257.70

150 5.27 23.95 7.70 68.75 28.20 24.60 480.47 1401.00 5.20 25.20 388.52 2057.40

200 11.75 32.45 14.87 93.72 51.35 33.25 899.85 1698.20 11.47 33.10 917.92 3075.80

Table 4.21: Results obtained with M1, M2 and M3 (arbitrary polygons).

Comparing the results obtained with the non-hybrid methods (M1, M2, M3), concerning

the average of |G| (see Table 4.21), we can notice that: for 50-vertex polygons the results are

almost equal; for 100-vertex polygons methods M1 and M2 seem to be the best strategies;

and for 150 and 200-vertex polygons method M1 seems to be the best strategy. We can also

see that, in any case, M1 is much faster than the other methods.

M4 M5
n

PP |G| Time Iterations PP |G| Time Iterations

50 3.32 7.52 46.97 506.47 3.225 7.57 32.80 581.45

100 12.65 15.12 461.00 538.00 12.47 15.20 252.67 759.57

150 28.32 22.45 1648.00 635.17 28.35 22.75 677.22 858.35

200 51.55 29.85 4332.90 672.05 51.75 30.35 1448.80 944.25

Table 4.22: Results obtained with M4 and M5 (arbitrary polygons).

Contrasting, now, the results obtained using the hybrid methods (see Table 4.22) we can

see that M4 is slower but the average number of vertex guards seems to be slightly better for

n = 200. Now, comparing the results achieved with the hybrid methods (M4 and M5) with

the results obtained with the non-hybrid strategies (M1, M2 and M3), we can observe that

the non-hybrid strategies are, in most cases, faster. Nevertheless, they seem to obtain worse

solutions. Summing up, regarding the average number of vertex guards, the methods M4 and

Minimum Vertex Guard Set Problem 93

M5 seem to be the best ones and the methods M2 and M3 seem to be the worst approximation

techniques (see Figure 4.18).

Figure 4.18: Solutions obtained with strategies M1,M2,M3, M4 and M5 (arbitrary polygons).

As usual, a statistical study was carried out. The data obtained with the method M1

were always non-normally distributed (p-value< 0.001< 0.05, for n = 50, 100, 150 and 200).

The p-values returned by the Kruskal-Wallis tests were less than 0.001 for the data obtained

with the polygons with n = 50, 100, 150 and 200, respectively (note that, all p-values are less

than 0.05). Then multiple comparison tests were performed. to determine which pairs of

averages were significantly different, and which were not. The answers provided by these tests

allowed to conclude that (see Figure 4.19):

• for n = 50, 100 and n = 200, the best method is M4, with no significant differences from

M5; and the worst method is M2, with no significat differences from methods M1 and

M3.

• for n = 150, the best method is M4, with no significant differences from M5; and the

worst method is M3, with no significant differences from methods M1 and M2.

M
1

M
5

M
4

M
3

M
2

BestWorst

(a) n = 50, 100 and 200

M
1

M
5

M
4

M
3

M
2

BestWorst

(b) n = 150

Figure 4.19: Multiple comparison tests of the five methods (arbitrary polygons).

Hence, regarding the hybrid methods, we note that M4 is always significantly better

94 Minimum Vertex Guard Set Problem

than all non-hybrid methods and that there are no significant differences between these two

methods, for n = 50, 100, 150 and 200. The statistical study continued regarding the runtime.

This study allowed to conclude that M5 is significantly faster than M4, for n = 50, 100, 150

and 200. Since a compromise between the quality of the solution and the algorithm runtime

is wanted, the study continued considering M5 as the best strategy.

Now, to infer about the average of the minimum number of vertex guards needed to cover

an arbitrary polygon, M5 was applied to eight sets of arbitrary polygons, each one with 40

polygons with 30, 50, 70, 100, 110, 130, 150 and 200 vertex polygons. The average of the

obtained results, concerning |G|, are shown in Table 4.23.

n 30 50 70 100 110 130 150 200

|G| 4.82 7.57 10.67 15.20 16.67 19.55 22.75 30.35

Table 4.23: Average of the minimum number of vertex guards (arbitrary polygons).

Then, using the least squares method, the following linear adjustment was obtained, with

a correlation factor of 0.9997 (see Figure 4.20):

f(x) = 0.1505x+ 0.1465 ≈ x

6.64
+ 0.1465 ≈ x

6.64
.

Figure 4.20: Least Squares Method (arbitrary polygons).

So, it can be concluded that on average, and approximately, the minimum number of

vertex guards needed to cover an arbitrary polygon with n vertices was observed to be d n
6.64e.

In order to get a quantitative measure on the quality of the calculated |G| , the visibility-

independent sets were computed for our instances (the eight sets of polygons described above).

The ratio between the smaller G (obtained with M5) and the larger visibility-independent set,

IS obtained with A2 (see section 4.3) never exceeded 1.66, with an average of 1.21 for the

universe of 320 polygons. That implies that algorithm M5 has an approximation ratio less

Minimum Vertex Guard Set Problem 95

than or equal to 1.66.

Figures 4.21 and 4.22 shows snapshots obtained with our software. In these figures are

illustrated four arbitrary polygons for which the visibility-independent sets IS were obtained

with A2 and the solutions G were obtained with M5.

(a) |IS| = 6 and |G| = 6 (b) |IS| = 12 and |G| = 16

Figure 4.21: IS and G sets (represented by black and red dots, respectively) obtained with

A2 and M5 on arbitrary polygons with: (a) n = 50 ; (b) n = 100.

(a) |IS| = 20 and |G| = 23 (b) |IS| = 25 and |G| = 32

Figure 4.22: IS and G sets (represented by black and red dots, respectively) obtained with

A2 and M5 on arbitrary polygons with: (a) n = 150 and (b) n = 200.

4.4.2 Orthogonal Polygons

In this subsection, like in subsection 4.4.1, it will be analyzed the nine and the eight cases,

resulting from the choice of the SA and GA parameters (see Tables 4.1 and 4.10, respectively),

to select the ones that best fit on the MVGS(P) problem for orthogonal polygons. After that,

it will be studied the solutions obtained with the five developed strategies.

96 Minimum Vertex Guard Set Problem

4.4.2.1 Analysis of the SA Parameters

Table 4.24 shows the results obtained with the first three cases. Similar to arbitrary

polygons, the best solution appears to correspond to a slow decrease in temperature (FSA)

with a larger number of iterations and a higher response time, i.e., the best solution in these

first three cases seems to be obtained by Case 1.

Case 1 (FSA dec.) Case 2 (VFSA dec.) Case 3 (Geometric dec.)
n

PP |G| Time Iter. PP |G| Time Iter. PP |G| Time Iter.

30 0.10 4.77 11.22 4745.40 0.10 5.47 1.125 9.00 0.17 5.80 5.20 83.00

50 0.57 8.17 38.65 6392.80 0.40 8.77 3.65 10.00 0.25 9.10 17.95 88.00

70 1.05 10.72 82.47 7912.20 1.15 12.07 8.52 10.00 1.05 12.92 40.97 91.00

100 2.55 15.97 190.65 10290.00 2.57 17.25 19.17 11.00 2.57 17.85 90.85 94.00

Table 4.24: Results obtained with SA Cases 1, 2 and 3 (T0 = n) on orthogonal polygons.

In the following three cases it is going to be analyzed how the different types of temper-

ature decreasing behave, being T0 constant (T0 = 500).

Case 4 (FSA dec.) Case 5 (VFSA dec.) Case 6 (Geometric dec.)
n

PP |G| Time Iter. PP |G| Time Iter. PP |G| Time Iter.

30 0.10 4.475 160.45 39092.00 0.12 5.72 13.72 12.00 0.12 5.47 84.85 110.00

50 0.30 7.575 338.70 38408.00 0.55 9.07 27.70 12.00 0.52 9.12 171.10 110.00

70 1.05 9.95 552.75 39335.00 1.02 12.05 46.95 12.00 1.02 12.55 282.70 110.00

100 2.62 14.77 883.45 39397.00 2.62 17.65 74.07 12.00 2.47 17.90 438.70 110.00

Table 4.25: Results obtained with SA Cases 4, 5 and 6 (T0 = 500) on orthogonal polygons.

As for arbitrary polygons, the best solution in these three cases seems to be obtained

by Case 4. Comparing these last three cases with the first three ones for the same type of

temperature decrease, that is, Case 1 with Case 4, Case 2 with Case 5 and Case 3 with Case

6, we can see that the solutions provided by Case 4 seems to be better than the solutions

provided by Case 1, although in Case 4 the algorithm runtime and the number of iterations

also increase. Concerning Cases 2 and 5, it appears that the obtained solutions are almost

equal, except for n = 50, where the Case 2 appears to obtain better solutions. Finally, Cases

3 and 6 it seems that they obtain similar solutions, being Case 6 slower. Therefore, in general,

if a solution nearer to the optimal one is searched it seems that it is more suitable to choose a

slow temperature decrease (FSA) and T0 = 500; for faster temperature decreases (VFSA and

Geometric) the election of the initial temperature does not turn out to be influential.

Similar to arbitrary polygons, it would be expected that a geometrical decrease should

produce better solutions than a rapid decrease (VFSA), what does not happens. Again, the

Minimum Vertex Guard Set Problem 97

reason for this behaviour is the elimination of redundant vertex guards, so that the solutions

have not considerable differences.

In the following cases it is analyzed how the three temperature decreases behave if T0 = n
4 .

Case 7 (FSA dec.) Case 8 (VFSA dec.) Case 9 (Geometric dec.)
n

PP |G| Time Iter. PP |G| Time Iter. PP |G| Time Iter.

30 0.10 5.250 3.37 1399.00 0.17 4.85 0.37 8.00 0.10 5.57 1.525 69.00

50 0.55 8.62 12.35 2399.00 0.35 8.22 1.75 8.00 0.25 9.15 5.150 74.00

70 1.12 12.20 30.42 3399.00 1.05 11.00 3.82 9.00 1.12 12.75 11.62 78.00

100 2.55 16.62 65.65 4548.60 2.57 16.15 8.85 9.00 2.52 17.95 26.72 81.00

Table 4.26: Results obtained with SA Cases 7, 8 and 9 (T0 = n
4) on orthogonal polygons.

As for arbitrary polygons, on observing these last three cases we verify that for an initial

temperature T0 = n
4 the solutions seem to improve when the decrease of the temperature is

fast (VFSA). Such as for arbitrary polygons, the reason for this behaviour is the removal of

redundant vertex guards. Nevertheless, this improvement cannot be observed if T0 = 500 and

the decrease of the temperature is slow (Case 4), that seems to be the best case of the first

six cases.

As always, a statistical study was carried out. The analysis of the data normality showed

that the data obtained with Case 1 were always non-normally distributed (p-value<0.001<

0.05, for n = 30, 50, 70 and 100) . The p-values returned by the Kruskal-Wallis tests were less

then 0.001 for the data obtained with the polygons with n = 30, 50, 70 and 100, respectively

(note that, all p-values are less than 0.05). Then multiple comparison tests were performed

to determine which pairs of averages were significantly different, and which were not. The

answers provided by these tests are presented in Tables 4.27, 4.28, 4.29 and 4.30. The sign

“+” indicates that the sample data (concerning |G|) is significantly different and the sign “-”

indicates otherwise.

Methods Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9

Case 1 • - + - + - - - +

Case 2 - • - + - - - - -

Case 3 + - • + - - - + -

Case 4 - + + • + + + - +

Case 5 + - - + • - - + -

Case 6 - - - + - • - - -

Case 7 - - - + - - • - -

Case 8 - - + - + - - • +

Case 9 + - - + - - - + •

Table 4.27: Multiple comparison tests, of SA Cases, for 30-vertex orthogonal polygons.

98 Minimum Vertex Guard Set Problem

Methods Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9

Case 1 • - + - - + - - +

Case 2 - • - + - - - - -

Case 3 + - • + - - - - -

Case 4 - + + • + + + - +

Case 5 - - - + • - - - -

Case 6 + - - + - • - + -

Case 7 - - - + - - • - -

Case 8 - - - - - + - • -

Case 9 + - - + - - - - •

Table 4.28: Multiple comparison tests, of SA Cases, for 50-vertex orthogonal polygons.

Methods Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9

Case 1 • + + - + + + - +

Case 2 + • - + - - - - -

Case 3 + - • + - - - + -

Case 4 - + + • + + + - +

Case 5 + - - + • - - - -

Case 6 + - - + - • - + -

Case 7 + - - + - - • + -

Case 8 - - + - - + + • +

Case 9 + - - + - - - + •

Table 4.29: Multiple comparison tests, of SA Cases, for 70-vertex orthogonal polygons.

Methods Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9

Case 1 • + + - + + - - +

Case 2 + • - + - - - - -

Case 3 + - • + - - - + -

Case 4 - + + • + + + - +

Case 5 + - - + • - - + -

Case 6 + - - + - • - + -

Case 7 - - - + - - • - +

Case 8 - - + - + + - • +

Case 9 + - - + - - + + •

Table 4.30: Multiple comparison tests, of SA Cases, for 100-vertex orthogonal polygons.

The multiple comparison tests, also, allowed to conclude that:

• for n = 30, concerning

– Cases 1, 2 and 3. The best is Case 1 with no significant differences from Case 2 and

significantly better than Case 3; the worst is Case 3 with no significant differences

from Case 2 (see Figure 4.23 (a));

– Cases 4, 5 and 6. The best is Case 4 with significant differences from Cases 5 and

6; the worst is Case 6 with no significant differences from Case 5 (see Figure 4.24);

– Cases 7, 8 and 9. The best is Case 8 with no significant differences from Case 7

Minimum Vertex Guard Set Problem 99

and significantly better than 9; the worst is Case 9 with no significant differences

from Case 7 (see Figure 4.25 (a));

– the nine cases. The best is Case 4, with no significant differences from Cases 1 and

8; the worst is Case 3, with no significant differences from Cases 2, 5, 6, 7 and 9.

• for n = 50, concerning

– Cases 1, 2 and 3. The best is Case 1 with significant differences from Case 2 and

significantly better than Case 3; the worst is Case 3 with no significant differences

from Case 2 (see Figure 4.23 (a));

– Cases 4, 5 and 6. The best is Case 4 with significant differences from Cases 5 and

6; the worst is Case 6 with no significant differences from Case 5 (see Figure 4.24);

– Cases 7, 8 and 9. The best is Case 8 with no significant differences from Cases 7

and 9; the worst is Case 9 with no significant differences from Cases 7 and 8 (see

Figure 4.25 (b));

– the nine cases. The best is Case 4, with no significant differences from Case 1 and

Case 8; the worst is Case 6, with no significant differences from Cases 2, 3, 5, 7

and 9.

• for n = 70, concerning

– Cases 1, 2 and 3. The best is Case 1 with significant differences from Cases 2 and

3; the worst is Case 3 with no significant differences from Case 2 (see Figure 4.23

(b));

– Cases 4, 5 and 6. Cases 4, 5 and 6. The best is Case 4 with significant differences

from Cases 5 and 6; the worst is Case 6 with no significant differences from Case

5 (see Figure 4.24);

– Cases 7, 8 and 9. The best is Case 8 with significant differences from Cases 7 and

9; the worst is Case 9 with no significant differences from Case 7 (see Figure 4.25

(c));

– the nine cases. The best is Case 4, with no significant differences from Cases 1 and

8; the worst is Case 3, with no significant differences from Cases 2, 5, 6, 7 and 9.

• for n = 100, concerning

– Cases 1, 2 and 3. The best is Case 1 with significant differences from Cases 2 and

3; the worst is Case 3 with no significant differences from Case 2 (see Figure 4.23

(b));

100 Minimum Vertex Guard Set Problem

– Cases 4, 5 and 6. The best is Case 4 with significant differences from Cases 5 and

6; the worst is Case 6 with no significant differences from Case 5 (see Figure 4.24);

– Cases 7, 8 and 9. The best is Case 8 with no significant differences from Cases 7

and significantly better then Case 9; the worst is Case 9 with significant differences

from Case 7 and 8 (see Figure 4.25 (d));

– the nine cases. The best is Case 4, with no significant differences from Case 1 and

8; the worst is Case 9, with no significant differences from Cases 2, 3, 5, and 6.

As it can be noticed, using the multiple comparison tests, for T0 = n the best solutions

are obtained when the temperature decrease is slow (FSA) with no significant differences with

a fast temperature decrease (VFSA), for n = 30 and n = 50 (see Figure 4.23).

C
a
s
e
 2Case 3

Case 1

BestWorst

(a) n = 30 and 50

Case 2

Case 3

Case 1

BestWorst

(b) n = 70 and 100

Figure 4.23: Multiple comparison tests, of SA Cases 1, 2 and 3 (orthogonal polygons).

For T0 = 500 the best solutions always correspond to a slow temperature decrease (see

Figure 4.24).

Case 5

Case 6

Case 4

BestWorst

Figure 4.24: Multiple comparison tests, of SA Cases 4, 5 and 6, for n = 30, 50, 70 and 100

(orthogonal polygons).

Finally, for T0 = n
4 , the best solutions are obtained when the temperature decrease is

fast (VFSA), with no significant differences with a slow temperature decrease (FSA), except

for n = 70 (see Figure 4.25).

Minimum Vertex Guard Set Problem 101

C
a
s
e
 7Case 9

Case 8

BestWorst

(a) n = 30

Case 8

Case 9

Case 7

Worst and Best

(b) n = 50

Case 7

Case 9

Case 8

BestWorst

(c) n = 70

Case 7
Case 9

Case 8

BestWorst

(d) n = 100

Figure 4.25: Multiple comparison tests, of SA Cases 7, 8 and 9 (orthogonal polygons).

Notice that, for all types of initial temperature T0, it would be expected that a geomet-

rical decrease should produce better solutions than a rapid decrease (VFSA), what does not

happen. We can see that, for T0 = n and T0 = 500, the obtained solutions have not significant

differences. However, for T0 = n
4 the solutions obtained with a rapid decrease is significantly

better than the solutions obtained with a geometric decrease (except for n = 50). As stated

before, the reason for this behaviour is the elimination of redundant vertex guards.

Comparing these results with the ones obtained with arbitrary polygons, we can notice

that the great difference is for T0 = n
4 . For orthogonal polygons, Case 8 (fast temperature

decrease) is always significantly better than Case 9 (geometric temperature decrease), except

for n = 50. So, for T0 = n
4 , the best solutions are always obtained with a fast temperature

decrease with no significant differences with a geometric decrease, except for n = 70. So,

surprisingly, a slow decrease does not correspond to the best solutions.

Concerning the nine cases, if the temperature decrease is slow, the best solutions are

obtained with T0 = 500 and T0 = n. If the temperature decrease is fast the initial temperature

does not have influence, except for n = 30 and 100, where the obtained solutions by Case 8

(T0 = n
4) are significantly worst than Case 5 (T0 = n). If the temperature decrease is geometric

the initial temperature does not have influence. It can also be concluded that the best solutions

are obtained with Case 4 for n = 30 50, 70 and 100 and a significant difference was not found

between the number of vertex guards obtained with this case and Cases 1 e 8. Despite our

observing in Tables 4.2, 4.3 and 4.4, that Case 4 seems to outperform Cases 1 and 8 in relation

to the average of |G|, for n = 50, 70 and 100. So, the statistical analysis proceeded regarding

102 Minimum Vertex Guard Set Problem

the runtime. This analysis was made in a similar way and it allowed to conclude that Case 8 is

significantly faster than Cases 1 and 4, for n = 30, 50, 70 and 100. Given this, for orthogonal

polygons, Case 8 was elected the best case and it was used to generate the initial population

and also used as a genetic operator in the hybrid strategies.

After this study, it was concluded that the runtime of the best case (Case 8) was good

enough, so it was not necessary to improve it. Hence, Case 8 was selected to be the method

M2.

4.4.2.2 Analysis of the GA Parameters

The results obtained by the eight methods are shown in Tables 4.31, 4.32, 4.33, 4.34, 4.35,

4.36, 4.37 and 4.38.

n PP (sec.) |G| Time (sec.) Iterations

30 0.15 4.72 14.95 746.02

50 0.50 7.95 59.75 1150.90

70 1.10 10.67 162.00 1789.50

100 2.55 15.47 421.80 2738.50

Table 4.31: Results obtained with GA Case

1 (orthogonal polygons).

n PP (sec.) |G| Time (sec.) Iterations

30 0.17 4.62 15.25 749.22

50 0.50 7.87 59.10 1151.20

70 1.00 10.85 157.57 1712.50

100 2.50 15.50 401.87 2601.80

Table 4.32: Results obtained with GA Case

2 (orthogonal polygons).

n PP (sec.) |G| Time (sec.) Iterations

30 0.05 4.62 14.12 724.42

50 0.45 7.77 54.80 1102.70

70 1.02 10.32 149.87 1729.80

100 2.50 14.92 389.62 2745.40

Table 4.33: Results obtained with GA Case

3 (orthogonal polygons).

n PP (sec.) |G| Time (sec.) Iterations

30 0.05 4.57 9.52 735.20

50 0.45 7.77 50.25 1102.70

70 1.05 10.60 145.67 1733.80

100 2.62 15.35 387.42 2673.10

Table 4.34: Results obtained with GA Case

4 (orthogonal polygons).

n PP (sec.) |G| Time (sec.) Iterations

30 0.12 4.70 14.05 712.85

50 0.45 7.90 50.05 1035.00

70 1.07 10.72 124.45 1399.80

100 2.55 15.70 312.40 2058.20

Table 4.35: Results obtained with GA Case

5 (orthogonal polygons).

n PP (sec.) |G| Time (sec.) Iterations

30 0.20 4.75 14.40 740.17

50 0.42 7.90 48.72 985.70

70 1.07 10.72 122.07 1394.20

100 2.52 15.55 296.85 1964.00

Table 4.36: Results obtained with GA Case

6 (orthogonal polygons).

Minimum Vertex Guard Set Problem 103

n PP (sec.) |G| Time (sec.) Iterations

30 0.12 4.70 12.80 681.42

50 0.37 7.90 44.97 932.65

70 1.17 10.85 110.70 1268.50

100 2.55 15.02 285.80 1994.40

Table 4.37: Results obtained with GA Case

7 (orthogonal polygons).

n PP (sec.) |G| Time (sec.) Iterations

30 0.10 4.75 7.10 684.47

50 0.37 7.82 37.52 995.62

70 1.12 10.67 99.47 1339.80

100 2.50 15.37 265.62 1973.40

Table 4.38: Results obtained with GA Case

8 (orthogonal polygons).

As for arbitrary polygons, comparing the eight methods, we notice that the obtained

results, concerning the average of |G| , are approximately the same for all cases. Concerning

the average runtime, Case 8 seems to be the faster one.

To compare the average number of vertex guards it was used the non-parametric Kruskall-

Wallis tests, because the Kolmogorov-Smirnof tests showed that the data obtained with Case

1 were always non-normally distributed (p-value< 0.001< 0.05, for n = 30, 50, 70 and 100).

As expected, and as in the case of arbitrary polygons, the Kruskal-Wallis tests showed that

there was no significant differences in the eight cases regarding |G|, for n = 30, 50, 70 and 100

(p-value = 0.9407 ≥ 0.05, for n = 30, p-value = 0.9873 ≥ 0.05, for n = 50, p-value = 0.6175 ≥
0.05, for n = 70 and p-value = 0.2108 ≥ 0.05, for n = 100).

According to the previous conclusion, a statistical analysis was made regarding the run-

time. Since the data obtained with Case 1 were always non-normally distributed (p-value<

0.001<0.05, for n = 30, 50, 70 and 100), the Kruskal-Wallis tests were used again. These tests

established that at least one case is significantly different concerning the runtime (p-value<

0.001<0.05, for n = 30, 50, 70 and 100). So, multiple comparison tests were performed. The

results provided by these tests allowed to conclude that: for n = 30, Case 8 is the fastest case

with no significant difference from Case 4 and it is significantly faster than the other cases;

for n = 50 and 70, Case 8 is the fastest case with no significant difference from Case 7 and

significantly better than the other cases; and, finally, for n = 100, Case 8 is the fastest case

with no significant difference from Cases 6 and 7 and it is significantly faster than the other

cases. According to these results it was concluded, as for arbitrary polygons, that Case 8 is

the best case.

Similar to arbitrary polygons, it was decided to try two different mutation operations on

the elected case, Case 8, to see how the algorithm behaves. The mutation operation, that

was applied up to now, was to flip all the gene value from zero to one or vice versa, with a

probability of 5% (pm = 0.05), as described in section 4.2.4. Now, the two different mutations

proposed in subsection 4.4.1.2 are going to be tested:

• The first one consists in randomly selecting one gene and then flipping its value from

zero to one or vice versa, with a probability of 5%. This case is designated by Case 8.1.

104 Minimum Vertex Guard Set Problem

• The second one consists in applying the mutation described in section 4.2.4, but with

a probability of 5%. That is, the mutation described in section 4.2.4 will not always

occur, it will only occur with a probability of 5%. This case is designated by Case 8.2.

Table 4.39 tabulates the results obtained with Case 8, Case 8.1 and Case 8.2.

Case 8 Case 8.1 Case 8.2
n

PP |G| Time Iter. PP |G| Time Iter. PP |G| Time Iter.

30 0.10 4.75 7.10 684.47 0.07 4.82 2.90 608.32 0.100 4.82 3.15 622.65

50 0.37 7.82 37.52 995.62 0.37 7.97 12.55 721.25 0.450 7.82 12.80 730.60

70 1.12 10.67 99.47 1339.80 0.97 10.75 35.35 947.87 1.075 10.70 36.25 896.12

100 2.50 15.37 265.62 1973.40 2.45 15.50 107.77 1543.10 2.675 15.27 109.07 1366.00

Table 4.39: Results obtained with GA Cases 8, 8.1 and 8.2 (orthogonal polygons).

As we can see, it seems that there are almost no differences on the average number of

vertex guards. Concerning the average runtime, Case 8 seems to be the worst case.

As usually, a the statistical study was performed. To compare the average number of

vertex guards the non-parametric Kruskall-Wallis tests were used, because the Kolmogorov-

Smirnof tests showed that the data obtained with Case 8 were always non-normally distributed

(p-value < 0.001 < 0.05, for n = 30, 50, 70 and 100). As expected, the Kruskal-Wallis tests

showed that there were no significant differences among the three cases regarding |G|, for n =

30, 50, 70 and 100 (p-value = 0.9002 ≥ 0.05, for n = 30, p-value = 0.5460 ≥ 0.05, for n = 50,

p-value = 0.8892 ≥ 0.05, for n = 70 and p-value = 0.7538 ≥ 0.05, for n = 100). Accordingly,

a statistical analysis was made regarding the runtime. Since the data obtained with Case

8 were always non-normally distributed (p-value< 0.001< 0.05, for n = 30, 50, 70 and 100),

the Kruskal-Wallis tests were used again. These tests established that at least one case is

significantly different, concerning the runtime (p-value< 0.001< 0.05, for n = 30, 50, 70 and

100). So, multiple comparison tests were performed to determine which pairs of methods

were significantly different, and which were not. The results provided by these tests allowed

to conclude that: for n = 30, 50, 70 and 100, Case 8 is significantly slower than Case 8.1 and

8.2 and a significant difference was not found between the runtime of Cases 8.1 and 8.2.

According to these results, Cases 8.1 and 8.2 are not significantly different. Case 8.2 was

considered the best case.

Improvements

Similar to the analysis of the SA parameters, it was found that the runtime of Case 8.2

could be improved if the dominance matrix was used. Consequently, the calculation dominance

matrix was included in the pre-processing step and new results were obtained with Case 8.2.

Table 4.40 shows the results obtained with Case 8.2, with and without the dominance matrix.

Minimum Vertex Guard Set Problem 105

Case 8.2 (without dominance matrix) Case 8.2 (with dominance matrix)
n

PP |G| Time Iterations PP |G| Time Iterations

30 0.10 4.82 3.15 622.65 1.12 4.90 2.25 596.72

50 0.45 7.82 12.80 730.60 3.10 7.82 12.75 745.55

70 1.07 10.70 36.25 896.12 6.52 10.57 37.87 968.17

100 2.67 15.27 109.07 1366.00 13.15 15.25 102.87 1325.50

Table 4.40: Results obtained with GA Case 8.2, with and without the use of the dominance

matrix (orthogonal polygons).

As we can see, when the dominance matrix is employed the runtime seems to be slightly

better for n = 30, 70 and 100. However, the overall time (pre-processing time plus runtime)

is not improved when the dominance matrix is employed. Given this, Case 8.2, without the

calculation of the dominance matrix in the pre-processing step, was selected to be the method

M3.

Remember that it is necessary to choose a genetic algorithm for the hybrid methods. It

was also Case 8.2, without the calculation of the dominance matrix, that was chosen to be

used in the hybrid methods.

4.4.2.3 Comparison of the five strategies

In this section it is going to be analyzed and evaluated the results obtained with the

five approximation methods: M1, greedy strategy; M2, SA strategy; M3, GA strategy and

the hybrid strategies, which are going to be denoted by M4 (the strategy in which the initial

population of a GA is generated by a SA algorithm) and M5 (the strategy in which a SA

strategy is a genetic operator). Remember that, for the hybrid strategies, M4 and M5, it

was necessary to choose a SA strategy and a GA strategy. As stated before, the selected SA

strategy is the method M2 and the method M3, respectively. Experiments were made with

the methods M4 and M5, with and without the calculation of the dominance matrix in the

pre-processing step, it was concluded that using the dominance matrix these methods were

faster. So all the results related to the hybrid strategies were obtained by using the dominance

matrix. Tables 4.41 and 4.42 present the results obtained with the five methods.

Comparing the solutions obtained with the non-hybrid methods (see Table 4.41) we can

notice that: the method M2 appears to be the method with which the obtained solutions are

the worst (especially for n = 50 and 100) and the method M1 seems to be slightly better than

M3 for n = 150 and 200. We can also see that, for all n, M1 is much faster than the other

methods.

106 Minimum Vertex Guard Set Problem

M1 M2 M3
n

PP |G| Time Iterations PP |G| Time Iterations PP |G| Time Iterations

50 0.42 7.72 0.60 19.42 0.35 8.22 1.75 8.00 0.45 7.82 12.80 730.60

100 2.42 15.22 3.20 45.20 2.57 16.15 8.85 9.00 2.67 15.27 109.07 1366.00

150 6.77 22.25 8.02 69.67 6.87 23.72 23.72 9.00 6.92 23.15 384.50 2235.30

200 14.60 29.40 15.62 94.72 14.55 30.87 46.30 10.00 14.50 30.30 857.07 2916.60

Table 4.41: Results obtained with M1, M2 and M3 (orthogonal polygons).

M4 M5
n

PP |G| Time Iterations PP |G| Time Iterations

50 3.22 7.27 39.62 506.60 3.25 7.35 26.90 568.12

100 13.62 13.90 405.72 555.40 13.40 14.05 200.57 704.77

150 31.27 20.65 1574.80 600.75 31.20 21.07 584.90 817.65

200 58.27 27.17 4115.30 667.82 58.57 27.80 1339.20 894.87

Table 4.42: Results obtained with M4 and M5 (orthogonal polygons).

Contrasting, now, the results obtained using the hybrid methods (see Table 4.42) we can

see that M4 is slower but the average number of vertex guards seems to be slightly better,

especially for n = 100 and 150. Now, comparing the results obtained with the hybrid methods

(M4 and M5) with the results obtained with the non-hybrid strategies (M1, M2 and M3), we

can observe that the non-hybrid strategies are much faster. Nevertheless, they seem to obtain

worse solutions (except for n = 50, where they are almost equal). As for arbitrary polygons,

concerning the average number of vertex guards, the methods M4 and M5 seem to be the best

ones and the method M2 appear to be the worst approximation technique (see Figure 4.26).

Figure 4.26: Solutions obtained with strategies M1,M2,M3, M4 and M5 (orthogonal poly-

gons).

As usual, a statistical study was carried out. The data obtained with the method M1

Minimum Vertex Guard Set Problem 107

were always non-normally distributed (p-value< 0.001< 0.05, for n = 50, 100, 150 and 200).

The p-values returned by the Kruskal-Wallis tests were less than 0.001 for n = 50, 100, 150

and 200, respectively (note that, all p-values are less than 0.05). Then multiple comparison

tests were performed. These tests allowed to conclude that (see Figure 4.27):

• for n = 50, the best method is M4, with no significant differences from M1,M3 and M5;

and the worst method is M2, with no significant differences from methods M1 and M3;

• for n = 100, the best method is M4, with no significant differences from M5; and the

worst method is M2, with no significant differences from methods M1 and M3;

• for n = 150, the best method is M4, with no significant differences from M5; and the

worst method is M2, with no significant differences from method M3;

• for n = 200, the best method is M4, with no significant differences from M5; and the

worst method is M2, with no significant differences from methods M1 and M3.

M
1

M
5

M
4

M
3

M
2

BestWorst

(a) n = 50

M
1

M
5

M
4

M
3

M
2

BestWorst

(b) n = 100 and 200

M
1

M
5

M
4

M
3

M
2

BestWorst

(c) n = 150

Figure 4.27: Multiple comparison tests of the five methods (orthogonal polygons).

Regarding the hybrid methods, we note that M4 is always significantly better than all

non-hybrid methods, for n = 100, 150 and 200, and that there are no significant differences

between these two methods, for n = 50, 100, 150 and 200. The statistical study continued

regarding the runtime. This study allowed to conclude that M5 is significantly faster than

M4, for n = 50, 100, 150 and 200. As it is desired a compromise between the quality of the

solution and the algorithm runtime, the study proceeded considering M5 as being our best

strategy.

Now, to infer about the average of the minimum number of vertex guards needed to

cover an arbitrary polygon, we applied M5 to eight sets of arbitrary polygons, each one with

40 polygons with 30, 50, 70, 100, 110, 130, 150 and 200 vertex polygons. The average of the

obtained results, concerning |G|, are shown in Table 4.43.

108 Minimum Vertex Guard Set Problem

n 30 50 70 100 110 130 150 200

|G| 4.42 7.35 9.77 14.05 15.07 17.07 21.07 27.80

Table 4.43: Average of the minimum number of vertex guards (orthogonal polygons).

Then, using the least squares method, the following linear adjustment was obtained, with

a correlation factor of 0.9994 (see Figure 4.28):

f(x) = 0.1371x+ 0.2739 ≈ x

7.29
+ 0.2739 ≈ x

7.29
.

Figure 4.28: Least Squares Method (orthogonal polygons).

Hence, it can be concluded that on average, and approximately, the minimum number of

vertex guards needed to cover an arbitrary polygon with n vertices is d n
7.29e. In order to get a

quantitative measure on the quality of the calculated |G| , the visibility-independent sets were

computed for our instances (the eight sets of polygons described above). The ratio between

the smallest G (obtained with M5) and the largest visibility-independent set, IS obtained

with A2 (see section 4.2.3), never exceeded 1.80 (with an average of 1.28 for the universe of

320 polygons). This implies that algorithm M5 has an approximation ratio less than or equal

to 1.80.

Figures 4.29 and 4.30 shows snapshots obtained with our software. In these figures it is

illustrated four orthogonal polygons for which the visibility-independent sets IS were obtained

with A2 and the solutions G were obtained with M5.

Minimum Vertex Guard Set Problem 109

(a) |IS| = 7 and |G| = 8 (b) |IS| = 10 and |G| = 12

Figure 4.29: IS and G sets (represented by black and red dots, respectively) obtained with

A2 and M5 on orthogonal polygons with: (a) n = 50 ; (b) n = 100.

(a) |IS| = 14 and |G| = 18 (b) |IS| = 24 and |G| = 28

Figure 4.30: IS and G sets (represented by black and red dots, respectively) obtained with

A2 and M5 on orthogonal polygons with: (a) n = 150 and (b) n = 200.

4.5 Concluding Remarks

In this chapter it was proposed approximation algorithms that allow to obtain a vertex guard-

ing set G, whose cardinality approximates the minimal number of vertex guards needed to

guard a given polygon P . In other words, approximation algorithms were designed and

implemented to tackle the Minimum Vertex Guard Set problem on polygons. Five ap-

proximation strategies were studied: one greedy, M1; one based on the simulated anneal-

ing metaheuristic, M2; one based on genetic algorithms metaheuristic, M3; and two hybrid

metaheuristics, M4 and M5. It was, also, developed a greedy algorithm to compute visibility-

independent sets, allowing to obtain provable bounds on how close our results are to the

optimal.

Using a large set of randomly generated polygons (arbitrary and orthogonal), an ex-

110 Minimum Vertex Guard Set Problem

perimental comparative study was made on the suitability of the developed methods which

allowed to conclude that:

(1) Concerning the SA strategy, for arbitrary polygons, the best case was observed to be

Case 1, that is, T0 = n and a slow temperature decrease (FSA). And, unexpectedly, for

orthogonal polygons, the best case was observed to be Case 8, that is, T0 = n
4 and a fast

temperature decrease (VFSA). The only reasonable justification for this behaviour is

the removal of redundant vertex guards as the final step of the approximation strategy.

(2) Regarding the GA strategy, both for arbitrary and orthogonal polygons, it was observed

that the strategies implemented with the different studied operators (selection, crossover

and mutation) do not show differences as to the obtained solutions. However, it was

observed that the strategy that uses the tournament selection, the variant of the single

point crossover and the mutation operator, which occurs with a probability of 5% flipping

the value of each gene with a probability of 5%, was the fastest one. So, this strategy

was chosen to be the best one (designated by method M3).

(3) About the hybrid strategies, both for arbitrary and orthogonal polygons, it was ob-

served that they do not obtain different solutions. But, the hybrid strategy where SA

is applied after the crossover operator in a GA and which was designated by method

M5, is faster than the other one, in which the initial population of a GA is generated by

SA (designated by method M4). It was also saw that both hybridizations obtain better

solutions than the “pure” GA, i.e., method M3.

(4) Finally and as to the five approximation strategies, the best one was method M5. The

computational experiments also allowed to conclude that, on average and approximately,

the minimal number of vertex guards needed to cover an arbitrary and an orthogonal

polygon was observed to be d n
6.64e and d n

7.29e, respectively. These values are much less

than the theoretical bounds bn3 c and bn4 c, respectively. To end and in terms of quality of

the solutions, it was also conclude that the approximation ratio is less than or equal to

1.66 and less than or equal to 1.80, for arbitrary and orthogonal polygons, respectively.

It is important to point out that all alternatives, with respect to the parameters of the

SA, GA and hybrid metaheuristics to be explored are almost “infinite”. In this work was

attempted to find references for these parameters, noting that a more exhaustive study in

future investigations might improve the obtained results.

As a conclusion, the hybrid metaheuristics, especially the strategy M5, proved to behave

well in solving the Minimum Vertex Guard Set problem. This way and as future work,

it should be studied more hybridizations which will permit to improve the obtained solutions

as well as the algorithms’ runtime

Chapter 5

Minimum Vertex Floodlight Set

Problem

In the previous chapter, Chapter 4, where the Minimum Vertex Guard Set problem was

studied, it was assumed that the guards could see around them in all directions, that is, the

guards have a 2π range visibility (or equivalently, that the lights sources could emit light in all

directions). However, many illumination or guarding devices cannot illuminate or search all

around themselves. Floodlights, for example illuminate only a restricted angle of illumination.

Therefore, in some cases it is interesting and useful to consider visibility/illumination problems

in which the guards have a restricted visibility range (or equivalently, that the light sources

have a restricted angle of illumination). In this chapter, the visibility problem is considered

on orthogonal polygons, in which the guards have a π
2 visibility range. The problem is known

as Minimum Vertex Floodlight Set problem and denoted by MVFS(P).

The chapter is divided in five section. The problem is described and formalized in section

5.1. In section 5.2 four approximation algorithms are developed. The first is based on the

simulated annealing metaheuristic (subsection 5.2.2), the second is based on the genetic algo-

rithms metaheuristic (subsection 5.2.3) and the last two are hybrid algorithms based on used

metaheuristics (subsection 5.2.4). In section 5.3 it is presented a method to determine a lower

bound for the unknown optimal solution. This method permits to get the performance ratio

of the approximation algorithms. In section 5.4 the experiments made over a large set of ran-

domly generated orthogonal polygons are described. Finally, in section 5.5 some conclusions

are presented.

5.1 Problem Description

Some necessary definitions will follow.

Definition 5.1 A αi-floodlight fi is a source of light with a restricted angle of illumination

111

112 Minimum Vertex Floodlight Set Problem

0 < αi < 2π. A αi-floodlight is also called αi-guard, that is a static guard with a αi range

visibility.

Definition 5.2 Being P a polygon, a αi-floodlight placed on a vertex of P is called vertex

αi-floodlight or vertex αi-guard.

Definition 5.3 A π
2 -floodlight is called orthogonal floodlight.

As stated above, in this chapter it is going to be considered the illumination (covering) of

orthogonal polygons with vertex π
2 -floodlights (vertex π

2 -guards). That is, the determination

of a set of vertex π
2 -floodlights (π2 -guards) that completely illuminate (cover) an orthogonal

polygon P . Since this work only deals with orthogonal floodlights, and to simplicity, the term

“floodlight” is used instead of “orthogonal floodlights”.

Definition 5.4 Let P be an orthogonal polygon. A given set F of floodlights placed on the

vertices of P is a vertex floodlighting set for P if they cover P , i.e., if
⋃
f∈F V is(f, P) = P .

A vertex floodlighting set for P is denoted by F and its cardinality by |F |.

Urrutia [129] proved that:

Proposition 5.1 b3n−4
8 c vertex floodlights are occasionally necessary and always sufficient

to illuminate an orthogonal polygon P with n vertices.

The proof of this proposition employs a set of four different rules for the placement of

the floodlights. First of all, the edges of an orthogonal polygon are classified into four types:

top, left, bottom and right. An horizontal edge e is said to be a top edge if the interior of the

polygon is immediately below e; otherwise (the interior of the polygon is immediately above

e) e is said to be a bottom edge. A vertical edge e is said to be a left edge if the interior of

the polygon is immediately on right of e; otherwise (the interior of the polygon is immediately

on left of e) e is said to be a right edge (see Figure 5.1). Then it is defined the top-left rule

illumination as follows:

(i) at the top vertex of every left edge e of P it is placed a floodlight aligned with e, that

is a floodlight that illuminates the angular sector 3π
2 to 2π;

(ii) at the left vertex of every top edge e of P it is placed a floodlight aligned with e, that

is a floodlight that illuminates the angular sector 3π
2 to 2π.

Finally, it is proved that the floodlights placed according to the top-left rule illuminate

the polygon P (see Figure 5.1).

In a similar way the top-right, bottom-left and bottom-right illumination rules are de-

fined, each of which illuminates P . To prove the sufficiency of the b3n−4
8 c vertex floodlights

it is used the placement of the floodlights by the four rules. Figure 5.2 shows the vertex

floodlights placed by the four rules.

Minimum Vertex Floodlight Set Problem 113

top edge

left edge

bottom edge

right edge

Figure 5.1: Illuminating an orthogonal

polygon with the top-left illumination rule.

Figure 5.2: Illuminating an orthogonal

polygon with the four illumination rules.

So, in the proof of this proposition it is assumed that the vertex floodlights have a

restricted orientation: they are edge-aligned. It is also assumed that each reflex vertex has

at most two vertex floodlights and, obviously, each convex vertex has at most one vertex

floodlight.

Note that, according to the stated above, four different types of vertex floodlights can be

defined (see Figure 5.3):

1. TL-floodlight, which is edge-aligned and illuminates the angular sector 3π
2 to 2π;

2. TR-floodlight, which is edge-aligned and illuminates the angular sector π to 3π
2 ;

3. BL-floodlight, which is edge-aligned and illuminates the angular sector 0 to π
2 ;

4. BR-floodlight, which is edge-aligned and illuminates the angular sector π
2 to 3π

2 .

(a) (b) (c) (d)

Figure 5.3: Vertex floodlights: (a) TL-floodlight; (b) TR-floodlight; (c) BL-floodlight and (d)

BR-floodlight.

Figure 5.4 shows two polygons that need b3n−4
8 c vertex floodlights, which prove the

necessity of those number of vertex floodlights.

Figure 5.4: Orthogonal polygons that require b3n−4
8 c floodlights.

114 Minimum Vertex Floodlight Set Problem

But while it is possible to illuminate some polygons with the above established number

of vertex floodlights, for many others this number is clearly too large. This reasoning justifies

the algorithmic Minimum Vertex Floodlight Set problem, which formally will be denoted by

MVFS(P) and can be stated as follows:

MVFS(P)

Input: An orthogonal polygon P with n vertices.

Question: What is the minimum number of vertex floodlights necessary to illumi-

nate P?

It is strongly believed that the MVFS(P) problem is NP-hard [129]. Accordingly, in

this chapter, will be developed approximation methods to tackle it. These methods will be

described in the next section.

5.2 Approximation Methods

Let P be an orthogonal polygon with n vertices. As stated in the previous subsection, at

each convex vertex of P can be placed at most one vertex floodlight and at each reflex vertex

can be placed at most two vertex floodlights. So, the maximum number of orthogonal vertex

floodlights that can be placed on P is n+r, where r denotes the number of reflex vertices of P .

Each vertex floodlight that can be placed on P is denoted by f ij , where j ∈ {0, 1, . . . , n+r−1}
and i ∈ {0, 1, . . . , n − 1}. That is, f ij is the j-esim floodlight and vi is the vertex where it is

placed.

The visibility polygon of a vertex floodlight f ij , is designated by V is(f ij , P). If vi is a

convex vertex, then V is(f ij , P) = V is(vi, P). Otherwise (vi is a reflex vertex), if the incident

edges on vi are:

1. a bottom and a left edge, then the angular sector from 0 to π
2 is removed from V is(vi, P).

In this way, two polygons are obtained, V is(f ij , P) and V is(f ij+1, P), that correspond to

the visibility polygons of a BR-floodlight and a TL-floodlight, respectively (see Figure

5.5);

2. a bottom and a right edge, then the angular sector from V is(vi, P) from π
2 to π is

removed from V is(vi, P). In this way, two polygons are obtained, V is(f ij , P) and

V is(f ij+1, P), that correspond to the visibility polygons of a TR-floodlight and a BL-

floodlight, respectively;

3. a top and a left edge, then the angular sector from the angular sector from 3π
2 to 2π

is removed from V is(vi, P). In this way, two polygons are obtained, V is(f ij , P) and

V is(f ij+1, P), that correspond to the visibility polygons of a TR-floodlight and a BL-

floodlight, respectively;

Minimum Vertex Floodlight Set Problem 115

4. a top and a right edge, then the angular sector from π to 3π
2 is removed from V is(vi, P).

In this way, are obtained two polygons, V is(f ij , P) and V is(f ij+1, P), that correspond

to the visibility polygons of a TL-floodlight and a BR-floodlight, respectively.

v
i

),(
1

PfVis
i

j+

),(PfVis
i

j

Figure 5.5: Visibility polygons of a BR-floodlight and a TL-floodlight.

Four approximation algorithms were developed to determine a vertex floodlighting set

F , whose cardinality approximates the minimal number of vertex floodlights needed to cover

a given orthogonal polygon P . The first is based on the SA metaheuristic, which is called

M1; the second is based on the GAs metaheuristic, which is named M2 and the last two are

hybrid algorithms, which are designated by M3 and M4.

5.2.1 Pre-processing Step

Given an orthogonal polygon P with n vertices (n-ogon, for short), the maximum number

floodlights that can be placed on the vertices of P is n+ r = 3n−4
2 (remember that n = 2r + 4,

for all n-ogons). Along the approximation algorithms the visibility polygons of these flood-

lights are needed more than once. Hence, a pre-processing step is performed where the

visibility polygons of all possible floodlights are computed and stored. In other words, all

V is(f ij , P), for j = 0, . . . , 3n−4
2 − 1 and i = 0, 1, . . . , n− 1, are computed and stored. This

information will decrease the algorithms’ runtime because each time a floodlight visibility

polygon is required it is not necessary to calculate it again.

To compute the visibility polygon of each vertex floodlight f ij , first V is(vi, P) is calcu-

lated, using the linear algorithm developed by Lee [85]. Then, if:

(i) vi is a convex vertex, V is(f ij , P) = V is(vi, P);

(ii) otherwise (vi is a reflex vertex), depending on the type of incident edges on vi, the appro-

priate angular sector is removed from V is(vi, P) and two visibility polygons V is(f ij , P)

and V is(f ij+1, P) are obtained, which are the visibility polygons of the floodlights that

can be placed on vi.

The methods that will be described in the next subsections allow to obtain a vertex flood-

116 Minimum Vertex Floodlight Set Problem

lighting set F . However it may be possible to find a set U ⊂ F such that
⋃
f∈F\U V is(f, P) = P .

So, after the described strategies the redundant floodlights are iteratively removed. This re-

moval is done in a similar way to the removing of redundant vertex guards (see subsection

4.2.2, Algorithm 4.2)

5.2.2 Simulated Annealing Strategy

As stated in Chapter 2, subsection 2.1.1, to solve an optimization problem with the SA

metaheuristic it is necessary to identify some parameters. These parameters were defined to

suit the MVFS(P) problem and a description of such procedure will follow.

1. Specific Parameters

Solution space. The solution space, set S, to the MVFS(P) problem is the set of all vertex

floodlighting sets for P . Thus, S is a finite set and can be represented by S = {S1, S2, . . . , Sm},
where Sl = f0

0,l . . . f
n−1
n+r−1,l, for l = 1, . . . ,m. In this way, each element of S is represented by

a chain with length n+ r, where each f ij,l, with j ∈ {0, . . . , n+ r − 1} and i ∈ {0, . . . , n− 1},
represents the floodlight f ij (that is, represents the j-esim vertex floodlight and vi ∈ VP is the

vertex where it can be placed) and its value is 0 or 1. If f ij,l = 1 then the floodlight f ij is

placed on vertex vi; otherwise (f ij,l = 0) the floodlight f ij is not placed on vertex vi. In Figure

5.6 is presented an example that illustrate these notions.

S
l

v
0

0

,0 l
f

1

,1 l
f

1

,2 l
f

2

,3 l
f

8

,11 l
f

0 1 0 0 1 0 0 1 10 1 0 0 0 0 0 0 1 0 0 1 0

2

,4 l
f

10

,14 l
f

12

,17 l
f

13

,19 l
f

14

,20 l
f

Figure 5.6: An element Sl ∈ S for a 16-vertex orthogonal and its representation.

Objective function. The objective function f : S → N assigns to each element of S a

natural value. For each Sl ∈ S, f(Sl) is equal to the number of 1’s in Sl, representing the

cardinality of the vertex floodlighting set.

Minimum Vertex Floodlight Set Problem 117

Neighbourhood of each solution. For the MVFS(P) problem the generation of a neigh-

bour Sw of candidate solution Sl ∈ S is similar to the one made for the MVGS(P) problem

(see 4.2.3). Let Sl = f0
0,l, . . . , f

n−1
n+r−1,l be an element of S, a natural number t ∈ [0, n+ r − 1]

is randomly generated (following a uniformly distribution), and then if:

• f it,l = 1 then f it,w is set to 0, i.e., f it,w = 0. If this new solution is a valid solution, then

it is accepted, since the solution was improved; else the obtained solution is rejected.

• f it,l = 0 then f it,w is set to 1, i.e., f it,w = 1, and this new solution is accepted with a

probability, since it is a worse solution.

Initial Solution. The initial solution needed to solve the MVFS(P) problem with the SA

strategy is an initial vertex floodlighting set for P , that is designated by S0 and it will be

the first solution to be analyzed and iterated. In the developed algorithm, to generate this

first solution, it was used the top-left rule explained in subsection 5.1. That is, all possible

TL-floodlights were placed on the vertices of P . Figure 5.7 exemplifies the initial solution on

a 16-vertex orthogonal polygon.

v
0

S
t

0 0 0 0 1 1 1 1 00 0 0 0 0 0 0 0 0 0 0 1 0

0

,0 t
f

1

,1 t
f

1

,2 t
f

2

,4 t
f

10

,14 t
f

8

,11 t
f

12

,17 t
f

14

,20 t
f

Figure 5.7: Initial Solution.

2. Generic Parameters

Initial temperature (T0). As for the MHVS(P) and MVGS(P) problems (see subsections

3.2.2 and 4.2.3, respectively), a comparative study was performed taking into account two

different types of T0:

1. An initial temperature dependent on the number of vertices of the polygon P , T0 = f(n)

(in the performed study it was considered T0 = n and T0 = n
4);

2. A constant initial temperature: T0 = 500.

Temperature decrement rule. The value of the temperature at each iteration k, Tk, is

established by a temperature decrement rule. As for the MHVS(P) and MVGS(P) problems

118 Minimum Vertex Floodlight Set Problem

(see subsections 3.2.2 and 4.2.3, respectively), an analysis was made on three different types

of rules:

1. Tk+1 = T0
1+k (FSA decrease);

2. Tk+1 = T0

ek
(VFSA decrease) and

3. Tk+1 = αTk, where 0 < α < 1 (Geometric decrease). It was chosen α = 0.9.

Number of iterations at each temperature (N(Tk)). Similar to the MHVS(P) and

MVGS(P) problems (see subsections 4.2.3 and 3.2.2), here N(Tk) = dTke.

Termination condition. As for the MVGS(P) problem (see subsection 4.2.3), the termi-

nation condition chosen consists in finishing the search when the temperature is less than or

equal to 0.005, i.e., Tf = 0.005 or when during 3000 consecutive series of temperatures, no

new best solution is obtained and the percentage of accepted solutions is less than 2%.

5.2.3 Genetic Algorithms Strategy

As stated in Chapter 2, subsection 2.1.1, to solve an optimization problem with the GAs

metaheuristic it is necessary to identify some parameters. Below, are described how these

parameters were defined to suit the MVFS(P) problem.

Encoding. The genetic representation of the candidate solutions to the MVFS(P) problem

is similar to the representation of each candidate solution, Sl, on the SA strategy. An individ-

ual I is represented by a chain of 0’s and 1’s, with length n+r−1, i.e., I = g0
0 . . . g

n−1
n+r−1, where

each gene gij represents the vertex floodlight f ij , j ∈ {0, 1, ..., n+r−1} and i ∈ {0, 1, ..., n−1}.
The value of each gene is 0 or 1. If gij = 1 then the floodlight f ij is placed on vertex vi;

otherwise (gij = 0) the floodlight f ij is not placed on vertex vi.

Initial Population. In the developed algorithm the population size was chosen to be

b3n−4
8 c, which is the number of vertex floodlights sufficient to cover any n-vertex orthogonal

polygon. In this way, the input of the problem is linked with the elements of the metaheuris-

tic. Thus, the population for the generation t is represented by: P (t) = {It0, It1, . . . , Itb 3n−4
8
c−1
},

where each Iti represents an individual belonging to the population P (t).

Remember that an individual represents a candidate solution for the MVFS(P) problem,

i.e., each individual must be a vertex floodlighting set. To create the initial population, P (0),

each individual I0
i , for i = 0, . . . , b3n−4

8 c, is generated in the following way: all of its genes are

set to 1, then a gene is randomly selected and its value is set to 0 if the resultant individual

is valid; otherwise its value remains 1. In Figure 5.8 it is illustrated a 20-vertex orthogonal

polygon and its initial population, P (0) = {I0
0 , I

0
1 , . . . , I

0
6}.

Minimum Vertex Floodlight Set Problem 119

0

0
f

1

1
f

1

2
f

19

27
f

0
v

Figure 5.8: On the left a 20-vertex orthogonal polygon P and all possible floodlights; on the

right the initial population for P .

Fitness Function. This function was defined in a similar way to the objective function

defined for the SA strategy. For each I, f is defined by f(I) = g0
0 + . . .+ gn−1

n+r−1, representing

the cardinality of the vertex floodlighting set. Such as for the MVGS(P) problem this function

assigns lower values to the solutions closer to the optimal one(s) and the used selection method

was adapted in order to reflect this behaviour.

Selection. The selection method should choose the best individuals to be reproduced. In

the developed algorithm it was used the tournament selection because this method was elected

for the MVGS(P) problem and as to the MVFS(P) problem, it is assumed that, very likely

this method will behave well.

Crossover. Similar to the selection method, it was used the crossover that was chosen for

the MVGS(P) problem. Remember that, it was chosen a variant of the single point crossover

to generate one child and the crossover only occurs with a given probability pc = 0.08 (see

subsection 4.2.4).

Mutation. The action of the mutation operation is relatively simple. With a probability

of pm the following happens: the value of each binary gene is flipped from zero to one or vice

versa, with a probability of pm (see Case 8.2 in subsection 4.4.1.2). In the developed strategy,

as for the MVGS(P) problem, the mutation was applied to the child obtained in the crossover

operation, with pm = 0.05, and if the obtained individual is not valid it will not be accepted.

Population Generation. As for the MVGS(P) problem, a new population is generated

replacing the worst individual by the child obtained at the crossover.

Population Evaluation. The evaluation of a population, i.e., the fitness of a population,

F (P (t)), is considered as the minimum value of the fitness function when applied to all

120 Minimum Vertex Floodlight Set Problem

individuals of the population, i.e., F (P (t)) = min{f(It0), . . . , f(Itb 3n−4
8
c−1

)}.

Termination condition. As always, if in a sufficiently large number of generations the

fitness has not changed, it can be assumed that the solution is close to optimal. Thus, for the

termination condition it was considered that if the fitness of the population F (P (t)) remains

unchanged for a number of generations h, the search should stop. It was chosen h = 500, such

as for the MVGS(P) problem.

In the sequel, the GA strategy is, sometimes, designated by M2.

5.2.4 Hybrid Strategies

As for the MVFS(P), two different hybrid metaheuristics were developed to solve the MVFS(P).

These methods are similar to the ones developed for the MVGS(P) (see subsection 4.2.5). In

the first method, for the initial population of a GA, b3n−4
8 c individuals are generated, which

are obtained by running a SA strategy b3n−4
8 c. In the second a SA strategy is a genetic

operator, of a GA, that occurs with a certain probability psa (in the experimental evaluation

was used psa = 0.01).

The first and the second methods allow to observe how a GA behaves including high qual-

ity solutions in the initial population and enforcing intensification during the search process,

respectively.

5.3 Greedy Strategy for floodlight visibility-independent sets

Since the existence of an efficient algorithm to solve MVFS(P) problem remains open (remem-

ber that it is strongly believed that this problem problem is NP-hard), the optimal solution

of the MVFS(P) is unknown. So, as for the previous problems (MHVS(P) and MVGS(P)), if

one can not compute the optimal value, how can one expect to prove that the output of the

approximation algorithms are near it?

Once more, it was conducted an experimental analysis on the performance of the devel-

oped algorithms. This analysis is similar to the one that was made for the MVGS(P) problem

(see section 4.3). In this way, it was developed a method to compute a lower bound on the

optimal number of vertex floodlights for each instance in the performed experiments.

First, it was considered the floodlight visibility-independent set concept.

Definition 5.5 Let P be a n-vertex polygon. A floodlight visibility-independent set is a

finite set of points on P , FIS ⊂ P , such that ∀p, q ∈ FIS p and q are not illuminated by the

same floodlight. Its elements are called floodlight visibility-independent points and its

cardinality is denoted by |FIS|.

Minimum Vertex Floodlight Set Problem 121

The example given in Figure 5.9 illustrates a floodlight visibility-independent set of car-

dinality 3.

Figure 5.9: Floodlight visibility-independent set of an orthogonal polygon. Blue dots represent

visibility-independent points.

By definition, it is easy to verify that no single vertex floodlight is able to illuminate

more than one point of FIS, consequently ∀F, FIS, |F | ≥ |FIS|. Easily it can be concluded

that the number of points on a maximum-cardinality floodlight visibility-independent set is a

lower bound for the optimal number of vertex floodlights on P . However, as far as it is known,

the existence of an efficient algorithm to determine this lower bound is unknown. Thus, with

a similar reasoning to what was done for the MVGS(P) problem:

Being F and FIS approximate solutions for the MVFS(P) problem and for the problem of

determining a floodlight visibility-independent set with maximum cardinality, respectively. If

there is a constant c ∈ R+ such that |F | ≤ c× |FIS|, for any orthogonal polygon P , it can be

said that the approximation algorithm used to obtain F has an approximation ratio of c [13].

Therefore, it was developed a greedy algorithm to find large floodlight visibility-independent

sets, which is designated by A1 (see Algorithm 5.1 for illustration). As usually, it starts with

a set of candidates C (not floodlight visibility-independent), then it adds floodlight visibility-

independent points one by one to until a solution FIS is obtained (FIS initially is an empty

set), selecting at each step a point from the candidate set C, according to some rule. The

candidate set used here is equal to the one used in subsection 4.3, which is C = C1 ∪ C2, where

C1 and C2 denote the convex vertices and the midpoints of the edges incident on two reflex

vertices, respectively. In the developed algorithm, first of all, for each candidate c ∈ C the

number of floodlights that illuminate it is calculated. Then, on each step of the algorithm the

candidate that is illuminated by the smaller number of floodlights is selected. After that, all

the candidates cj that are illuminated by the same floodlights that illuminate ci are removed

from C. The process stops when the set C is empty.

The application of the the SA strategy, the GA strategy and the hybrid strategies together

with A1, to each instance in our experiments, gives provable performance bounds in terms of

122 Minimum Vertex Floodlight Set Problem

Algorithm 5.1 Computing FIS (greedy algorithm A1)

Input: An orthogonal polygon P with n vertices

Output: A floodlight visibility-independent set, FIS

1. FIS ← ∅
2. C ← C1 ∪ C2

3. for each c ∈ C do

4. calculate the number of floodlights that illuminate c

5. end for

6. while C 6= ∅ do

7. choose the ci ∈ C that is illuminated by the smaller number of floodlights

8. FIS ← FIS ∪ {ci}
9. remove ci from C and all cj ∈ C such that they are illuminated by the same floodlights

that illuminate ci
10. end while

11. return FIS

approximation ratios. In the performed experiments, given a polygon P , the main objective is

to find a small vertex floodlighting set F and a large floodlight visibility-independent set FIS;

the obtained set F approximates the optimal number of vertex floodlights with approximation

ratio |F |
|FIS| . Note that, if a visibility-independent set FIS and a vertex floodlighting set F are

found, such that |FIS| = |F |, then F is an optimal vertex floodlighting set.

5.4 Experiments and Results

In this section the objective is to find which of the approximation methods obtains the best

solutions in a reasonable time. In the next subsection will be discussed the results and

conclusions resulting from the accomplished experiments on orthogonal polygons.

5.4.1 Orthogonal Polygons

To choose the SA parameters that best fit on the MVFS(P) problem, the experiments were

done over four sets of polygons, each formed by 40 polygons of 30, 50, 70 and 100 vertex

polygons. To analyze the four methods four sets each one formed by 40 polygons of 50, 100,

150 and 200, were used. To analyze the SA parameters the experiments were performed on

polygons with fewer vertices due to the time of execution, which is relatively high for some

cases. The performed computational tests showed that to choose these parameters it would be

sufficient to do experiments with polygons of up to 100 vertices. The other choices (associated

with the dimension of the sets of polygons), not being theoretically justified, were dictated by

Minimum Vertex Floodlight Set Problem 123

practical reasons.

5.4.1.1 Analysis of the SA Parameters

According to section 5.2.2, there are several choices for two of the SA parameters: T0 and the

temperature decrement rule. The different combinations of their values give rise to nine cases

(see Table 5.1).

Cases

Case 1 T0 = n and Tk+1 = T0
1+k

(FSA decrease)

Case 2 T0 = n and Tk+1 = T0
ek (VFSA decrease)

Case 3 T0 = n and Tk+1 = αTk−1 (α = 0.9) (Geometric decrease, α = 0.9)

Case 4 T0 = 500 and Tk+1 = T0
1+k

(FSA decrease)

Case 5 T0 = 500 and Tk+1 = T0
ek (VFSA decrease)

Case 6 T0 = 500 and Tk+1 = αTk−1 (Geometric decrease, α = 0.9)

Case 7 T0 = n
4

and Tk+1 = T0
1+k

(FSA decrease)

Case 8 T0 = n
4

and Tk+1 = T0
ek (VFSA decrease)

Case 9 T0 = n
4

and Tk+1 = αTk−1 (Geometric decrease, α = 0.9)

Table 5.1: Studied cases for SA.

These nine cases were analyzed by comparing the number of vertex floodlights, the run-

time and the number of iterations performed by each of them. Table 5.2 presents the obtained

results with the first three cases. Table 5.3 presents the obtained results with the Cases 4, 5

and 6. Finally, Table 5.4 presents the obtained results with the last three cases. These tables,

as can be seen, show the average time of pre-processing in seconds (PP), the average number

of vertex floodlights (|F |), the average runtime in seconds (Time) and the average number of

iterations of the algorithm (Iter.).

Case 1 (FSA dec.) Case 2 (VFSA dec.) Case 3 (Geometric dec.)
n

PP |F | Time Iter. PP |F | Time Iter. PP |F | Time Iter.

30 0.15 7.55 14.25 4839.40 0.20 9.17 1.00 9.00 0.25 9.05 5.300 83.00

50 0.62 12.75 43.67 6281.40 0.50 14.60 3.45 10.00 0.57 14.45 18.00 88.00

70 1.35 17.85 97.22 8113.10 1.30 20.42 7.32 10.00 1.05 19.92 40.30 91.00

100 2.60 25.77 206.72 10130.00 2.65 28.62 17.00 10.00 2.65 28.92 88.80 94.00

Table 5.2: Results obtained with SA Cases 1, 2 and 3 (T0 = n).

In the first three cases, the selection of the initial temperature depends on the input of

the problem, that is, it depends on n, number of vertices of P . It was considered T0 = n, may

be ground for future research studying the behaviour of approximation method for non-linear

functions in the initial temperature. As we can see, the best solution appears to correspond to

a slow decrease in temperature, FSA, with a larger number of iterations and a higher response

124 Minimum Vertex Floodlight Set Problem

time, i.e., the best solution given in these first three cases seems to be obtained by Case 1.

In the following three cases it is going to be analyzed how the different types of temper-

ature decrease behave, being T0 = 500. As for the MVGS(P) problem, here it was chosen

T0 = 500, because the number of vertices of the analyzed polygons is 50, 100, 150 and 200

and in with this way we have a constant value greater than any n value and considered small

enough so that the algorithm is executed in a reasonable time.

Case 4 (FSA dec.) Case 5 (VFSA dec.) Case 6 (Geometric dec.)
n

PP |F | Time Iter. PP |F | Time Iter. PP |F | Time Iter.

30 0.25 6.70 185.82 39005.00 0.15 8.575 14.22 12.00 0.10 8.65 89.55 110.00

50 0.47 11.30 380.92 38707.00 0.65 14.35 28.70 12.00 0.57 14.25 178.725 110.00

70 1.12 16.07 605.65 38703.00 1.15 20.35 45.325 12.00 1.20 20.15 279.87 110.00

100 2.77 24.00 954.37 39042.00 2.67 28.90 71.475 12.00 2.67 29.52 435.77 110.00

Table 5.3: Results obtained with SA Cases 4, 5 and 6 (T0 = 500).

As we can see, the best solution in these three cases seems to be achieved by Case

4. Comparing these last three with the first three cases for the same type of temperature

decrease, that is, Case 1 with Case 4, Case 2 to Case 5 and Case 3 with Case 6. We can see

that the solutions provided by Case 4 seems to be better than the solutions provided by Case

1. Concerning Cases 2 and 5, it appears that the obtained solutions are almost equal (except

for n = 30, where Case 5 seems to be a little better), being Case 5 slower. Finally, Case 3

seems to obtain slightly better solutions than Case 6, for n = 70 and 100; and Case 6 seems

to obtain slightly better solutions than Case 3, for n = 30, being Case 3 always faster than

Case 6.

So, it seems that when the FSA decrease is used the obtained solutions appear to be

better when T0 = 500. When the VFSA decrease is used the initial temperature does not

seem to have much influence. Finally, for a geometric decrease the obtained solutions appears

to be better for T0 = n and n = 70 and n = 100. We can also see that, in general, if a solution

nearer to the optimal one is searched it seems that it is more suitable to choose the FSA

decrease and T0 = 500.

Notice that, it was to be expected that a geometrical decrease should produce better

solutions than a fast decrease, what does not happen (see Cases 3 and 4 and Cases 5 and

6). The reason for this behaviour is the elimination of the redundant floodlights, so that the

results seem to have not considerable differences.

In the following cases, it is going to be analyzed how the three temperature decreases

behave if the T0 = n
4 . As for the MVGS(P) problem, this value was chosen because it not

only links T0 with the algorithm input, but also it is lower than n, and we wanted to see how

the algorithm behave under these conditions.

Minimum Vertex Floodlight Set Problem 125

Case 7 (FSA dec.) Case 8 (VFSA dec.) Case 9 (Geometric dec.)
n

PP |F | Time Iter. PP |F | Time Iter. PP |F | Time Iter.

30 0.32 8.37 4.17 1399.000 0.175 9.87 0.35 8.00 0.05 8.60 1.60 69.00

50 0.30 13.85 15.37 2399.000 0.525 15.72 1.25 8.00 0.37 14.47 5.05 74.00

70 1.12 19.70 34.70 3399.000 1.200 21.92 2.75 9.00 1.20 20.10 10.60 78.00

100 2.67 28.05 76.40 4634.00 2.65 31.02 6.40 9.00 2.70 28.97 24.27 81.00

Table 5.4: Results obtained with SA Cases 7, 8 and 9 (T0 = n
4).

Observing these last three cases we verify that, the best solutions seem to be obtained

with Case 7, followed by the solutions obtained by Case 9 and, finally, the solutions obtained

by Case 8. Of the nine cases, the best case seems to be Case 4, which corresponds to a

constant initial temperature and a slow temperature decrease.

As always, a statistical study was carried out. The data obtained with Case 1 is non-

normally distributed, for n = 30, 50, 70, and 100 (the obtained p-values are less than 0.001, for

n = 30, 50, 70 and 100). The p-values returned by the Kruskal-Wallis tests were < 0.001<0.05

for the data obtained with the polygons with n = 30, 50, 70 and 100. Then multiple comparison

tests were performed. The answers provided by these tests are presented in Tables 5.5, 5.6,

5.7 and 5.8. The sign “+” indicates that the sample data (concerning |F |) is significantly

different and the sign “-” indicates otherwise.

Methods Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9

Case 1 • + + - + + - + +

Case 2 + • - + - - - - -

Case 3 + - • + - - - - -

Case 4 - + + • + + + + +

Case 5 + - - + • - - + -

Case 6 + - - + - • - + -

Case 7 - - - + - - • + -

Case 8 + - - + + + + • +

Case 9 + - - + - - - + •

Table 5.5: Multiple comparison tests, of SA Cases, for 30-vertex orthogonal polygons.

Methods Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9

Case 1 • + + - + + - + +

Case 2 + • - + - - - - -

Case 3 + - • + - - - - -

Case 4 - + + • + + + + +

Case 5 + - - + • - - - -

Case 6 + - - + - • - + -

Case 7 - - - + - - • + -

Case 8 + - - + - + + • -

Case 9 + - - + - - - - •

Table 5.6: Multiple comparison tests, of SA Cases, for 50-vertex arbitrary polygons.

126 Minimum Vertex Floodlight Set Problem

Methods Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9

Case 1 • + + - + + + + +

Case 2 + • - + - - - - -

Case 3 + - • + - - - + -

Case 4 - + + • + + + + +

Case 5 + - - + • - - - -

Case 6 + - - + - • - + -

Case 7 + - - + - - • + -

Case 8 + - + + - + + • +

Case 9 + - - + - - - + •

Table 5.7: Multiple comparison tests, of SA Cases, for 70-vertex arbitrary polygons.

Methods Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9

Case 1 • + + - + + + + +

Case 2 + • - + - - - + -

Case 3 + - • + - - - - -

Case 4 - + + • + + + + +

Case 5 + - - + • - - - -

Case 6 + - - + - • - - -

Case 7 + - - + - - • + -

Case 8 + + - + - - + • -

Case 9 + - - + - - - - •

Table 5.8: Multiple comparison tests, of SA Cases, for 100-vertex arbitrary polygons.

The multiple comparison tests, also, allowed to conclude that:

• for n = 30, concerning

– Cases 1, 2 and 3. The best is Case 1 with significant differences from Cases 2 and

3; the worst is Case 2 with no significant differences from Case 3 (see Figure 5.10

(a));

– Cases 4, 5 and 6. The best is Case 4 with significant differences from Cases 5 and

6; the worst is Case 6 with no significant differences from Case 5 (see Figure 5.10

(b));

– Cases 7, 8 and 9. The best is Case 7 with no significant differences from Case 9;

the worst is Case 8 with significant differences from Cases 7 and 9 (see Figure 5.11

(a));

– the nine cases. The best is Case 4, with no significant differences from Case 1; the

worst is Case 8, with no significant differences from Cases 2 and 3.

• for n = 50, concerning

– Cases 1, 2 and 3. The best is Case 1 with significant differences from Cases 2 and

3; the worst is Case 2 with no significant differences from Case 3 (see Figure 5.10

(a));

– Cases 4, 5 and 6. The best is Case 4 with significant differences from Cases 5 and

Minimum Vertex Floodlight Set Problem 127

6; the worst is Case 5 with no significant differences from Case 6 (see Figure 5.10

(b));

– Cases 7, 8 and 9. The best is Case 7 with no significant differences from Case 9;

the worst is Case 8 with no significant differences from Case 9 (see Figure 5.11 (b));

– the nine cases. The best is Case 4, with no significant differences from Case 1; the

worst is Case 8, with no significant differences from Cases 2, 3, 5, and 9.

• for n = 70, concerning

– Cases 1, 2 and 3. The best is Case 1 with significant differences from Cases 2 and

3; the worst is Case 2 with no significant differences from Case 3 (see Figure 5.10

(a));

– Cases 4, 5 and 6. The best is Case 4 with significant differences from Cases 5 and

6; the worst is Case 5 with no significant differences from Case 6 (see Figure 5.10

(b));

– Cases 7, 8 and 9. The best is Case 7 with no significant differences from Case 9;

the worst is Case 8 with significant differences from Cases 7 and 9 (see Figure 5.11

(b));

– the nine cases. The best is Case 4, with no significant differences from Case 1; the

worst is Case 8, with no significant differences from Cases 2 and 5.

• for n = 100, concerning

– Cases 1, 2 and 3. The best is Case 1 with significant differences from Cases 2 and

3; the worst is Case 3 with no significant differences from Case 2 (see Figure 5.10

(a));

– Cases 4, 5 and 6. The best is Case 4 with significant differences from Cases 5 and

6; the worst is Case 6 with no significant differences from Case 5 (see Figure 5.10

(b));

– Cases 7, 8 and 9. The best is Case 7 with no significant differences from Case 9;

the worst is Case 8 with no significant differences from Case 9 (see Figure 5.11 (b));

– the nine cases. The best is Case 4, with no significant differences from Case 1; the

worst is Case 8, with no significant differences from Cases 3, 5, 6, and 9.

As it can be noticed, on using the multiple comparison tests, for T0 = n and T0 = 500

the solutions are always significantly better when the temperature decrease is slow (FSA) (see

Figure 5.10 (a) and (b), respectively) and for T0 = n
4 , the best solutions are obtained when the

temperature decrease is slow with no significantly differences with a geometric temperature

decrease (see Figure 5.11).

128 Minimum Vertex Floodlight Set Problem

Case 2

Case 3

Case 1

BestWorst

(a) n = 30, 50, 70 and 100

Case 5

Case 6

Case 4

BestWorst

(b) n = 30, 50, 70 and 100

Figure 5.10: Multiple comparison tests of: (a) Cases 1, 2 and 3; (b) Cases 4, 5 and 6.

Case 7

Case 9

Case 8

BestWorst

(a) n = 30 and 70

C
a
s
e
 9Case 8

Case 7

BestWorst

(b) n = 50 and 100

Figure 5.11: Multiple comparison tests of Cases 7, 8 and 9.

Notice that, for all types of initial temperature T0, it would be expected that a geometrical

decrease should produce better solutions than a rapid decrease what does not happen. We

can see that the obtained solutions have not significant differences (except when T0 = n
4 , with

n = 30 and n = 70). As stated before, the reason for this behavior is the elimination of the

redundant vertex floodlights.

Concerning the nine cases, if the temperature decrease is slow, the best solutions are ob-

tained with T0 = 500 and T0 = n. If the temperature decrease is fast the initial temperature

does not have influence, except for n = 100, where the obtained solutions by Case 8 (T0 = n
4)

are significantly worst than Case 2 (T0 = n). If the temperature decrease is geometric the

initial temperature does not have influence, despite the observation that different initial tem-

peratures seem to give rise to different solutions (see Tables 5.2, 5.3 and 5.4). It can also be

concluded that the best solutions are obtained with Case 4 for n = 30 50, 70 and 100 and a

significant difference was not found between the number of vertex floodlights obtained with

this case and with Case 1. Despite the observation that in Tables 5.2 and 5.3, Case 4 seems to

outperform Case 1 concerning the average number of vertex floodlights |F |, for n = 30, 50, 70

and 100. So, the statistical analysis proceeds regarding the runtime. This analyze was made

in a similar way and it allowed to conclude that Case 1 is significantly faster than Case 4, for

n = 30, 50, 70 and 100. Given this, Case 1 was selected to be the best case.

Minimum Vertex Floodlight Set Problem 129

Notice, however, that the rapid decreases are useful when faster, but worse, solutions are

wished. For instance, remember that it is necessary to choose a SA strategy for the hybrid

methods. Case 8 is the fastest case and although the returned number of floodlights is the

worst, it can be used in the hybrid methods. This is due to the fact that, one of the objectives

of these methods is to see how they behave when compared to a “pure” GA strategy. In the

first method, the initial population generated by the SA strategy is always better than the

one proposed for the “pure” algorithm in subsection 5.2.3. In the second method, being the

initial temperature low (as T0 = n
4), the danger of losing the good solutions found so far is

decreased. Moreover, as intended, the intensification keeps on being reinforced in the search

carried out by the GA. Thus, Case 8 was the SA strategy selected to use in the developed

hybrid methods.

Improvements

As it was done for the MVGS(P) problem, it was found that the runtime of the best case

(Case 1) could be improved if a floodlight dominance matrix is computed in the pre-processing

step. (see subsection 4.4.1.1). This concept is defined as follows.

Definition 5.6 Let P be a polygon with n vertices and vi, vj ∈ VP . The vertex floodlight f ik
dominates a vertex floodlight f jm (or, f jm is dominated by f ik) if V is(f jm, P) ⊂ V is(f ik, P).

Definition 5.7 Let P be a polygon with n vertices. The floodlight dominance matrix of

P is a (n+ r)× (n+ r) matrix A, where ∀k,m ∈ {0, . . . , n+ r− 1}, A[k,m] = 1, if the k-esim

floodlight dominates the m-esim floodlight; and A[k,m] = 0, otherwise.

The floodlight dominance matrix of P could improve the runtime of the above described

algorithms, since each time that it is necessary to see if F \ {f ik}, with f ik ∈ F , is still a vertex

floodlighting set for P , being F a vertex floodlighting set for P . First, it is checked if f ik is

dominated by some other floodlight of F , that is, if A[k,m] = 1, for some f jm ∈ F . If so, we

already know that F \ {f ik} is vertex floodlighting set, and it is not necessary to determine if⋃
fi∈F\{f ik}

V is(f ik, P) = P , since this is true.

Therefore, the calculation dominance matrix of P was included in the pre-processing step

and new results were obtained with Case 1. Table 5.9 show the obtained results with Case

1, with and without the dominance matrix. We can observe that the runtime improves when

the dominance matrix is employed. In spite of the pre-processing time increase, the overall

time (pre-processing time plus runtime) is improved when the dominance matrix is employed.

Given that, Case 1, with the calculation of the dominance matrix in the pre-processing step,

was selected to be method M1.

130 Minimum Vertex Floodlight Set Problem

Case 1 (without dominance matrix) Case 1 (with dominance matrix)
n

PP |F | Time Iter. PP |F | Time Iter.

30 0.15 7.55 14.25 4839.40 1.62 7.52 13.45 5020.30

50 0.62 12.75 43.67 6281.40 2.60 10.50 25.57 5604.10

70 1.35 17.85 97.22 8113.10 8.42 18.02 86.35 7897.00

100 2.60 25.77 206.72 10130.00 17.30 25.12 185.10 10202.00

Table 5.9: Results obtained with SA Case 1, with and without the use of the dominance

matrix.

5.4.1.2 Comparison of the four strategies

In this section it is analyzed and evaluated the results obtained with the four approximation

methods: M1, SA strategy; M2, GA strategy and and the hybrid strategies which are going

to be denoted by M3 (the strategy in which the initial population of a GA is generated by a

SA algorithm) and M4 (the strategy in which a SA strategy is a genetic operator). Remember

that, for the hybrid strategies, M3 and M4, is necessary to choose a SA strategy and a GA

strategy. As stated above, the selected SA strategy was the SA Case 8 (T0 = n
4 and VFSA

temperature decrease) and the selected GA strategy was the developed GA algorithm (method

M2). Experiments were done with the methods M3 and M4, with and without the calculation

of the dominance matrix in the pre-processing step, and it was concluded that using the

dominance matrix these methods were faster. So, all the results associated with the hybrid

strategies were obtained using the dominance matrix.

Tables 5.10 and 5.11 present the obtained results with methods M1, M2, M3 and M4.

Comparing the solutions obtained with the non-hybrid methods, (see Table 5.10) we can

notice that: the method M1 appears to be the best method since it seems to be faster and the

obtained solutions appear to be better. In relation to the results obtained using the hybrid

methods (see Table 5.11) we can see that M4 is slower but the average number of vertex

floodlights seems to be better.

M1 M2
n

PP |G| Time Iterations PP |G| Time Iterations

50 4.02 12.52 39.85 6436.30 0.450 14.20 37.37 1071.10

100 17.30 25.12 185.10 10202.00 2.52 29.05 290.35 2278.30

150 40.70 37.65 441.57 13661.00 7.12 42.02 763.60 3284.60

200 75.82 50.25 871.90 17972.00 14.92 56.82 1584.50 4568.10

Table 5.10: Results obtained with M1 and M2.

Minimum Vertex Floodlight Set Problem 131

M3 M4
n

PP |G| Time Iterations PP |G| Time Iterations

50 4.12 12.27 28.05 580.60 4.17 11.62 44.17 683.85

100 17.92 25.57 243.20 754.55 17.47 23.30 373.55 1061.50

150 41.55 38.47 842.50 843.05 41.17 34.70 1078.10 1241.40

200 76.00 52.22 2163.30 919.05 76.17 46.70 2660.20 1520.60

Table 5.11: Results obtained with M3 and M4.

Contrasting, now, the results achieved with the hybrid methods (M4 and M5) with the

results obtained with the non-hybrid strategies (M1 and M2), we can observe that M4 seems

to obtain better solutions than M1, for n = 50, 100, 150 and 200. Consequently, regarding the

average number of vertex floodlights, the best method seems to be the method M4, followed

by the methods M1 and M3; and the worst one seems to be the method M2 (see Figure 5.12).

Figure 5.12: Solutions obtained with strategies M1,M2,M3, and M4.

As usual, a statistical study was carried out. The data obtained with method M1 is

non-normally distributed, for n = 50, 100, 150 and 200 (the obtained p-values are less than

0.001, for n = 50, 100, 150 and 200). The p-values returned by the Kruskal-Wallis tests

were < 0.001<0.05 for the data obtained with the polygons with n = 50, 100, 150 and 200.

Then multiple comparison tests were performed to determine which pairs of averages were

significantly different, and which were not. The answers provided by these tests allowed to

conclude that (see Figures 5.13(a) and 5.13(b)):

• for n = 50, the best method is M4, with no significant differences with the method M3;

and the method M2 is significantly worse than the other methods.

• for n = 100, 150 and 200, the method M4 is significantly better than the other methods

and the method M2 is significantly worse than the other methods.

132 Minimum Vertex Floodlight Set Problem

M
1

M
4M

3

M
2

BestWorst

(a) n = 50

M
1

M
4

M
3

M
2

BestWorst

(b) n = 100, 150 and 200

Figure 5.13: Multiple comparison tests of the five methods.

Therefore, unmistakably, concerning the obtained solutions, the hybrid method M4 is

the best one and the method M2 the worst one. The methods M1 and M3 can be considered

equal. Consequently, the study continues considering M4 as the best strategy.

To infer about the average of the minimum number of vertex floodlights needed to cover

an orthogonal polygon, it was applied M4 to eight sets of arbitrary polygons, each one with

40 polygons with 30, 50, 70, 100, 110, 130, 150 and 200 vertex polygons. The average of the

obtained results, concerning |F |, are shown in Table 5.12.

n 30 50 70 100 110 130 150 200

|F | 6.97 11.62 16.25 23.30 25.00 30.12 34.70 46.70

Table 5.12: Average of the minimum number of vertex floodlights.

Then, using the least squares method, the following linear adjustment was obtained, with

a correlation factor of 0.9997 (see Figure 5.14):

f(x) = 0.2328x− 0.1091 ≈ x

4.29
− 0.1091 ≈ x

4.29
.

Figure 5.14: Least Squares Method.

Minimum Vertex Floodlight Set Problem 133

Thus, it can be concluded that on average, and approximately, the minimum number

of vertex floodlights needed to cover an orthogonal polygon with n vertices was observed

to be d n
4.29e. In order to get a quantitative measure on the quality of the calculated |F |,

the floodlights visibility-independent sets were computed on our instances (the eight sets of

polygons described above). The ratio between the smallest F (obtained with M4) and the

largest visibility-independent set, FIS obtained with A1 (see section 5.3) never exceeded 2

(with an average of 1.68 for the universe of 320 polygons). That implies that algorithm M4

has an approximation ratio less than or equal to 2.

Figure 5.15 shows snapshots obtained with our software. In this figure is illustrated an

orthogonal polygon for which the floodlight visibility-independent set FIS was obtained with

A1, |FIS| = 15, and the solution F was obtained with M2 and M4, |F | = 31 and |F | = 22,

respectively.

(a) |FIS| = 15 and |G| = 31 (b) |FIS| = 15 and |G| = 22

Figure 5.15: FIS and F sets obtained on a 100-vertex orthogonal polygon with the methods

A1 and: (a) M2; (b) M4.

5.5 Concluding Remarks

In this chapter approximation algorithms were proposed that allow to obtain a vertex flood-

lighting set F , whose cardinality approximates the minimal number of vertex floodlights

needed to illuminate a given polygon orthogonal. In other words, approximation algorithms

were designed and implemented to tackle the Minimum Vertex Floodlight Set problem

on orthogonal polygons. Four approximation strategies were studied: one based on the SA

metaheuristic (M1), one based on the GAs metaheuristic (M2) and two others based on hybrid

metaheuristics (M3 and M4). It was also developed a greedy algorithm to compute floodlights

visibility-independent sets, permitting to obtain provable bounds on how close our results are

to the optimal.

134 Minimum Vertex Floodlight Set Problem

Using a large set of randomly generated orthogonal polygons, an experimental compara-

tive study was made on the suitability of the developed methods, allowing to conclude that:

(1) Concerning the SA strategy. The best case was observed to be Case 1, that is, T0 = n

and a slow temperature decrease (FSA).

(2) About the hybrid strategies it was observed that the hybrid strategy M4 (a SA strategy

is a genetic operator in the developed GA) is significantly better (except for n = 50)

then the other one (the initial population of the GA is generated by SA). Thus, the

use of a SA strategy as a genetic operator to reinforce the intensification on the search

carried out by the GA, improves the obtained solutions. It was also seen that both

hybridizations obtain significantly better solutions than the “pure” GA, i.e., method

M2

(3) Finally and as to the four approximation strategies, the best one was observed to be

method M4. The performed computational experiments allowed to conclude that on

average, and approximately, the minimal number of vertex floodlights needed to cover

an orthogonal polygon was observed to be d n
4.29e. This value is much less than the

theoretical bound b3n−4
8 c. Finally, in terms of quality of the solutions, it is also concluded

that the approximation ratio is less than or equal to 2.

It is important to point out, again, that all alternatives with respect to parameters of

the SA, GA and the hybrid metaheuristic that could be explored are almost “infinite”. Once

more, in this work it was attempted to find references for these parameters, noting that a

more exhaustive study in future investigations might improve the obtained results.

As a conclusion, the hybrid metaheuristics, especially the strategy M4, have proven to

behave well in solving the Minimum Vertex Floodlight Set problem. However, the

obtained approximation ratio was not as good as for the MVSG(P) problem. This behaviour

may be due to method M4 or due to the greedy strategy A1. Therefore, it is our intention, as

a future research, to investigate and detect where the problem is and to improve M4 (or study

different hybridizations) and/or the greedy strategy A1 (or study different approximation

methods).

Chapter 6

Minimum Vertex k-Modem Set

Problem

In the previous chapters it was used the classical visibility definition, which ensures that two

points x and y on a polygon P are visible to each other if the line segment xy does not intersect

the exterior of P , that is, if xy ∩ P = xy. Nevertheless, the development of the Internet and of

the wireless networks inspire further research in the visibility field of computational geometry,

as shown in [33,53,131].

Recently in [9] was defined a new variant of the original Art Gallery Problem that arises

from the following everyday and practical problem: How to place wireless modems in a building

in such a way that a computer, with a wireless card, placed anywhere within the building

receives a signal strong enough to have a stable connection to navigate in the Web? There

are two key limiting factors to connect a computer to a wireless network: its distance to

the wireless modem and the number of walls that separate it from the modem. However,

experience says that, in most buildings, the most significant limiting factor is the number of

walls that separate the computer from the wireless modem and not its distance to the modem.

This was the practical motivation that encouraged Aichholzer et al. [9] to study the

k-modem Art Gallery Problem: Given a polygon P with n vertices, what is the minimum

number of k-modems (placed on points of P) sometimes necessary and always sufficient to

cover P? It is said that a point y in a polygon P is covered or illuminated by a k-modem

placed on a point x ∈ P if the line segment xy crosses at most k walls (edges) of P . It is easy

to observe that (i) for k = 0 this problem is reduced to the original Art Gallery problem and

(ii) for k = n would be enough only one n-modem placed on any point of P to cover P (triv-

ial solution). Combinatorial bounds for this problem were obtained for arbitrary monotone

and orthogonal monotone polygons, remaining open the problem for general arbitrary and

orthogonal polygons [9]. Later, Fabila-Monroy, Vargas and Urrutia extended the notion of

135

136 Minimum Vertex k-Modem Set Problem

covering with k-modems to other geometric configurations, such as families of line segments,

families of lines and sets of horizontal or vertical disjoint segments, or sets of lines [56].

As always, in this dissertation the geometrical configurations were confined to polygons.

As for the MVFS(P), it is strongly believed that the problem of finding the minimum number

of k-modems, needed to cover a given polygon, is NP-hard, both for arbitrary and orthogonal

polygons [9]. So, it makes sense makes sense to tackle it by applying approximate resolution

methods. In the next section the problem will be formalized. In section 6.2 it will be presented

an algorithm to calculate the region covered by a k-modem located on a point of a polygon

with n edges, for all the possible values of k (0 ≤ k ≤ n). In section 6.3 it will be discussed a

metaheuristic method designed to solve approximately the problem of minimizing the number

of k-modems, based on a hybrid approach that uses both the genetic algorithms and simulated

annealing metaheuristics. Finally, section 6.4 will present the experimental results obtained

with this method, for k = 2 and k = 4, on randomly generated arbitrary and orthogonal

polygons, and in section 6.5 some conclusion are presented.

6.1 Problem Description

In this chapter it is going to be studied the problem of covering a polygon P with a set of

wireless modems. As stated above, there are two key limiting factors to connect a computer to

a wireless network: its distance to the wireless modem and the number of walls that separate

it from the modem. In a first approach, only the number of walls that separates the computer

from the modem will be considered, while the distance to the modem will be ignored in this

work. So, first of all, it is necessary to define when a computer located on point y ∈ P is

covered or illuminated by a wireless modem placed on a point x ∈ P .

Definition 6.1 Let P be a n-vertex polygon. A wireless modem, located on a point x ∈ P ,

which transmits a stable signal through at most k edges (walls) of P along a straight line is

denoted by k-modem. [9].

Definition 6.2 Let P be a n-vertex polygon and k ∈ {0, . . . , n}. A point y ∈ P is covered

by a k-modem placed on x ∈ P if the line segment xy crosses at most k edges (walls) of P

(see Figure 6.1(a)), that is, y is covered by a k-modem placed on x if the line segment xy

intersects the relative interior of the edges of P at most k times.

Definition 6.3 Let P be a n-vertex polygon. The k-modem visibility region of a k-modem

placed on x ∈ P is the set of all points y ∈ R2 that is covered by x and it is denoted by

V isk(x, P), that is, V isk(x, P) = {y ∈ R2 : x covers y}, where x is a k-modem1.
1Being x ∈ P , to simplify the presentation, sometimes the expression “x is a k-modem” is used to mean

“a k-modem placed on x”.

Minimum Vertex k-Modem Set Problem 137

Figure 6.1 (b) illustrates the visibility region of a 2-modem. Note that, this region can

be, in some cases, unlimited.

x

2-modem

x

y

z

(a)

x

2-modem

(b)

Figure 6.1: (a) The 2-modem placed on x covers y but it does not cover z; (b) V is2(x, P).

Now, the following problem, k-modem Art Gallery Problem, can be posed: Given a

polygon P with n vertices, what is the minimum number of k-modems (placed on points of P)

sometimes necessary and always sufficient to cover P? [9].

Let P be a polygon with n vertices. Let gkm(P) be the smallest number of k-modems

needed to cover P :

gkm(P) = min{|S| : S ⊂ P, P ⊂
⋃
x∈S

V isk(x, P)}.

Denote by Gkm the maximum of gkm(P) over all polygons with n vertices:

Gkm(n) = max{gkm(P) : P ∈ Pn}, where Pn denotes the set of all polygons with n vertices.

Thus, Gkm(n) k-modems always suffice to cover any n-vertex polygon, and are necessary

to cover at least one n-vertex polygon. This will be rewrite as: Gkm(n) k-modems are always

sufficient and occasionally necessary, or just sufficient and necessary. So, the above established

problem asks for Gkm(n).

Aichholzer et al. [9] studied this problem for monotone polygons, so some useful defini-

tions concerning these class of polygons will follow.

Definition 6.4 A polygonal chain p0, . . . , pk is called monotone with respect to a line l if

the projections of p0, . . . , pk onto l are ordered in the same way as in the chain. Two adjacent

vertices pi and pi+1 may project to the same point on l without destroying monotonicity [101].

Definition 6.5 A polygonal chain is called monotone if it is monotone with respect to at

least one line [101]. It will be used the convention that that the line of monotonicity is the

x-axis.

138 Minimum Vertex k-Modem Set Problem

Definition 6.6 A polygon is monotone if it can be partitioned in two monotone polygonal

chains with respect to the same line [101]. These two polygonal chains will be designated by

the bottom and top chains (see Figure 6.2).

Figure 6.2: The vertices of a monotone polygon projected onto a line.

Concerning monotone polygons Aichholzer et al. [9] proved that:

Proposition 6.1 Every monotone polygon with n vertices can be covered with d n2ke k-modems,

and there is a monotone n-vertex polygon that requires at least d n
2k+2e k-modems to be covered.

So, d n
2k+2e ≤ Gkm(n) ≤ d n2ke. A polygon achieving the lower bound is shown in Figure

6.3. For k = 1, 2, 3, they obtained a better upper bound: Gkm(n) ≤ d n
k+4e.

Figure 6.3: A n-vertex monotone polygon requiring d n
2k+2e k-modems [9].

These authors also proved that:

Proposition 6.2 Every monotone orthogonal polygon with n vertices can be covered with

d n−2
2k+4e k-modems.

If k is even, the bound established in the previous proposition is tight. So, if k is even

Gkm(n) = d n
2k+4e. If k is odd, they proved that d n−2

2k+6e ≤ Gkm(n) ≤ d n
2k+4e.

Summing up, Aichholzer et al. [9], obtained combinatorial bounds for the k-modem Art

Gallery Problem for monotone (arbitrary and orthogonal) polygons, remaining open the fol-

lowing problems: (1) closing the gaps between the obtained lower and upper bounds; and (2)

Minimum Vertex k-Modem Set Problem 139

determining bounds for general arbitrary and orthogonal polygons (which is rather challeng-

ing).

If the k-modems are restricted to the vertices of P (vertex k-modems), the combinatorial

bounds established by the above theorems remain valid. Besides, it is strongly believed that

the algorithmic problem of finding the minimum number of vertex k-modems needed to cover

a given polygon is NP-hard. This variant of the k-modem Art Gallery problem will be

designated by Minimum Vertex k-Modem Set problem.

Definition 6.7 A given set Gkm of vertices of P is a covering vertex k-modem set for

P if they cover P , i.e., if P ⊂
⋃
v∈Gkm V isk(v, P). A covering vertex k-modem set for P is

denoted by Gkm and its cardinality by |Gkm|.

The Minimum Vertex k-Modem Set problem will be denoted by MVkMS(P, k) and

can be stated as follows:

MVkMS(P, k)

Input: A polygon P with n vertices and a number k of walls.

Question:What is the minimum number of vertex k-modems necessary to cover P?

Based on the assumption that this problem is NP-hard, it makes sense to tackle it by

applying approximate resolution methods. So, in this chapter it is proposed an approximation

method to tackle it. Nevertheless, no algorithm is known to determine V isk(x, P). Conse-

quently, the first step to solve the MVkMS(P, k) problem is to develop an algorithm that

calculates the region covered by a k-modem located on a point x of a polygon with n edges,

that is, an algorithm that determines V isk(x, P).

6.2 k-Modem Visibility Polygon

Let P be a polygon with n vertices and x a point on P where a k-modem is placed. In this

section it will be presented an algorithm to construct the region covered by the k-modem

placed on x. This region will have zones of the interior of P and zones of its exterior. For

simplicity reasons, it is considered that P is contained in a rectangular box R and the visibility

region is constructed inside R. In this way, the region covered by x will be always limited

and will be called k-modem visibility polygon and, abusing a bit of the terminology, it will

be denoted by V isk(x, P). A vertex vi ∈ VP is called a critical vertex for x if the vertices

vi−1 ∈ VP and vi+1 ∈ VP are on the same half-plane regarding the ray −→xvi (see Figure 6.4).

Now it will be described an algorithm to construct the k-modem visibility polygon

V isk(x, P) for all possible values of k, that is, 0 ≤ k ≤ n. In a first approach it will be

ignored the following “degenerated” cases: (i) x is collinear with two (or more) critical ver-

140 Minimum Vertex k-Modem Set Problem

k-modem

x

critical vertex

Figure 6.4: Rays and one of the critical vertices of P .

tices of P and (ii) x belongs to a line passing through an edge of P . The main steps of the

algorithm will follow:

(1) Draw all the rays with source x passing through the critical vertices of P . Identify, from

the critical points, the intersection points of the rays with each edge of P (see Figure

6.5 (a)). Sort the rays angularly about x.

(2) The rays divide each edge of the polygon in one or more segments. Label each segment

with the number of edges (walls) crossed by the ray from x to the segment (see Figure

6.5 (b)).

rectangular box

x

(a)

0

1

rectangular box

1

2

2

2

2

3

4

0

1

1

x

0

(b)

Figure 6.5: (a) Rays and intersection points; (b) Labelled segments.

(3) V isk(x, P) is constructed by connecting the segments with label k, using for that the

incident rays at its endpoints. Determine the first ordered ray to which the source s1

of a segment with label k belongs. At this point s1 began to draw the boundary of

V isk(x, P), in CCW direction. Advance by ∂P until reach the source s2 of a segment

with a different label (if k is even advance in CCW direction; otherwise advance in CCW

direction). If on the ray to which s2 belongs there is another endpoint p of a segment

with label k make the connection between s2 and p by the ray; otherwise make the

Minimum Vertex k-Modem Set Problem 141

connection by the edge of the box containing the polygon.

(4) Repeat the previous step until V isk(x, P) is closed.

Figure 6.6 (a) illustrates the connection of the segments labelled with 1, to construct the

polygon covered by a 1-modem and Figure 6.6 (b) shows the connection of the segments

labelled with 2, to construct the polygon covered by a 2-modem. Figure 6.7 illustrates

V is1(x, P) and V is2(x, P).

0

1

rectangular box

1

2

2

2

2

3

4

0

1

1

x

0

(a)

0

1

rectangular box

1

2

2

2

2

3

4

0

1

1

x

0

(b)

Figure 6.6: Route for the construction of: (a) V is1(x, P) and (b) V is2(x, P).

0

1

1

2

2

2

2

3

4

0

1

1

x

0

(a)

0

1

1

2

2

2

2

3

4

0

1

1

x

0

(b)

Figure 6.7: (a) V is1(x, P) and (b) V is2(x, P).

Algorithm Complexity. Since each ray can intersect all the edges of the polygon, the total

number of labels of the segments is quadratic. Thus, labelling step runs in O(n2) time. The

construction of the visibility polygon for each fixed value of k is done in linear time, as each

side of P only intervenes a constant number of times. To conclude, the construction of all

k-visibility polygons is done in quadratic time.

The only step that needs a more detailed explanation is Step (2). The labelling of each

segment s with the number of edges crossed by the ray from x to s, is done as follows:

142 Minimum Vertex k-Modem Set Problem

1. Label all the critical vertices with “+1” or “−1”. Being vi a critical vertex there are

four rules to label it (see Figure 6.8):

1.1 if vi−1vivi+1 is a left-turn and:

(i) vi−1 is on the positive side of the ray −→xvi label vi with “+1” (Rule 1);

(ii) vi−1 is on the negative side of the ray −→xvi label vi with “−1” (Rule 2);

1.2 if vi−1 is a right-turn and:

(i) vi−1 is on the positive side of the ray −→xvi label vi with “−1” (Rule 3);

(ii) vi−1 is on the negative side of the ray −→xvi label vi with “+1” (Rule 4).

x

+1

(a) Rule 1

x

-1

(b) Rule 2

x

-1

(c) Rule 3

x

+1

(d) Rule 4

Figure 6.8: Rules to label the critical vertices (shaded zones represent int(P)).

In Figure 6.9 it is illustrated a polygon with the critical vertices labelled according to

the previous rules.

rectangular box

x

+1

+1

+1

+1

-1

-1

Figure 6.9: Labelled critical vertices.

2. Label all the intersection points pj identified in Step (1) with “+2” or “−2”:

2.1 If pj is an endpoint of an edge of P , that is, if pj = vj , for some vj ∈ VP . Then, if

vj−1 and vi−1 are on the same side regarding the ray −→xvi label pj with “−2”, else

label pj with “+2”.

2.2 If pj is a relative interior point of an edge of P . Then, if the source of the edge to

which pj belongs and vi−1 are on the same side regarding the ray −→xvi label pj with

“−2”, else label pj with “+2”. See Figure 6.10, for illustration.

Minimum Vertex k-Modem Set Problem 143

x

+1

+2

-2

+2

-2

x

+1

-2

+2

x

-1

+2

-2

x

-1

-2

+2

Figure 6.10: Rule to label the intersection points, which are relative interior points

of edges of P (shaded zones represent int(P)).

Figure 6.11 illustrates a polygon with the intersection points labelled according to the

previous rules.

rectangular box

x

+1

+1

+1

+1

-1

-1

-2

-2

+2

+2

+2

-2

-2

Figure 6.11: Labelled intersection points.

3. Draw the horizontal ray (to the right of x) and detect the first intersection point z with

∂P . Label with 0 the edge to which z belongs (from z to the next vertex/point with a

label), see Figure 6.12.

4. Advance by ∂P in CCW direction until the next vertex/point p with a label is found.

Label the built segments in the following way: “label of p + label of the previous

segment”, until z is reached.

Figure 6.13 illustrates a polygon with all the segments labelled.

rectangular box

x

+1

+1

+1

+1

-1

-1

-2

-2

+2

+2

+2

-2

-2

z

0

Figure 6.12: First labelled edge.

rectangular box

x

+1

+1

+1

+1

-1

-1

-2

-2

+2

+2

+2

-2

-2

z

0

1

2

0

1
3

1

2

4

20

2

11

0

Figure 6.13: Labelled segments.

144 Minimum Vertex k-Modem Set Problem

Adaptation of the algorithm, to treat the “degenerated” case when x is collinear

with two or more critical vertices.

Here it continues to be assumed that x does not belong to any line passing through

an edge of the polygon. This option was made because in definition 6.2 this case was not

contemplated and, for now, it does not make sense to focus on it.

The differences for the previous algorithm are in Steps (1) and (2), the other steps remain

equal. In the previous algorithm there is only one critical vertex on each ray, here each ray

has at least one critical point (see Figure 6.14). So in Step (1), the critical vertices belonging

to the same ray are ordered along the ray, according to its distance of the modem, from the

nearest to the farthest. Then, from the nearest critical vertex of the modem, it is identified

the intersection points of the rays with each edge of P (see Figure 6.15).

x

rectangular box

Figure 6.14: Three rays, one ray with two

critical vertices and two rays with one crit-

ical vertex.

x

rectangular box

Figure 6.15: Intersection Points.

Concerning Step (2), the labelling of the critical vertices is done in the same way. The

difference from the previous algorithm is in labelling the intersection points pj (not critical

vertices) identified in Step (1). Here this is done as follows:

• Label all the intersection points pj identified in Step (1) with “+n” or “−n” (n ∈ N0):

1. Initialize n with 0.

2. For each critical vertex vi nearer of the modem than pj do:

(a) If pj is an endpoint of an edge of P , that is, if pj = vj , for some vj ∈ VP . Then

“n = n+ (−2)”, if vj−1 and vi−1 are on the same side regarding the ray −→xvi;
otherwise, “n = n+ (+2)”.

(b) If pj is a relative interior point of an edge of P . Then “n = n+ (−2)”, if the

source of the edge to which pj belongs and vi−1 are on the same side regarding

the ray −→xvi; otherwise, “n = n+ (+2)”. See Figure 6.16, for illustration.

Minimum Vertex k-Modem Set Problem 145

x

rectangular box

+1

-1

-1

-1

-2-2

4

4

-4

-2

x

rectangular box

Figure 6.16: Rule to label the intersection points.

Figure 6.17 shows snapshots obtained with our software, which illustrates the region

covered by a 2-modem and a 4-modem in the orthogonal polygon illustrated in the previous

figures.

(a) (b)

Figure 6.17: Region covered by a k-modem in a orthogonal 30-vertex polygon: (a) k = 2 and

(b) k = 4.

In the implementation of this algorithm only even values of k were considered because,

for now, the interest is to cover the interior of the polygon. However, for odd values the

implementation can be done in a similar way. Figures 6.18, 6.19 and 6.20 show some snapshots

obtained with our software.

As stated before, it is strongly believed that the MVkMS(P, k) problem is NP-hard.

So, in this work the study proceeds developing an approximation method to tackle it. This

method is described in the next section.

146 Minimum Vertex k-Modem Set Problem

(a) (b) (c)

Figure 6.18: A 20-vertex arbitrary polygon P and: (a) V is2(x, P); (b) V is4(x, P); (c)

V is6(x, P).

(a) (b) (c)

Figure 6.19: A 100-vertex arbitrary polygon P and: (a) V is2(x, P); (b) V is4(x, P); (c)

V is6(x, P).

(a) (b) (c)

Figure 6.20: A 100-vertex arbitrary polygon P and: (a) V is2(x, P); (b) V is4(x, P); (c)

V is6(x, P).

6.3 Approximation Method

Remember that, a set Gkm of vertices of P is a covering vertex k-modem set for P if

P ⊂
⋃
v∈Gkm V isk(v, P) (see definition 6.7). In this work it was developed an approxima-

tion algorithm to determine a covering vertex k-modem set Gkm, whose cardinality approx-

Minimum Vertex k-Modem Set Problem 147

imates the minimal number of vertex k-modems needed to cover a given polygon P . This

approximation algorithm is an hybrid metaheuristic technique that combines the GAs and SA

metaheuristics. This technique is similar to the methods M5 and M4 to solve the MVGP(P)

and MVFS(P) problems, respectively (see Chapters 4 and 5). So, fundamentally it uses a

GA, where, in addition to the classical operators crossover and mutation, it was added a new

genetic operator based on the SA metaheuristic. Basically the process consists of applying

the SA after the crossover operator and after this operation the mutation operator is applied.

This strategy was chosen because it was selected as the best strategy to solve both the problem

MVGS(P) and the problem MVFS(P).

First of all, a pre-processing step is performed to compute and store the k-modem visi-

bility polygons of vi, V isk(vi, P), for all vi ∈ VP . This information will decrease the algorithm

runtime, since each time a vertex k-modem visibility polygon is required it is not necessary to

calculate it again. To compute V isk(vi, P) it was used the algorithm described in subsection

6.2. Note that, after defining the SA and GA parameters to suit the MVkMS(P, k) problem,

a hybrid strategy is obtained that allows to get a k-modem vertex set Gkm. However, as

described in chapter 4, it may be possible that some elements of Gkm are redundant, that is,

it may be possible to find a set U ⊂ Gkm such that P ⊂
⋃
v∈Gkm\U V isk(v, P). Thus, to refine

the obtained solution, the final step of the hybrid strategy is the iteratively removal of those

elements.

The adaptation of the simulated annealing parameters to suit the MVkMS(P, k) problem

and the description of how the genetic algorithm parameters were defined will follow.

Simulated Annealing The solution space, set S, to the MVkMS(P, k) problem is the set

of all covering vertex k-modem sets for P . Thus, S is a finite set and can be represented

by S = {S1, S2, . . . , Sm}, where Si = vi0v
i
1 . . . v

i
n−1 for i = 1, . . . ,m. This way, each candidate

solution Si is represented by a chain of length n, where vij , with j ∈ {0, . . . , n− 1}, represents

the vertex vj ∈ P and its value is 0 or 1. If vij = 1 then the vertex vj is a k-modem; otherwise

the vertex vj is not a k-modem. Besides, Si is a valid solution if the k-modems covers P . The

objective function f : S → N assigns to each element of S the cardinality of the corresponding

k-modem set. To generate a neighbour Sj of Si = vi0 . . . v
i
n−1 it is randomly generated a

natural number, uniformly distributed, t ∈ [0, n − 1] and then if: (a) vit = 1 then vjt is set

to 0, accepting the new solution if it is valid and rejecting it otherwise; (b) vit = 0 then vjt

is set to 1, accepting this new solution with probability, since this is worsening the previous

solution. The initial solution S0 is the first covering vertex k-modem set to be analyzed. It

was taken the solution obtained after applying the crossover operator in the genetic algorithm,

as it will be described below. For the initial temperature and the temperature decrement rule

it was considered T0 = n
4 (value dependent on the number of vertices of the polygon) and

148 Minimum Vertex k-Modem Set Problem

Tk+1 = T0

ek
(very fast simulated annealing (VFSA) decrease), respectively. It was considered

N(Tk) = dTke iterations for each temperature Tk. Finally, the termination condition consists

of finishing the search when the temperature is less than or equal to 0.005 or when during

the last l = 3000 consecutive series of temperatures no new best solution is obtained and the

percentage of accepted solutions is less than ε = 2%.

Genetic Algorithm An individual I is represented by a chain I = m0m1 . . .mn−1, where

each mi represents the vertex vi ∈ P and its value can be either 0 or 1. If mi = 1 then vi

is a k-modem; being mi = 1, otherwise. The population size is the number of reflex vertices

of the polygon r. To create the initial population it is considered the set of reflex vertices

of P , R = {u0, u1, . . . , ur−1}, and then each of the r individuals are generated as follows:

∀i ∈ {0, . . . , r − 1}, if placing a k-modem in every vertex of R\{ui} the polygon is covered,

R\{ui} is admitted as an individual of the population; otherwise R is taken as an individual.

The fitness function is defined by f(I) =
∑n−1

j=0 mj and for the genetic operators selection

and crossover it is used the tournament selection method and the variant of the single point

crossover, where the generated children cannot be clones of the parents, with a probability

of pc = 0.8, respectively. After applying the crossover operator to two individuals, the SA

strategy is applied with a probability of psa = 0.1. Then, with a probability of pm = 0.05

the mutation operator is applied as follows: the value of each binary gene is flipped from

zero to one or vice versa, with a probability of pm = 0.05. The evaluation of the population

is obtained by taking the lowest value obtained by the objective function f in each of the

individuals, finishing the algorithm when this value does not improve in 500 generations.

6.4 Experiments and Results

To perceive how this hybrid strategy behaves, it was implemented and it were performed

several computational experiments. Note that, the implementation of this strategy implies

the implementation of the algorithm to determine V isk(x, P), x ∈ P , described in section 6.2.

The computational experiments were done on a large set of randomly generated polygons.

In the next two subsections, subsections 6.4.1 and 6.4.2, it will be presented the results and

the conclusions from the accomplished experiments on arbitrary and orthogonal polygons,

respectively.

6.4.1 Arbitrary Polygons

The computational experiments described in this section were performed on sets of randomly

generated arbitrary and monotone arbitrary polygons, each one with 40 polygons of 30, 50, 70,

100, 110, 130, 150 and 200-vertex polygons. As previously mentioned, the arbitrary polygons

Minimum Vertex k-Modem Set Problem 149

were generated using the CGAL’s function random polygon 2. To generate the monotone

arbitrary polygons it was used the algorithm developed by Snoeyink and Zhu [120].

For every set of polygons it was studied the average number of vertex k-modems, with

k = 2 and k = 4, that the algorithm provides as a solution, as well as the average response time

in seconds (pre-processing time PP and runtime Time) and the average number of iterations,

Iterations. Tables 6.1 and 6.2 present the obtained results on arbitrary polygons (general and

monotone), for k = 2 and k = 4.

n PP (sec.) 2-modems Time (sec.) Iterations

30 0.50 1.90 7.77 532.72

50 1.40 2.67 37.35 541.57

70 3.57 3.45 114.55 577.30

100 9.05 4.55 343.50 613.20

110 11.55 4.87 448.82 653.10

130 18.77 5.72 723.57 629.70

150 27.70 6.65 1091.50 613.70

200 63.77 8.35 2664.30 702.75

(a)

n PP (sec.) 2-modems Time (sec.) Iterations

30 0.60 2.32 6.40 527.77

50 1.95 3.17 26.00 555.70

70 4.87 4.82 71.97 561.62

100 14.27 6.92 189.60 594.90

110 18.20 7.20 247.80 587.45

130 31.05 8.87 417.35 640.17

150 46.30 10.10 509.62 605.20

200 104.82 13.37 1184.50 655.12

(b)

Table 6.1: Results obtained for k = 2 on: (a) arbitrary polygons and (b) monotone arbitrary

polygons.

n PP (sec.) 4-modems Time (sec.) Iterations

30 0.32 1.07 4.47 538.65

50 1.27 1.65 30.97 517.67

70 3.40 2.00 114.97 539.62

100 8.95 2.65 417.45 582.17

110 11.65 2.82 550.40 543.82

130 18.75 3.05 1014.90 603.40

150 27.80 3.57 1527.00 572.10

200 63.85 4.37 4207.40 613.30

(a)

n PP (sec.) 4-modems Time (sec.) Iterations

30 0.52 1.75 5.87 530.82

50 1.80 2.15 20.17 536.00

70 4.87 3.02 66.27 525.22

100 14.37 4.00 184.45 562.95

110 18.17 4.70 226.65 551.52

130 31.42 5.45 425.00 585.90

150 46.30 6.15 515.95 581.45

200 105.10 7.85 1232.60 588.85

(b)

Table 6.2: Results obtained for k = 4 on: (a) arbitrary polygons and (b) monotone arbitrary

polygons.

To infer about the average number of the minimum number of vertex 2-modems and

vertex 4-modems, that are necessary to cover an arbitrary (general and monotone), it was

used the least squares method. The obtained results are presented below.

Results for 2-modems. The linear functions that “best” fit the number of 2-modems with

the number of vertices n of arbitrary and monotone arbitrary polygons are f(n) = 0.0383n+

0.7523 ≈ n
26.10 + 0.7523 ≈ n

26.10 , with a correlation factor of 0.9988 and f(n) = 0.0662n +

0.1462 ≈ n
15.10 + 0.1462 ≈ n

15.10 , with a correlation factor of 0.9978 (see Figure 6.21).

150 Minimum Vertex k-Modem Set Problem

(a) (b)

Figure 6.21: Linear adjustment k = 2: (a) arbitrary polygons; (b) monotone arbitrary poly-

gons.

Therefore, it can be concluded that on average, and approximately, the number of vertex

2-modems needed to cover a n-vertex arbitrary polygon is observed to be
⌈

n
26.10

⌉
. It can be

also concluded that
⌈

n
15.10

⌉
is the average the number of vertex 2-modems needed a n-vertex

monotone arbitrary polygon.

Results for 4-modems. The curve fitted for the data presented on Table 6.2 (a) (concern-

ing the average number of 4-modem) is f(n) = 0.0191n+0.6436 ≈ n
52.35 +0.6436 ≈ n

52.35 , with

a correlation factor of 0.9926 (see Figure 6.22 (a)). The linear function that “best” fits the data

presented on Table 6.2 (b) (concerning the average number of 4-modem) is f(n) = 0.0373n+

0.4694 ≈ n
26.80 + 0.4694 ≈ n

26.80 , with a correlation factor of 0.9951 (see Figure 6.22 (b)).

(a) (b)

Figure 6.22: Linear adjustment k = 4: (a) arbitrary polygons; (b) monotone arbitrary poly-

gons.

These results allow to conclude that, approximately, the average number of 4-modems

needed to cover a n-vertex arbitrary polygon is
⌈

n
52.35

⌉
. It can be also concluded that to cover

a n-vertex arbitrary monotone polygon is
⌈

n
26.80

⌉
.

Minimum Vertex k-Modem Set Problem 151

6.4.2 Orthogonal Polygons

The computational experiments described in this section were performed on sets of randomly

generated orthogonal and monotone orthogonal polygons, each one with 40 polygons of 30,

50, 70, 100, 110, 130, 150 and 200-vertex polygons. As previously mentioned, the orthogonal

polygons were generated using the polygon generator developed by Joseph O’Rourke. The

monotone orthogonal polygons were generated using the algorithm proposed in [125]. Accord-

ing to this algorithm the generated polygons are placed on an n
2 ×

n
2 unit square grid and have

no collinear edges (see Chapter 7, section 7.1), and that is the reason why they are designated

by grid monotone orthogonal polygons. As for arbitrary polygons, for every set of polygons it

was studied the average number of k-modems, with k = 2 and with k = 4, that the algorithm

provides as a solution, as well as the average response time in seconds (pre-processing time

PP and runtime Time) and the average number of iterations, Iterations. Tables 6.3 and 6.4

presents the obtained results on orthogonal polygons (general and monotone), for k = 2 and

k = 4.

n PP (sec.) 2-modems Time (sec.) Iterations

30 0.50 1.67 6.10 523.07

50 1.80 2.45 32.25 559.27

70 4.75 3.15 101.37 547.65

100 13.02 4.20 318.17 618.60

110 16.97 4.60 409.67 585.37

130 27.05 5.32 708.17 604.60

150 41.05 5.95 1091.90 692.70

200 94.10 7.95 2541.30 656.45

(a)

n PP (sec.) 2-modems Time (sec.) Iterations

30 0.50 1.97 5.87 537.67

50 1.95 3 27.90 583.10

70 4.90 4.12 72.77 569.02

100 13.35 5.65 212.57 640.67

110 17.37 6.22 254.90 614.47

130 28.47 7.15 426.15 610.60

150 43.20 8.60 612.90 644.77

200 100.37 11.25 1391.00 695.65

(b)

Table 6.3: Results obtained for k = 2 on: (a) orthogonal polygons and (b) grid monotone

orthogonal polygons.

n PP (sec.) 4-modems Time (sec.) Iterations

30 0.37 1.00 2.72 517.60

50 1.95 1.35 22.82 555.50

70 4.80 1.80 87.60 536.15

100 13.07 2.22 359.15 594.20

110 17.05 2.45 481.47 603.62

130 27.20 2.75 827.47 567.70

150 41.22 3.15 1535.00 625.77

200 94.50 3.97 4088.89 649.32

(a)

n PP (sec.) 4-modems Time (sec.) Iterations

30 0.57 1.17 4.02 553.57

50 1.97 1.97 22.22 530.27

70 4.87 2.30 66.22 569.05

100 13.32 3.20 212.950 564.92

110 17.45 3.50 272.10 595.35

130 28.45 3.97 456.35 596.07

150 43.10 4.65 693.85 643.05

200 100.55 6.00 1468.30 622.40

(b)

Table 6.4: Results obtained for k = 4 on: (a) orthogonal polygons and (b) grid monotone

orthogonal polygons.

152 Minimum Vertex k-Modem Set Problem

Similar to arbitrary polygons, to infer about the average number of the minimum number

of vertex 2-modems and vertex 4-modems that are necessary to cover an orthogonal (general

and grid monotone), it was used the least squares method. The obtained results are presented

below.

Results for 2-modems. The linear functions that “best” fits the number of vertex 2-

modems with the number of vertices n of orthogonal and grid monotone orthogonal polygons

are f(n) = 0.0365n+ 0.5844 ≈ n
27.39 + 0.5844 ≈ n

27.39 , with a correlation factor of 0.9988 and

f(n) = 0.0546n + 0.2614 ≈ n
18.31 + 0.2614 ≈ n

18.31 , with a correlation factor of 0.9987 (see

Figure 6.23).

(a) (b)

Figure 6.23: Linear adjustment k = 2: (a) orthogonal polygons; (b) grid monotone orthogonal

polygons.

Thus, it can be concluded that on average, and approximately, the number of vertex

2-modems needed to cover a n-vertex orthogonal polygon is observed to be
⌈

n
27.39

⌉
. It can be

also concluded that
⌈

n
18.31

⌉
is the average the number of vertex 2-modems needed a n-vertex

grid monotone
⌈

n
18.31

⌉
polygon.

Results for 4-modems. The curve fitted to the data of Table 6.4 (a) (concerning the

average number of 4-modem) is f(n) = 0.0174n + 0.5065 ≈ n
57.47 + 0.5065 ≈ n

57.47 , with a

correlation factor of 0.9985 (see Figure 6.24 (a)). The linear function that “best” fits the data

presented on Table 6.4 (b) (concerning the average number of 4-modem)is f(n) = 0.0279n+

0.4162 ≈ n
35.84 + 0.4162 ≈ n

35.84 , with a correlation factor of 0.9973 (see Figure 6.24 (b)).

These results allow to conclude that, approximately, the average number of 4-modems

needed to cover a n-vertex orthogonal polygon is
⌈

n
57.47

⌉
. It can be also concluded that to

cover a n-vertex grid monotone orthogonal polygon is
⌈

n
35.84

⌉
if the polygon is grid monotone.

Minimum Vertex k-Modem Set Problem 153

(a) (b)

Figure 6.24: Linear adjustment k = 4: (a) orthogonal polygons; (b) grid monotone orthogonal

polygons.

6.5 Concluding Remarks

The computational experiments showed that, approximately and on average, the number

2-modems needed to cover an arbitrary polygon P with n vertices was observed to be
⌊

n
26.10

⌋
,

being
⌈

n
15.10

⌉
if P is monotone. If the polygons are orthogonal or grid monotone orthogonal,

the obtained values are
⌈

n
27.39

⌉
and

⌈
n

18.31

⌉
, respectively. Concerning, the number of 4-modems

needed to cover a polygon P with n vertices, the results show that , approximately and on

average, the number 2-modems needed to cover an arbitrary polygon P with n edges was

observed to be
⌈

n
52.35

⌉
, being

⌈
n

26.80

⌉
if P is monotone. If the polygons are orthogonal or grid

monotone orthogonal, the obtained values are
⌈

n
57.47

⌉
and

⌈
n

35.84

⌉
, respectively. As it can be

observed, the obtained values for monotone polygons are much less than the theoretical bounds

d n2ke and d n−2
2k+4e for monotone arbitrary and monotone orthogonal polygons, respectively.

For this problem it was not explored the value of the various parameters associated with

to the used metaheuristics. As future work it is intended not only to study these parameters,

but also to use different metaheuristics. It also intended to develop a method that allows to

obtain the approximation ration of the developed algorithms, since it is strongly believed that

this problem is NP-hard.

154 Minimum Vertex k-Modem Set Problem

Part II

Visibility Problems on Special

Classes of Polygons

155

157

Introduction

Since many of the visibility problems are NP-hard or they are strongly supposed to be

NP-hard, the Part I of this dissertation is devoted to the study of approximation algorithms

to deal with them. However, it is also important to identify classes of polygons for which it is

possible to determine exact solutions and/or combinatorial bounds. In this sense it is intended

to study the Minimum Vertex Guard Set, MVGS(P), Maximum Hidden Set, MHS(P), and

Maximum Hidden Vertex Set, MHVS(P), problems where some of these classes were identified.

Thus, the Part II of the dissertation addresses the determination of exact solutions and/or

combinatorial bounds on special classes of polygons, in this way, following the second line of

investigation proposed in Chapter 1. This part is divided in two chapters. In the first chapter

the MVGS(P) and the MHVS(P) problems are studied on a subclass of orthogonal polygons,

the grid n-ogons. In this chapter, in order to simplify the study of these problems firstly it is

studied some structural properties of the grid n-ogons. In the second chapter the MHVS(P)

and the MHS(P) problems are studied on spiral and histogram polygons.

158

Chapter 7

A Subclass of Orthogonal Polygons:

the grid n-ogons

In this chapter a subclass of orthogonal polygons, the grid n-ogons, is studied. These polygons

were defined by Tomás and Bajuelos [24,124] and they appear to exhibit sufficiently interesting

characteristics that are studied and formalized. Besides, they were used experimentally to

evaluate some approximated methods of resolution of some illumination problems [36,37,126].

In this chapter, the first vertex of a polygon is denoted by v1 instead of v0 to be congruent

with the notation used by Tomás and Bajuelos in [24,124].

This chapter is divided in four sections. In the first one, section 7.1, some definitions

and already known results related to grid n-ogons are briefly presented (for more details refer

to [24,124]). Section 7.2 is devoted to the study of new results related to this class of polygons,

mainly related to structural properties. In section 7.3, for the Fat, Min-Area and Spiral

grid n-ogons, special subclasses of grid n-ogons, the optimal solution of the following problems

is determined: MVGS(P), where P is a Fat grid n-ogon, a Min-Area grid n-ogon and a

Spiral grid n-ogon and MHVS(P), where P is a Thin grid n-ogon. Finally, in section 7.4,

some conclusions and open problems are established.

Let us mention that some of the results appearing in this chapter have been published

in [16,18,19,91–94].

7.1 Conventions, Definitions and Results

Remember that, for every n-vertex orthogonal polygon (n-ogon, for short), n = 2r+ 4, where

r denotes the number of reflex vertices, e.g. [101]. So, orthogonal polygons have an even

number of vertices.

Definition 7.1 A partition of a polygon P is a division of P into sub-polygons (named pieces)

that do not overlap except on their boundaries.

159

160 A Subclass of Orthogonal Polygons: the grid n-ogons

Definition 7.2 A rectilinear cut r-cut of a n-ogon P is obtained by extending each edge

incident on a reflex vertex of P towards int(P) until it hits ∂P . By drawing all r-cuts, P is

partitioned into rectangles, called r-pieces. This partition is denoted by Π(P) and the number

of its elements (pieces) as |Π(P)| (see Figure 7.1).

r-piece

Figure 7.1: A n-ogon P and its Π(P) partition.

Definition 7.3 A n-ogon P is in general position if it has no collinear edges. A n-ogon in

general position defined in a (n2)× (n2) square grid is called grid n-ogon.

It is assumed that the grid is defined by the horizontal lines y = 1, . . . , y = n
2 and the

vertical lines x = 1, . . . , x = n
2 and that its northwest corner is (1, 1). Each grid n-ogon has

exactly one edge in every line of the grid. A correct and complete method to generate grid

n-ogons, well described in [124] and briefly explained here, is the Inflate-Paste.

Let vi = (xi, yi), for i = 1, . . . , n, be the vertices of a grid n-ogon P , in CCW order.

Inflate

Inflate takes P and a pair of integers with (p, q) with p, q ∈ {0, 1, . . . , n2 }, and yields a

new n-ogon P̃ with vertices ṽi = (x̃i, ỹi) given by x̃i = xi, if xi ≤ p and x̃i = xi + 1, if xi > p;

and ỹi = xi, if yi ≤ q and ỹi = yi + 1, if yi > q , for i = 1, . . . , n. Inflate augments the grid

creating two free lines, namely x = p+ 1 and y = q + 1.

Inflate-Paste

First imagine P merged in a (n2 + 2) × (n2 + 2) square grid, with top, bottom, leftmost,

and rightmost grid free lines. The top-line is now x = 0 and the leftmost is y = 0. Now, the

northwest corner of this extended grid is the point (0, 0). Let eh(vi) be the horizontal edge of

P to which vi belongs.

Definition 7.4 Given a grid n-ogon merged into a (n2 +2)× (n2 +2) square grid and a convex

vertex vi of P , the free staircase neighborhood of vi, denoted by FSN(vi), is the largest

staircase polygon in this grid that has vi as vertex, does not intersect the interior of P and its

base edge contains eH(vi), the horizontal edge of P to which vi belongs (see Figure 7.2).

A Subclass of Orthogonal Polygons: the grid n-ogons 161

Figure 7.2: A grid n-ogon merged into a (n2 + 2)× (n2 + 2) square grid and the free staircase

neighborhood for each of its convex vertices [124].

To transform P by Inflate-Paste, first take a convex vertex vi of P , then select a

cell C in FSN (vi), with center c and northwest corner (p, q), and apply Inflate to P using

(p, q). As stated before, the center of C is mapped to c̃ = (p + 1, q + 1), which will be now

a convex vertex of the new polygon. Paste glues the rectangle defined by ṽi and c̃ to P̃ ,

increasing the number of vertices by two. If eH(vi) = vivi+1 then Paste removes ṽi = (x̃i, ỹi)

and inserts the chain (x̃i, q + 1), c̃, (p + 1, ỹi). If eH(vi) = vi−1vi, Paste replaces ṽi by the

chain (p+ 1, ỹi), c̃, (x̃i, q + 1). Figure 7.3 illustrates this transformation.

v
10 v

10
v

10
v

10

v
1

v
1

v
1

v
1

Figure 7.3: The four grid 14-ogon that may be constructed if Inflate-Paste is applied to

the given 12-ogon, extending the vertical edge that ends at vertex v10 [124].

Note that, each n-ogon in general position is mapped to an unique grid n-ogon through

top-to-bottom and left-to-right sweeping. And, reciprocally, given a grid n-ogon a n-ogon may

be created that is an instance of its class by randomly spacing the grid lines in such a way

that their relative order is kept (see Figure 7.4). Each n-ogon that is not in general position

may be mapped to a n-ogon in general position by ε-perturbations, for a sufficiently small

ε > 0 constant. Thus, n-ogons in general position are addressed in a first approach.

162 A Subclass of Orthogonal Polygons: the grid n-ogons

(a) (b)

Figure 7.4: The three 12-ogons on the left are mapped in the grid 12-ogon on the right. And

the three 12-ogons on the left can be obtained from the grid 12-ogon on the right [124].

Grid n-ogons that are symmetrically equivalent are grouped, in the same classes. In this

way, the grid n-ogons in Figure 7.5 represent the same class.

Figure 7.5: Eight gridn-ogons that are symmetrically equivalent. From left to right, we see

images by clockwise rotations of 90◦, 180◦ and 270◦, by flips wrt horizontal and vertical axes

and flips wrt positive and negative diagonals [124].

Given a n-ogon P in general position, Free(P) represents any grid n-ogon in the class

that contains the grid n-ogon to which P is mapped by the sweep procedure. For all n-ogons

P in general position, |Π(P)| = |Π(Free(P))|.

Definition 7.5 A grid n-ogon Q is called Fat if, and only if, |Π(Q)| ≥ |Π(P)|, for all grid

n-ogons P . Similarly, a grid n-ogon Q is called Thin if, and only if, |Π(Q)| ≤ |Π(P)|, for

all grid n-ogons P .

Let P be a grid n-ogon and r the number of its reflex vertices. In [24] it was proven that,

if P is Fat then

|Π(P)| =


3r2+6r+4

4 for r even

3(r+1)2

4 for r odd

and if P is Thin then |Π(P)| = 2r + 1.

There is a single Fat n-ogon (except for symmetries of the grid) and its form is illustrated

in Figure 7.6. However, the Thin n-ogons are not unique (see Figure 7.7).

A Subclass of Orthogonal Polygons: the grid n-ogons 163

Figure 7.6: The unique Fat n-ogons, for

n = 6, 8, 10 and 12.

Figure 7.7: Three Thin 10-ogons.

The area of a grid n-ogon P is the number of grid cells in its interior and is denoted by

A(P). In [24] it was proven that for all grid n-ogon P , with n ≥ 8, 2r + 1 ≤ A(P) ≤ r2 + 3.

Definition 7.6 A grid n-ogon P is denoted by Max-Area grid n-ogon if, and only if, A(P) =

r2 + 3 and it is called a Min-Area grid n-ogon if, and only if, A(P) = 2r + 1.

In [24] it has been shown that there are Max-Area grid n-ogons for all n, but they

are not unique (see Figures 7.8 and 7.9). However, there is a single Min-Area grid n-ogon

(except for symmetries of the grid) and its form is illustrated in Figure 7.10.

Figure 7.8: A family of grid n-ogons with

Max-Area, for r = 2, 3, 4 and 5.

Figure 7.9: A sequence of Max-Area

n-ogons, for r = 6.

As we can see in Figure 7.11 the Fat n-ogons are not the Max-Area. Regarding Min-

Area n-ogons, it is obvious that they are Thin grid n-ogons, because |Π(P)| = 2r + 1 holds

only for Thin grid n-ogons. However, this condition is not sufficient for a grid n-ogon to be

a Min-Area grid n-ogon, i.e., not all the Thin grid n-ogons are the Min-Area grid n-ogon,

as we can see in Figure 7.12.

Figure 7.10: The unique grid

Min-Area grid n-ogons, for

r = 1, 2, 3 and 4.

Figure 7.11: On the left is

the Fat grid 14-ogon, it has

area 27. On the right is a

14-ogon with area 28, which

is the maximum for n = 14.

Figure 7.12: Thin grid

12-ogon with area 15, where

the area of the Min-Area

grid 12-ogon is equal to 9.

164 A Subclass of Orthogonal Polygons: the grid n-ogons

7.2 More Results on grid n-ogons

Given a n-ogon P , the partition Π(P) is already defined. A different partition can be obtained

by extending each horizontal edge incident on a reflex vertex of P towards int(P) until it hits

∂P , this partition is denoted by ΠH(P). Both partitions decompose P into rectangles (see

Figure 7.13).

(a) (b)

Figure 7.13: A n-ogon P and: (a) partition ΠH(P); (b) partition Π(P).

To each partition of a polygon can be associated a graph, designated by dual graph of

the partition, which captures the adjacency relation between the partition pieces. The nodes

of the dual graph represent the pieces of the partition and two nodes are adjacent if their

corresponding pieces share a line segment in their common boundary. The dual graph of

Π(P) is denoted by GΠ(P) and the dual graph of ΠH(P) by GΠH(P) (see Figure 7.14).

(a) (b)

Figure 7.14: A n-ogon P and: (a) GΠH(P); (b) GΠ(P).

Some necessary definitions, for this work, related to graphs will follow. Let G = (V,E)

be a graph. The number of nodes adjacent to a node v ∈ V is called the degree of node v.

A sequence of nodes v1, . . . , vk, k ≥ 2, is called a walk if vivi+1 ∈ E for i = 1, . . . , k − 1. A

walk v1, . . . , vk is said to be closed if v1 = vk. A closed walk is said to be a cycle if k ≥ 3 and

v1, . . . , vk is a walk with no node repetitions. A graph is called connected if for every pair of

nodes u and v of V , there is a walk with no node repetitions u = v1, . . . , vk = v; otherwise it

is called disconnected. A graph is called a tree if it is connected and contains no cycles [99].

A graph is designated by path graph if it is a tree with two nodes of degree 1, called leaves,

and the other nodes of degree 2. In [24] it was proved that GΠH(P) is a tree, here it will be

proved that if P is a Thin grid n-ogon then GΠ(P) is a path graph.

In Π(P), each r-piece is defined by four vertices. Each vertex is either on ∂P (boundary

A Subclass of Orthogonal Polygons: the grid n-ogons 165

vertex) or in int(P) (internal vertex). Similar definitions hold for the edges. An edge e of

a r-piece R is called a boundary edge if e ∩ int(P) = ∅; and it is called an internal edge if

e∩ int(P) 6= ∅ and the only points of e that could not be in int(P) are its endpoints [24]. The

total number of internal vertices of Π(P) is denoted by |Vi(P)|. For all P , Thin grid n-ogon,

|Vi(P)| = 0 [24].

Lemma 7.1 Let P be a Thin (n+ 2)-ogon. Then every grid n-ogon that yields P by Inflate-

Paste is also a Thin.

Proof: Suppose that there is a grid n-ogon Q not Thin that yields P by Inflate-Paste.

Since Q is not a Thin grid n-ogon, we have |Vi(Q)| > 0. The application of Inflate to Q

does not change |Vi(Q)|, because this operation does not add any reflex vertex and the relative

position of the remainder is maintained. However, Paste adds a reflex vertex, vr, to Q. In

this way the number of interior vertices increases or is maintained. It is maintained if the

extensions of the incident edges at vr do not intersect any r-cut of Q, and increases otherwise

(see Figure 7.15).

v
10

v
1

Figure 7.15: On the right we can see two grid 14-ogons that can result from the application

of Inflate-Paste to the 12-ogon on the left, extending the vertical edge that ends at vertex

v10. In the top-right polygon the number of internal vertices increases in one unit and in the

bottom-right polygon this number is maintained.

Thus, any grid (n+ 2)-ogon P1 that is obtained from Q, by Inflate-Paste, will verify

|Vi(P1)| ≥ |Vi(Q)| > 0. Therefore, |Vi(P)| > 0, in contradiction to the fact of P being Thin.

�

Proposition 7.1 Let P be a Thin grid n-ogon with r = n−4
2 ≥ 1 reflex vertices, then GΠ(P)

is a path graph (see examples in Figure 7.16).

Proof: The demonstration will be done by induction on r.

166 A Subclass of Orthogonal Polygons: the grid n-ogons

Figure 7.16: Three Thin grid 10-ogon and respective

dual graphs.

Figure 7.17: 6-ogon P , Π(P) and

GΠ(P).

Base Case, r = 1: It can easily be checked that the proposition is true for r = 1 (see Figure

7.17).

Inductive Step: Let, r ≥ 1. Assuming that the result is true for Thins with r reflex

vertices, it will be proven that it is, also, true for Thins with r + 1 reflex vertices.

Consider any leaf, F , of the tree GΠH(P). In [24] it is proved that each leaf of this tree

corresponds to a rectangle that could have been glued by Paste to yields P . Thus, let R

be the rectangle of ΠH(P) that corresponds to F and vsv the chord that separates R from

the rest of P . R can be one of two types: Type 1 and Type 2, illustrated in the Figure 7.18

(see [24]). The vertex that is not adjacent to sv is c̃ = (p+ 1, q + 1), in Inflate-Paste, and

sv is ṽi = (x̃i, ỹi).

Tipo 1 Tipo 2

v

s
v

c
~

v s
v

c
~

Figure 7.18: The two possible types of rectangles (shaded) that correspond to leaves inGΠH(P),

being P a grid n-ogon.

Case 1: R is of Type 1.

In this case, R = R1 ∪ R2, where R1 and R2 are two adjacent r-pieces of Π(P). If we

remove R we will obtain a n-ogon in general position Q that, by lemma 7.1, is an “inflated”

Thin n-ogon with r reflex vertices. Thus, by induction hypothesis and Observation 1, GΠ(Q)

is a path graph.

Observation 1: If Q is an “inflated” n-ogon then GΠ(Q) and GΠ(P) have the same

“structure”, where P is the grid n-ogon that yields Q, given that the relative position of the

vertices is maintained after Inflate.

Besides, vsv belongs to a unique r-piece, R3, of Π(Q). In fact, suppose that vsv belongs

to more than a r-piece. Then it exists, at least, a point p ∈ vsv that belongs to a vertical

chord (extension of a vertical edge) in Q (see Figure 7.19 (a)). Therefore, p ∈ int(P), so we

A Subclass of Orthogonal Polygons: the grid n-ogons 167

can conclude that p ∈ Vi(P) ⇒ |Vi(P)| 6= 0, in contradiction to the fact of P being Thin

grid n-ogon. Thus, R3 has three boundary edges and one interior edge (see Figure 7.19 (b)).

Consequently, the node n3 ∈ GΠ(Q), that corresponds to R3, is a leaf.

Now, consider a path graph with two nodes n1 and n2, corresponding to R1 and R2,

respectively. Connecting this graph to GΠ(Q), through an edge that joins n2 and n3, we will

obtain GΠ(P), which is a path graph (see Figure 7.19 (c)).

p

v

s
v

c
~

(a)

R
3

s
v

v

(b)

Graph that contains

the nodes associated

with andR R
1 2

n
1

n
2

n
3

)(Q
GÕ

(c)

Figure 7.19: (a) p ∈ vsv; (b) R3 with three boundary edges and one interior edge and (c)

Construction of GΠ(P).

Case 2: R is of Type 2.

In this case, R = R1, where R1 is a r-piece of Π(P) (see Figure 7.20 (a)). As in the

previous case, if we remove R we will obtain a n-ogon in general position Q that, by lemma

7.1, is an “inflated” Thin n-ogon with r reflex vertices. Thus, by induction hypothesis and

Observation 1, GΠ(Q) is a path graph. Note that v is not a vertex of Q, moreover v belongs

to the interior of the edge ṽiṽi+1 (see Figure 7.20 (b)).

As in the previous case, we can prove that vsv belongs to a unique r-piece R2 ∈ Π(Q).

Besides, v is not a vertex of R2. In fact, if it was a vertex of R2, then P would have two

collinear edges, in contradiction to the fact of P being in general position (see Figure 7.20(c)).

v
s
v

c
~

R
11

R
11

(a)

s
v v

i

~º

v
i-1

~

v
i+1

~
v

(b)

s
v v

i

~ºv

c
~

R
2

(c)

Figure 7.20: (a) R = R1 is of Type 2; (b) Removal of R = R1 and (c) v is not a vertex of R2.

So, vsv is strictly contained in an edge of R2. Denote by eV1 and eH1 the vertical and

horizontal edges of R2, incident on sv, respectively; and denote by eV2 and eH2 , the vertical

and horizontal edges of R2 not incident on sv, respectively.

168 A Subclass of Orthogonal Polygons: the grid n-ogons

We know that eV1 and eH1 are boundary edges, so there are four hypotheses for eV2 and

eH2 :

a) eV2 is an interior edge and eH2 is a boundary edge (see Figure 7.21 (a));

b) eV2 and eH2 are interior edges (see Figure 7.21 (b));

c) eV2 is a boundary edge and eH2 is an interior edge (see Figure 7.21 (c));

d) eV2 and eH2 boundary edges (see Figure 7.21 (d));

v s
v

R
2

(a)

v s
v

R
2

(b)

R
2

v s
v

(c)

v s
v

R
2

(d)

Figure 7.21: Four hypotheses to the edges of R2.

Notice that the case b) cannot take place. In fact, suppose that case b) take place, then

there would be a point p ∈ Vi(P)⇒ |Vi(P)| 6= 0, in contradiction to the fact of P being a

Thin (see Figure 7.22 (a)). In an analogous way we can show that c) cannot take place. Case

d) also cannot take place, since in this case we would have r = 0, given that r ≥ 1, it would

come 0 ≥ 1, absurdity!

As a result, only case a) can happen. Being so, the node n2 ∈ GΠ(Q), that corresponds

to R2, is a leaf (see Figure 7.22 (b)).

v
s
v

R
2

p

(a)

v s
v

n
2

(b)

Figure 7.22: (a) Case b) cannot take place; (b) R2 corresponds to a leaf in GΠ(Q).

Therefore, the operation Paste splits R2 into adjacent r-pieces R(1)
2 and R(2)

2 , i.e., R2 =

R
(1)
2 ∪R

(2)
2 and it adds R1 to Q to give rise P (see Figure 7.23 (a)).

Now, consider a path graph C3 with three nodes n1, n(1)
2 and n

(2)
2 , corresponding to R1,

R
(1)
2 and R

(2)
2 , respectively. In other words, consider C3 = {V,E}, where V = {n1, n

(1)
2 , n

(2)
2 }

and E = {n1n
(1)
2 , n

(2)
2 n

(1)
2 }. In GΠ(Q) remove n2. Connect C3 to GΠ(Q)\{n2}, through an edge

that joins the adjacent node to n2 in GΠ(Q) to n(2)
2 . We will obtain GΠ(P), which is a path

graph (see Figure 7.23 (b)).

A Subclass of Orthogonal Polygons: the grid n-ogons 169

s
v v

i

~º
v

c
~

R
2

R
1

R
2

(2)(1)

(a)

Path Graph C
3

c
~

(2)

v s
v

n
1

n
2

(1)

n
2

}{\
2)(

nG
QÕ

(b)

Figure 7.23: (a) Paste operation; (b) Construction of GΠ(P).

In both Cases, 1 and 2, we showed that GΠ(P) is a path graph.

�

Proposition 7.2 Let P be a grid n-ogon, with n > 6. If P is not Thin then GΠ(P) is not a

tree (see example in Figure 7.24).

Figure 7.24: A grid 10-ogon and respective

dual graph.

p

n
1

n
2

n
3

n
4

Figure 7.25: Subgraph of GΠ(P).

Proof: If P is a non Thin grid n-ogon then it exists at least one point p ∈ Vi(P), i.e., one

internal vertex of Π(P). Consequently, p belongs to 4 adjacent r-pieces, what allows us to

conclude that in GΠ(P) exists a cycle, hence GΠ(P) is not a tree (see Figure 7.25)

�

Proposition 7.1 establishes that if P is a Thin grid n-ogon, with n ≥ 6, then GΠ(P) is a

path graph. So, each r-piece of Π(P) is adjacent, at most, to two r-pieces. In fact, suppose

that a r-piece is adjacent to more than two r-pieces, then GΠ(P) would have a node with degree

greater than 2, in contradiction to the definition of path graph. In this way, each r-piece has

at most two interior edges (which are the common sides to other r-pieces). Consequently, we

conclude that in Π(P) there are three types of r-pieces:

- Type 1 : with one interior edge and three boundary edges;

- Type 2 : with two interior edges not adjacent and two boundary edges not adjacent;

- Type 3 : with two adjacent interior edges and two adjacent boundary edges.

The r-pieces of the Type 1 correspond to leaves of GΠ(P) and those of the Type 2 and

Type 3 correspond to nodes of degree 2 (see Figure 7.26)

170 A Subclass of Orthogonal Polygons: the grid n-ogons

v
1

v
2

v
4

v
3

(a)

v
1

v
2

v
4

v
3

(b)

v
1

v
2

v
4

v
3

(c)

Figure 7.26: The r-pieces of a Thin: (a) Type 1 ; (b) Type 2 ; (c) Type 3.

Now, the vertices of each one of these r-pieces will be analyzed.

Type 1

In the r-pieces of the Type 1, v3 and v4 are convex vertices of P . Relatively to v1 and

v2, or v1 or v2 it is a reflex vertex of P , unable to be both reflex vertices, since P is in general

position. Suppose, without loss of generality, that v1 is a reflex vertex of P , in this case v2 is

an interior point of an edge of P (see Figure 7.27 (a)).

Type 2

In the r-pieces of the Type 2 none of four vertices can be a convex vertex of P . In fact,

let us study v1, for instance. For v1 to be a vertex of P there will be an horizontal edge of

P incident on v1, denote this edge by eH(v1). As the interior of P is on right of v1v2, eH(v1)

will be on the left of v1v2, being formed, this way, a reflex vertex in v1. So, v1 cannot be a

reflex vertex. In an analogous way, it can be concluded that none of the vertices v2, v3 and v4

can be convex vertices of P . Besides, since v1v4 is an interior edge of P , or v1 or v4 is a reflex

vertex, but being impossible to be both, because P is in general position. Suppose, without

loss of generality, that v1 is reflex, in this case, v4 is an interior point of an edge of P (see

Figure 7.27 (b) (i)). Relatively to the vertices v2 and v3:

• v2 is a reflex vertex of P and v3 is an interior point of an edge of P (see Figure 7.27 (b)

(ii)); or

• v3 is a reflex vertex of P and v2 is an interior point of an edge of P (see Figure 7.27 (b)

(iii)).

Type 3

In the pieces of the Type 3, v4 is a convex vertex of P . As v2 cannot be an interior point

of P , it has to belong to an edge of P , being an endpoint or an interior point of the edge.

Moreover, as v1v2 is an interior edge of Π(P), or v1 or v2 is a reflex vertex of P , not being

possible to be both, because P is in general position. However, v1 cannot be a reflex vertex.

In fact, suppose that v1 is reflex, in this case v2 would be an interior point of a horizontal edge

of P , what cannot happen since v2v3 is one interior edge of Π(P). So, it can be concluded

that v2 is a reflex vertex, v1 is one interior point of a horizontal edge of P and v3 is an interior

A Subclass of Orthogonal Polygons: the grid n-ogons 171

point of a vertical edge of P (see Figure 7.27 (c)).

v
1

v
2

v
3

v
4

(a)

(i)

(ii) (iii)

v
1

v
2

v
3

v
4

v
1

v
2

v
3

v
4

v
2

v
3

v
4

v
1

(b)

v
1

v
2

v
4

v
3

(c)

Figure 7.27: The r-pieces of a Thin, from left to right: (a) Type 1 ; (b) Type 2 ; (c) Type 3.

Summing up, the r-pieces of Type 1 correspond to leaves of GΠ(P) and those of the Type

2 and Type 3 correspond to nodes of degree 2. Of the four vertices of the r-pieces of Type

1 three are vertices of P , two being convex and the other reflex, and the other vertex is an

interior point of an edge of P . Of the four vertices of the r-pieces of Type 2 two are reflex

vertices of P and the other two are interior points of edges of P . And finally, of the four

vertices of the r-pieces of Type 3 two are vertices of P , one being reflex and the other convex,

and the other two are interior points of edges of P

Proposition 7.3 The unique convex vertices of a Thin grid n-ogon P that could be used

to yield a Thin grid (n+ 2)-ogon, by Inflate-Paste, are those which belong to the r-pieces

associated with the leaves of GΠ(P).

Proof: Let vi = (xi, yi) be a convex vertex of P that belongs to a r-piece R that does not

correspond to a leaf of GΠ(P). As we saw, R is of the Type 3 and its form is illustrated in

Figure 7.27 (c) (this form is unique except for symmetries of the grid). Denote by vr = (xr, yr)

the reflex vertex that belongs to R. In the Inflate-Paste process, FSN (vi) is contained in

the orange zone illustrated in Figure 7.28.

v
r

v
i

Figure 7.28: FSN (vi) (free staircase neighborhood of vi).

Denote the horizontal edge of P , incident on vi by eH(vi) = vivi+1, where vi+1 = (xi+1, yi+1).

Let C ∈ FSN (vi) the cell chosen in the Inflate-Paste process and c = (xc, yc) its center.

Three situations can take place:

172 A Subclass of Orthogonal Polygons: the grid n-ogons

(1) xr < xc < xi (see Figure 7.29 (a));

(2) xi+1 < xc < xr (see Figure 7.29 (b));

(3) xc < xi+1 (see Figure 7.29 (c))

c

v
i

v
r

v
+1i

(a)

c

v
i

v
r

v
+1i

(b)

c

v
i

v
r

v
+1i

(c)

Figure 7.29: The three possibilities for the center of C, c = (xc, yc): (a) situation (1); (b)

situation (2); (c) situation (3).

Notice that the last case will only take place if vi+1 is a convex vertex. Inflate augments

the grid creating two free lines x = xc and y = yc, and it transforms the points vi, vi+1 and c

in points ṽi, ṽi+1 and c̃, respectively (see Figure 7.30).

c

v
i

v
r

v
+1i

~

~

~

~

(a)

c
~

v
+1i

~

v
r

~

v
i

~

(b)

c
~

v
i

~

v
r

~

v
+1i

~

(c)

Figure 7.30: Inflate operation.

Then, Paste glues to P the rectangle defined by ṽi and c̃ (see Figure 7.31).

c
~

v
r

~

v
i

~

v
+1i

~

(a)

v
+1i

~

c
~

v
r

~

v
i

~

(b)

c
~

v
i

~

v
r

~

v
+1i

~

(c)

Figure 7.31: Paste operation.

Note that in any of the three situations the obtained polygon is not a Thin.

�

Lemma 7.1 and proposition 7.3 can be very useful in the generation, by Inflate-Paste,

of Thin grid n-ogons (n ≥ 8). Lemma 7.1 says that a Thin grid (n− 2)-ogon must be taken,

and proposition 7.3 establishes that the only convex vertices that can “be used” are those

A Subclass of Orthogonal Polygons: the grid n-ogons 173

which belong to the r-pieces associated with the leaves of GΠ(P) (which are in number of 4).

In this way it is not necessary to apply Inflate-Paste to all the convex vertices of a Thin

and then to check which of the produced polygons are Thins. It is only necessary to apply

Inflate-Paste to 4 convex vertices and then to check which of the produced polygons are

Thins. So the number of case analysis is significantly reduced (see Figure 7.32).

v
1

v
16

Figure 7.32: The only convex vertices that could yield, by Inflate-Paste, the illustrated

Thin grid 14-ogons are v3, v4, v11 and v12.

Now, the skeleton of a Thin grid n-ogon is going to be defined. Being P a Thin grid

n-ogon, GΠ(P) is a path graph, as a result it can be said that P has two “extremes”: the

r-pieces associated with the leaves of GΠ(P). The extreme that has the horizontal edge with

highest y-coordinate will be denoted by kernel.

Let P be a Thin grid n-ogon and GΠ(P) = {V,E}, where V = {n1, n2, . . . , n2r+1} and

E = {n1n2, n2n3, . . . , n2rn2r+1}, being n1 the node associated with the kernel centroid. From

GΠ(P) an orthogonal polygonal chain (i.e., a polygonal chain with horizontal or vertical edges)

can be obtained in the following way:

(1) For each node ni ∈ V , associated with the r-piece Ri, take the centroid of Ri. That is,

take the centroid of each r-piece.

(2) Connect each centroid with the centroids of the adjacent r-pieces. In this way, it is

obtained an orthogonal polygonal chain, whose vertices are the centroids of the r-pieces

of Π(P).

(3) Remove from this polygonal chain all vertices (xi, yi) such that xi−1 = xi = xi+1 or

yi−1 = yi = yi+1. That is, remove the central vertices of each three aligned vertices.

With the process described above an orthogonal polygonal chain is obtained from the

dual graph of a Thin grid n-ogon. For the first vertex of this orthogonal chain is chosen the

the kernel centroid (see Figure 7.33, for an illustration).

Note that in step (3) r − 1 vertices are removed from the polygonal chain. In fact, it can

be easily checked that these vertices are associated with r-pieces of Type 2. And we know

that the total number of r-pieces in a Thin grid n-ogon is 2r+ 1, where 2 are of Type 1 (the

leaves), each one having 2 convex vertices. As a Thin grid n-ogon has r + 4 convex vertices,

each r-piece of Type 2 has 0 convex vertices and each r-piece of Type 3 has 1 convex vertex, it

174 A Subclass of Orthogonal Polygons: the grid n-ogons

4

3

2

1
4321 5

5

6

6

1u
2u

3u4u

5u6u

Figure 7.33: A Thin grid n-ogon with r = 4; on the left is represented its dual graph GΠ(P)

and on the right its skeleton.

can be easily concluded that there are r r-pieces of Type 3, and consequently there are r − 1

r-pieces of Type 2. So it follows lemma 7.2.

Lemma 7.2 The skeleton of a Thin grid n-ogon is an orthogonal polygonal chain with r+ 2

vertices.

7.2.1 Spiral grid n-ogons

Recall that the Thin grid n-ogons are not unique (see section 7.1). Besides, it seems that the

number of Thin grid n-ogons grows exponentially with n (by observation, it is known that

there is 1 Thin 6-ogon, there are 2 Thin 8-ogons, there are 7 Thin 10-ogons, there are 30

Thin 12-ogons, there are 149 Thin 12-ogons, and so on...). Until now, the unique subclass of

Thins well identified and characterized are the Min-Area grid n-ogons, that is: the subclass

for which the number of grid cells is minimum. In this section another subclass of Thin grid

n-ogons will be characterized: the Spiral grid n-ogons.

At first sight, spiral polygons are a highly restricted class of polygons that are of little

general interest. However, this is not the case. Spiral polygons are a subclass of polygons

that have been usefully distinguished in the literature. These polygons can be recognized in

linear time and they have arisen in “practice”. For instance, Feng and Pavlidis [58,108] stud-

ied decomposition of polygons into spiral pieces for its application on character recognition.

Besides, spiral polygons can be seen as the first level of a hierarchy that contains all polygons,

the so called k-spiral polygons, that is, the polygons having k reflex chains. This hierarchy

contains all polygons, therefore, viewed in this light the results presented in this section can

be seen as a first step in understanding polygons from the k-spiral viewpoint [100].

To characterize the Spiral grid n-ogons subclass, it will be firstly defined what is a

Spiral grid n-ogon. Then, it will be proven that for all n ≥ 6 there is, at least, a Spiral

grid n-ogon. Finally, it will be shown that all Spiral grid n-ogons are Thin grid n-ogons.

Definition 7.7 A grid n-ogon is called Spiral grid n-ogon if its boundary can be divided

into a reflex chain and a convex chain.

A Subclass of Orthogonal Polygons: the grid n-ogons 175

Remember that, a polygonal chain is called reflex if its vertices are all reflex (all except

the vertices at the end of the chain) with regard to the interior of the polygon. And, a

polygonal chain is called convex if its vertices are all convex with regard to the interior of

the polygon. Note that, a Spiral grid n-ogon P can be expressed as an ordered sequence

of vertices u1, u2, ..., ur, c1, c2, ..., cn−r where the vertices ui are reflex and the vertices ci are

convex. Thus, the reflex chain is the polygonal chain cn−r, u1, ..., ur, c1 and the convex chain

is the polygonal chain c1, c2, ..., cn−r (see Figure 7.34).

c
n r- u1

u
r

c1

c
n r-- 1

u2

c2

Figure 7.34: Reflex (in bold) and convex chains.

The edges of the convex chain will be denoted by f1, f2, ..., fn−r−1, where fj ≡ cjcj+1,

1 ≤ j ≤ n − r − 1. And the edges of the reflex chain will be denoted by e0, e1, ..., er−1, er,

where: e0 ≡ cn−ru1 (the first edge of the reflex chain); ei ≡ uiui+1, 1 ≤ i ≤ r − 1; and

er ≡ urc1 (the last edge of the reflex chain). Note that n is therefore the total number of

edges of P , where r + 1 belongs to the reflex chain and n− r − 1 to the convex chain.

Proposition 7.4 There is, at least, a Spiral grid n-ogon with r reflex vertices, for all r ≥ 1.

Proof: This demonstration will be done by induction on r.

Base Case, r = 1: There is only one grid n-ogon with r = 1 and, as we can see in Figure

7.35, it is Spiral grid n-ogon.

Figure 7.35: Grid n-ogon with r = 1.

Inductive Step: Let, r ≥ 1. Assuming that the proposition is true for r, it will be proven

that it is, also, true for r + 1.

Let u1, u2, ..., ur, c1, c2, ..., cn−r be the ordered sequence of vertices that define a Spiral

grid n-ogon P , with r reflex vertices. Consider the first vertex of the convex chain c1 and the

horizontal edge of P to which c1 belongs eH(c1). There are two possible cases: eH(c1) ≡ urc1

(Case 1) or eH(c1) ≡ c1c2 (Case 2), see Figure 7.36.

176 A Subclass of Orthogonal Polygons: the grid n-ogons

Case 1

c
1

c
2

u
r

c
1c

2

u
r

c
1

~

c
2

~

u
r

~

c
~

c
2

~

1

~

u
r

~

Case 2

c
~

u
r +1

c
2

c
1

c
3

c u=
r +1

Figure 7.36: On the left it is illustrated Case 1, i.e., eH(c1) ≡ urc1; and on the right Case 2,

that is, eH(c1) ≡ c1c2.

In Case 1, by taking c1 = (x1, y1), selecting any cell C in FSN (c1) and applying Inflate-

Paste to P , we will obtain a grid n-ogon Q with r + 1 reflex vertices. The orderly sequence

of vertices of Q is ũ1, ũ2, ..., ũr, ur+1, c̃, c2, c̃2, ..., c̃n−r, where the vertex ur+1 is reflex and the

vertices c̃ and c2 are convex (see Figure 7.36). As we can see Q is a Spiral grid n-ogon with

r + 1 reflex vertices.

In Case 2, by taking c2 = (x2, y2), selecting a cell C in FSN (c2) such that its center

c = (cx, cy) verifies |cx − x2| > |x1 − x2| and applying Inflate-Paste to P , we will obtain a

grid n-ogonQ with r + 1 reflex vertices, whose orderly sequence of vertices is ũ1, ũ2, ..., ũr, ur+1,

c1, c̃, c3, c̃3, ..., c̃n−r, where the vertex ur+1 is reflex and the vertices c1, c̃ and c3 are convex

(see Figure 7.36). As we can check Q is a Spiral grid n-ogon with r + 1 reflex vertices.

In any case, a Spiral grid n-ogon with r + 1 reflex vertices can always be obtained from

P . Therefore, for all r ≥ 1 there is, at least, a Spiral grid n-ogon with r reflex vertices.

�

The previous proposition establishes that, for all n ≥ 6 there is, at least, a Spiral grid

n-ogon. However, they are not unique, as it can be seen in Figure 7.37.

Figure 7.37: A sequence of Spiral grid 10-ogons.

Now it will be proven that all Spiral grid n-ogons are Thin grid n-ogons. To show this

result, first it will be established that only Spiral grid n-ogons can yield, by Inflate-Paste,

Spiral grid (n+ 2)-ogons.

Lemma 7.3 Only Spiral grid n-ogons can yield, by Inflate-Paste, Spiral grid (n+ 2)-

ogons.

Proof: Let P be a grid n-ogon and v1, v2, ..., vn its vertices. Take a convex vertex vi =

A Subclass of Orthogonal Polygons: the grid n-ogons 177

(xi, yi) of P and apply Inflate-Paste, this would yield a grid (n+ 2)-ogon Q. Suppose that

eH(vi) ≡ vivi+i, there are two possibilities for vi+1: it is either a reflex vertex or it is a convex

vertex.

If vi+1 is a reflex vertex the form of the rectangle glued by Paste to yield Q is illustrated

in Figure 7.38 (Case 1); otherwise the rectangle glued by Paste to yield Q is of one of the

two forms illustrated in Figure 7.38 (Case 2.1 and Case 2.2).

Case2.2Case2.1

c
~

v
i

v
i+1

c
~

v
i

c
~

v
i

Case 1

Case 2.2.1 Case 2.2.2

~v
i+1

~

v
i+1

~ ~

~
~

c
~

v
i

v
i+1

v
i+2

~

~

~

c
~

v
i

v
i+1

v
i+2

~

~

~

Figure 7.38: Rectangles that might be glued by Paste to yield Q.

In Case 1, it is easy to verify that Q is a Spiral grid (n+ 2)-ogon only if P is a Spiral

grid n-ogon. In Case 2.1, Q is never a Spiral grid (n+ 2)-ogon, independently of P being a

Spiral grid n-ogon or not, since a reflex vertex is inserted between two convex ones. In Case

2.2, in order to draw conclusions about Q, it has to be splited in two cases: Case 2.2.1, when

vi+2 is convex, and Case 2.2.1, when vi+2 is reflex (see Figure 7.38).

In Case 2.2.1, Q is never a Spiral grid (n+ 2)-ogon, independently of P being a Spiral

grid n-ogon or not, since a reflex vertex is inserted between two convex ones. In Case 2.2.2,

it is easy to verify that Q is a Spiral grid (n+ 2)-ogon only if P is a Spiral grid n-ogon.

In conclusion, if eH(vi) ≡ vivi+i and P is not a Spiral grid n-ogon then Q is never a

Spiral grid (n+ 2)-ogon in any of the 4 cases. If eH(vi) ≡ vivi+i and P is a Spiral then Q

is a Spiral grid (n+ 2)-ogon in Cases 1 and 2.2.2 and it is not a Spiral in Cases 2.1 and

2.2.1.

If eH(vi) ≡ vi−1vi we can prove, in an analogous way, that Q is Spiral grid (n+ 2)-ogon

only if P is a Spiral grid n-ogon and: either vi−1 is a reflex vertex and we select any cell C

in FSN (vi) (see Figure 7.39 (a)) or vi−1 = (xi−1, yi−1) is convex, vi−2 is reflex and we select

a cell C in FSN (vi) such that its center c = (cx, cy) verifies |cx − xi| > |xi−1 − xi| (see Figure

7.39 (b)).

178 A Subclass of Orthogonal Polygons: the grid n-ogons

c
~

v
i

~
v

i-1

~

(a)

c
~

v
i

~

v
i-1

~

v
i-2

~

(b)

Figure 7.39: Rectangles glued to P .

Consequently, only Spiral grid n-ogons can yield Spiral grid (n+ 2)-ogons, by Inflate-

Paste.

�

Proposition 7.5 Every Spiral grid n-ogon, with r ≥ 1 reflex vertices, is a Thin grid

n-ogon.

Proof: It is easy to see that this proposition holds for r = 1. Let r ≥ 1, it will be proven that

the proposition is true for r+1, assuming that it is true for r. Let Q be a Spiral grid n-ogon

with r+ 1 reflex vertices. By lemma 7.3, Q can only have been generated from a Spiral grid

n-ogon P with r reflex vertices. Moreover, the convex vertex vi ∈ P taken to yield Q has to

be in such a way that:

• if eH(vi) ≡ vivi+1, then: vi+1 ∈ P is reflex (Case a)) or vi+1 ∈ P is convex and vi+2 ∈ P
is reflex (Case b));

• if eH(vi) ≡ vi−1vi, then: vi−1 ∈ P is reflex (Case c)) or vi−1 ∈ P is convex and vi−2 ∈ P
is reflex (Case d)).

Since P is a Spiral grid n-ogon it comes that: in Case a) vi = cn−r (the last vertex

of the convex chain), in Case b) vi = cn−r−1 (the penultimate vertex of the convex chain),

in Case c) vi = c1 (the first vertex of the convex chain) and in Case d) vi = c2 (the second

vertex of the convex chain). Furthermore, by induction hypothesis, P is a Thin then GΠ(P)

is a path graph, and so it has two leafs. Each has three adjacent vertices of P : one reflex

vertex preceded or followed by two convex vertices. Thus, it can concluded that ur, c1, c2 and

cn−r−1, cn−r, u1 belong to the leaves, since they are the only vertices of P in the above stated

condition. Therefore, the four Cases a), b), c), and d) are illustrated in Figure 7.40.

In lemma 7.3 it has, also, been proven that the rectangle glued to P , by Paste, to yield

Q is one of the four forms illustrated in Figure 7.41.

A Subclass of Orthogonal Polygons: the grid n-ogons 179

u1

c
n-r-1

c
n-r c1

c2

u
rc1

c2

u
rc

n-r

u1

c
n-r-1

Figure 7.40: From left to right: Case a), Case b), Case c) and Case d).

Case a) Case b)

c
n-r

u1

c
n-r-1

c
n-r-1 c2

u
r

Case c) Case d)

c
~

~

~

~

~

~
1u

c
n-r

~

c
~

~

c2

~

c1

~
c
~

c

~
c1

u
r

~

~

~

Figure 7.41: Rectangles glued by Paste to yield Q.

In any case, by induction hypothesis, P is Thin then |Π(P)| = 2r+ 1. And we can easily

check that only two r-pieces are added to yield Q, thus |Π(Q)| = |Π(P)| + 2 = 2(r + 1) + 1.

Therefore, Q is a Thin grid n-ogon.

�

7.2.2 Some Problems related to Thin grid n-ogons

As we saw in section 7.1, as opposed to what happens with the FATs the Thin grid n-ogons are

not unique. By observation, it is known that there is 1 Thin 6-ogon, there are 2 Thin 8-ogons,

there are 7 Thin 10-ogons, there are 30 Thin 12-ogons, there are 149 Thin 12-ogons, and so

on... Thus, it is interesting to evidence that the number of Thin grid n-ogons (|Thin(n)|)
seems to grow exponentially. Will it exist some expression that relates n to |Thin(n)|? Also,

we can question on the value of the area of the Thin grid n-ogon with maximum area (Max-

Area-Thin grid n-ogon) and if the Max-Area-Thin grid n-ogon is unique.

7.2.2.1 Max-Area-Thin grid n-ogon

Denoting as MAr the value of the area of “the” Max-Area-Thin n-ogon with r reflex vertices,

by observation it was concluded that MA2 = 6, MA3 = 11, MA4 = 17 and MA5 = 24 (see

Figure 7.42 (a)). Note that, MA2 = 6, MA3 = MA2 + 5, MA4 = MA3 + 6 = MA2 + 5 + 6

and MA5 = MA4 + 7 = MA2 + 5 + 6 + 7. From these observations it follows:

Conjecture 7.1 MAr = MA2 + 5 + 6 + 7 + . . .+ (r + 2) = r2+5r−2
2 .

If conjecture 7.1 is true it can be said that the Thin grid n-ogon with maximum area is

not unique (see Figure 7.42 (b)).

180 A Subclass of Orthogonal Polygons: the grid n-ogons

(a) (b)

Figure 7.42: (a) From left to right MA2 = 6,MA3 = 11,MA4 = 17,MA5 = 24; (b) Two Thin

14-ogons with area 24, MA5 = 24.

From left to right in Figure 7.42 (a), the second Spiral grid n-ogon can be obtained

from the first by Inflate-Paste, the third Spiral grid n-ogon can be obtained from second,

and so on. So we believe that a Max-Area-Thin grid (n+ 2)-ogon can always be obtained

from a Max-Area-Thin grid n-ogon. We intend to use the Spiral grid n-ogons illustrated

in Figure 7.42 (a), lemma 7.1 and propositions 7.1, 7.2 and 7.3 to prove conjecture 7.1.

7.2.2.2 Classifying Thin grid n-ogons

As a step for the resolution of the problem placed at the beginning of this section: Will it exist

some expression that relates n to |Thin(n)|? First the Thins will be grouped into classes.

For this, it will be used the concept of skeleton of a Thin grid n-ogon (see lemma 7.2).

From the skeleton of a Thin grid n-ogon, it is always possible to represent it by a chain

of 0’s and 1’s, with length r. So proceed as follows: (i) transverse the skeleton, starting at

vertex u1; (ii) represent each left turn by 1 and each right turn by 0. For example, the chain

that represents the Thin illustrated in Figure 7.43 is 1101.

1u
2

u

3
u4u

5u6u

Figure 7.43: Thin grid n-ogon with r = 4 and its skeleton.

Now, two operations on these chains will be defined: the complementary operation and

the inversion operation.

Definition 7.8 Let c be a chain of 0’s and 1’s, with length r, that is, c = b1b2 . . . br, where

bi = 0 or bi = 1, for i = 1, 2, . . . , r. The complementary operation is an operation which takes

c as argument and returns its complementary c∗ = b∗1b
∗
2 . . . b

∗
r, where b∗i = 1 if bi = 0 and

b∗i = 0 if bi = 1, for i = 1, 2, . . . , r.

Definition 7.9 Let c be a chain of 0’s and 1’s, with length r, i.e., c = b1b2 . . . br, where

A Subclass of Orthogonal Polygons: the grid n-ogons 181

bi = 0 or bi = 1, for i = 1, 2, . . . , r. The inversion operation is an operation which takes c as

argument and returns its inverse c−1 = brbr−1 . . . b2b1.

For example, the complementary of the chain c = 100011 is the chain c∗ = 011100 and

its inverse is c−1 = 110001.

It is easy to check that, (c∗)−1 = (c−1)∗, (c∗)∗ = c and (c−1)−1 = c.

Proposition 7.6 Let Cr be the set of all chains, of 0’s and 1’s, with length r. The relation

∼ defined on Cr by

c1 ∼ c2 ⇔ c2 = c1 ∨ c2 = c−1
1 ∨ c2 = c∗1 ∨ c2 = (c∗1)−1,

is an equivalence relation.

Proof: It has to be shown that the relation ∼ is reflexive, symmetric, and transitive. The first

property it is obvious.

For symmetry: Take c1 ∼ c2, i.e. c2 = c1 or c2 = c−1
1 or c2 = c∗1 or c2 = (c∗1)−1.

1. c2 = c1. In this case, it is obvious that c2 ∼ c1.

2. c2 = c−1
1 ⇒ c−1

2 = (c−1
1)−1 ⇒ c−1

2 = c1.

3. c2 = c∗1 ⇒ c∗2 = (c∗1)∗ ⇒ c∗2 = c1.

4. c2 = (c∗1)−1 ⇒ c−1
2 = c∗1 ⇒ (c−1

2)∗ = c1.

In any of the four cases c2 ∼ c1, therefore the relation is symmetric.

For transitivity: Take c1 ∼ c2, that is, c2 = c1 or c2 = c−1
1 or c2 = c∗1 or c2 = (c∗1)−1; and

c2 ∼ c3, that is, c3 = c2 or c3 = c−1
2 or c3 = c∗2 or c3 = (c∗2)−1.

1. c2 = c1 and c3 = c2. In this case, it is obvious that c1 ∼ c3.

2. c2 = c1 and c3 = c−1
2 .

If c2 = c1 then c−1
2 = c−1

1 . Therefore, c1 ∼ c3.

3. c2 = c1 and c3 = c∗2.

If c2 = c1 then c∗2 = c∗1. Thus, c1 ∼ c3.

4. c2 = c1 and c3 = (c∗2)−1.

c2 = c1 ⇒ c∗2 = c∗1 ⇒ (c∗2)−1 = (c∗1)−1. As a result, c1 ∼ c3.

5. c2 = c−1
1 and c3 = c2. In this case, it is obvious that c1 ∼ c3.

6. c2 = c−1
1 and c3 = c−1

2 .

If c2 = c−1
1 then c−1

2 = c1. Therefore, c1 ∼ c3.

7. c2 = c−1
1 and c3 = c∗2.

If c2 = c−1
1 then c∗2 = (c−1

1)∗. Hence, c1 ∼ c3.

182 A Subclass of Orthogonal Polygons: the grid n-ogons

8. c2 = c−1
1 and c3 = (c∗2)−1.

If c2 = c−1
1 then c−1

2 = c1. Since, c3 = (c∗2)−1 = (c−1
2)∗, it can be concluded that

c3 = c∗1. Thus, c1 ∼ c3.

9. c2 = c∗1 and c3 = c2. In this case, it is obvious that c1 ∼ c3.

10. c2 = c∗1 and c3 = c−1
2 .

If c2 = c∗1 then c−1
2 = (c∗1)−1. Therefore, c1 ∼ c3.

11. c2 = c∗1 and c3 = c∗2.

If c2 = c∗1 then c∗2 = c1. Thus, c1 ∼ c3.

12. c2 = c∗1 and c3 = (c∗2)−1.

If c2 = c∗1 then c∗2 = c1. Hence, c1 ∼ c3.

13. c2 = (c∗1)−1 and c3 = c2. In this case, it is obvious that c1 ∼ c3.

14. c2 = (c∗1)−1 and c3 = c−1
2 .

If c2 = (c∗1)−1 then c−1
2 = c∗1. Accordingly, c1 ∼ c3.

15. c2 = (c∗1)−1 and c3 = c∗2.

c2 = (c∗1)−1 ⇒ c2 = (c−1
1)∗ ⇒ c∗2 = c−1

1 . Therefore, c1 ∼ c3.

16. c2 = (c∗1)−1 and c3 = (c∗2)−1.

c2 = (c∗1)−1 = (c−1
1)∗ ⇒ c∗2 = c−1

1 ⇒ (c∗2)−1 = c1. Thus, c1 ∼ c3.

Summing up, in any of the sixteen cases c1 ∼ c3, as a result it can be concluded that

the relation is symmetric.

�

Consider, now, the quotient set of Cr by ∼:

Cr/∼ = {[c1]∼ : c1 ∈ Cr}, where [c1] = {c2 ∈ Cr : c1 ∼ c2}.

Note that, each equivalence class has more than one representant. Here it is assumed

that the representant of each equivalence class always starts by 1.

Proposition 7.7 Let Pr be the set of all Thin grid n-ogons, with r reflex vertices. The

relation ≡ defined on Pr by P1 ≡ P2 ⇔ c1 ∼ c2, where c1 and c2 are the chains that represent

P1 and P2, respectively, is an equivalence relation.

The proof of this proposition is trivial. Consider Pr/≡ = {[P1]≡ : P1 ∈ Cr}. Let P1, P2 ∈
Pr and c1, c2 ∈ Cr the chains that represent them, respectively. Notice that, P1 and P2 belong

to the same class (i.e., P1 and P2 are equivalent) if one of the following conditions is true: (i)

c1 = c2; (ii) c2 = c−1
1 ; (iii) c2 = c∗1 or (iv) c2 = (c∗1)−1. Observe that, geometrically, (ii) can

correspond to an horizontal reflection and (iii) to a vertical reflection. In this way, the Thins

with 4 reflex vertices in Figure 7.44 represent the same class.

A Subclass of Orthogonal Polygons: the grid n-ogons 183

0111 0111 011110001110 0001

Figure 7.44: Thin grid n-ogons with 4 reflex vertices and respective chains.

At this point the following question can be put: Let c be chain of 0’s and 1’s with length

r, started by 1. Is it always possible to construct a Thin, with r reflex vertices, whose chain

is c? To answer this question, the main steps of an algorithm to construct a Thin from a

chain of 0’s and 1’s, started by 1 and with length r, are as follows:

(1) From the chain c draw a skeleton ignoring collinearities.

(2) Move a vertical sweep line from left to right to eliminate vertical collinearities.

Repeat the previous step until there are no more collinear vertical edges.

(3) Move a horizontal sweep line from bottom to top to eliminate horizontal collinearities.

Repeat the previous step until there are no more collinear horizontal edges.

Figures 7.45 (a) and 7.45 (b) illustrate the main steps of this algorithm for two chains:

1001 and 1110.

Chain: 1001

Step 1

Step 4

(a)

Chain: 1110

Step 1

Step 4

Step 2

(b)

Figure 7.45: Constructing the Thin grid 12-ogon from the chains:(a) c = 1001 and (b)

c = 1110.

Important Remarks:

(i) In step (1) if a skeleton is constructed, ignoring the collinearities, a skeleton that does

184 A Subclass of Orthogonal Polygons: the grid n-ogons

not correspond to the given chain can be obtained, for example, in Figure 7.46 (a),

the chain that represents the constructed Thin is 0010000 (complementary followed by

inversion of the given chain).

(ii) To eliminate collinearities, in steps (2) and (3), it is necessary to modify the edge

corresponding to the beginning of the polygon. If two edges correspond to the beginning

of the polygon, or no edge corresponds to the beginning of the polygon, it does not

matter which one is modified. Nevertheless, when the polygon has its beginning in two

collinear edges, the choice of the edge is not always indifferent, for example, in Figure

7.46 (b), the chain that represents the constructed Thin is 0110 (complementary of the

given chain).

Chain: 111011

Step 1

Step 3

Step 2

(a)

Chain: 1001

Step 1

Step 3

(b)

Figure 7.46: Constructing a Thin grid 12-ogon from the chains:(a) c = 1001 and (b) c = 1110.

Anyhow, this algorithm always generates a Thin grid n-ogon whose chain, that represents

it is equivalent to c. Thus, if the chain that represents the Thin, generated by this algorithm,

is c∗, c−1 or (c∗)−1, it is enough to make a vertical reflection, an horizontal reflection or a

vertical reflection followed by a horizontal reflection, respectively, so that the chain, that

represents it, may be exactly c (see Figure 7.47 for illustration). Thus, this algorithm proves

that for each chain of 0’s and 1’s, with length r, started by 1, there is a Thin grid n-ogon

with r reflex vertices represented by it.

A Subclass of Orthogonal Polygons: the grid n-ogons 185

vertical reflection

followed by

horizontal reflection

000100 111011

(a)

0110 1001

vertical reflection

(b)

Figure 7.47: (a) The chain that represents the Thin after the horizontal and vertical reflections

is c = 111011; (b) The chain that represents the Thin after the vertical reflection is c = 1001.

Based on the previous reasoning and definitions it is not difficult to prove the following

proposition.

Proposition 7.8 The correspondence f : Pr/≡ → Cr/∼ defined by f([P1]) = [c1], where c1 ∈
Cr is the chain that represents P1 ∈ Pr, which is a representant of the class [P1], is a bijective

function.

Proof: It has to be shown that f is well-defined, is injective and is surjective.

1. f is well-defined.

(a) Let [P1] ∈ Pr/≡. We know that there is a chain c1 ∈ Cr that represents P1, thus

there is a [c1] ∈ Cr/∼ such that f([P1]) = [c1].

(b) Assume [P1] = [P2]. Then P1 ≡ P2. In turn, this implies c1 ∼ c2, where c1 and c2

are the chains that represent P1 and P2, respectively. Therefore f(P1) = f(P2)

From (a) and (b) we can conclude that f is well-defined.

2. f is injective.

Assume f([P1]) = f([P2]). Then [c1] = [c2], where c1 and c2 are the chains that represent

P1 and P2, respectively. [c1] = [c2]⇒ c1 ∼ c2 ⇒ P1 ≡ P2 ⇒ [P1] = [P2]. Therefore, f is

injective.

3. f is surjective.

Let [c1] ∈ Cr/∼. Here there are two cases: c1 starts with 1 or c1 starts with 0.

(a) If c1 starts with 1, by the algorithm previously presented, we know that there is

a P1 ∈ Pr such that is represented by c1. Thus, there is a [P1] ∈ Pr/≡ such that

f([P1]) = [c1].

(b) If c1 starts with 0, we consider c∗1 and, by the algorithm described above, we know

that there is a P1 ∈ Pr such that c∗1 represents. Thus, there is a [P1] ∈ Pr/≡ such

that f([P1]) = [c∗1] = [c1].

From (a) and (b) it can be concluded that f is surjective.

�

186 A Subclass of Orthogonal Polygons: the grid n-ogons

The next result allows to count the number of classes of Thin grid n-ogons with r reflex

vertices.

Proposition 7.9 The number of classes of Thin grid n-ogons with r reflex (r ≥ 2) is equal

to

{
2r−2 + 2

1
2

(r−3) if r is odd

2r−2 + 2
1
2

(r−2) if r is even

Proof: By Proposition 7.8 we can conclude that |Pr/≡| = |Cr/∼|, so we just have to determine

|Cr/∼|.

1. The cardinal of Cr is 2r.

2. The number of symmetrical chains (c = c−1), with length r, is 2d
r
2
e.

3. If a chain c is symmetrical, then its equivalence class is constituted by two chains, c and

c∗.

4. If a chain c is not symmetrical, to find the cardinal of its class we have to distinguish

two cases: r odd and r even.

(a) r odd. All the chains have 4 equivalent chains: c, c−1, c∗ and (c∗)−1.

For example: c = 11010, 01011, 00101 and 10100.

(b) r even. In this case there are chains that have 4 equivalent chains , for example

c = 1110. And chains that only have 2 equivalent chains, this case happens when

c∗ = c−1.

For example: for the chain c = 1100, c∗ = c−1 = 0011.

Let us count, now, the number of equivalence classes.

• Case r odd

Equivalence classes of symmetrical chains:

1
2#(symmetrical chains) = 1

2 2
r+1
2 = 2

r−1
2

Equivalence classes of non symmetrical chains:

1
4#(non symmetrical chains) = 1

4 (2r − 2
r+1
2) = 2r−2 − 2

r−3
2

On the whole, for r odd, the number of equivalence classes is:

2r−2 + 2
r−1
2 − 2

r−3
2 = 2r−2 + 2

1
2

(r−3)

• Case r even

Equivalence classes of symmetrical chains:

A Subclass of Orthogonal Polygons: the grid n-ogons 187

1
2#(symmetrical chains) = 1

2 2
r
2 = 2

1
2

(r−2)

Equivalence classes of non symmetrical chains constituted by two chains (for example

the classes of the chains 101010, 1100, 110100,.....):

1
2 2

r
2 = 2

1
2

(r−2)

In fact, to obtain that c∗ = c−1, the second half of the chain is completely determined

by the first half. Therefore, the cardinal of these classes is half of the number of chains

of this type.

Equivalence classes of non symmetrical chains constituted by four chains:

1
4#(All − Symmetric − (Chains with c∗ = c−1)) = 1

4 (2r − 2
r
2 − 2

r
2) = 2r−2 − 2

1
2

(r−2)

On the whole, for r even,, the number of equivalence classes is: 2r−2 + 2
1
2

(r−2)

�

Some problems related to Thins were solved. However, there are still some open problems

to solve, such as:

Open Problem 7.1 How many elements Thin grid n-ogons does each class have?

Open Problem 7.2 Will it be possible to find an algorithm that generates all Thin grid

n-ogons of the same class?

Open Problem 7.3 Is there any expression that relates n to |Thin(n)|?

Note that, solving the first problem, the initial one (i.e., the problem posed in the begin-

ning of this subsection), which is the open problem 9.2, is also solved.

7.3 Visibility Problems on grid n-ogons

Of the problems related to grid n-ogons, the guarding and hiding problems are the ones that

motivate us more, particularly the problem of finding the minimum number of vertex guards

needed to guard a given simple polygon (i.e., the MVGS(P) problem) and the problem of

determining the maximum number of vertices of a given polygon, such that no two of these

vertices see each other (i.e., the MHVS(P) problem). Since, the Thin and the Fat n-ogons

are the classes for which the number of r-pieces is minimum and maximum, respectively, one

can think that they can be representative of extremal behaviour. Besides, they were used

experimentally to evaluate approximation methods of resolution of the MVGS(P) problem

[36,37,126], so the study started with them.

In section 7.3.1 it will be presented results related to the MVGS(P) problem, where P

is a FAT, a MIN-AREA or a SPIRAL grid n-ogon. And, in section 7.3.2 the MHVS(P)

problem will be studied, being P a Thin grid n-ogon.

188 A Subclass of Orthogonal Polygons: the grid n-ogons

7.3.1 Minimum Vertex Guard Set Problem on grid n-ogons

7.3.1.1 Fat grid n-ogons

Here it is assumed that the rooms of the art gallery have the form of a Fat grid n-ogon and

we want to know how many vertex guards are sufficient to cover them. In the context of this

problem it will be necessary to determine: how many guards are enough to cover a Fat grid

n-ogon? and, where must these guards be placed?

Proposition 7.10 To cover completely any Fat grid n-ogon it is always sufficient two vertex

guards.

The proof of this proposition is trivial. It is enough to decompose the Fat grid n-ogon

in two staircase polygons1 (with not disjoint interiors) and to place a vertex guard at the

vertices that are in the intersection of the height edge and the base edge of the respective

staircase polygons (see Figure 7.48).

Figure 7.48: Guarded Fat grid 14-ogon.

Conjecture 7.2 The only way to cover a Fat grid n-ogon with two vertex guards is illustrated

in Figure 7.48.

As we can see, the problem of guarding a FAT grid n-ogon, with vertex guards, is very

simple.

7.3.1.2 Thin grid n-ogons

The Thin grid n-ogons are much more difficult to cover, contrary to one might think once

they have much fewer r-pieces than the Fats. Besides, they are not unique, so in the previous

sections we tried to characterize structural properties of Thins classes that allow to simplify

the problem study. Up to now, the only quite characterized subclasses are the Min-Area

and the Spiral grid n-ogons. The study of the MVGS(P) problem on these two subclasses

of Thin grid n-ogons will follow.
1A staircase polygon is an orthogonal polygon with an horizontal edge h, whose length is equal to the sum

of the lengths of the remaining horizontal edges, and a vertical edge v, whose height is equal to the sum of the

lengths of the remaining vertical edges. The horizontal edge h is called base edge and the vertical edge v is

designated by height edge.

A Subclass of Orthogonal Polygons: the grid n-ogons 189

Min-Area grid n-ogons

It is already known that bn4 c vertex guards are always sufficient to cover any Min-Area

grid n-ogon, since a Min-Area is a n-ogon. We will start by improving this result, proving

that d r+2
3 e = dn6 e vertex guards are always sufficient to cover any Min-Area grid n-ogon.

After that, it will be shown that not only this number of guards is sufficient, but also it is

necessary to cover any Min-Area grid n-ogon.

Sufficiency. The following lemma will be used in the proof of proposition 7.11. This propo-

sition establishes that d r+2
3 e vertex guards are always sufficient to cover any Min-Area grid

n-ogon with r reflex vertices.

Lemma 7.4 Let P be a Min-Area grid n-ogon with r ≥ 4 reflex vertices. If the “line 3” is

removed, then two Min-Area grid n-ogons wil be obtained (see Figure 7.49 (a)).

Proof: Let P be a Min-Area grid n-ogon with r ≥ 4 reflex vertices. If the “line 3” is

removed then two grid n-ogons will be obtained, P1 and P2 (see Figure 7.49 (a)). Clearly, P1

is a Min-Area grid n-ogon with one reflex vertex.

The construction of a Min-Area grid n-ogon with r ≥ 2 reflex vertices, is done by an

iterative method that builds the Min-Area from the unit square by applying r times the

Inflate-Paste process. Each time the Inflate-Paste is applied just two cells are glued to

the polygon being constructed (see [24], for details).

So, applying this method to the unit square Q0 = (n2 −1, n2 −1)(n2 −1, n2)(n2 ,
n
2)(n2 ,

n
2 −1),

see Figure 7.49 (b), the polygon P is obtained.

Notice that, in the (r− 3)th iteration we have a Min-Area grid n-ogon with r− 3 reflex

vertices, being this polygon P2. Therefore, P2 is a Min-Area grid n-ogon.

“Line 3”

1

5

n/2

4

3

2

1 5 n/2432

Polygon P
2

Polygon P
1

(a)

iteration r

iteration (r-1)

iteration (r-2)

iteration (r-3)

iteration 1

Unit Square - Q
0

1

5

n/2

4

3

2

1 5 n/2432

(b)

Figure 7.49: (a) Removing “line 3”; (b)“Constructing” P .

190 A Subclass of Orthogonal Polygons: the grid n-ogons

In conclusion, removing the “line 3” two polygons, P1 and P2, are obtained, being both

Min-Area grid n-ogons.

�

In the forthcoming propositions and lemmas (proposition 7.11, lemma 7.5, proposition

7.12 and proposition 7.13), due to practical reasons, the vertices of a Min-Area grid n-ogon,

will be denoted by vi,j = (i, j), with i, j ∈ {1, . . . , n2 }, where (i, j) are the coordinates of the

vertex vi,j on the grid.

Proposition 7.11 d r+2
3 e vertex guards are always sufficient to cover a Min-Area grid n-ogon

with r reflex vertices.

Proof: Let P be a Min-Area grid n-ogon, with r reflex vertices, being vi,j = (i, j), with

i, j ∈ {1, . . . , n2 }, its vertices. Consider the d r+2
3 e vertex guards placed on the following

vertices: 

v2+3i,2+3i, i = 0, 1, ..., r−1
3 if r ≡ 1 (mod 3)

v2+3i,2+3i, i = 0, 1, ..., r−2
3 and vr+1,r+1 if r ≡ 2 (mod 3)

v2+3i,2+3i, i = 0, 1, ..., r−3
3 and vr+1,r+1 if r ≡ 0 (mod 3)

(7.1)

It will be shown, by induction on r, that these vertex guards are sufficient to cover P .

Can be checked easily that this is true for r ≤ 4 (see Figure 7.50). Note that, the

placement of the d r+2
3 e vertex guards, in some cases, is not unique (see Figure 7.51). Let

r ≥ 5.

Figure 7.50: Min-Area grid n-ogons with

r = 1, 2, 3 and 4.

Figure 7.51: Min-Area grid n-ogon with

r = 5.

Induction Hypothesis: The vertex guards established in (7.1) are sufficient to cover any Min-

Area grid n-ogon P with 1 ≤ m < r reflex vertices.

Induction Thesis: The vertex guards established in (7.1) are sufficient to cover a Min-Area

grid n-ogon P with r reflex vertices.

Let P be a Min-Area grid n-ogon with r ≥ 5 reflex vertices. Remove the “line 3” in P ,

as illustrated in Figure 7.49 (a). By lemma 7.4, two Min-Area grid n-ogons, P1 and P2, are

obtained. P1 has r1 = 1 reflex vertex and P2 has r2 = r−3 reflex vertices, thus r = r1 +r2 +2.

A Subclass of Orthogonal Polygons: the grid n-ogons 191

Denote by v
(1)
i,j the vertices of P1 and by v

(2)
i,j the vertices of P2. Therefore, v(1)

i,j = vi,j ,

for i, j ∈ {1, 2, 3} and v
(2)
i,j = vi+3,j+3, for i, j ∈ {1, 2, ..., n−6

2 }. By induction hypotheses, the

vertex guard v
(1)
2,2 = v2,2 is sufficient to cover P1.

Now, consider the polygon P̃2, symmetric of P2 relative to the positive diagonal , i.e.,

the diagonal that contains the reflex vertices, and denote by ṽ(2)
i,j its vertices (see Figure 7.52

(a)).

1

5

n/2

4

3

2

1 5 n/2432

~

“Line 3”

Polygon P
2

(a)

1

5

n/2

4

3

2

1 5 n/2432

“Line 3”

Polygon P
2

~

(b)

Figure 7.52: (a) Polygon P̃2; (b) Applying induction hypotheses to P̃2.

By induction hypotheses, the following d r2+2
3 e vertex guards are sufficient to cover P̃2

(see Figure 7.52 (b)):



v
(2)
2+3i,2+3i, i = 0, 1, ..., r2−1

3 if r ≡ 1 (mod 3)⇔ r2 ≡ 1 (mod 3)

v
(2)
2+3i,2+3i, i = 0, 1, ..., r2−2

3 and v
(2)
r2+1,r2+1 if r ≡ 2 (mod 3)⇔ r2 ≡ 2 (mod 3)

v
(2)
2+3i,2+3i, i = 0, 1, ..., r2−3

3 and v
(2)
r2+1,r2+1 if r ≡ 0 (mod 3)⇔ r2 ≡ 0 (mod 3)

Take into account, now, the symmetric of P̃2 relative to the positive diagonal, i.e. P2, is

covered with the same d r2+2
3 e vertex guards (see Figure 7.53 (a)).

Note that, P = P1 ∪ R ∪ P2, where R is the rectangle R = (2, 3)(2, 4)(5, 4)(5, 3). Thus,

P is all covered except in the rectangle R (see Figure 7.53 (b)). However, the vertex guard

v
(1)
2,2 of P1 (i.e., the vertex guard v2,2 of P) covers the quadrilateral Q1 = (2, 3)(2, 4)(4, 4)(3, 3)

and the vertex guard v
(2)
2,2 of P2 (i.e., the vertex guard v5,5 of P) cover the quadrilateral

Q2 = (3, 3)(4, 4)(5, 4)(5, 3) (see Figure 7.53 (c)). But being R = Q1 ∪ Q2, so R is covered.

Consequently, P is completely covered (see Figure 7.53 (c)).

192 A Subclass of Orthogonal Polygons: the grid n-ogons

1

5

n/2

4

3

2

1 5 n/2432

“Line 3”

Polygon P
2

(a)

n/2

1

5

4

3

2

1 5 n/2432

Polygon P
1

Rectangle R

Polygon P
2

(b)

1

5

n/2

4

3

2

1 5 n/2432

Polygon P
1

Rectangle R

Polygon P
2

(c)

Figure 7.53: (a) Polygon P2 completely covered; (b) Rectangle R; (c) Quadrilaterals Q1 and

Q2.

Summing up, d r2+2
3 e+ 1 = d r+2

3 − 1e+ 1 = d r+2
3 e vertex guards are enough to cover P .

�

Proposition 7.11 not only gives the guarantee of that d r+2
3 e vertex guards are always

sufficient to cover a Min-Area grid n-ogon with r reflex vertices, but also establishes where

the vertices should be placed.

Necessity. At this point, it will be shown that dn6 e = d r+2
3 e vertex guards are necessary to

cover any Min-Area grid n-ogon. In other words, it will be established that less than dn6 e
vertex guards are not enough to cover a Min-Area grid n-ogon. First, it will be proven that

this number of vertex guards is required to cover any Min-Area grid n-ogon with r ≡ 1 (mod 3)

reflex vertices. Besides, the only possible positioning for those guards will be established

(lemma 7.5 and proposition 7.12). Then, using these results, it will be shown that this number

of vertex guards is, also, necessary to cover any Min-Area grid n-ogon with r ≡ 0 (mod 3)

or r ≡ 2 (mod 3) reflex vertices (proposition 7.13).

Lemma 7.5 Two vertex guards are necessary to cover the Min-Area grid 12-ogon. Moreover,

the only way to do so is with the vertex guards v2,2 and v5,5.

Proof: Let P be the Min-Area grid 12-ogon. The unit square Q0 = (1, 1)(1, 2)(2, 2)(2, 1) has

to be guarded. The only vertex guards that can do it are: v1,1, v1,2 , v2,2 and v3,1 (see Figure

7.54).

As we can see in Figure 7.55, V is(v1,2, P) ⊂ V is(v1,1, P) ⊂ V is(v3,1, P) ⊂ V is(v2,2, P).

Since we intend to minimize the number of guards that cover P the vertex v2,2 is chosen.

Observing Figure 7.55, we can conclude that it is necessary more than a vertex guard to cover

P . By proposition 7.11 we known that we do not need more than two vertex guards to cover

A Subclass of Orthogonal Polygons: the grid n-ogons 193

Q
0

Figure 7.54: Min-Area grid 12-

ogon.

Figure 7.55: Visibility Regions.

P . Thus, we can conclude that exactly two vertex guards are needed to cover P . This ends

the proof of the first part of the proposition.

Let us see where the second vertex guard must be placed. The unit square Q1 =

(5, 6)(6, 6)(6, 5)(5, 5) must be guarded. The only vertex guards that can do it are: v4,6,

v6,6 , v6,5 and v5,5 (see Figure 7.56).

Q
1

Figure 7.56: Min-Area grid 12-

ogon.

Figure 7.57: Visibility Regions.

We can easily see that, of these vertex guards, the only one that “works for” is v5,5, since

the choice of any other would left parts of P not covered (see Figure 7.57).

So it can be concluded that 2 vertex guards are necessary to cover the Min-Area grid

12-ogon and the only way to do so is with the vertex guards v2,2 and v5,5.

�

Proposition 7.12 If k ≥ 2 Min-Area grid 12-ogons are “merged”, then the Min-Area grid

n-ogon with r = 3k + 1 is obtained. Moreover, k + 1 vertex guards are necessary to cover it,

and the only way to do so is with the vertex guards: v2+3i,2+3i, i = 0, 1, . . . , k.

Proof: Let P be the Min-Area grid n-ogon with r = 7 reflex vertices. P can be obtained from

two Min-Area grid 12-ogons, as we can see in see Figure 7.58.

The resulting polygon has r = 7 reflex vertices and not r = 8, once, by construction,

vertices v5,5 of the first polygon and v1,1 of the second polygon are over lapped. Besides, by

lemma 7.5 and as we can see, 3 vertex guards are necessary to cover P , and the only way to

do that is with the vertex guards placed on the vertices: v2,2, v5,5 and v8,8.

Thus, for k = 2, the proposition is true. Let k ≥ 2, it will be shown that the proposition

is true for k + 1, assuming that it is true for k.

194 A Subclass of Orthogonal Polygons: the grid n-ogons

Figure 7.58: Construction of the Min-Area grid 18-ogon from two Min-Area grid 12-ogons.

First, it has to be proven that if k + 1 Min-Area grid 12-ogons are “merged”, then the

Min-Area grid n-ogon with r = 3(k + 1) + 1 = 3k + 4 reflex vertices is obtained.

By induction hypothesis, “merging” k Min-Area grid 12-ogons the Min-Area grid

n-ogon Q, with rq = 3k+ 1 reflex vertices, is obtained. If Q is “merged” with the Min-Area

grid 12-ogon, a polygon P will be obtained (see Figure 7.59).

1

5

4

3

2

6
1 5432 6 1 432 5

4

2

1

5

3

Polygon P

4

1

5

3

2

1 432 5

Polygon Q

332 +=+ kr
q

332 +=+ kr
q

632 +=+ kr
p

632 +=+ kr
p

Figure 7.59: Polygon P (“merging” Q with the Min-Area grid 12-ogon).

P has rp = rq+3 = 3k+4 reflex vertices. Besides, A(P) = A(Q)+6. AsQ is a Min-Area,

A(Q) = 2rq +1. Consequently, A(P) = 2rq +1+6⇔ A(P) = 2(rp−3)+7⇔ A(P) = 2rp+1.

Therefore, P is the Min-Area grid n-ogon with r = 3(k + 1) + 1 reflex vertices.

Besides, by induction hypotheses, and as we can observe in Figure 7.59, it can be con-

cluded that d rq+2
3 e + 1 = k + 2 vertex guards are necessary to cover P . Moreover, the only

way to do so is with the vertex guards placed on the following vertices: v2,2, v5,5,. . .,v2+3k,2+3k

and v5+3k,5+3k.

�

Proposition 7.13 d r+2
3 e vertex guards are always necessary to cover any Min-Area grid

n-ogon with r reflex vertices.

Proof: Let Pn be a Min-Area grid n-ogon with rn = n−4
2 reflex vertices. We may easily check

that 1, 2 and 2 vertex guards are necessary to guard Min-Area grid n-ogons with rn = 1, 2, 3,

A Subclass of Orthogonal Polygons: the grid n-ogons 195

respectively (see Figure 7.60).

Figure 7.60: Min-Area grid n-ogons with r = 1, 2 and 3.

Let rn ≥ 4. If rn ≡ 1 (mod 3) then, by proposition 7.12, the d rn+2
3 e vertex guards placed

on the vertices: v2+3i,2+3i, i = 0, 1, . . . , rn−1
3 , are necessary to cover Pn. Thus, it is just

necessary to prove the following cases: rn ≡ 2 (mod 3) and rn ≡ 0 (mod 3).

In any case, Pn can be obtained, by Inflate-Paste, from a Min-AreaQm with rm = m−4
2

and such that rm = 3km + 1 (see Figure 7.61). The first case corresponds to polygon Qm+2,

in Figure 7.61, and rn = rm + 1. The second case corresponds to polygon Qm+4, in Figure

7.61, and rn = rm + 2.

r +2
m

r +3
m

r +4
mr +2

m

1 1 1

2 2 2

1 1

1

2 2

2

Polygon Q
m

r +3
m

r +4
m

Polygon Q
m+2

Polygon Q
m+4

Figure 7.61: Min-Area grid n-ogons Qm, Qm+2 and Qm+4.

As we can see, in any case, it is always necessary one more vertex guard, which can be

placed on the vertex vrn+1,rn+1. Thus, d rm+2
3 e + 1 = d rn+2

3 e vertex guards are necessary to

guard Pn.

�

Proposition 7.13 not only gives the guarantee that d r+2
3 e vertex guards are required

to guard any Min-Area grid n-ogon with r reflex vertices, but also establishes a possible

positioning.

Thus, given a Min-Area grid n-ogon P , it was not only established the minimum number

of vertex guards that is necessary to cover P completely, but also it was determined in which

vertices these guards must be placed. In other words, the Minimum Vertex Guard problem

is solved for Min-Area grid n-ogons.

Spiral grid n-ogons

Nilsson and Wood [100] have proven that a collection of guards (mobile or stationary)

cover a spiral polygon if, and only if, they see all edges of the reflex chain. Their demonstration

196 A Subclass of Orthogonal Polygons: the grid n-ogons

remains valid if guards are replaced by vertex guards, and since a spiral n-ogon (n-vertex

orthogonal polygon whose boundary can be divided into a reflex chain and a convex chain) is

a particular case of spiral polygons, it follows:

Lemma 7.6 A collection of vertex guards covers a spiral n-ogon if, and only if, they see all

the edges of the reflex chain.

Let P be a spiral polygon having n vertices, k of which are reflex, and having its vertices

labelled according to our previously described conventions for Spiral grid n-ogons (see section

7.2.1). Nilsson and Wood have also established that, for a guard to be able to see an edge

of the reflex chain ei, i ∈ {0, ..., k}, it has to be placed in a particular convex region, CRi,

defined in the following way:

1. if i = 0, they extend e0 through u1 until it intersects the convex chain. In this case,

CR0 is the region bounded by cn−rx1, x1 is the intersection point with the convex chain,

and the subchain of the boundary of P from x1 to cn−r in counterclockwise order. See

Figure 7.62 (a) for illustration.

2. if i = k, they extend ek through uk until it intersects the convex chain. In this case,

CRk is the region bounded by xkuk, xk is the intersection point with the convex chain,

and the subchain of the boundary of P from uk to xk in counterclockwise order. See

Figure 7.62 (b) for illustration.

3. if i 6= 0, k, they extend ei through ui and ui+1 until it intersects the convex chain. In

this case, CRi is the region bounded x′ixi, x
′
i and xi are the intersection points with the

convex chain, and the subchain of the boundary of P from xi to x′i in counterclockwise

order. See Figure 7.62 (c) for illustration.

u1

c2

c
n-k-2

c
n-k-1

u
k

c
n-k

x1

c1

(a)

u1

c2

c
n-k-1 c3

u
k

c
n-k

x
k c1

(b)

i
u

+1i
u

c
m

c
l

x
i

x’i

(c)

Figure 7.62: (a) CR0; (b) CRk and (c) CRi, with i 6= 0, k.

They also provided an algorithm to find the minimum number of stationary guards

necessary to cover a spiral polygon. The main idea of their algorithm is: first place a guard g1,

in a specific position, that sees the first edge of the reflex chain and then keep on placing guards

A Subclass of Orthogonal Polygons: the grid n-ogons 197

gi, in specific positions, whenever the edge ei of the reflex chain is not seen by the previously

placed guard. This algorithm computes an optimum guard cover in a spiral polygon, however

it does not give an explicit number of guards and it deals with guards and not vertex guards,

which is a different problem. Basing on their algorithm, particularizing (for spiral n-ogon)

and adapting (for vertex guards), we will prove that b r2c + 1 vertex guards are necessary to

cover any spiral n-ogon with r reflex vertices.

Let P be a spiral n-ogon with r reflex vertices, the aim is to determine the minimum

number of vertex guards that is needed to guard P . By lemma 7.6, it is only necessary to

consider the visibility of the edges of the reflex chain. Moreover, being ei an edge of the reflex

chain we already know that a guard, to be able to see ei, it has to be placed in CRi, as we

are dealing with vertex guards, we can conclude, that, to be able see ei, a vertex guard has

to be placed on a vertex of P that belongs to CRi. In case of spiral n-ogons, these convex

regions have a particular shape, they are rectangles (see [88]), and their forms are illustrated

in Figure 7.63.

CR
0

c n-r

c n-r-1 c n-r-2

e
0

e
1

(a)

e
r -1

e
r

CR
r

c
1c2

c3

(b)

c j

e
i+1

e
i

e
i-1

c j+1

CR
i

(c)

Figure 7.63: (a) CR0; (b) CRr and (c) CRi, i ∈ {1, ..., r − 1}.

Lemma 7.7 Let P be a spiral n-ogon with r reflex vertices. A vertex guard that sees the edge

ei, with 0 < i < r, can also see ei−1 or ei+1, but not both.

Proof: Let ei ≡ uiui+1 (0 < i < r) be an edge of the reflex chain. For a vertex guard to be

able to see ei it has to be placed on a vertex of P that belongs to CRi. As we saw before,

being P a spiral n-ogon, the only vertices of P that belong to CRi are: ui, ui+1, cj or cj+1

(see Figure 7.63 (c)). Thus, the guard has to be placed on one of these vertices. If one of the

vertices ui or cj+1 is chosen, then the vertex guard also sees ei−1, but it does not see ei+1. If

one of the vertices ui+1 or cj is selected, he also sees ei+1, but it does not see ei−1.

�

In the previous lemma it was proved that a vertex guard that sees an edge of the reflex

chain, different from the first one and from the last one, only manages to see one of its adjacent

edges. Let us see what happens with a vertex guard that sees the first or the last edge of the

reflex chain:

198 A Subclass of Orthogonal Polygons: the grid n-ogons

(1) for a guard to be able to see e0 ≡ cn−ru1 it has to be placed on a vertex of P that

belongs to CR0. As we saw before, being P a spiral n-ogon, the only vertices of P that

belong to CR0 are: cn−r−2, cn−r−1, cn−r and u1. Thus, the guard has to be placed on

one of these vertices. Of these positions it can be chosen one that also sees e1, which is

cn−r−2 or u1 (see Figure 7.64 (a)).

(2) for a guard to be able to see er ≡ urc1 it has to be placed on a vertex of P that belongs

to CRr. As we saw before, being P a spiral n-ogon, the only vertices of P that belong

to CRr are: ur, c1, c2 and c3. Thus, the guard has to be placed on one of these vertices.

Of these positions it can be chosen one that also sees er−1, which is c3 or ur (see Figure

7.64 (b)).

e 1i-

c
j

c
j+1

e
i

e 1i+

(a)

cn-r-1 cn-r-2

e0

e1

e2

cn-r

(b)

c
2

c
3

e
r

e
r-1

e
r-2

c
1

(c)

Figure 7.64: (a) CRi, i ∈ {1, ..., r − 1}; (b) CR0 and (c) CRr.

Therefore, from lemma 7.7, (1) and (2), it follows that a vertex guard sees at most two

edges of the reflex chain.

Proposition 7.14 b r2c+1 vertex guards are necessary to cover any spiral n-ogon with r reflex

vertices.

Proof: Let P be a spiral n-ogon with r reflex vertices. By definition, ∂P can be divided into a

reflex chain and a convex chain. The reflex chain has r + 1 edges: e0, e1, e2, ..., er. Two cases

can take place: r is odd or r is even.

1. If r is odd, place the guards at the following vertices: u1, u3, ..., ur−2, ur, i.e., u1+2k,

with k = 0, 1, ..., r−1
2 (see Figure 7.65).

u4

u
1

u1

u6

u8

u1

Figure 7.65: Spiral n-ogons with r odd.

A Subclass of Orthogonal Polygons: the grid n-ogons 199

These guards see all the edges of the reflex chain. In fact, u1+2k, k ∈ {0, 1, ..., r−1
2 }, is

the reflex vertex common to edges e2k and e1+2k, thus e2k and e1+2k are seen by the

vertex guard placed on u1+2k. Consequently, e0 and e1 are seen by the vertex guard

placed on u1, e2 and e3 are seen by the vertex guard placed on u3, ..., and er−1 and er

are seen by the vertex guard placed on ur. Therefore, these guards cover P since they

see all the edges of the reflex chain, and by lemma 7.6 this is enough.

Thus, r−1
2 + 1 = r+1

2 vertex guards cover P . To see that less than r+1
2 vertex guards do

not cover P , assume the contradiction. Suppose that there is a set of vertex guards S,

with |S| ≤ r+1
2 −1, that cover P . We know that each vertex guard see at most 2 edges of

the reflex chain, thus at most 2× |S| ≤ r + 1− 2 = r − 1 edges are seen by these vertex

guards. As the reflex chain has r + 1 edges, at least two edges of the reflex chain are

not seen, as a consequence P is not covered by the vertex guards in S.

2. If r is even, place the guards at the following vertices: u1, u3, ..., ur−1, c1, i.e., u1+2k,

with k = 0, 1, ..., r2 − 1, and c1 (see Figure 7.66).

c1

c1
c1

u
1

u
1

u
1

Figure 7.66: Spiral n-ogons with r even.

These guards see all the edges of the reflex chain. In fact, as in the previous case, u1+2k,

k ∈ {0, 1, ..., r2 − 1}, is the reflex vertex common to edges e2k and e1+2k, thus e2k and

e1+2k are seen by the vertex guard placed on u1+2k. Consequently, e0 and e1 are seen

by the vertex guard placed on u1, e2 and e3 are seen by the vertex guard placed on u3,

..., and er−2 and er−1 are seen by the vertex guard placed on ur−1. Consequently, the

guards placed on u1, u3, ..., ur−1 see the edges e0, e1, ..., er−1 of the reflex chain. Finally,

c1 is an endpoint of er, thus the guard placed on c1 see er. Therefore, the guards placed

on u1, u3, ..., ur−1, c1 cover P since they see all the edges of the reflex chain, and by

lemma 7.6 this is enough.

Thus, r
2 + 1 vertex guards cover P . To see that less than r

2 + 1 vertex guards does not

cover P , assume the contradiction. Suppose that there is a set of vertex guards S, with

|S| ≤ r
2 , that covers P . We know that each vertex guard sees at most 2 edges of the

reflex chain, thus at most 2× |S| ≤ 2× r
2 = r edges are seen by these vertex guards. As

the reflex chain has r + 1 edges, at least one edge of the reflex chain is not seen, as a

consequence P is not covered by the vertex guards in S.

200 A Subclass of Orthogonal Polygons: the grid n-ogons

Concluding, if r is odd it will be necessary r+1
2 vertex guards to cover P ; and if r is even

it will be necessary r
2 + 1 vertex guards to cover P . In any case, b r2c + 1 vertex guards are

necessary to cover P .

�

Since any Spiral grid n-ogon is a spiral n-ogon, proposition 7.14 not only gives the

guarantee of that b r2c+ 1 vertex guards are necessary to cover a Spiral grid n-ogon, but also

establishes a possible positioning for these guards, which is:


u1+2k, k = 0, 1, ..., r−1

2 for r odd

u1+2k, k = 0, 1, ..., r2 − 1 and c1 for r even

As it is already known that bn4 c = b r2c+ 1 vertex guards, or fewer, are required to cover

any n-ogon, we can conclude that Spiral grid n-ogons give us the worst scenario within the

Thin grid n-ogons.

7.3.2 Maximum Hidden Vertex Set Problem on grid n-ogons

Remember that the Maximum Hidden Vertex Set problem, MHVS(P) problem, asks for a

hidden vertex set H ⊂ VP of maximum cardinality. In this subsection the MVHS(P) problem,

being P a Thin grid n-ogon, will be studied.

7.3.2.1 Thin grid n-ogons

Let P be a Thin grid n-ogon and S = u1u2 . . . um its skeleton, where m = n
2 . Let us assume,

without loss of generality, that the first edge of S, u1u2, is horizontal and that u2 is to the

right of u1. Note that, the ∂P consists of two joined polygonal chains, C1 and C2, “parallel”

to S, where the first edge of C1 is a bottom edge and the first edge of C2 is a top edge.

Notice that, C1 and C2 can be expressed as ordered sequences of vertices C1 = v1
1v

1
2 . . . v

1
m

and C2 = v2
1v

2
2 . . . v

2
m, where v1

i denotes the ith vertex of C1 and v2
i denotes the ith vertex of

C2 (see Figure 7.67).

This way, ∂P = C1 ∪ v1
mv

2
m ∪C2 ∪ v2

1v
1
1. Observe, also, that, if S is traversed, starting at

vertex u1, C1 is always on the right of S and C2 on the left.

To each vertex of the skeleton we correspond two vertices of the polygon, one in C1

and another one in C2. That is, to ui ∈ S we correspond the vertices v1
i ∈ C1 and v2

i ∈ C2.

And to each edge of the skeleton we correspond two parallel edges of the polygon, one in C1

and another one in C2. That is, to uiui+1 ∈ S we correspond the edges v1
i v

1
i+1 ∈ C1 and

v2
i v

2
i+1 ∈ C2. Note that, by construction of the skeleton, we can easily see that any point of

v1
i v

1
i+1 sees any point of v2

i v
2
i+1.

A Subclass of Orthogonal Polygons: the grid n-ogons 201

1
u

2
u

3
u

7
u

8
u

1

v
1

1
v

2

1

v
3

v
2

1

2

v
2

2

v
3

1
v

8

2

v
8

1
u

2u

6
u

7
u

1

v
1

1

v
2

2

v
2

2

v
7

1

v
7

1
v

3

2

v
3

3
u

2

v
1

Figure 7.67: Two Thin grid n-ogons, its skeletons and the chains C1 and C2 (C1 in bold).

Now, for each u2k−1 ∈ S with k = 1, . . . , dn4 e, we mark a hidden vertex in P , in the

following way: for k = 1 we mark v1
1; for k 6= 1 we mark v1

2k−1 or v2
2k−1, depending if v1

2k−2 is

reflex or convex, respectively (see Figure 7.68, for illustration).

1
u

2u

6
u

7
u

3
u

1
u

2
u

3
u

7
u

8
u

Figure 7.68: Two Thin grid n-ogons and marked hidden vertices (C1 in bold).

Note that, the dn4 e marked vertices form a hidden vertex set, since each time that a new

vertex is marked as hidden it can be guaranteed that it does not see any of the vertices that

previously had been marked as hidden. In fact, for k = 1 it is trivial. For k 6= 1, there are two

cases, depending if v1
2k−2 is reflex (Case 1) or convex (Case 2), as we can se in Figure 7.69.

2 1k -
u

2

v
2 -2k

2 2k -
u

v
2 -2k

1

2 1k -
u2 2k -

u

1

v
2 -2k

v
2 -2k

2

Case 1 Case 2

Figure 7.69: On the left v1
2k−2 is reflex and on the right it is convex.

In Case 1 the vertex that is marked as hidden is the vertex v1
2k−1 and in Case 2 it is

the vertex v2
2k−1. In both cases the marked vertex does not see any of the already marked as

hidden, since, of the already “visited” vertices, this one only sees v1
2k−2 and v2

2k−2 (see Figure

202 A Subclass of Orthogonal Polygons: the grid n-ogons

7.70).

2 1k -
u

2

2 2k -
u

v
2 -2k

v
2 -2k

1

2 1k -
u2 2k -

u

1

v
2 -2k

v
2 -1k

2

Case 1 Case 2

v
2 -1k

1

2 1k -
u2 2k -

u

v
2 -2k

2

Figure 7.70: The shaded zones are not visible by the marked vertices.

Observe that, if the vertices v2
2k−1 (in Case 1) and v1

2k−1 (in Case 2) are marked as hidden,

it can not be guaranteed that they do not see any of the vertices already marked as hidden,

since they see more backwards (see Figure 7.71). Therefore, lemma 7.8 follows.

2 1k -
u

2

2 2k -
u

v
2 -2k

v
2 -2k

1

2 1k -
u2 2k -

u

1

v
2 -2k

v
2 -1k

1

Case 1 Case 2

2 1k -
u2 2k -

u

v
2 -2k

2

v
2 -1k

2

Figure 7.71: The shaded zones are not visible by the marked vertices.

Lemma 7.8 For any Thin grid n-ogon there is a hidden vertex set H and |H| = dn4 e.

Now, it will be proven that the maximum cardinality of an hidden vertex set in a Thin

grid n-ogon is dn4 e. To prove this result lemma 7.9 is introduced.

Lemma 7.9 Let P be a Thin grid n-ogon and S its skeleton. To two consecutive vertices in

S it corresponds, at most, one hidden vertex in P .

Proof: Let ui and ui+1 be two consecutive vertices in S. The corresponding vertices in P are

v1
i , v

2
i , v

1
i+1 and v2

i+1, respectively. By the correspondence previously established, any point

of the edge v1
i v

1
i+1 sees any point of the edge v2

i v
2
i+1, in particular the vertices of the edges.

Therefore, v1
i sees v2

i and v2
i+1; and v1

i+1 sees v2
i and v2

i+1. And it is obvious, that v1
i sees v1

i+1

and that v2
i sees v2

i+1.

�

A Subclass of Orthogonal Polygons: the grid n-ogons 203

Theorem 7.1 Let P be a Thin grid n-ogon. The maximum cardinality of an hidden vertex

set in P is dn4 e.

Proof: By lemma 7.8 there is a hidden vertex set in P with cardinality dn4 e. Suppose, now,

that there is a hidden vertex set H, with |H| ≥ dn4 e+ 1. Since the skeleton of P has dn4 e
vertices with index odd, this implies that a hidden vertex has to be placed on a vertex of

P that corresponds to a vertex of the skeleton with even index. In other words, it means

that two hidden vertices will have to be placed on two vertices of P that correspond to two

consecutive vertices of the skeleton, in contradiction with lemma 7.9. �

7.4 Concluding Remarks

In this chapter, it was studied a particular type of orthogonal polygons, the grid n-ogons,

and presented some results related to them, including some guarding and hiding problems on

different subclasses of this type of polygons.

As to the guarding problems, related to the grid n-ogons, the one which motivates us

most is the MVGS(P) problem. It was shown that to cover any Fat grid n-ogon it is always

sufficient two vertex guards. Furthermore, it was established where these guards could be

placed. Concerning the Thin grid n-ogons it was proven that to cover a Min-Area grid

n-ogon and a Spiral grid n-ogon it is always sufficient and necessary dn6 e and bn4 c vertex

guards, respectively. Moreover, it was shown where these guards must be placed.

Regarding the hiding problem, the one that motivates us most is the MHVS(P) problem.

It was proved that the maximum cardinality of a hidden vertex set in a Thin grid n-ogon is

dn4 e. Moreover, a possible positioning for these hidden vertices was established.

It was, also, established a possible classification for Thin grid n-ogons, as a step to launch

an expression that relates n to |Thin(n)|. This classification/taxonomy was done by resorting

to the skeleton structure of Thin grid n-ogons and their corresponding binary representation.

However, there are still some open problems related to Thin grid n-ogons, namely:

(1) How many elements Thin grid n-ogons does each class have? (open problem 7.1)

(2) Will it be possible to find an algorithm that generates all Thin grid n-ogons of the same

class? (open problem 7.2)

(3) Does it exist any expression that relates n to |Thin(n)|? (open problem 9.2)

Another open problem is:

Open Problem 7.4 Given a Thin grid n-ogon what is the minimum number of vertex guards

needed to cover it?

204 A Subclass of Orthogonal Polygons: the grid n-ogons

Chapter 8

Spiral and Histogram Polygons

In this chapter are studied the Maximum Hidden Set problem, MHS(P), and the Maxi-

mum Hidden Vertex Set problem, MHVS(P), on two classes of polygons, the spiral and

histogram polygons. The chapter is divided in two sections. In section 8.1 the MHS(P) and

MHVS(P) problems, being P a spiral polygon (subsection 8.1.1) and a histogram polygon

(subsection 8.1.2), are studied. Particularly, concerning the MHVS(P) problem, in subsection

8.1.1 tight bounds for the maximum number of hidden vertices in a spiral polygon are deter-

mined and a linear algorithm that places a hidden vertex guard set H on a spiral polygon P

is developed (which we strongly believe that is the solution for the MHVS(P) problem). In

section 8.2 some conclusions are presented.

Let mention that some of the results appearing in this chapter have been published in [20]

8.1 Maximum Hidden Vertex Set and Maximum Hidden Set

Problems

8.1.1 Spiral Polygons

Remember that the reflex vertices of spiral polygon P form a single chain of consecutive

vertices (see Definition 1.4 in Chapter 1 and Figure 8.1). In this subsection the problems of

hiding points and vertices on this class of polygons will be studied.

v

u

Figure 8.1: An example of a spiral polygon with its reflex chain.

205

206 Spiral and Histogram Polygons

First of all, combinatorial aspects of hiding vertices on a spiral polygon P are solved.

The following theorem relates the number of reflex r of P and the maximum cardinality of a

set of hidden vertices h on P .

Theorem 8.1 If P is a spiral polygon with r reflex vertices, then the maximum number of

hidden vertices, h, verifies
⌈
r
2

⌉
+ 1 ≤ h ≤ r + 1.

Proof: The lower bound
⌈
r
2

⌉
+ 1 ≤ h is obtained verifying that, if only the vertices of the

reflex chain are considered, then they can be always marked hidden alternately (as shown in

Figure 8.2 (a)). That is, every other vertex of the reflex chain is marked as hidden. Therefore,

in any spiral polygon with r reflex vertices at least
⌈
r
2

⌉
+ 1 vertices can be hidden.

On the other hand, as shown by Shermer in [117], any polygon P with r reflex vertices

can be decomposed into r + 1 convex pieces and consequently admits at most r + 1 hidden

points. In the particular case of spiral polygons, this bound is achieved on vertices, as shown

in the polygon of Figure 8.2 (b).

(a) (b)

Figure 8.2: Bounds for h. Black dots represent hidden vertices.

�

Now, an algorithm that places a hidden vertex set H on a spiral polygon P will follow.

Algorithm

By definition, the boundary of a spiral polygon can be divided into a reflex chain and a

convex chain. Denote by C and R the convex chain and the reflex chain, respectively. And

denote by u and v the first and the last vertex of C, respectively. The proposed algorithm runs

simultaneously through both chains, from v to u, adding in every step a vertex to the set of

hidden vertices H. The fundamental idea is to advance from v to u by both chains marking as

hidden in each step the vertex that illuminates less the convex chain in the advance direction.

Let P be a spiral polygon with n vertices, denoting its reflex vertices by {u1, u2, . . . , ur}
and the vertices of its convex chain C by {u=c1, c2, . . . , v=cn−r}, the description of the

algorithm will follow.

Spiral and Histogram Polygons 207

Algorithm 8.1 Algorithm to place hidden vertices
Input: A spiral polygon P with n vertices.

Output: H ⊂ VP , a set of hidden vertices.

1. Mark as hidden the last vertex of the convex chain, v ∈ H;

2. Advance, simultaneously, through the chains C and R from v to u. Let uk and cj be the

first vertices of the chains R and C, respectively, not visible from the last hidden vertex

added to H;

3. If cj sees the next vertex of the concave chain uk+1, then mark as hidden the vertex uk;

otherwise mark as hidden the vertex cj (see Figure 8.3);

4. Repeat the above process from step 2 until the vertex u is reached.

(a) (b)

x

c
j

u
k

x

c
j

u
k

Figure 8.3: Placement of hidden vertices (the black dots represent vertices marked as hidden).

Note that the described algorithm induces a partition on the spiral polygon (see Figure

8.4). In fact, for each reflex vertex uk marked as hidden in step 3, it is considered the segment

between uk+1 and C determined by the ray −−−−→ukuk+1, and, for each convex vertex cj marked as

hidden in step 3, it is considered the segment between uk and the convex chain C determined

by the ray −−→cjuk. These segments allow to decompose the polygon in pieces of two types, A

(see Figure 8.3 (a)) and B (see Figure 8.3 (b)). The pieces of type A have two edges of the

chain R and the common vertex of these edges is marked as hidden. In the pieces of type B

there is only one edge of R and the hidden vertex is on the convex chain.

A

A

A

B

B

B
u

v

Figure 8.4: Decomposition into pieces A and B.

208 Spiral and Histogram Polygons

Observe also that the algorithm constructs a hidden vertex set H with an element in

each of the pieces of the previously described partition (see Figure 8.4). We strongly believe

that H is an hidden vertex set of maximum cardinality.

Conjecture 8.1 Given a spiral polygon P , the previous algorithm obtains a set of hidden

vertices H of maximum cardinality.

To prove this conjecture, we intend to use the partition of P in pieces of type A and B

to show that any other hidden vertex set H∗ verifies |H∗| ≤ |H| (H is the algorithm output).

If this conjecture is true, then we have an algorithm that solves the MHVS(P) problem in

linear time, being P a spiral polygon. In fact, the described algorithm is linear: the visibility

from the hidden vertices in step 2 is performed in O(n) because the visibility of each vertex

is detected in constant time and the algorithm advances, without setback, by the reflex and

convex chains. For the same reason, step 3 is also performed in linear time.

Observation: If the hidden points are not necessarily placed on vertices, then it is always

reached the maximum value allowed for the number of hidden points. In a spiral polygon P

with r reflex vertices, r + 1 points can always be hidden, since it is enough to place a hidden

point in every side of the reflex chain (see Figure 8.5).

Figure 8.5: Hidden points on a spiral polygon.

8.1.2 Histogram Polygons

In this work only vertical histograms are considered. These type of polygons are sometimes

used as pieces in the decomposition of orthogonal polygons. A vertical histogram P is an

orthogonal polygon with an horizontal edge, called the base of P , such that every point of

P is visible from a point of its base (see Figure 8.6). An horizontal edge whose vertices are

reflex is designated by fund edge. The number of these edges determines the solution to the

problem MHVS(P), where P is a histogram without collinear horizontal edges, as it is shown

in the following theorem.

Spiral and Histogram Polygons 209

base edge

Figure 8.6: Histogram polygon.

Theorem 8.2 If P is a histogram polygon without collinear horizontal edges, r reflex vertices

and p fund edges; then the maximum number h of hidden vertices in P is h = r − (p− 1).

Proof: The demonstration will be done by induction on p.

• Base Case p = 0: In this case, the histogram is a (vertical) pyramid, that is, a vertical

histogram that is monotone with respect to the y-axis (see Figure 8.7). In this case

h = r + 1 (convex) vertices can be hidden, one in each horizontal edge different from

the base.

Figure 8.7: Pyramid polygon.

• Inductive Step: Assuming that the result is true for histograms with p fund edges,

let us demonstrate that it is also true for polygons with p+ 1 fund edges. Draw an

horizontal segment at the fund edge the closest to the base. In this way P is decomposed

into two histograms P1 and P2, and a rectangle R (see Figure 8.8). Denote by hi, ri
and pi (i = 1, 2) the number of hidden vertices in Pi, the number of reflex vertices of

Pi and the number of edge funds of Pi, respectively. Note that, r1 + r2 = r − 2 and

p1 + p2 = p− 1.

By induction hypothesis

h1 = r1 − (p1 − 1) and h2 = r2 − (p2 − 1)

thus,

h1 + h2 = (r1 + r2) + (p1 + p2) + 2 = (r − 2)− (p− 1) + 2 = r − (p− 1).

210 Spiral and Histogram Polygons

R

P
1

P
2

Figure 8.8: Histogram decomposition.

Besides, on R cannot be placed any hidden vertex, since they are all visible from some

of the histograms, then

h = r − (p− 1).

Moreover, an hidden vertex set H of cardinal h is obtained by placing a hidden point

in the convex vertex of every horizontal edge, which is neither the base nor a fund. In the

horizontal edges with two convex vertices only one point is placed in one of them. In the

histogram illustrated in Figure 8.6 the hidden vertices are represented by black dots

�

Observation: If we hide points in histograms without horizontal collinear edges, it also

becomes possible, as it happens on spiral polygons, to reach the possible maximum. By

hiding one point in every horizontal edge we can hide h = r+ 1 points being r the number of

reflex vertices (see Figure 8.9).

Figure 8.9: Hidden points on histograms polygons.

8.2 Concluding Remarks

In this chapter the MHVS(P) and MHS(P) problems, where P is a spiral or a histogram

polygon, were studied. In subsection 8.1.1 these problems were discussed for spiral polygons,

and a linear algorithm that places a hidden vertex guard set H on a spiral polygon P (which

we believe that is the solution for the MHVS(P) problem) was described. Besides, it was

determined tight bounds for the maximum number h of hidden vertices in a spiral polygon

Spiral and Histogram Polygons 211

with r reflex vertices. In subsection 8.1.2 it was analyzed the histogram polygons without

collinear horizontal edges, for which it was obtained the maximum cardinal h of hidden vertices

that verifies h = r − (p− 1), where r is the number of reflex vertices and p is the number of

fund edges of the histogram polygon.

Note that, if a histogram polygon has collinear edges we know that h ≤ r − (p− 1).

However, the following problem remains open:

Open Problem 8.1 Given a histogram polygon P with collinear edges, what is the maximum

number of points and vertices that can be hidden on P?

212 Spiral and Histogram Polygons

Chapter 9

Conclusions

This thesis studied several visibility problems, particularly guarding and hiding problems on

polygons. The addressed guarding problems were: the Minimum Vertex Guard Set, Min-

imum Vertex Floodlight Set and Minimum Vertex k-Modem Set problems, which

were denoted by MVGS(P), MVFS(P) and MVkMS(P), respectively, where P is a poly-

gon. In relation to hiding problems, the following problems were considered: the Maximum

Hidden Set and the Minimum Vertex Guard Set problems, denoted by MHVS(P) and

MHVS(P), respectively, where P is a polygon.

The above problems are NP-hard (for example, the MVGS(P), MHVS(P) and MHS(P)

problems) or it is strongly believed that they are NP-hard (for example, the MVFS(P) and

MVkMS(P) problems). This means that finding exact and efficient methods to solve them

is very unlikely. Thus, they were studied according to two lines of investigation: (1) the

development of algorithms that establish approximate solutions and (2) the determination of

optimal solutions on special classes of polygons. These two research lines are discussed in

Part I and Part II.

Part I

The first part of this thesis proposed approximation algorithms to tackle the MHVS(P),

MVGS(P), MVFS(P) and MVkMS(P) problems. Since metaheuristics and hybrid meta-

heuristics methods have been little explored in solving visibility problems, the focus was given

to them. In this way, one of the main objectives of this work was to study how these methods

behave when applied to this kind of problems. Although there are several different metaheuris-

tic methods, the Simulated Annealing (SA) and the Genetic Algorithms (GAs) metaheuristics

and hybridizations of these both were chosen because SA and GAs are well-known trajectory

and population-based methods, respectively. Furthermore, they are widely used in solving

combinatorial optimization problems.

All the proposed approximation algorithms were implemented in C/C++ and these im-

213

214 Conclusions

plementations use the Computational Geometry Algorithms Library CGAL. In the various

chapters SA and GAs methods were studied and compared with different parameter values,

and several conclusions were presented. Therefore, the conclusions presented here are related

to the selected method/strategy for each metaheuristic in each chapter. Some general con-

clusions, drawn from the performed computational experiences and the statistical studies, are

presented in the following.

Concerning the solutions obtained by each method it can be concluded that:

(i) Metaheuristics (SA and GAs) and Greedy Algorithms.

The SA metaheuristic showed to be better than or equal to the greedy algorithms; unlike

the GA strategy, which does not improve the solutions given by the greedy algorithms.

Particularly, for the MHVS(P) problem on orthogonal polygons, the SA strategy is

significantly better than the two implemented greedy strategies, but it is equivalent to

the second one when applied to arbitrary polygons (see Chapter 3, subsection 3.2.1). In

relation to the MVGS(P) problem the two metaheuristic strategies do not improve the

solutions obtained by the greedy strategies.

(ii) SA and GAs metaheuristics.

The SA metaheuristic showed to obtain better or equal solutions than the GAs meta-

heuristic.

Particularly, for the MHVS(P) and MVFS(P) problems the SA strategy obtains sig-

nificantly better solutions than the GA strategy, in contrast to the MVGS(P) problem

where the solutions obtained by the two strategies can be considered “equal”, both for

orthogonal and arbitrary polygons.

(iii) Non-hybrid methods and Hybrid metaheuristics.

Recall that two hybrid metaheuristics were developed: the first one uses a SA strategy as

a genetic operator of a GA method and the second one uses a SA strategy to generate the

initial population of a GA. The first hybrid metaheuristic is always better than any other

non-hybrid method and it is better than or equal to the second hybrid metaheuristic.

Regarding the two hybrid metaheuristics, for the MVGS(P) problem the solutions ob-

tained are not significantly different, both for orthogonal and arbitrary polygons. How-

ever, for the MVFS(P) problem the first hybrid metaheuristic is always better than the

second one.

The following four tables summarize the results obtained in the first part of this work.

The tables show the studied problems and the references in this dissertation. For each problem,

the tables present the strategy that performs best, the obtained solution and the corresponding

approximation factor and, finally, the well-known combinatorial bounds if they exist.

Conclusions 215

Arbitrary Polygons
Problem Strategy Approximate Approximate Combinatorial Reference

Solution Ratio Bound

MHVS(P) SA d n
3.74e 1.62 dn

2 e Section 3.4.1

MVGS(P) Hybrid d n
6.64e 1.66 bn

3 c Section 4.4.1

MVkMS(P, k), k = 2 Hybrid d n
26.10e - Unknown Section 6.4.2

MVkMS(P, k), k = 4 Hybrid d n
52.35e - Unknown Section 6.4.2

Table 9.1: Studied problems on arbitrary polygons.

Note that, the previous table does not refer to the MVFS(P) problem because it only

applies to orthogonal polygons.

Orthogonal Polygons
Problem Strategy Approximate Approximate Combinatorial Reference

Solution Ratio Bound

MHVS(P) SA d n
3.80e 1.54 n−2

2 Section 3.4.2

MVGS(P) Hybrid d n
7.29e 1.80 bn

4 c Section 4.4.2

MVFS(P) Hybrid d n
4.29e 2 b 3n−4

8 c Section 5.4.1

MVkMS(P, k), k = 2 Hybrid d n
27.39e - Unknown Section 6.4.2

MVkMS(P, k), k = 4 Hybrid d n
57.47e - Unknown Section 6.4.2

Table 9.2: Studied problems on orthogonal polygons.

Since the MVkMS(P) was also studied on monotone arbitrary polygons and on grid

monotone orthogonal polygons, Tables 9.3 and 9.4 present the related results.

Monotone Arbitrary Polygons
Problem Strategy Approximate Approximate Combinatorial Reference

Solution Ratio Bound

MVkMS(P, k), k = 2 Hybrid d n
15.10e - dn

6 e Section 6.4.1

MVkMS(P, k), k = 4 Hybrid d n
26.80e - dn

8 e ≤ Gkm(n)1 ≤ d n
10e Section 6.4.1

Table 9.3: Studied problems on monotone arbitrary polygons.

1Gkm(n) is an upper bound for the minimum cardinality of vertex guard set for P .

216 Conclusions

Monotone grid n-ogons Polygons
Problem Strategy Approximate Approximate Combinatorial Reference

Solution Ratio Bound

MVkMS(P, k), k = 2 Hybrid d n
18.31e - Unknown Section 6.4.2

MVkMS(P, k), k = 4 Hybrid d n
35.84e - Unknown Section 6.4.2

Table 9.4: Studied problems on monotone grid n-ogons polygons.

In general, in association with the running time of the algorithms, the better the obtained

solution is, the longer the used strategy takes. This was an expected scenario and it occurred

with the hybrid metaheuristics. As future research, it is intended to improve the runtime of

these strategies.

Remember that, being P a polygon, a linear algorithm to determine the visibility polygon

of x ∈ P , V is(P, x), is well-known [85]. However, an algorithm to determine the region covered

by a k-modem located at a point x ∈ P , V isk(x, P), is unknown up date. Thus, an algorithm

that runs in O(n2) time was developed and implemented to determine V isk(x, P) for all

the possible values of k (0 ≤ k ≤ n) (see Chapter 6, section 6.2), since it was necessary to

solve the MVkMS(P, k) problem. The developing of an algorithm to lower this computational

complexity for a fixed value of k is intended as future research. It is also planned to develop

a method that allows to determine the approximation ratio of the algorithm implemented to

tackle the MVkMS(P) problem.

In conclusion, it is clear that the metaheuristics, in particular the hybrid metaheuristics,

proved to be a good approach to solve the studied problems. It was given experimental

evidence that they perform well in practice, on a large set of input data. All the solutions were

very satisfactory in the sense that they were always close to optimal (within an approximation

factor of 2 for all randomly generated instances). As a result, there are several directions for

further research. It would be interesting to reduce the runtime of the already implemented

strategies. It would be also interesting to develop and implement other metaheuristics (e.g.,

the Ant Colony System) and to explore other combinations of metaheuristics in order to

improve not only the obtained solutions of the studied problems, but also the algorithms’

runtime, as well as solving other NP-hard visibility problems.

Note that there are more alternatives to explore with respect to the parameters of the

SA and GAs metaheuristics, but these are almost infinite. Along this thesis, it was attempted

to find references for these parameters. Nevertheless, a more exhaustive study in future

investigations might improve the obtained results and the algorithms’ runtime.

Part II

The second part of this thesis studied the MVGS(P) MHVS(P), MHS(P) problems

Conclusions 217

applied to special classes of polygons. A particular attention was given to orthogonal polygons:

it was introduced a subclass of orthogonal polygons, the grid n-ogons, and it was presented

structural properties in order to simplify the study of the problems. The hiding problems

were also applied to histograms and spiral polygons.

The following three tables summarize the results obtained in the second part of the

thesis. The tables show the studied problems, the obtained solutions and the references in

this dissertation.

Grid n-ogons Polygons

Fat grid n-ogons
Thin grid n-ogons

Min-Area Spiral
Problem

Solution Reference Solution Reference Solution Reference

MVGS(P) 2 Section 7.3.1.1 dn
6 e Section 7.3.1.2 dn

4 e
1 Section 7.3.1.2

Table 9.5: Guarding problem on grid n-ogons polygons.

1This solution is also valid for orthogonal spiral polygons.

Grid n-ogons Polygons

Thin grid n-ogonsProblem

Solution Reference

MVGS(P) dn
4 e Section 7.3.2

Table 9.6: Hiding problem on grid n-ogons polygons.

Concerning the grid n-ogons, there are some rather difficult and challenging problems

that remain open, and it would be interesting to study them as future research, namely:

Open Problem 9.1 Is there an expression to relate n to |Thin(n)|?

Open Problem 9.2 What is the area value of “the” Thin grid n-ogon with maximum area?

Open Problem 9.3 Given a Thin grid n-ogon what is the minimum number of vertex guards

needed to cover it?

Since combinatorial bounds for the MHVS(P) and MHS(P) problems, being P a spiral

polygon or a histogram polygon, were also determined, the next table presents the obtained

results.

218 Conclusions

Spiral polygons Histogram polygons
Problem Combinatorial Reference Solution Reference

Bound

MHVS(P) d r
2e+ 1 ≤ h ≤ r + 1 Section 8.1.1 h = r − (p− 1) Section 8.1.2

MHS(P) h = r + 1 Section 8.1.1 h = r + 1 Section 8.1.2

Table 9.7: Hiding problems on spiral and histogram polygons.

Note: In the above table r denotes the number of reflex vertex of P , h the maximum

cardinality of a set of hidden vertices for P and p the number fund edges of P .

Remember that for spiral polygons, besides the established combinatorial bounds for the

maximum cardinality of a hidden vertex set h, it was also developed a linear algorithm to

obtain a hidden vertex set, which is believed to have cardinality h (see Conjecture 8.1 in

Chapter 8). In other words, we think that, given a spiral polygon P , the developed algorithm

in Chapter 8 (subsection 8.1.1) obtains a set of hidden vertices H of maximum cardinality.

As a future work it is intended to prove that this is true.

Concerning histogram polygons, if the polygons have not collinear horizontal edges then

there is an established upper bound for h: r−(p−1). However, the following problem remains

open.

Open Problem 9.4 What is the maximum number of points that can be hidden on a given

histogram polygon with collinear horizontal edges?

Finally, concerning the first line of investigation the presented results allow to conclude

that hybrid metaheuristics are a “good” approach to solve visibility problems. On the other

hand, the second line of investigation is left with several open problems. In conclusion, the

development of these two lines of research should be continued, determining “good” approx-

imate solutions and identifying special classes of polygons for which specific algorithms can

be developed.

Bibliography

[1] Gdtoolkit. University of Rome. http://www.dia.uniroma3.it/gdt/. 3

[2] Cgal, Computational Geometry Algorithms Library. http://www.cgal.org. 3, 19

[3] E. Aarts, J. Korst, and W. Michiels. Simulated annealing. In Handbook of Approximation

Algorithms and Metaheuristics (Chapman & Hall/Crc Computer & Information Science

Series). Chapman & Hall/CRC, 2007. 27

[4] M. Abellanas, E. Alba, S. Canales, and G. Hernández. Solving the illumination problem

with heuristics. In Todor Boyanov, Stefka Dimova, Krassimir Georgiev, and Geno

Nikolov, editors, Numerical Methods and Applications, volume 4310 of Lecture Notes in

Computer Science, pages 205–213. Springer, 2006. 5

[5] M. Abellanas, E. Alba, S. Canales, and G. Hernández. Resolución de un problema de

iluminación con simulated annealing (in spanish). In Actas de MAEB’07, pages 771–778,

Tenerife, España, 2007. 5

[6] J. Abello, V. Estivill-Castro, T. C. Shermer, and J. Urrutia. Illumination with orthog-

onal floodlights. In ISAAC ’95: Proceedings of the 6th International Symposium on

Algorithms and Computation, pages 362–371, London, UK, 1995. Springer-Verlag. 10

[7] S. V. Adinolfi. Optimización geométrica y applicaciones en visisbilidad. PhD thesis,

Universitat Politècnica de Catalunya, 1997. 1, 2

[8] A. Aggarwal. The art gallery problem: Its variations, applications, and algorithmic

aspects. PhD thesis, Johns Hopkins University, 1984. 9, 65, 67, 77

[9] O. Aichholzer, R. Fabila-Monroy, D. Flores-Peñaloza, T. Hackl, C. Huemer, J. Urrutia,

and B Vogtenhuber. Modem illumination of monotone polygons. In Proc. 25th European

Workshop on Computational Geometry EuroCG ’09, pages 167–170, Brussels, Belgium,

2009. viii, 10, 13, 135, 136, 137, 138

219

220 BIBLIOGRAPHY

[10] E. Alba and G. Luque. Parallel Metaheuristics: A New Class of Algorithms, chapter

2. Measuring the Performance of Parallel Metaheuristics, pages 43–62. Wiley Series on

Parallel and Distributed Computing. Wiley, 2005. 20

[11] Y. Amit, J.S.B. Mitchell, and E. Packer. Locating guards for visibility coverage of

polygons. In Proceedings of the Workshop on Algorithm Engineering and Experiments,

pages 1–15, 2007. 4, 49, 77, 78

[12] M. Arkin, E, J.S.B. Mitchell, and V. Polishchuk. Maximum thick paths in static and

dynamic environments. In SCG ’08: Proceedings of the twenty-fourth annual symposium

on Computational geometry, pages 20–27, New York, NY, USA, 2008. ACM. 3

[13] S. Arora and C. Lund. Hardness of approximations. In D. S. Hochbaum, editor, Appro-

ximation Algorithms for NP-Hard Problems. PWS, 1996. 50, 78, 121

[14] D. Avis and G. T. Toussaint. An optimal algorithm for determining the visibility of a

polygon from an edge. IEEE Trans. Comput., 30(12):910–914, 1981. 10

[15] David Avis and Godfried T. Toussaint. An efficient algorithm for decomposing a polygon

into star-shaped polygons. Pattern Recognition, 13(6):395–398, 1981. 8

[16] A. L. Bajuelos, S. Canales, G. Hernández, and A. M. Martins. Some problems related to

grid n-ogons. In XII Spanish Workshop on Computational Geometry (EGC’07), pages

265–272, June 2007. 16, 159

[17] A. L. Bajuelos, S. Canales, G. Hernández, and A. M. Martins. Estimating the maximum

hidden vertex set in polygons. In ICCSA ’08: Proceedings of the 2008 International Con-

ference on Computational Sciences and Its Applications, pages 421–432, Washington,

DC, USA, 2008. IEEE Computer Society. 16, 39

[18] A.L. Bajuelos, S. Canales, G. Hernández, and A. M. Martins. Solving some combi-

natorial problems in grid n-ogons. In ACS’07: Proceedings of the 7th Conference on

7th WSEAS International Conference on Applied Computer Science, pages 151–156,

Stevens Point, Wisconsin, USA, 2007. World Scientific and Engineering Academy and

Society (WSEAS). 16, 159

[19] A.L. Bajuelos, S. Canales, G. Hernández, and A.M. Martins. Solving some combinatorial

problems in grid n-ogons. International Journal of Mathematics and Computers in

Simulation, NAUN, 1(2):177–183, 2007. 16, 159

[20] A.L. Bajuelos, S. Canales, G. Hernández, and A.M. Martins. Escondiendo puntos en

espirales e histogramas (in spanish). In Proc. of VI Jornadas de Matemática Discretas,

pages 85–93, 2008. 16, 205

BIBLIOGRAPHY 221

[21] A.L. Bajuelos, S. Canales, G. Hernández, and A.M. Martins. Minimum vertex guard

problem for orthogonal polygons: a genetic approach. In Proc. 10th WSEAS Interna-

tional Conference on Mathematical Methods, Computational Techniques and Intelligent

Systems (MAMECTIS’08), pages 78–84, 2008. 16, 66

[22] A.L. Bajuelos, S. Canales, G. Hernández, and A.M. Martins. Optimizing the minimum

vertex guard set on simple polygons via a genetic algorithm. WSEAS Transactions in

Information Science and Applications, 5(11):1584–1596, 2008. 16, 66

[23] A.L. Bajuelos, S. Canales, G. Hernández, and A.M. Martins. Aproximando la ilumi-

nación por módems (in spanish). In XIII Spanish Workshop on Computational Geome-

try, pages 67–74, June 2009. 16

[24] A.L. Bajuelos, A.P. Tomás, and Marques F. Partitioning orthogonal polygons by ex-

tension of all edges incident to reflex vertices: Lower and upper bounds on the number

of pieces. In ICCSA (3), pages 127–136, 2004. 15, 159, 162, 163, 164, 165, 166, 189

[25] C. Blum and R. Andrea. Metaheuristics in combinatorial optimization: Overview and

conceptual comparison. ACM Comput. Surv., 35(3):268–308, September 2003. 22, 23,

24, 26, 27, 28, 31, 33, 34, 35, 36

[26] P. Bose, L. Guibas, A. Lubiw, M Overmars, D. Souvaine, and J. Urrutia. The floodlight

problem. J. Assoc. Comput. Mach, 9:399–404, 1993. 10

[27] A. Bottino and A. Laurentini. A nearly optimal sensor placement algorithm for bound-

ary coverage. Pattern Recogn., 41(11):3343–3355, 2008. 4

[28] F. Busetti. Simulated annealing overview, 2003. 29, 72

[29] Blum C. and Roli A. Hybrid metaheuristics: An introduction. In Hybrid Metaheuristics,

pages 1–30. 2008. 22, 23, 24, 27, 35, 36

[30] S. Canales. Métodos Heuŕısticos en Problemas Geométricos. Visibilidad, iluminación y

vigilancia. PhD thesis, Universidad Politécnica de Madrid, Madrid, Spain, 2004. 5, 26,

27, 28, 30, 31, 34, 35

[31] J. Cardinal, S. Collette, F. Hurtado, S. Langerman, and B. Palop. Optimal location of

transportation devices. Comput. Geom., 41(3):219–229, 2008. 3

[32] M. Cary, A. Rudra, A. Sabharwal, and E. Vee. Floodlight illumination of infinite wedges.

Computational Geometry, In Press, Corrected Proof:–, 2009. 10

[33] T. Christ, M. Hoffmann, Y. Okamoto, and T. Uno. Improved bounds for wireless

localization. In SWAT, pages 77–89, 2008. 135

222 BIBLIOGRAPHY

[34] V. Chvátal. A combinatorial theorem in plane geometry. Journal of Combinatorial

Theory Series B, 18:39–41, 1975. 3, 8, 67

[35] C. Clark, Stephen M. R., and J.-C. Latombe. Motion planning for multiple mobile robot

systems using dynamic networks. In IEEE Int. Conference on Robotics and Automation,

pages 4222–4227, 2003. 3

[36] M.C. Couto, C.C. Souza, and P.J. Rezende. An exact and efficient algorithm for the

orthogonal art gallery problem. In SIBGRAPI ’07: Proceedings of the XX Brazilian

Symposium on Computer Graphics and Image Processing, pages 87–94, Washington,

DC, USA, 2007. IEEE Computer Society. 4, 15, 159, 187

[37] M.C. Couto, C.C. Souza, and P.J. Rezende. Experimental evaluation of an exact algo-

rithm for the orthogonal art gallery problem. In WEA, pages 101–113, 2008. 15, 159,

187

[38] Anghinolfi D. and Paolucci M. Simulated Annealing, chapter 1. Simulated Annealing as

an Intensification Component in Hybrid Population-Based Metaheuristics, pages 1–26.

IN-TECH, 2008. 38

[39] M. de Berg, O. Cheong, M. Kreveld, and M. Overmars. Computational Geometry:

Algorithms and Applications. Springer, Heidelberg, 3rd edition, 2008. 1, 2

[40] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing. Prentice Hall,

Upper Saddle River, NJ. http://www.cs.brown.edu/people/rt/gdbook.html. 3

[41] J. Dietel, H. Hecker, and A. Spillner. A note on optimal floodlight illumination of stages.

Information Processing Letters, 105(4):121 – 123, 2008. 10

[42] D. Dobkin and S. Teller. Computer graphics. In Handbook of discrete and computational

geometry, pages 1090–1116. CRC Press, Inc., Boca Raton, Florida, USA, 2004. 3

[43] D.P. Dobkin. Computational geometry and computer graphics. Proc. IEEE, 80:141–1,

1992. 3

[44] M. Dorigo and T. Sttzle. Ant Colony Optimization. MIT Press, Cambridge, MA, 2004.

23

[45] H. Edelsbrunner. Algorithms in combinatorial geometry. Springer-Verlag New York,

Inc., New York, NY, USA, 1987. 1

[46] H. Edelsbrunner. Biological applications of computational topology. In J.E Goodman

and J. O’Rourke, editors, Handbook of Discrete and Computational Geometry, pages

1395–1412. CRC Press, Inc., Boca Raton, Florida, USA, 2004. 3

BIBLIOGRAPHY 223

[47] H. Edelsbrunner, J. O’Rourke, and E. Welzl. Stationing guards in rectilinear art gal-

leries. Comput. Vision Graph. Image Process, 270:167–176, 1984. 9

[48] A. Efrat, S. Har-Peled, and J. Mitchell. Approximation algorithms for two optimal

location problems in sensor networks. In Proceedings of the 3rd International Conference

on Broadband Communications, Networks and Systems (Broadnets’05), pages 714–723,

Boston, Massachusetts, 2005. 4

[49] S. Eidenbenz. How many people can hide in a terrain? In Lecture Notes in Computer

Science 1741 (ISAAC’99, pages 184–194, 1999. 9, 11

[50] S. Eidenbenz. (In-)Approximability of Visibility Problems on Polygons and Terrains.

PhD thesis, Institute for Theoretical Computer Science, ETH, Zurich, 2000. 4, 39

[51] S. Eidenbenz. Finding minimum hidden guard sets in polygons: tight approximability

results. Comput. Geom. Theory Appl., 34(2):49–57, 2006. 9, 11

[52] S. Eidenbenz and C. Stamm. Maximum clique and minimum clique partition in visibility

graphs. In TCS ’00: Proceedings of the International Conference IFIP on Theoretical

Computer Science, Exploring New Frontiers of Theoretical Informatics, pages 200–212,

London, UK, 2000. Springer-Verlag. 50

[53] D. Eppstein, M.T. Goodrich, and N. Sitchinava. Guard placement for efficient point-in-

polygon proofs. In Symposium on Computational Geometry, pages 27–36, 2007. 135

[54] U. M. Erdem and S. Sclaroff. Automated camera layout to satisfy task-specific and

floor plan-specific coverage requirements. Comput. Vis. Image Underst., 103(3):156–

169, September 2006. 4

[55] V. Estivill-Castro, J. O’Rourke, J. Urrutia, and D. Xu. Illumination of polygons with

vertex lights. Inf. Process. Lett., 56(1):9–13, 1995. 10

[56] R. Fabila-Monroy, A.R Vargas, and J. Urrutia. On modem illumination problems. XIII

Spanish Workshop on Computational Geometry, June 2009. 10, 136

[57] A. Fabri, G.-J. Giezeman, L. Kettner, S. Schirra, and S. Schönherr. On the design of

cgal, a computational geometry algorithms library. Software – Practice and Experience,

30(11):1167–1202, 2000. Special Issue on Discrete Algorithm Engineering. 2, 3

[58] H.-Y.F. Feng and T. Pavlidis. Decomposition of polygons into simpler components:

Feature generation for syntactic pattern recognition. IEEE Transactions on Computers,

24(6):636–650, 1975. 174

224 BIBLIOGRAPHY

[59] S. Fisk. A short proof of chvatal’s watchman theorem. Journal of Combinatorial Theory

Series B, 24:374+, 1978. 67

[60] E. Fogel, R. Wein, B. Zukerman, and D. Halperin. 2d regularized boolean set-operations.

In CGAL Editorial Board, editor, CGAL User and Reference Manual. 3.2.1 edition,

2006. 19

[61] M. R. Garey and D. S. Johnson. Computers and Intractability : A Guide to the Theory

of NP-Completeness (Series of Books in the Mathematical Sciences). W. H. Freeman,

January 1979. 21

[62] S. Geman and D. Geman. Stochastic relaxation, gibbs distributions, and the bayesian

restoration of images. Pattern Analysis and Machine Intelligence, IEEE Transactions

on, PAMI-6(6):721–741, Nov. 1984. 28

[63] S. Ghosh. Visibility Algorithms in the Plane. Cambridge University Press, New York,

NY, USA, 2007. 4

[64] S.K. Ghosh. Approximation algorithms for art gallery problems. In Proceedings of the

Canadian Information Processing Society Congress, pages 429–434, 1987. 4

[65] Fred W. Glover and Gary A. Kochenberger, editors. Handbook of Metaheuristics, volume

114 of International Series in Operations Research & Management Science. Springer,

January 2003. 24

[66] J.E. Goodman and J. O’Rourke, editors. Handbook of Discrete and Computational

Geometry. CRC Press LLC, Boca Raton, FL, USA, 2004. 1

[67] D. Henderson, S.H. Jacobson, and A. W. Johnson. The theory and practice of simulated

annealing. In J.E Goodman and J. O’Rourke, editors, Handbook of Metaheuristics, pages

287–319. Springer, 2003. 26

[68] J. Hershberger. Finding the visibility graph of a polygon in time proportional to its

size. Algorithmica, 4:141–155, 1989. 42

[69] S. Hert, M. Hoffmann, L. Kettner, and S. Schnherr. Geometric object generators. In

CGAL Editorial Board, editor, CGAL User and Reference Manual. 3.2.1 edition, 2006.

19

[70] J.H. Holland. Adaption in Natural and Artificial Systems. MIT Press, Cambridge, MA,

1992. 1st edition: 1975, The University of Michigan Press, Ann Arbor. 29

[71] R. Honsberger. Mathematical Gems II. Mathematical Association of America, 1976. 3

BIBLIOGRAPHY 225

[72] J. Huang. Visibility problems occurring in radiation treatment planning. Master’s thesis,

Ottawa-Carleton Institute for Computer Science, School of Computer Science, Carleton

University, Ottawa, Ontario, Canada, 2001. 3

[73] F. Hurtado. Problemas Geométricos de Visibilidad. PhD thesis, Universitat Politcnica

de Catalunya, 1993. 11

[74] F. Hurtado, O. Serra, and J. Urrutia. Hiding points in arrangements of segments.

Discrete Math., 162(1-3):187–197, 1996. 11

[75] L. Ingber. Very fast simulated re-annealing. Mathematical Computer Modeling,

12(8):967–973, 1989. 28

[76] Sastry K., Goldberg D., and Kendall G. Search methodologies : introductory tutorials

in optimization and decision support techniques, chapter 4. Genetic Algorithms, pages

97–125. Wiley Series on Parallel and Distributed Computing. Springer, New York, 2005.

31, 32, 33

[77] J. Kahn, M. Klawe, and D. Kleitman. Traditional galleries require fewer watchmen.

SIAM Journal of Algebraic and Discrete Methods, 4(2):194–206, 1983. 9, 67

[78] A. K. Kamrani and S. M. Salhieh. Product Design for Modularity, chapter 3. Design for

Modularity, pages 85–122. Springer, 2000. 34

[79] D. Kima, C.-H. Chob, Y. Choa, J. Ryua, J. Bhakc, and D.-S. Kim. Pocket extraction

on proteins via the voronoi diagram of spheres. Journal of Molecular Graphics and

Modelling, 26(7):1104–1112, 2008. 3

[80] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing.

Science, Number 4598, 13 May 1983, 220, 4598:671–680, 1983. 24

[81] M. van Kreveld and R.I. Silveira. Embedding rivers in polyhedral terrains. In Proc.

25th ACM Symposium on Computational Geometry (SoCG), pages 771–778, 2009. 3

[82] A. Kumar. A novel genetic algorithm approach to solve map colour problem. In ICETET

’08: Proceedings of the 2008 First International Conference on Emerging Trends in En-

gineering and Technology, pages 288–291, Washington, DC, USA, 2008. IEEE Computer

Society. 29

[83] A. Laurentini. Guarding the walls of an art gallery. The Visual Computer, 15(6):265–

278, 1999. 9

[84] D. T. Lee and A. K. Lin. Computational complexity of art gallery problems. IEEE

Transactions on Information Theory, 32(2):276–282, March 1986. 12, 67

226 BIBLIOGRAPHY

[85] D.T. Lee. Visibility of a simple polygon. Computer Vision, Graphics, and Image Pro-

cessing, 22(2):207–221, 1983. 42, 68, 115, 216

[86] J. van Leeuwen and A.A. Schoone. Untangling a travelling salesman tour in the plane.

In J. R. Mhlbacher, editor, Proc. 7th Internat. Workshop Graph-Theoret. Concepts

Comput. Sci., pages 87–98, 1982. 19

[87] M. Lozano and C. Garćıa-Mart́ınez. Hybrid metaheuristics with evolutionary algo-

rithms specializing in intensification and diversification: Overview and progress report.

Computers & Operations Research, In Press, Corrected Proof, 2009. 23, 36

[88] G. MacDonald. Isomorphism and layout of spiral polygons. Master’s thesis, Simon

Fraser University, Burnaby, British Columbia, Canada, 1993. 197

[89] Samir W. Mahfoud and David E. Goldberg. Parallel recombinative simulated annealing:

a genetic algorithm. Parallel Comput., 21(1):1–28, 1995. 37

[90] J. Maroco. Análise Estat́ıstica - Com utilização do SPSS (in Portuguese). Edições

Śılabo, third edition, 2007. 20

[91] A.M. Martins and A.L. Bajuelos. Some properties of fat and thin grid n-ogons. In Proc.

of International Conference of Numerical Analysis and Applied Mathematics (ICNAAM

2005), pages 361–365. Wiley-VCH Verlag, 2005. 16, 159

[92] A.M. Martins and A.L. Bajuelos. Characterizing and covering some subclasses of orthog-

onal polygons. In Computational Science ICCS 2006: 6th International Conference,

pages 255–262. Lecture Notes in Computer Science (LNCS) 3992, Springer-Verlag, 2006.

16, 159

[93] A.M. Martins and A.L. Bajuelos. Guarding two subclasses of orthogonal polygons. In

Proc. International Conference of Computational Methods in Sciences and Engineer-

ing (ICMSE 2006), pages 372–375. Lecture Series on Computer and Computational

Sciences, VSP/Brill, 2006. 16, 159

[94] A.M. Martins and A.L. Bajuelos. Vertex guards in a subclass of orthogonal polygons.

International Journal of Computer Science and Network Security (IJCSNS), 6(9):102–

108, 2006. 16, 159

[95] N. Megiddo. Linear-time algorithms for linear programming in r3 and related problems.

In SFCS ’82: Proceedings of the 23rd Annual Symposium on Foundations of Computer

Science, pages 329–338, Washington, DC, USA, 1982. IEEE Computer Society. 2

BIBLIOGRAPHY 227

[96] K. Mehlhorn, S. Näher, and C. Uhrig. The leda platform of combinatorial and geometric

computing. In ICALP ’97: Proceedings of the 24th International Colloquium on Au-

tomata, Languages and Programming, pages 7–16, London, UK, 1997. Springer-Verlag.

3

[97] K. Mehlhorn, S. Näher, and C. Uhrig. The LEDA Platform of Combinatorial and

Geometric Computing. Cambridge University Press, 1999. 3

[98] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. Equa-

tion of state calculations by fast computing machines. The Journal of Chemical Physics,

21(6):1087–1092, 1953. 24

[99] G.L. Nemhauser and L.A. Wolsey. Integer and Combinatorial Optimization. J. Wiley,

New York, 1988. 164

[100] B.J. Nilsson and D. Wood. Optimum watchmen routes in spiral polygons. In Proceedings

of the Second Canadian Conference in Computational Geometry, pages 127–136, 1990.

5, 174, 195

[101] J. O’Rourke. Art gallery theorems and algorithms. Oxford University Press, Inc., New

York, NY, USA, 1987. 4, 5, 7, 9, 10, 137, 138, 159

[102] J. O’Rourke. Computational Geometry in C. Cambridge University Press, New York,

NY, USA, 1998. 1, 67

[103] J. O’Rourke and G. T. Toussaint. Pattern recognition. In J.E Goodman and

J. O’Rourke, editors, Handbook of discrete and computational geometry, pages 1135–

1162. CRC Press, Inc., Boca Raton, Florida, USA, 2004. 3

[104] Joseph O’Rourke. Galleries need fewer mobile guards: a variation on Chvátal’s theorem.

Geom. Dedicata, 14:273–283, 1983. 10

[105] Ibrahim H. Osman and Gilbert Laporte. Metaheuristics: A bibliography. Annals of

Operations Research, 63, 1996. 38

[106] J. Pach, editor. New Trends in Discrete and Computational Geometry, volume 10 of

Algorithms and Combinatorics. Springer Verlag, 1993. 1

[107] E. Packer. Computing multiple watchman routes. In WEA, pages 114–128, 2008. 4

[108] T. Pavlidis and H. Y. Feng. Shape discrimination, syntatic pattern recognition., 1997.

174

228 BIBLIOGRAPHY

[109] Franco P. Preparata and Michael I. Shamos. Computational Geometry: An Introduction

(Monographs in Computer Science). Springer, August 1985. 1, 2

[110] Computational Science Education Project. Mathematical Optimization. 1995. 26, 27,

29

[111] Van den Berg J.P R. Wein, R. and D. Halperin. Planning near-optimal corridors amidst

obstacles. In Proc. 7th International Workshop on the Algorithmic Foundations of

Robotics - WAFR 2006, 2006. 3

[112] C.R. Reeves. Genetic algorithms. In F. Glover and G. Kochenberger, editors, Handbook

of Metaheuristics, pages 55–82. Kluwer Academic Publishers, 2003. v, 30, 31, 32, 33, 34

[113] J.-R. Sack and J. Urrutia. Handbook of computational geometry. North-Holland Pub-

lishing Co., Amsterdam, The Netherlands, The Netherlands, 2000. 1

[114] S. Schirra. Designing a computational geometry algorithms library. Research Re-

port MPI-I-97-1-014, Max-Planck-Institut für Informatik, Im Stadtwald, D-66123

Saarbrücken, Germany, July 1997. 2

[115] D. Schuchardt and H. Hecker. Two np-hard art-gallery problems for ortho-polygons.

Math. Logiv Quart, 41:261–267, 1995. 12, 65, 67, 77

[116] M. Sharir. Algorithmic motion planning in robotics. Computer, 22(3):9–20, 1989. 3

[117] T. Shermer. Hiding people in polygons. Computing, 42(2-3):109–131, 1989. 9, 11, 13,

39, 40, 206

[118] T.C. Shermer. Several short results in the combinatorics of visibility. Technical Report

91–2, May 1991. 10

[119] T.C. Shermer. Recent results in art galleries [geometry]. Proceedings of the IEEE,

80(9):1384–1399, Sep 1992. 4, 5, 9, 42

[120] J. Snoeyink and Z. Chong. Generating random monotone polygons. Technical report.

149

[121] W. Steiger and I. Streinu. Illumination by floodlights. Computational Geometry,

10(1):57 – 70, 1998. 10

[122] Harold Szu and Ralph Hartley. Fast simulated annealing. Physics Letters A, 122(3-

4):157 – 162, 1987. 28

[123] E.-G. Talbi. A taxonomy of hybrid metaheuristics. Journal of Heuristics, 8(5):541–564,

2002. 35, 36

BIBLIOGRAPHY 229

[124] A.P. Tomás and A.L. Bajuelos. Quadratic-time linear-space algorithms for generating

orthogonal polygons with a given number of vertices. In ICCSA (3), pages 117–126,

2004. viii, ix, 15, 159, 160, 161, 162

[125] A.P. Tomás, A.L. Bajuelos, and F. Marques. Approximation algorithms to minimum

vertex cover problems on polygons and terrains. In International Conference on Com-

putational Science, pages 869–878. Springer-Verlag, 2003. 4, 151

[126] A.P. Tomás, A.L. Bajuelos, and F. Marques. On visibility problems in the plane-solving

minimum vertex guard problems by successive approximations. In on-line Proceedings

of Artificial Intelligence and Mathematics, 2006. 4, 15, 159, 187

[127] G. Toussaint. What is computational geometry? Proceedings of the IEEE, 80(9):1347–

1363, Sep 1992. 1

[128] G. T. Toussaint. Computational Geometry. NorthHolland, Amsterdam, Netherlands,

1985. 1

[129] J. Urrutia. Art gallery and illumination problems. In J.-R. Sack and J. Urrutia, editors,

Handbook of computational geometry, pages 973–1027. Elsevier, 2000. 4, 5, 7, 8, 9, 10,

12, 13, 68, 112, 114

[130] V. Černý. Thermodynamical approach to the traveling salesman problem: An efficient

simulation algorithm. Journal of Optimization Theory and Applications, 45(1):41–51,

January 1985. 24

[131] Y. Wang, C. Hu, and Y. Tseng. Efficient placement and dispatch of sensors in a wireless

sensor network. IEEE Transactions on Mobile Computing, 7(2):262–274, 2008. 135

[132] D. W. Waynem. Applied Non-Parametric Statistics. PWS-KENT Publishing Company,

Boston, second edition, 1990. The Duxbury Advanced Series in Statistics and Decision

Sciences. 20

[133] T. Weise. Global Optimization Algorithms - Theory and Application. Thomas

Weise, 2007-05-01 edition, 2007. The book is online available at http://www.it-

weise.de/documents/index.html#W2007GOGP. 31, 32

[134] C. Worman and M. J. Keil. Polygon decomposition and the orthogonal art gallery

problem. Int. J. Comput. Geometry Appl., 17(2):105–138, 2007. 5

[135] X Yao. A new simulated annealing algorithm. International Journal of Computer

Mathematics, 56:161–168, 1995. 28

230 BIBLIOGRAPHY

[136] C. Zonnenberg. Conformal geometric algebra package. Master’s thesis, Department of

Information and Computing Sciences, Faculty of Sciences, Utrecht University, Nether-

lands, 2007. 3

	Contents
	List of Figures
	List of Tables
	List of Algorithms
	1 Introduction
	1.1 Visibility Problems
	1.1.1 Terminology and Definitions
	1.1.2 Guarding and Hiding Problems

	1.2 Structure of the Thesis

	I Approximation Strategies for Visibility Problems
	2 Approximation Methods
	2.1 Metaheuristics
	2.1.1 Simulated Annealing
	2.1.2 Genetic Algorithms

	2.2 Hybrid Metaheuristics

	3 Maximum Hidden Vertex Set Problem
	3.1 Problem Description
	3.2 Approximation Methods
	3.2.1 Greedy Strategies
	3.2.2 Simulated Annealing Strategy
	3.2.3 Genetic Algorithms Strategy

	3.3 Greedy-Sequential Strategy for the Minimum Clique Partition Problem
	3.4 Experiments and Results
	3.4.1 Arbitrary Polygons
	3.4.1.1 Analysis of the SA Parameters
	3.4.1.2 Comparison of the four strategies

	3.4.2 Orthogonal Polygons
	3.4.2.1 Analysis of the SA Parameters
	3.4.2.2 Comparison of the four strategies

	3.5 Concluding Remarks

	4 Minimum Vertex Guard Set Problem
	4.1 Problem Description
	4.2 Approximation Methods
	4.2.1 Pre-processing Step
	4.2.2 Greedy Strategy
	4.2.3 Simulated Annealing Strategy
	4.2.4 Genetic Algorithms Strategy
	4.2.5 Hybrid Strategies

	4.3 Greedy Strategies for visibility-independent sets
	4.4 Experiments and Results
	4.4.1 Arbitrary Polygons
	4.4.1.1 Analysis of the SA Parameters
	4.4.1.2 Analysis of the GA Parameters
	4.4.1.3 Comparison of the five strategies

	4.4.2 Orthogonal Polygons
	4.4.2.1 Analysis of the SA Parameters
	4.4.2.2 Analysis of the GA Parameters
	4.4.2.3 Comparison of the five strategies

	4.5 Concluding Remarks

	5 Minimum Vertex Floodlight Set Problem
	5.1 Problem Description
	5.2 Approximation Methods
	5.2.1 Pre-processing Step
	5.2.2 Simulated Annealing Strategy
	5.2.3 Genetic Algorithms Strategy
	5.2.4 Hybrid Strategies

	5.3 Greedy Strategy for floodlight visibility-independent sets
	5.4 Experiments and Results
	5.4.1 Orthogonal Polygons
	5.4.1.1 Analysis of the SA Parameters
	5.4.1.2 Comparison of the four strategies

	5.5 Concluding Remarks

	6 Minimum Vertex k-Modem Set Problem
	6.1 Problem Description
	6.2 k-Modem Visibility Polygon
	6.3 Approximation Method
	6.4 Experiments and Results
	6.4.1 Arbitrary Polygons
	6.4.2 Orthogonal Polygons

	6.5 Concluding Remarks

	II Visibility Problems on Special Classes of Polygons
	7 A Subclass of Orthogonal Polygons: the grid n-ogons
	7.1 Conventions, Definitions and Results
	7.2 More Results on grid n-ogons
	7.2.1 Spiral grid n-ogons
	7.2.2 Some Problems related to Thin grid n-ogons
	7.2.2.1 Max-Area-Thin grid n-ogon
	7.2.2.2 Classifying Thin grid n-ogons

	7.3 Visibility Problems on grid n-ogons
	7.3.1 Minimum Vertex Guard Set Problem on grid n-ogons
	7.3.1.1 Fat grid n-ogons
	7.3.1.2 Thin grid n-ogons

	7.3.2 Maximum Hidden Vertex Set Problem on grid n-ogons
	7.3.2.1 Thin grid n-ogons

	7.4 Concluding Remarks

	8 Spiral and Histogram Polygons
	8.1 Maximum Hidden Vertex Set and Maximum Hidden Set Problems
	8.1.1 Spiral Polygons
	8.1.2 Histogram Polygons

	8.2 Concluding Remarks

	9 Conclusions
	Bibliography

