Binary Analysis – Emulation and Instrumentation

REVERSE ENGINEERING

deti universidade de aveiro departamento de eletrónica, telecomunicações e informática

João Paulo Barraca

Binary Analysis Process (cont.)

- Up to now we know how ELF files are structured, but the question remains: how do we analyse ELF files?
 - Or any other binary executable

• A possible flow can be:

- File analysis (file, nm, ldd, content visualization, foremost, binwalk)
- Static Analysis (disassemblers and decompilers
- Behavioral Analysis (strace, LD_PRELOAD)
- Dynamic Analysis (debuggers and emulators)

- Allows capturing the dynamic behavior of some code
 - Behavior that depends on external input
 - Data structures and even code revealed during execution time

- Allows runtime validation/evaluation of binary code
 - A program, a firmware, part of a program, a sequence of instructions
 - Under a controlled context
 - On a different (more flexible, or controllable, or safe) environment

How

- Load the binary and *execute* instructions of the target binary
 - The meaning of "execute" is broader than it may look

- Allow some interaction with the binary while it is running
 - Break the execution at some point
 - Inspect memory and process its content
 - Change memory, either variables or code
 - Execute code in a controlled manner: step by step, in chunks, until a given point

Approaches

- Analysis of an execution flow can either be **passive** or **active**.
 - Choosing either one or the other has consequences on the soundness, the coverage, etc. of the results
- Passive analysis: observation
 - register values: return value of functions (rax), program counter (pc), stack frame (rbp, rsp), etc.
 - stack inspection: local variables, input parameters (according to some calling conventions), return address, etc.
 - heap inspection: the number of allocated blocks, their content, etc
- Active analysis: modification
 - Easily explore paths without finding inputs that actually activate them

5

Caveats

- Binary applications are more powerful and complex
 - May be written in multiple languages, and have code that runs in a VM
 - May consider code that changes the host system, or is modified in runtime

- Binary analysis of complex applications requires a different toolset
 - The principles will be the same, but the tools will allow fine grained control and isolation
 - Side effects and execution impact may be subtle (remember Meltdown and Spectre)
 - Host systems may be more complex

6

(Need for) Stability

- Reversing is significantly more difficult if execution is unstable.
 - Observations are affected by "random" factors, such as multithreaded execution, hardware behavior, user interactions with graphical interface and so on.
 - Applications being reversed should be isolated from external effects are much as possible.

- Determinism in a design results from stable execution of a program run
 - Thus it facilitates debugging and reversing.
 - State may also be deterministically altered for the entire program or for a specific function (fuzzing)
- Logs can be obtained from executions using monitor applications

(Need for) Save and Replaying

- Reversing may need tracing from the current state to the code where a change was produced.
 - It implies moving "back in time".
 - To restore past program state, one must **re-run it** and try to find failure source.
 - This operation may be performed multiple times, moving backward step-by-step, and then forward.

- Deterministic replay reconstructs program execution using previously recorded input data.
 - The first program run is used to record these inputs into the log.
 - Then all following runs will reconstruct the same behavior, because the program uses only recorded inputs.
 - Should included all inputs (disk, network)

8

(Need for) Safety

- Target binary may be malicious (... it is always malicious until proven safe)
- An important aspect of Reversing binaries is malware analysis
 - Malware is way to complex to be analyzed statically
 - But executing the malware may be dangerous
 - Most important: dangerous in ways unknown to the reverse engineer

• Solutions must create the adequate isolation boundaries between environments

- If stability is required, no interactions with the software under analysis
- Sometimes, isolation must be broken to trigger specific behavior
 - Network connection allowing contact with a C&C address or to download some payload
 - Disk or file presence
 - Whenever possible, such resource should be virtualized

9

(Need for) Support of Heterogeneous Architectures

- Dynamic analysis requires the execution of the program under analysis.
- An analyst will mostly run on an Intel x86 64bits computer (a COTS laptop/server)
 - Most embedded devices are ARM, which has several variants
 - Microcontrollers frequently use 8085, AVR or PIC architectures (MIPS)
 - Several specialty SOCs use custom architectures (the list is large...)
 - Several binary formats are popular: ELF, PE, DWARF and then many others from IoT
- Frameworks must be extensible in order to support a wide range of architectures
 - And the related interfaces and customizations
 - While minimizing the need for new tools

(Need for) Support of Peripherals and external entities

- Reversing an application with external interactions may require the existence of the related entities
 - Web sites, servers in fixed/dynamic IP addresses
 - Common physical devices for user input, storage, ...
 - Exotic external devices communicating through known or unknown buses
 - Hardware Dongles
- Need to recreate the set of devices/entities required to trigger a specific path
 - Frequently resorts to device emulation with mock software constructs

(Need for) Context manipulation (instrumentation)

• The main limitation of a dynamic approach is **coverage**.

- Every path that is not covered by the instrumented executions cannot be analyzed.
- This limitation can be slightly reduced by performing active instrumentation, and in particular by forcing conditional branching

Example of Intel PIN coverage output provided to IDA https://hex-rays.com/products/ida/support/tutorials/pin/pin_tutorial.html

Attributes: bp-based frame int cdecl main(int argc, const char **argv, const char **envp) oublic main nain proc near var 10= dword ptr -10h var C= dword ptr -0Ch var 8= qword ptr -8 rbp rbp, rsp rsp, 10h rax, fs:28h [rbp+var 8], rax eax, eax [rbp+var C], 14Dh rax, [rbp+var 10] rsi, rax rdi, unk 555555554814 lea nov eax, call isoc99 scanf eax, [rbp+var 10] nov [rbp+var C], eax short loc 555555554766 lea rdi, s ; "vo call puts short loc 555555554772 rdi, aNo 55555554772: eax, rdx, [rbp+var_8] rdx, fs:28h short locret 55555555478B call stack chk fai ocret 55555555478B eave retn nain endp

(Need for) Context manipulation (instrumentation)

- A reversing task will need to observe structure and behavior
 - The analysis should have enough coverage to recover the adequate level of detail
 - But while static analysis aims for wide coverage, dynamic analysis aims for focus
 - What if a specific course of execution is not triggered?
 - Results of dynamic analysis are dependent on the context of the execution

- Context manipulation allows setting the adequate state to trigger a specific flow of execution, increasing the reversing coverage
 - Achieved by careful manipulation of execution state, registers and memory content
 - Problems:
 - May lead to the recovery of an incorrect design as the found flow may be a decoy!
 - May lead to the recovery of artificial vulnerabilities, that do not really exist

Context manipulation (instrumentation)

• Live patching: modifying RAM in a debugger/controlled environment

• File Patching: alter binaries files to replace their content

• **Binary Instrumentation**: Real time, automated modification

Design Fidelity

- Program under analysis may detect it and try to defend actively against analysis.
 - For instance, it can hide a part of its behavior if it detects that it is being analyzed.
 - This anti-debugging and anti-instrumentation techniques are used by many malwares.
- So, when we achieve a hypothesis of a design, how correct it is?

The completely unrelated

In completely unrelated news, upcoming versions of Signal will be periodically fetching files to place in app storage. These files are never used for anything inside Signal and never interact with Signal software or data, but they look nice, and aesthetics are important in software. Files will only be returned for accounts that have been active installs for some time already, and only probabilistically in low percentages based on phone number sharding. We have a few different versions of files that we think are aesthetically pleasing, and will iterate through those slowly over time. There is no other significance to these files.

https://signal.org/blog/cellebrite-vulnerabilities/

Design Fidelity: example of gdb+br detection

gef≻ disassemble evil xDump of assembler code for fu		
0x000000008001163 <+0>:	endbr	64
0x000000008001167 <+4>:	push	rbp
0x000000008001168 <+5>:	mov	rbp,rsp
0x00000000800116b <+8>:	lea	rax,[rip+0xe9c]
0x000000008001172 <+15>:	mov	rdi,rax
0x0000000008001175 <+18>:	call	0x8001030 <puts@plt></puts@plt>
0x000000000800117a <+23>:	nop	
0x000000000800117b <+24>:	рор	rbp
0x000000000800117c <+25>:	ret	
End of assembler dump.		
gef► br *0x0000000008001163		br will modify address to trigger int 3
gef▶ br *0x0000000008001163 Breakpoint 1 at 0x8001163	-	br will modify address to trigger int3 opcode for int3 is 0xcc
Breakpoint 1 at 0x8001163		
Breakpoint 1 at 0x8001163 gef≻ r		
Breakpoint 1 at 0x8001163 gef≻ r Starting program: main	ead db	opcode for int3 is 0xcc
Breakpoint 1 at 0x8001163 gef▶ r Starting program: main [Thread debugging using libthre	_	opcode for int3 is 0xcc
Breakpoint 1 at 0x8001163 gef≻ r Starting program: main [Thread debugging using libthr Using host libthread_db librar	_	opcode for int3 is 0xcc
Breakpoint 1 at 0x8001163 gef▶ r Starting program: main [Thread debugging using libthr Using host libthread_db library evil at: 8001163 val: fa1e0fcc	_	opcode for int3 is 0xcc
Breakpoint 1 at 0x8001163 gef≻ r Starting program: main [Thread debugging using libthr Using host libthread_db librar; evil at: 8001163 val: fa1e0fcc Good code	y "/lib	<pre>opcode for int3 is 0xcc enabled] /x86_64-linux-gnu/libthread_db.so.1".</pre>
Breakpoint 1 at 0x8001163 gef▶ r Starting program: main [Thread debugging using libthr Using host libthread_db library evil at: 8001163 val: fa1e0fcc	y "/lib	<pre>opcode for int3 is 0xcc enabled] /x86_64-linux-gnu/libthread_db.so.1".</pre>
Breakpoint 1 at 0x8001163 gef≻ r Starting program: main [Thread debugging using libthr Using host libthread_db librar; evil at: 8001163 val: fa1e0fcc Good code	y "/lib	<pre>opcode for int3 is 0xcc enabled] /x86_64-linux-gnu/libthread_db.so.1".</pre>

antibr	batcat <u>main.c</u>
	File: main.c
1 2 3	<pre>#include<stdlib.h> #include<stdio.h> #include<stdint.h></stdint.h></stdio.h></stdlib.h></pre>
1 2 3 4 5 6 7 8 9	<pre>void good(){ printf("Good code\n"); }</pre>
10 11	<pre>void evil() { printf("Evil code\n"); } int main(int area, shartt area) {</pre>
12 13 14 15	<pre>int main(int argc, char** argv) { uint32_t* ptr = (void*) evil; printf("evil at: %x val: %x\n", ptr, *ptr);</pre>
16 17 18 19	<pre>if(*ptr == 0xfa1e0ff3) { evil(); }else {</pre>
20 21	good(); } }
antibr	778fc163 val: fa1e0ff3

16

Dynamic Binary Analysis of Binaries

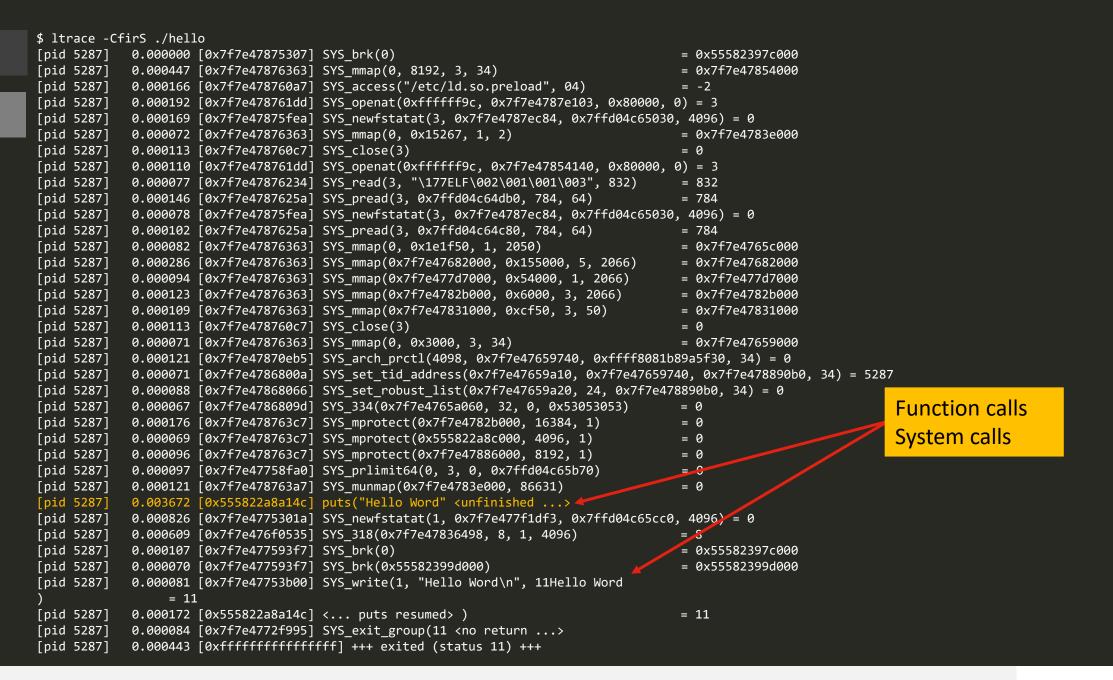
Processes

- Tracing
- Debugging
- Sandboxing
- Emulation
- Instrumentation

Tracers

... Already briefly discussed in previous lectures

- Tracers <u>execute a binary</u>, logging information about function and system calls
- Binary is executed in the analyst's system
 - That is: In a VM!
- Tracer adds hooks to application or kernel to gain information about execution
 - Access to files, packets sent, registry access
- No confinement or security measures in place
 - Actually, there may be no interaction between the tracer and the application
 - Tracer monitors system through kernel debug interfaces


Tracers

... Already briefly discussed in previous lectures

• Limitations:

- No isolation, no capability to analyze malicious or harmful code
- Can only inspect interactions between the application and the external environment
- Host environment must be compatible with the target binary
 - No possibility of analyzing windows binaries on linux, vice-versa, embedded systems on windows, etc...

- Linux: ltrace, strace (ptrace), bpftrace, wireshark, valgrind, cachegrind, callgrind, helgrind
- Windows: process monitor, wireshark

<u>File Edit Event Filter Tools Options H</u>elp

- 🗆 X

😂 🖬 🍳 👺 🖾 🗢 🔺 🏶 🗉 🛤 🦐	🎎 🛃 🚨 🎜 🞩			
Time of Day Process Name	PID Operation	Path	Result	Detail
6:20:34.4727264 PM 🔳 dwm.exe	1744 🌋 RegQueryValue	HKCU\SOFTWARE\Microsoft\Windows\DWM\ColorPrevalence	SUCCESS	Type: REG_DWORD, Length: 4, Data: 0
6:20:34.4733777 PM 🔳 dwm.exe		HKCU\SOFTWARE\Microsoft\Windows\DWM\ColorPrevalence	SUCCESS	Type: REG_DWORD, Length: 4, Data: 0
6:20:34.4734050 PM To dwm.exe		HKCU\SOFTWARE\Microsoft\Windows\DWM\ColorPrevalence	SUCCESS	Type: REG_DWORD, Length: 4, Data: 0
6:20:34.4745306 PM 🔳 atieclxx.exe		C:\Programs\ProcessMonitor\Procmon64.exe	SUCCESS	Name: \Programs\ProcessMonitor\Procmon64.exe
6:20:34.4784765 PM Toxit Reader Update Servic		C:\ProgramData\Foxit Software\Foxit Reader\FoxitData.txt	NAME NOT FOU	ND Desired Access: Read Attributes, Disposition: Open, Options: Open Reparse Point,
6:20:34.4806833 PM 🔳 dwm.exe	1744 🌋 RegQueryValue	HKCU\SOFTWARE\Microsoft\Windows\DWM\ColorPrevalence	SUCCESS	Type: REG_DWORD, Length: 4, Data: 0
6:20:34.4807006 PM 🔳 dwm.exe		HKCU\SOFTWARE\Microsoft\Windows\DWM\ColorPrevalence	SUCCESS	Type: REG_DWORD, Length: 4, Data: 0
6:20:34.4814350 PM 🔳 dwm.exe		HKCU\SOFTWARE\Microsoft\Windows\DWM\ColorPrevalence	SUCCESS	Type: REG_DWORD, Length: 4, Data: 0
6:20:34.4814669 PM 🔳 dwm.exe		HKCU\SOFTWARE\Microsoft\Windows\DWM\ColorPrevalence	SUCCESS	Type: REG_DWORD, Length: 4, Data: 0
6:20:34.4829904 PM 🔳 atiectxx.exe	4988 RueryNameInfo	C:\Programs\ProcessMonitor\Procmon64.exe	SUCCESS	Name: \Programs\ProcessMonitor\Procmon64.exe
6:20:34.4871868 PM 🔳 dwm.exe		HKCU\SOFTWARE\Microsoft\Windows\DWM\ColorPrevalence	SUCCESS	Type: REG_DWORD, Length: 4, Data: 0
6:20:34.4872250 PM 🔳 dwm.exe		HKCU\SOFTWARE\Microsoft\Windows\DWM\ColorPrevalence	SUCCESS	Type: REG_DWORD, Length: 4, Data: 0
6:20:34.4882720 PM 🔳 dwm.exe		HKCU\SOFTWARE\Microsoft\Windows\DWM\ColorPrevalence	SUCCESS	Type: REG_DWORD, Length: 4, Data: 0
6:20:34.4883107 PM 🔳 dwm.exe		HKCU\SOFTWARE\Microsoft\Windows\DWM\ColorPrevalence	SUCCESS	Type: REG_DWORD, Length: 4, Data: 0
6:20:34.4898183 PM 🔳 atiectxx.exe	4988 RueryNameInfo	C:\Programs\ProcessMonitor\Procmon64.exe	SUCCESS	Name: \Programs\ProcessMonitor\Procmon64.exe
6:20:34.4946592 PM 🔳 dwm.exe		HKCU\SOFTWARE\Microsoft\Windows\DWM\ColorPrevalence	SUCCESS	Type: REG_DWORD, Length: 4, Data: 0
6:20:34.4946777 PM 🔳 dwm.exe		HKCU\SOFTWARE\Microsoft\Windows\DWM\ColorPrevalence	SUCCESS	Type: REG_DWORD, Length: 4, Data: 0
6:20:34.4954656 PM 🔳 dwm.exe		HKCU\SOFTWARE\Microsoft\Windows\DWM\ColorPrevalence	SUCCESS	Type: REG_DWORD, Length: 4, Data: 0
6:20:34.4955028 PM 🔳 dwm.exe		HKCU\SOFTWARE\Microsoft\Windows\DWM\ColorPrevalence	SUCCESS	Type: REG_DWORD, Length: 4, Data: 0
6:20:34.4967488 PM 🔳 atiectxx.exe		C:\Programs\ProcessMonitor\Procmon64.exe	SUCCESS	Name: \Programs\ProcessMonitor\Procmon64.exe
6:20:34.5026921 PM 🔳 dwm.exe		HKCU\SOFTWARE\Microsoft\Windows\DWM\ColorPrevalence	SUCCESS	Type: REG DWORD, Length: 4, Data: 0
6:20:34.5027294 PM 🔳 dwm.exe	1744 🦧 RegQueryValue	HKCU\SOFTWARE\Microsoft\Windows\DWM\ColorPrevalence	SUCCESS	Type: REG_DWORD, Length: 4, Data: 0
6:20:34.5032906 PM 🔳 dwm.exe		HKCU\SOFTWARE\Microsoft\Windows\DWM\ColorPrevalence	SUCCESS	Type: REG_DWORD, Length: 4, Data: 0
6:20:34.5033048 PM 🔳 dwm.exe		HKCU\SOFTWARE\Microsoft\Windows\DWM\ColorPrevalence	SUCCESS	Type: REG_DWORD, Length: 4, Data: 0
6:20:34.5046926 PM 🔳 atiectxx.exe		C:\Programs\ProcessMonitor\Procmon64.exe	SUCCESS	Name: \Programs\ProcessMonitor\Procmon64.exe
6:20:34.5104047 PM 💽 Foxit Reader Update Servic		C:\ProgramData\Foxit Software\Foxit Reader\FoxitData.txt	NAME NOT FOU	ND Desired Access: Read Attributes, Disposition: Open, Options: Open Reparse Point,
6:20:34.5106292 PM 🔳 dwm.exe		HKCU\SOFTWARE\Microsoft\Windows\DWM\ColorPrevalence	SUCCESS	Type: REG_DWORD, Length: 4, Data: 0
6:20:34.5106426 PM 🔳 dwm.exe	1744 🦧 RegQueryValue	HKCU\SOFTWARE\Microsoft\Windows\DWM\ColorPrevalence	SUCCESS	Type: REG_DWORD, Length: 4, Data: 0
6:20:34.5114190 PM 🔳 dwm.exe		HKCU\SOFTWARE\Microsoft\Windows\DWM\ColorPrevalence	SUCCESS	Type: REG_DWORD, Length: 4, Data: 0
6:20:34.5114449 PM 🔳 dwm.exe		HKCU\SOFTWARE\Microsoft\Windows\DWM\ColorPrevalence	SUCCESS	Type: REG_DWORD, Length: 4, Data: 0
6:20:34.5126114 PM 🔳 atiectxx.exe	4988 🛃 QueryNameInfo	C:\Programs\ProcessMonitor\Procmon64.exe	SUCCESS	Name: \Programs\ProcessMonitor\Procmon64.exe
6:20:34.5187472 PM 🔳 dwm.exe		HKCU\SOFTWARE\Microsoft\Windows\DWM\ColorPrevalence	SUCCESS	Type: REG_DWORD, Length: 4, Data: 0
6:20:34.5187896 PM 🔳 dwm.exe	1744 🌋 RegQueryValue	HKCU\SOFTWARE\Microsoft\Windows\DWM\ColorPrevalence	SUCCESS	Type: REG_DWORD, Length: 4, Data: 0
6:20:34.5196183 PM 🔳 dwm.exe	1744 戱 RegQueryValue	HKCU\SOFTWARE\Microsoft\Windows\DWM\ColorPrevalence	SUCCESS	Type: REG_DWORD, Length: 4, Data: 0
6:20:34.5196579 PM 🔳 dwm.exe	1744 戱 RegQueryValue	HKCU\SOFTWARE\Microsoft\Windows\DWM\ColorPrevalence	SUCCESS	Type: REG_DWORD, Length: 4, Data: 0
6:20:34.5208130 PM 🔳 atiectxx.exe	4988 🛃 Query Name Info	C:\Programs\ProcessMonitor\Procmon64.exe	SUCCESS	Name: \Programs\ProcessMonitor\Procmon64.exe
6:20:34.5266925 PM 🔳 dwm.exe	1744 🚉 RegQueryValue	HKCU\SOFTWARE\Microsoft\Windows\DWM\ColorPrevalence	SUCCESS	Type: REG_DWORD, Length: 4, Data: 0
6:20:34.5267404 PM 🔳 dwm.exe	1744 🕂 RegQueryValue	HKCU\SOFTWARE\Microsoft\Windows\DWM\ColorPrevalence	SUCCESS	Type: REG_DWORD, Length: 4, Data: 0
6:20:34.5274177 PM 🔳 dwm.exe	1744 戱 RegQueryValue	HKCU\SOFTWARE\Microsoft\Windows\DWM\ColorPrevalence	SUCCESS	Type: REG_DWORD, Length: 4, Data: 0
6:20:34.5274533 PM 🔳 dwm.exe		HKCU\SOFTWARE\Microsoft\Windows\DWM\ColorPrevalence	SUCCESS	Type: REG_DWORD, Length: 4, Data: 0
6:20:34.5291568 PM 🔳 atiectxx.exe	4988 🛃 Query Name Info	C:\Programs\ProcessMonitor\Procmon64.exe	SUCCESS	Name: \Programs\ProcessMonitor\Procmon64.exe
6:20:34.5346890 PM 🔳 dwm.exe		HKCU\SOFTWARE\Microsoft\Windows\DWM\ColorPrevalence	SUCCESS	Type: REG_DWORD, Length: 4, Data: 0
6:20:34.5347068 PM 🔳 dwm.exe	1744 式 RegQueryValue	HKCU\SOFTWARE\Microsoft\Windows\DWM\ColorPrevalence	SUCCESS	Type: REG_DWORD, Length: 4, Data: 0
		UROLN COETHIADES IN ASSAULT STRUCTURE I	CUCCECC	T DEC DWORD I I A D I A

<

>

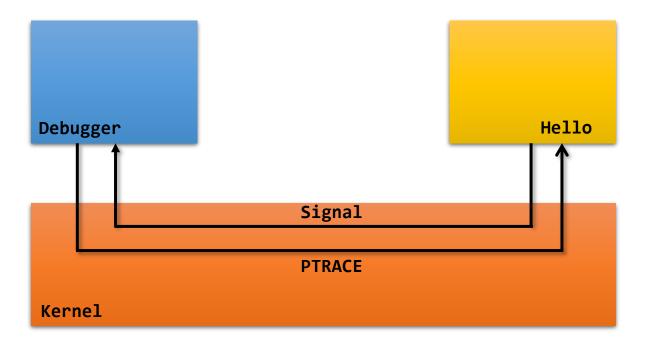
- Applications that can control (trace) a target executing binary
 - Debuggers can create a process and analyze it or attach to a running process
 - Process usually executes in the host system
 - This is the "typical", low tech way of dynamically analyzing a program
 - Reuses concepts/tools from the engineering process, applied to reverse engineering

- Provide: extensive, interactive control over a process execution flow
 - Frequently at the level of opcodes and assembly
 - Can be integrated with static analysis tools
 - Combining execution information with decompiled code, CFGs, disassembly

Limitations

- Debugging can be detected and subverted by the target application
 - Especially popular in malware and DRM systems
- Target application must be executed in a full hosted environment
 - Without isolation measures, this provides a serious security risk
 - Remote debugging may be used to circumvent this limitation
- Host system architecture must match the target binary architecture
 - Binary is loaded to the host system as a standard process
 - No debugging of windows in Linux, ARM or MIPS in x86
 - No direct way of debugging shellcode or a binary blob (e.g firmware).

How debuggers work?


- Debuggers explore system calls provided by the operating system
 - Debuggers either:
 - create a child process, sharing the same address space
 - attach to an existing process given that the user has the correct permissions (e.g. root)
 - Linux: **ptrace**
 - Windows: provides API for process control
 - CreateProcess with specific dwCreationFlags (DEBUG_PROCESS)
 - OpenProcess with dwDesiredAccess (PROCESS_VM_READ, PROCESS_VM_WRITE, PROCESS_VM_OPERATION)
- Debuggers may attach to hardware devices providing external debugging
 - Used in embedded devices

edb and x86dbg

le <u>V</u> iew <u>D</u> ebu	g <u>P</u> lugins <u>O</u> ptions <u>H</u> elp		
		ld-linux-x86-64.so.2: No Analysis Found	
· ·· ··			
	00007151:70344453 41 e8 00 00 31 c0 00007151:70344453 41 e8 00 00 31 c0 00007151:7034445 e8 b2 20 ff ff ff 00007151:7034456 84 b0 00007151:7034468 84 b0 00007151:7034468 84 b0 00007151:7034468 85 d5 20 00 00 00007151:7034471 48 b3 34 68 55 01 00 00007151:7034481 48 b3 34 68 55 01 00 00007151:7034481 48 b3 34 68 55 01 00 00007151:7034481 49 b5 b5 a0 01 00 00 00007151:7034481 49 b5 b5 a0 01 00 00 00007151:7034449 49 b5 b5 a0 01 00 00 00007151:7034449 49 b5 b5 a0 00 00 00007151:7034449 49 b5 b5 a0 00 00 00007151:7034449 49 b5 b4 98 10 00 00 00007151:7034449 48 b5 40 76 ff 00007151:7034449 48 b5 40 76 ff 00007151:7034449 48 b5 42 00007151:7034449 48 b9 65 00007151:7034449 48 b9 65 00007151:7034449 48 b3 46 70 f1 05 00 00007151:7034449 48 b3 46 70 f1 05 00 00007151:7034449 48 b3 65 00 00007151:7034449 48 b3 50 68 00 00007151:7034449 48 50 65 00 00007151:7034449 48 50 65 00 00007151:7034449 48 50 65 00 00007151:7034449 48 50 65 00 00007151:7034449 48 50 66 00 00007151:7034449 48 50 66 00 00007151:7034449 48 50 60 00 00007151:7034449 48 50 60 00 00007151:7034449 48	call 0x71573d65a459 call 0x71577d33d210 ing 0x71577d33d210 ing 0x71577d33d22 ing 0x71577d35a620 ing 0x71577d35a620 ing 0x71577d35a620 ing 0x71577d35a620 ing 0x71577d35a620 ing 0x71577d36a62 ing 0x71577d36a620 ing <th>Registers (2) NAX 000000000000000000000000000000000000</th>	Registers (2) NAX 000000000000000000000000000000000000
ii = 0x00000 p = 0x00007 a Dump 0x000000000	fffd3c9eae0	Stack Stack 0007fff:d329-460 000000000000000000000000000000000000	FIR ffff 3 2 1 0 E S P U FIR ffff 3 2 1 0 E S P U FIR 6000 Cond 0 0 0 E T 0 0 0 FIR 677 Data WARD S3 Mark 1 1 Bookmarks Registers
		Stack Debugger Error Console	

) 🔊 🔳 🔶 🖩 🌾 🛸 ·		🥒 fx # A2 👢 📃 👮	
🕮 CPU 🛛 💆 Log 👘 Notes	Breakpoints Memory Map		
P RAX RDX > 00007FF66FB61D7 00007FF66FB61D7		sub rsp,28 Op call procexp64.7FF66FB621B0	Hide FPU
00007FF68F861D8 00007FF66F861D8 00007FF66F861D8 00007FF66F861D8 00007FF66F861D9 00007FF66F861D9 00007FF66F861D9 00007FF66F861D9 00007FF66F861D9 00007FF66F861D9 00007FF66F861D8 00007FF67861D8 00000FF6	48:83C4 28 CC 48:83C4 28 CC 48:83C4 21 58:83C24 10 48:83C4 24 48:83C4 24 33C0 33C9 0FA2 44:88C1 44:88C1 45:33D1 44:88C2 44:88C3 88F0 33C9 44:88C8 88F0 33C9 41:8043 01 45:0800 0FA2 45:0801 885C24 04 885C24 0C 75:80 3190000 FF 48:0319FF07 48:0319FF07 48:0319FF07	<pre>add risp.38 int proceeds4.7FF66F861C04 int3 woo qword ptr ss:[rsp+10],rbx mov qword ptr ss:[rsp+10],rbx mov rdd ptr ss:[rsp+10],rsi push rdi sub rsp.10 woo rsd,eax xor ecx,eax woo recx,eax woo recx,eax woo rdd,eax xor ridd,riid mov ridd,edx xor ridd,refs6669 mov rsd,ebx mov rsd,ebx mov ecx,eax xor ecx,eax ior recx,eax xor ecx,eax xor rdd,7566549 mov rsd,refs66547 mov dword ptr ss:[rsp+1],eax wor woord ptr ss:[rsp+1],ebx mov dword ptr ss:[rsp+1],ebx mov dword ptr ss:[rsp+2],edx mov dword ptr ss:[rsp+2],edx mov dword ptr ss:[rsp+6],edx mov dword ptr ss:[rsp+6],edx mov dword ptr ss:[rsp+6],edx</pre>	RAX 00007FF66FB61D78 <procexp64.0ptionalheader.addressofent< td=""> RAX 000000164244000 <procexp64.0ptionalheader.addressofent< td=""> RDX 000000000000000 <procexp64.0ptionalheader.addressofent< td=""> RDX 000000000000000 <procexp64.0ptionalheader.addressofent< td=""> RDX 00000000000000 <procexp64.0ptionalheader.addressofent< td=""> RDX 00000000000000 <procexp64.0ptionalheader.addressofent< td=""> RD 0000000000000000 <procexp64.0ptionalheader.addressofent< td=""> R10 0000000000000000 <procexp64.0ptionalheader.addressofent< td=""> R11 00000000000000000 <procexp64.0ptionalheader.addressofent< td=""> R12 00000000000000000000 <procexp64.0ptionalheader.addressofent< td=""> RFLAGS 000000000000000000000000000000000000</procexp64.0ptionalheader.addressofent<></procexp64.0ptionalheader.addressofent<></procexp64.0ptionalheader.addressofent<></procexp64.0ptionalheader.addressofent<></procexp64.0ptionalheader.addressofent<></procexp64.0ptionalheader.addressofent<></procexp64.0ptionalheader.addressofent<></procexp64.0ptionalheader.addressofent<></procexp64.0ptionalheader.addressofent<></procexp64.0ptionalheader.addressofent<>
		ionalHeader.AddressOfEntryPoint>	
Dump 1 Dump 2 Dump 2 Dump 1 007FF825611000 CC CC CC 0007FF825611010 S6 157 48 0007FF825611020 00 00 88 0007FF825611030 01 00 00 0007FF825611030 01 00 00 0007FF825611030 03 00 00 0007FF825611040 P0 4C 88 14 0007FF825611080 24 44 45 0007FF825611080 27 07 85 1 0007FF825611080 27 07 87 1 44 0007FF825611080 27 07 87 1 44 45 0007FF825611080 26 14 45 1 45 1 45 0007FF825611000 E8 3 48 89 4 24 0007FF825611000 E8 3 48 89 46 45 1 46 47 <th>p 3 Image Dump 4 Image Dump 5 CC CC CC S5 S5 S5 S5 DAC S9 FE FE FS FS<</th> <th>Watch 1 Ix=locals D Struct 41 54 41 #IIIIItausvwaTA E 57 05 02 VAHH-5. by9Yn. 10. F F 159 48 B:2.0.1.4.1.4.1.4.1.1. A 48 88 52 00.4.7.1.0.5.4.1.1. F F 00 00 45 1.0.5F05E0E Son H.R. 00 00 45 1.0.5F05E1E Son H.S. 28 66 89 H.O.5H.N.15M5M F F 28 66 89 H.O.5H.N.15M5M F F 5C 24 42 .10.5H.N.15M5M F 5C 63 C0 6.4.1.55N5M F F 66 89 H.O.5H.N.15M5M F F 5C 24 72 .10.H.H.05F7.SB F 28 66 89 H.O.5H.N.15M5M F F 62 63 0.0.1.5H.N.15M5M F F 62 63 2.00 44.1.5H.4.2. F F 62 63 2.00 44.1.4.1.4.5H.7.8.3 F F 63 3.00 44.1.4.1.4.5H.4.2. F F F</th> <th>000000F1C41EF938 000000F1C41EF938 0000000F1C41EF938 0000000F1C41EF938 0000000F1C41EF938 0000000F1C41EF938 0000000F1C41EF938 000000F1C41EF938 000000F1C41EF938 0000000F1C41EF938 0000000F1C41EF938 000000000000000000000000000000000000</th>	p 3 Image Dump 4 Image Dump 5 CC CC CC S5 S5 S5 S5 DAC S9 FE FE FS FS<	Watch 1 Ix=locals D Struct 41 54 41 #IIIIItausvwaTA E 57 05 02 VAHH-5. by9Yn. 10. F F 159 48 B:2.0.1.4.1.4.1.4.1.1. A 48 88 52 00.4.7.1.0.5.4.1.1. F F 00 00 45 1.0.5F05E0E Son H.R. 00 00 45 1.0.5F05E1E Son H.S. 28 66 89 H.O.5H.N.15M5M F F 28 66 89 H.O.5H.N.15M5M F F 5C 24 42 .10.5H.N.15M5M F 5C 63 C0 6.4.1.55N5M F F 66 89 H.O.5H.N.15M5M F F 5C 24 72 .10.H.H.05F7.SB F 28 66 89 H.O.5H.N.15M5M F F 62 63 0.0.1.5H.N.15M5M F F 62 63 2.00 44.1.5H.4.2. F F 62 63 2.00 44.1.4.1.4.5H.7.8.3 F F 63 3.00 44.1.4.1.4.5H.4.2. F F F	000000F1C41EF938 000000F1C41EF938 0000000F1C41EF938 0000000F1C41EF938 0000000F1C41EF938 0000000F1C41EF938 0000000F1C41EF938 000000F1C41EF938 000000F1C41EF938 0000000F1C41EF938 0000000F1C41EF938 000000000000000000000000000000000000

Debugger set breakpoints which Trigger SIGTRAP, returning control to the debugger.

Patching the code with **0xCC** or using Hardware breakpoints (through **PTRACE**)

Debugging debugger.c

```
int main(int argc, char** argv)
 80
                                                                             {
     {
82
         pid t child pid;
83
                                                                        37
         if (argc < 2) {
85
             fprintf(stderr, "Expected a program name as argument\n");
             return -1;
87
         }
                                                                        41
                                                                                 }
         child pid = fork();
                                                                        42
         if (child pid == 0)
                                                                        43
90
             run_target(argv[1]);
                                                                        44
91
92
         else if (child pid > 0)
94
             run_debugger(child_pid);
         else {
                                fork() duplicates the current process. While
             perror("fork");
                                sharing the same address space.
             return -1;
100
         }
101
                                One (child) will execute run target()
102
         return 0;
103
                                Other (parent) will execute run_debugger()
```

```
void run target(const char* programname)
   procmsg("target started. will run '%s'\n", programname);
   if (ptrace(PTRACE TRACEME, 0, 0, 0) < 0) {
        perror("ptrace");
       return;
   execl(programname, programname, 0);
```

João Paulo Barraca

Debugging debugger.c

Child process allows tracing

```
int main(int argc, char** argv)
                                                                          33
 80
                                                                               {
      {
         pid t child pid;
 82
 83
         if (argc < 2) {</pre>
                                                                          37
 85
             fprintf(stderr, "Expected a program name as argument\n");
             return -1;
 87
          }
                                                                          41
                                                                                   }
         child pid = fork();
                                                                          42
         if (child pid == 0)
                                                                          43
 90
             run_target(argv[1]);
                                                                          44
 91
 92
                                                                              }
         else if (child pid > 0)
 94
             run_debugger(child_pid);
         else {
                                                      exec1 will replace the current process image with
             perror("fork");
             return -1;
                                                      the binary loaded from the storage.
100
          }
101
102
         return 0;
                                                      In this moment, the processes become different.
103
```

```
void run target (const char* programname)
    procmsg("target started. will run '%s'\n", programname);
    if (ptrace(PTRACE TRACEME, 0, 0, 0) < 0) {</pre>
        perror("ptrace");
        return;
    /* Replace this process's image with the given program */
    execl(programname, programname, 0);
```

Debugging debugger.c

Wait for process to start

Get CPU registers

Single Step through one instruction (ASM)

Wait for instruction to finish

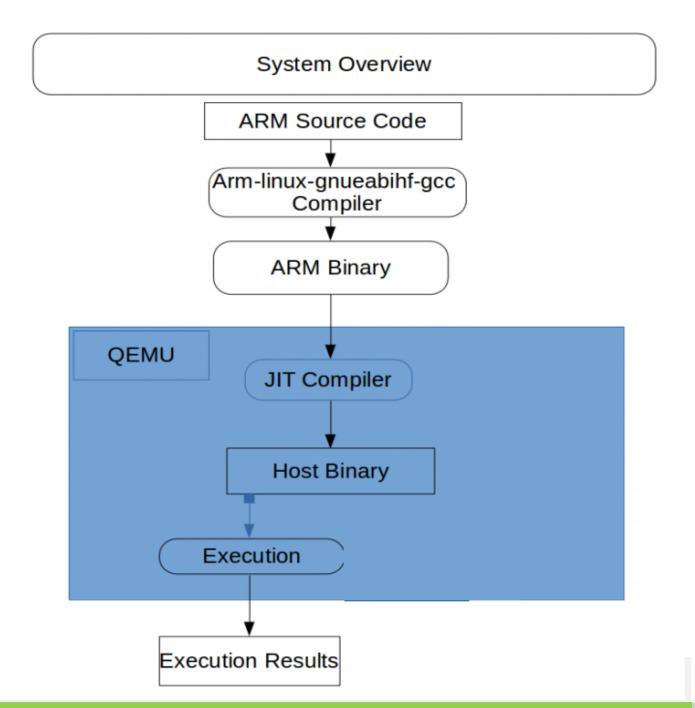
```
void run_debugger(pid_t child_pid)
48
49 ▼ {
         int wait status;
         unsigned icounter = 0;
         procmsg("debugger started\n");
52
         struct user_regs_struct regs;
54
         wait(&wait status);
57
58 v
         while (WIFSTOPPED(wait status)) {
             icounter++;
             ptrace(PTRACE GETREGS, child pid, 0, &regs);
             unsigned instr = ptrace(PTRACE PEEKTEXT, child pid, regs.rip, 0);
62
             procmsg("icounter = %u. RIP = 0x\%08x. instr = 0x\%08x \ln^{2},
63
                         icounter, regs.rip, instr);
64
             /* Make the child execute another instruction */
             if (ptrace(PTRACE SINGLESTEP, child pid, 0, 0) < 0) {
67 🔻
                 perror("ptrace");
69
                 return;
70
71
72
73
             wait(&wait status);
         }
75
76
         procmsg("the child executed %u instructions\n", icounter);
77
```

Sandboxing

- Sandboxing improves the control that debuggers provide
 - Creation of a distinct execution environment
 - Different libraries? Restricted view of the filesystem (minimal access to files)
 - Isolate some actions, providing some safety to analyze malicious applications
- Implementation: lightweight virtual machines or namespaces/containers
 - Supported my mechanisms of the Operating System or additional tools
 - Tools: sandboxie, pyrebox, panda
- An agent monitors interactions of the application inside the environment and may allow instrumentation
 - File access, network communication
 - Remote debugging

• Emulators are common backends for secur sandboxes

- May provide much better isolation as the guest and host environments are distinct
 - Kernel is not shared, hardware is emulated
- Tools: <u>QEMU</u>, Virtualbox, Vmware


- Emulation types
 - Full system emulation
 - User mode emulation

User Mode Emulation

- Launches a processes directly, but on a restricted environment
 - Process may be compiled for one CPU and executed on another CPU
 - Address space is restricted, such as filesystem and libraries available
 - Interaction with Host OS is mediated by the emulator
- Emulator process native CPU instructions (emulation/translation) and:
 - Provide means to translate syscalls from guest to host OS
 - Understand intrinsic characteristics such as clone
 - Clone is used to spawn new processes and will require the creation of a new emulation environment
 - Handle signals between analyzed binary and the host system
- May provide integration with debugging tools

User Mode Emulation with QEMU

- QEMU allows user mode emulation as long as the OS is kept the same
- What it does:
 - Machine code translation from any CPU to any CPU
 - Syscall mapping
 - Data structure conversion (Bit-order and Bit-width conversions)
 - Extensive tracing capability to the level of Micro Ops
- Provides a **gdbserver** interface for interaction with GDB
- Usefulness: reverse engineering applications compiled to other architectures

Full System Emulation

- Basically: a full-blown virtual machine
 - Emulates a highly configurable set of hardware, including embedded devices
 - Maps interactions to Host resources (screen, disk, network)
 - RE aware software tools expose debugging interfaces (usually to gdb)
- Provides the best level of isolation
 - All accesses are mediated by the emulator, reducing the attack surface to emulator components
 - Allows analyzing other binaries besides standard executable files
 - Firmware, MBR, UEFI
- Malware frequently try to detect Virtual Machines, emulators and debuggers...
 - With variable sophistication

Remote debugging with emulators

gdb and gdbserver

- **gdb** can debug remote applications
 - It can even debug remote kernels and firmware
 - Why? Consider embedded devices, software inside an emulator
- **gdbserver** is launched on the target system, with the arguments:
 - Either a device name (to use a serial line) or a TCP hostname and portnumber, and the path and filename of the executable to be debugged
 - It then waits passively for the host **gdb** to communicate with it.
- **gdb** is run on the host, with the arguments:
 - The path and filename of the executable (and any sources) on the host, and
 - A device name (for a serial line) or the IP address and port number needed for connection to the target system.
- Alternative: the remote application is compiled with a stub that provides a **gdbserver** interface when the application is launched

Reversing an ARM binary

<pre>(root@pc)-[/tmp/er/arm] # gemu-arm -Lsinglestep -g 1234 crackme-dyn-arm]</pre>	<pre>(user@pc)-[/tmp/er/arm] \$ gdb-multiarch ./crackme-dyn-arm GNU gdb (Debian 10.1-1.7) 10.1.90.20210103-git Copyright (C) 2021 Free Software Foundation, Inc. License GPLv3+: GNU GPL version 3 or later <http: enses="" gnu.org="" gpl.html="" lic=""> This is free software: you are free to change and redistribute it. There is NO WARRANTY, to the extent permitted by law. Type "show copying" and "show warranty" for details. This GDB was configured as "x86_64-linux-gnu". Type "show configuration" for configuration details. For bug reporting instructions, please see: <https: bugs="" gdb="" software="" www.gnu.org=""></https:>. Find the GDB manual and other documentation resources online a t: <http: documentation="" gdb="" software="" www.gnu.org=""></http:>.</http:></pre>
	<pre>For help, type "help". Type "apropos word" to search for commands related to "word" Reading symbols from ./crackme-dyn-arm (No debugging symbols found in ./crackme-dyn-arm) (gdb) target remote localhost:1234 Remote debugging using localhost:1234 warning: remote target does not support file transfer, attempt ing to access files from local filesystem. Reading symbols found in /tmp/er/arm/lib/ld-linux-armhf.so.3 (No debugging symbols found in /tmp/er/arm/lib/ld-linux-armhf.so.3 0×3ffcea30 in ?? () from /tmp/er/arm/lib/ld-linux-armhf.so.3 (gdb) br main Breakpoint 1 at 0×10574 (gdb)</pre>

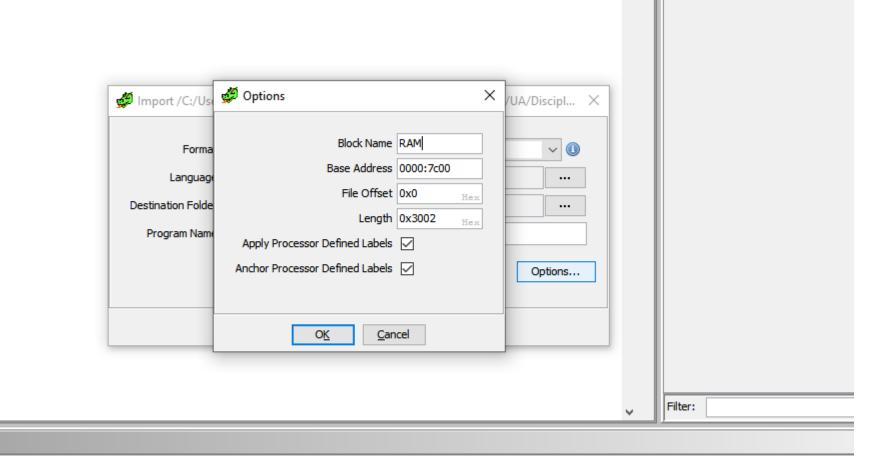
unknown.bin

- Remember the **unknown.bin** file?
 - Well... looks like a PDF (is a PDF)
 - but \$ file unknown.bin returns "unknown.bin: DOS/MBR boot sector"

- What we may extrapolate from that:
 - Seems to be a DOS/Master Boot Record (Master boot record Wikipedia)
 - DOS was only released for i386 (16bits and 32bits)
 - qemu-system-i386 may boot it if used as a hard disk or floppy disk

unknown.bin

- How to address such files?
 - Binary files other than ELFs (or PE or other similar) obey to a fixed set of rules
 - It is required to check the datasheets and gather information required to load the file.
 - Important:
 - CPU used, CPU mode, relevant or required peripherals: to know how to decode the binary instructions
 - Program Entry Point: to know where the program starts, and where disassembly should start

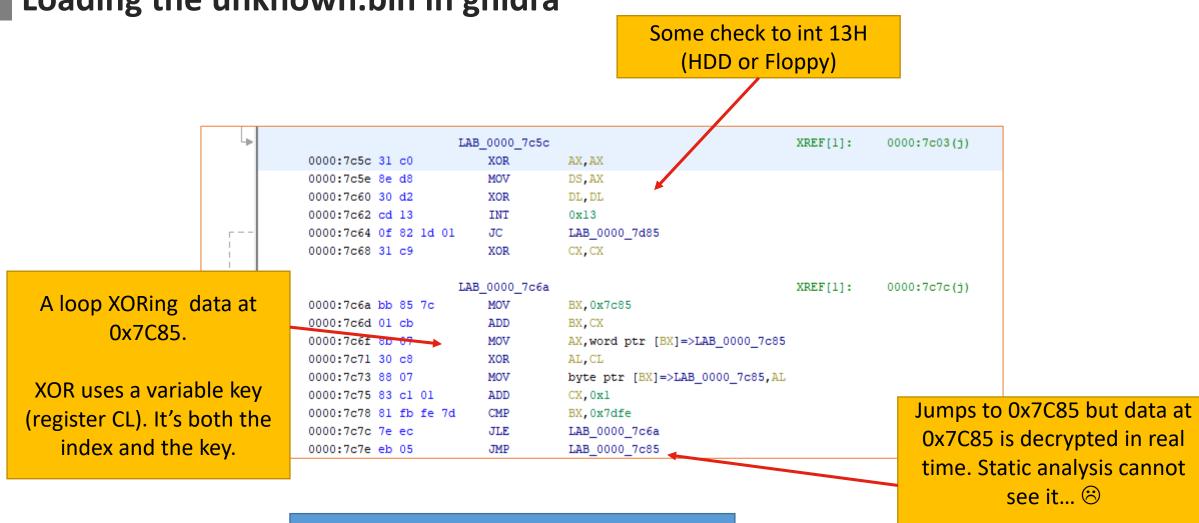

• From a Master Boot Record we may know:

- MBR is loaded to address 0x7C00
- MBR code runs in Intel x86 Real Mode (16bits)
- There are quite a few limitations and assumptions: <u>IBM DOS 2.00 Master Boot Record (pcministry.com</u>)
- There is no OS running. Input/Output must use BIOS Interrupts

Loading the unknown.bin in ghidra

		🚽 🗳 Language					×	
Jmport /C:/Users/	/user/Documents/OneDrive - Universidade de Aveiro/U	Select Langua	ge and Compiler Speci	ification				
		Processor	🛓 Variant	Size	Endian	Compiler		
		tricore	TC176x	32	little	default	~	
Format:	Raw Binary	tricore	TC29x		little	default		
Language		V850	E1, E2, E2M		little	default		
Language:		x86	Protected Mode		little	default		
Destination Folder:	content:/	x86	Real Mode		little	default		
		x86	System Mana		little	default		
Program Name:	unknown.bin	x86	default		little	Borland C++		
		×86	default	33	little	Delobi		
		Filter:				2	÷ -	
	Discourse in the Internation	Description -						
	Please select a language.	Intel/AMD 16-	bit x86 Real Mode					
	OK Cancel	Show Only	Recommended Langu	age/Compiler Specs	i -			
		· · · · · · · · · · · · · · · · · · ·						
				0 11				
			L	OK Car	icel			
			V Filter:					
								lu - in
							RetSyncPl	
							🕝 Status: id	dle

Loading the unknown.bin in ghidra


Loading the unknown.bin in ghidra

	11		
	// RAM		
	// ram:0000:7	c00-ram:	0000:ac01
	11		
assume DF =	0x0 (Default)		
0000:7c00 25	??	25h	8
0000:7c01 ff	??	FFh	
0000:7c02 ff	??	FFh	
0000:7c03 eb	??	EBh	
0000:7c04 57	??	57h	W
0000:7c05 0a	??	0Ah	
0000:7c06 00	??	00h	
0000:7c07 00	??	00h	
0000:7c08 00	??	00h	
0000:7c09 00	??	00h	
0000:7c0a 00	??	00h	
0000:7c0b 00	??	00h	
0000:7c0c 00	??	00h	
0000:7c0d 00	??	00h	
0000:7c0e 00	??	00h	
0000:7c0f 00	??	00h	
0000:7c10 00	??	00h	
0000:7c11 00	??	00h	
0000:7c12 00	??	00h	
0000:7c13 00	??	00h	
0000:7c14 00	??	00h	
0000:7c15 00	??	00h	
0000:7c16 00	??	00h	
0000:7c17 00	??	00h	
0000:7c18 00	??	00h	

If we state that 0x7C00 has code, looks like we have something

		11									
		// RAM									
	// ram:0000:7c00-ram:0000:ac01										
	11										
	assume D	F = 0x0 (Defaul	t)								
	0000:7c00 25 f	fff AND	AX, Oxffff								
-	0000:7c03 eb 5	57 JMP	LAB_0000_7c5c								
	0000:7c05 0a	??	0Ah								
	0000:7c06 00	??	00h								
	0000:7c07 00	??	00h								
	0000:7c08 00	??	00h								
	0000:7c09 00	??	00h								
	0000:7c0a 00	??	00h								
	0000:7c0b 00	22	00h								
	0000:7c0c 00	22	00h								
	0000:7c0d 00	??	00h								
	0000:7c0e 00	22	00h								
	0000:7c0f 00	??	00h								
	0000:7c10 00	22	00h								
	0000:7c11 00	??	00h								
	0000:7c12 00	??	00h								
	0000:7c13 00	22	00h								
	0000:7c14 00	??	00h								
	0000:7c15 00	??	00h								
	0000:7c16 00	??	00h								
	0000:7c17 00	??	00h								
	0000:7c18 00	??	00h								
	0000:7c19 00	??	00h								
	0000:7cla 00	??	00h								
	0000:7clb 00	??	00h								

48

Loading the unknown.bin in ghidra

for i in range(0x7dfe - 0x7c85): ram[0x7c85 + i] ^= i

Must use dynamic analysis 🙂

Loading the unknown.bin in qemu with gdb

Execute GDB Connect to the gdbserver Do some initialization to set the CPU and display layout

<pre>(root@pc)-[/tmp/mbr] # gemu-system-i386 -m 1M -fda unknown.bin -s -S -monitor telnet:127.0.0.1:2222,ser ver,nowait; WARNING: Image format was not specified for 'unknown.bin' and probing guessed raw. Automatically detecting the format is dangerous for raw images, write operat Launch gemu-system-i386 with a e restrictions.</pre>	<pre>(root@pc)-[/tmp/mbr] # gdb -ix gdb init real mode.txt \ -ex 'target remote localhost:1234' \ -ex 'break *0×7c00' \ -ex 'continue' GNU gdb (Debian 10.1-1.7) 10.1.90.20210103-git Copyright (C) 2021 Free Software Foundation, Inc. License GPLv3+: GNU GPL version 3 or later <http: gnu.org="" gpl.html="" licenses=""> This is free software: you are free to change and redistribute it. There is NO WARRANTY, to the extent permitted by law.</http:></pre>
QEMU [Paused]	Type "show copying" and "show warranty" for details. This GDB was configured as "x86_64-linux-gnu". Type "show configuration" for configuration details. For bug reporting instructions, please see: <https: bugs="" gdb="" software="" www.gnu.org=""></https:> . Find the GDB manual and other documentation resources online at: <http: documentation="" gdb="" software="" www.gnu.org=""></http:> .
Machine View SeaBIOS (version 1.14.0-2) iPXE (http://ipxe.org) 00:03.0 CA00 PCI2.10 PnP PMM+000000000+00000000 CA00 Booting from Hard Disk Boot failed: could not read the boot disk Booting from Floppy	For help, type "help". Type "apropos word" to search for commands related to "word". warning: A handler for the OS ABI "GNU/Linux" is not built into this configuration of GDB. Attempting to continue with the default i8086 settings. The target architecture is set to "i8086". warning: A handler for the OS ABI "GNU/Linux" is not built into this configuration of GDB. Attempting to continue with the default i8086 settings. Remote debugging using localhost:1234 warning: No executable has been specified and target does not support determining executable has been specified and target does not support determining executable automatically. Try using the "file" command. 0000 0000 0000 0000 0000 0000 0000 00

Loading the unknown.bin in qemu with gdb

Approach:

- Set a breakpoint to 0x7c85
 - Continue (let it decrypt)

<pre>(root@ pc)-[/tmp/mbr] # gemu-system-i386 -m 1M -fda unknown.bin -s -S -monitor telnet:127.0.0.1:2222,ser ver,nowait; WARNING: Image format was not specified for 'unknown.bin' and probing guessed raw. Automatically detecting the format is dangerous for raw images, write operat ions on block 0 will be restricted. Specify the 'raw' format explicitly to remove the restrictions. </pre>	0×7c13: add BYTE PTR [bx+si],al Breakpoint 1, 0×00007c00 in ?? () real-mode-gdb\$ br *0×7c85 Breakpoint 2 at 0×7c85 real-mode-gdb\$ c Continuing. [STACK] D006 F000 0000 0000 6F5E 0000 81EA 0000 822B 0000 0000 0000 0000 81EA 0000 [DS:SI] 000000000: 53 FF 00 F0 53 FF 00 F0 C3 E2 00 F0 53 FF 00 F0 S SS 00000010: 53 FF 00 F0 53 FF 00 F0 C3 E2 00 F0 53 FF 00 F0 S SS 00000020: A5 FE 00 F0 54 FF 00 F0 53 FF 00 F0 34 D4 00 F044 00000030: 34 D4 00 F0 34 D4 00 F0 34 D4 00 F0 44W4
QEMU [Paused] _ 🗆 🗙	00000010: 53 FF 00 F0 54 FF 00 F0 53 FF 00 F0 53 FF 00 F0 5T.SS
Machine View SeaBIOS (version 1.14.0-2)	00000020: A5 FE 00 F0 87 E9 00 F0 34 D4 00 F0 34 D4 00 F044 00000030: 34 D4 00 F0 34 D4 00 F0 57 EF 00 F0 34 D4 00 F0 4444
iPXE (http://ipxe.org) 00:03.0 CA00 PCI2.10 PnP PMM+000000000+000000000 CA00 Booting from Hard Disk Boot failed: could not read the boot disk	[CPU] AX: 00D0 BX: 7DFF CX: 017B DX: 0000 SI: 0000 DI: 0000 SP: 6F00 BP: 0000 CS: 0000 DS: 0000 ES: 0000 SS: 0000 IP: 7C85 EIP:00007C85 CS:IP: 0000:7C85 (0×07C85) SS:SP: 0000:6F00 (0×06F00) SS:BP: 0000:0000 (0×00000)
Booting from Floppy -	OF <0> DF <0> IF <1> TF <0> SF <0> ZF <0> AF <0> PF <0> CF <0> ID <0> VIP <0> VIF <0> AC <0> VM <0> RF <0> NT <0> IOPL <0>
o in Paulo Barraca	Breakpoint 2, 0×00007c85 in ?? () real-mode-gdb\$

RING

Loading the unknown.bin in qemu with gdb

Connect to the QEMU Control socket Dump physical RAM (1MB) This file can be loaded in ghidra and should contain the decrypted code! ©

Can you recover the flags only with RE? (*)

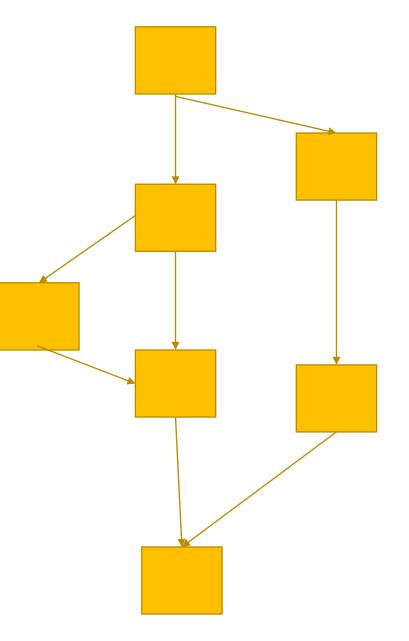
(user @ pc)-[~] \$ telnet localhost 2222 Trying ::1... Trying 127.0.0.1... Connected to localhost. Escape character is '^]'. QEMU 5.2.0 monitor - type 'help' for more information (qemu) pmemsave 0 1048576 mem-at-7c85 (qemu)

> (*) there may be some additional steps involved. Analyze CFGs, rename, retype and combine with dynamic analysis whenever relevant Enjoy the ASCII art and praise @zezadas for the great work with this binary.

- DBI system as an <u>application virtual machine</u> that interprets the ISA of a specific platform
 - usually (but not always) coinciding with the one where the system runs
 - offering instrumentation capabilities to support monitoring and altering instructions and data from an analysis tool component
 - Up to the level of a single instruction
- DBI systems expand standard Dynamic Binary Analysis tasks by
 - Fine grained monitoring capabilities
 - Full control over data and instructions, potentially increasing Reverse Engineering Scope
- Uses
 - Measure performance, Detect vulnerabilities, Force code execution, Fuzz binary programs at the scale of a group of instructions

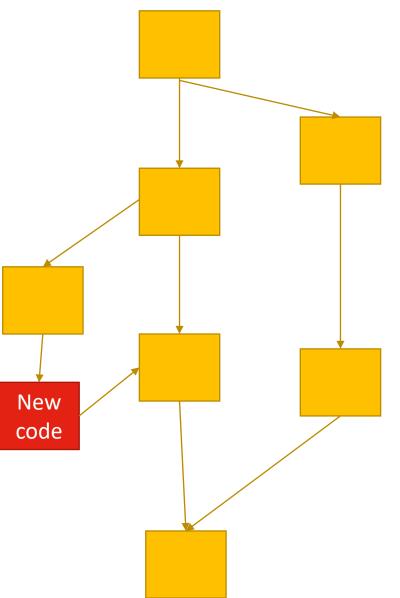
caveats

- DBI is vulnerable to specific attacks targeting the emulator
 - Purpose: avoid the use of emulators or induce incorrect results
 - Exploit the fact that DBI tools are slow
 - Exploit the fact that the system is emulated and differs from a real system

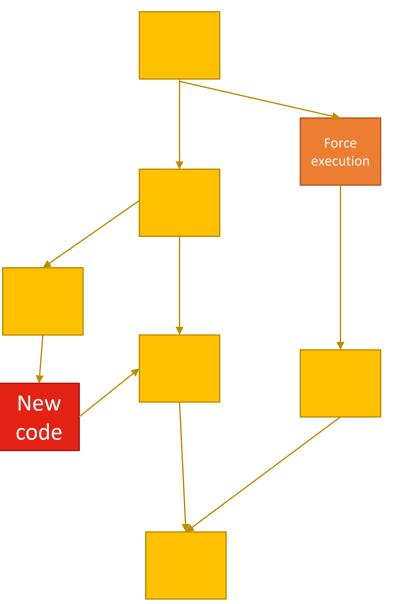

• Some approaches

- Extensive loops Timing measurements
- Timing measurements
- Testing for system specific behavior

```
for (n = 0; n < 2000000; ++n)
128
129
       EnterCriticalSection(&CriticalSection);
130
       mw junk 0();
131
132
       v6[1] = (int)v6;
133
       v6[0] = 707220816;
       *( DWORD *)sz = dword 41A4F4;
134
135
       CharUpperW(sz);
136
       for ( ii = 0; ii < 5; ++ii )
137
138
         v6[2] = -199066008;
139
         v8 = 0;
140
141
       LeaveCriticalSection(&CriticalSection);
142
     DeleteCriticalSection(&CriticalSection);
143
```


- Instrumentation
 - Insert Code

- Dynamic Binary Instrumentation
 - "Running" Code


- Instrumentation
 - Insert Code

- Dynamic Binary Instrumentation
 - "Running" Code

- Instrumentation
 - Insert Code

- Dynamic Binary Instrumentation
 - "Running" Code

How they work?

- Rebuild a program binary code using some JIT technique
 - Insert trace points and hooks for inspection
 - Divert execution to <u>additional user specified functions</u>
 - Monitor access to memory regions
 - Potentially triggering callbacks on access
 - May reimplement access to IOs or even syscalls and interrupts
 - May create a fully Emulated Execution Environment
 - Can be combined with an Emulation platform such as QEMU or Unicorn (a fork from QEMU)

• Popular tools: valgrind, DynamoRIO, Intel PIN, DynInst, Qiling, Frida

	DBI PRIMITIVES								
APPLICATION DOMAIN	INSTRUCTIONS				SYSTEM	LIBRARY	THREADS &	CODE	EXCEPTIONS
	MEMORY R/W	CALLS/RETS	BRANCHES	OTHER	CALLS	CALLS	PROCESSES	LOADING	& SIGNALS
Cryptoanalysis	\checkmark	 ✓ 	\checkmark	\checkmark					
MALICIOUS SOFTWARE ANALYSIS	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
VULNERABILITY DETECTION	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			
Software Plagiarism	\checkmark				\checkmark				
Reverse Engineering	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			
INFORMATION FLOW TRACKING	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark			\checkmark
Software Protection	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Daniele D'Elia et al, SoK: Using Dynamic Binary Instrumentation for Security, AsiaCCS, 2019

DBI tool that can perform:

- Emulation: Executes binary code step by step, replacing instructions
- Binary instrumentation: allows injection of user specified code
- Cross-platform and cross-architectural analysis: analyze one architecture or OS on another
- Sandboxing: I/O is redirected to fake devices (files, sockets)
- **On raw binaries**: used to analyze blobs from binary devices or shellcode

Emulation

- Syscalls and interrupt are implemented in python
 - Program calls syscall/interrupt
 - Qiling invokes handler in python, which mimics a standard system
 - Implementation can be overridden by the user

- Host OS is never called, and result is provided by Qiling
 - Advantages:
 - Great control over the execution
 - Great isolation
 - Disadvantages:
 - Not all calls are implemented
 - Behavior mimics an ideal system and may deviate from reality

Instrumentation

- User can define hooks to triggering callbacks on an event
 - Because an emulator is translating code in real time, instruction level hooks are possible

• Example

- Code execution reaches a specific address
- An address is written or read
- A function is called, or is leaving
- An instruction is executed

Cross Platform and Cross Architecture

- Binary code is emulated, allowing cross architecture execution
 - Target architecture instructions are compiled to native instructions

- Because all syscalls and interrupts are emulated, host platform can differ from target platform
 - As Qiling is based on Unicorn (Qemu), a wide range of possibilities is available

Loading an Elf

- Qiling has several loaders
 - MBR
 - PE, ELF, MachO
 - Unstructured binary (shellcode)

- Loader will make code available to be <u>emulated</u> on a secure <u>rootfs</u>
 - Calls to interrupts and syscalls are implemented in python

```
[=]
                        brk(input = 0x0)
                [=]
                        uname(address = 0x80000000d960)
                [=]
                        access(path = 0x7ffff7dfa9b0, mode = 0x4)
                        openat(fd = 0xfffff9c, path = 0x7ffff7df7b67, flags = 0x80000, mode = 0x0)
                [=]
                        openat(fd = 0xffffff9c, path = 0x80000000cef0, flags = 0x80000, mode = 0x0)
                [=]
                        stat(path = 0x80000000cef0, buf_ptr = 0x8000000cfa0)
                        openat(fd = 0xffffff9c, path = 0x80000000cef0, flags = 0x80000, mode = 0x0)
                        stat(path = 0x80000000cef0, buf_ptr = 0x8000000cfa0)
                [=]
                        openat(fd = 0xffffff9c, path = 0x80000000cef0, flags = 0x80000, mode = 0x0)
                [=]
                        stat(path = 0x80000000cef0, buf_ptr = 0x8000000cfa0)
                        openat(fd = 0xffffff9c, path = 0x80000000cef0, flags = 0x80000, mode = 0x0)
                [=]
                        stat(path = 0x80000000cef0, buf_ptr = 0x8000000cfa0)
                [=]
                        openat(fd = 0xffffff9c, path = 0x80000000cef0, flags = 0x80000, mode = 0x0)
                        stat(path = 0x80000000cef0, buf_ptr = 0x8000000cfa0)
                        openat(fd = 0xffffff9c, path = 0x80000000cef0, flags = 0x80000, mode = 0x0)
                [=]
                        stat(path = 0x80000000cef0, buf_ptr = 0x8000000cfa0)
                        openat(fd = 0xffffff9c, path = 0x80000000cef0, flags = 0x80000, mode = 0x0)
                        stat(path = 0x80000000cef0, buf_ptr = 0x8000000cfa0)
                [=]
                        openat(fd = 0xffffff9c, path = 0x80000000cef0, flags = 0x80000, mode = 0x0)
                        read(fd = 0x3, buf = 0x800000000d0f8, len = 0x340)
                [=]
                        fstat(fd = 0x3, buf_ptr = 0x8000000cfa0)
                        mmap(addr = 0x0, length = 0x1c4508, prot = 0x1, flags = 0x802, fd = 0x3, pgoffset = 0x0)
                [=]
                        mprotect(start = 0x7fffb7dfb000, mlen = 0x196000, prot = 0x0)
                [=]
                        mmap(addr = 0x7fffb7dfb000, length = 0x14b000, prot = 0x5, flags = 0x812, fd = 0x3, pgoffset = 0x25000)
                [=]
                        mmap(addr = 0x7fffb7f46000, length = 0x4a000, prot = 0x1, flags = 0x812, fd = 0x3, pgoffset = 0x170000)
                [=]
                        mmap(addr = 0x7fffb7f91000, length = 0x6000, prot = 0x3, flags = 0x812, fd = 0x3, pgoffset = 0x1ba000)
                [=]
                        mmap(addr = 0x7fffb7f97000, length = 0x3508, prot = 0x3, flags = 0x32, fd = 0xffffffff, pgoffset = 0x0)
                [=]
                        close(fd = 0x3)
                        mmap(addr = 0x0, length = 0x2000, prot = 0x3, flags = 0x22, fd = 0xfffffffff, pgoffset = 0x0)
                [=]
                        arch_prctl(ARCHX = 0x1002, ARCH_SET_FS = 0x7fffb7f9bf40)
                        mprotect(start = 0x7fffb7f91000, mlen = 0x3000, prot = 0x1)
                        mprotect(start = 0x555555557000, mlen = 0x1000, prot = 0x1)
                [=]
                        mprotect(start = 0x7ffff7dff000, mlen = 0x1000, prot = 0x1)
                [=]
                        fstat(fd = 0x1, buf_ptr = 0x80000000d630)
                [=]
                        ioctl(fd = 0x1, cmd = 0x5401, arg = 0x80000000d590)
                        brk(input = 0x0)
                [=]
                        brk(input = 0x55555557c000)
                        write(fd = 0x1, buf = 0x55555552a0, count = 0x6)
                Hello [!]
                                0x7fffb7e9bc08: syscall ql_syscall_clock_nanosleep number = 0xe6(230) not implemented
                [=]
                        write(fd = 0x1, buf = 0x555555552a0, count = 0x6)
João Paulo Barraca
                World
                [=]
                        exit_group(exit_code = 0x0)
```

66

SE ENGINEERING

Overriding a library function

- Functions can be overridden with custom implementations
 - Code can access arguments of basic types (Strings, Ints, Floats)
 - Inside function, other external functions can be called
 - Entire set of registries and memory can be manipulated
 - Return is provided to the calling function to be <u>emulated</u> on a secure <u>rootfs</u>
 - Calls to interrupts and syscalls are implemented in python

```
qiling import *
    from giling.os.const import UINT
    import time
    def my_sleep(qL):
        args = ql.os.resolve_fcall_params({'seconds': UINT})
        seconds = args['seconds']
        print(f"Sleep: {seconds}")
 8
        if seconds > 10:
            print("QL: Limiting sleep to 10s")
10
11
            time.sleep(10)
        else:
12
13
            time.sleep(seconds)
14
    def sandbox(path, rootfs):
15
        ql = Qiling(path, rootfs, Log_file="hello-2.log", verbose=0)
16
17
        ql.set api('sleep', my sleep)
18
        ql.run()
19
   if __name__ == '__main__':
20
        sandbox(['./hello'], '.')
21
```