
Binary Analysis – Emulation and Instrumentation

REVERSE ENGINEERING

João Paulo Barraca

REVERSE ENGINEERING

Binary Analysis Process (cont.)

• Up to now we know how ELF files are structured, but the question
remains: how do we analyse ELF files?
▪ Or any other binary executable

• A possible flow can be:
▪ File analysis (file, nm, ldd, content visualization, foremost, binwalk)

▪ Static Analysis (disassemblers and decompilers

▪ Behavioral Analysis (strace, LD_PRELOAD)

▪ Dynamic Analysis (debuggers and emulators)

João Paulo Barraca 2

REVERSE ENGINEERING

Dynamic Binary Analysis

• Allows capturing the dynamic behavior of some code
▪ Behavior that depends on external input

▪ Data structures and even code revealed during execution time

• Allows runtime validation/evaluation of binary code
▪ A program, a firmware, part of a program, a sequence of instructions

▪ Under a controlled context

▪ On a different (more flexible, or controllable, or safe) environment

João Paulo Barraca 3

REVERSE ENGINEERING

Dynamic Binary Analysis

How

• Load the binary and execute instructions of the target binary
▪ The meaning of “execute” is broader than it may look

• Allow some interaction with the binary while it is running
▪ Break the execution at some point

▪ Inspect memory and process its content

▪ Change memory, either variables or code

▪ Execute code in a controlled manner: step by step, in chunks, until a given point

João Paulo Barraca 4

REVERSE ENGINEERING

Dynamic Binary Analysis

Approaches

• Analysis of an execution flow can either be passive or active.
▪ Choosing either one or the other has consequences on the soundness, the coverage, etc. of

the results

• Passive analysis: observation
▪ register values: return value of functions (rax), program counter (pc), stack frame (rbp,
rsp), etc.

▪ stack inspection: local variables, input parameters (according to some calling conventions),
return address, etc.

▪ heap inspection: the number of allocated blocks, their content, etc

• Active analysis: modification
▪ Easily explore paths without finding inputs that actually activate them

João Paulo Barraca 5

REVERSE ENGINEERING

Dynamic Binary Analysis

Caveats

• Binary applications are more powerful and complex
▪ May be written in multiple languages, and have code that runs in a VM

▪ May consider code that changes the host system, or is modified in runtime

• Binary analysis of complex applications requires a different toolset
▪ The principles will be the same, but the tools will allow fine grained control and isolation

▪ Side effects and execution impact may be subtle (remember Meltdown and Spectre)

▪ Host systems may be more complex

João Paulo Barraca 6

REVERSE ENGINEERING

Considerations

(Need for) Stability

• Reversing is significantly more difficult if execution is unstable.
▪ Observations are affected by "random" factors, such as multithreaded execution, hardware behavior,

user interactions with graphical interface and so on.

▪ Applications being reversed should be isolated from external effects are much as possible.

• Determinism in a design results from stable execution of a program run
▪ Thus it facilitates debugging and reversing.

▪ State may also be deterministically altered for the entire program or for a specific function (fuzzing)

• Logs can be obtained from executions using monitor applications

João Paulo Barraca 7

REVERSE ENGINEERING

Considerations

(Need for) Save and Replaying

• Reversing may need tracing from the current state to the code where a change was
produced.
▪ It implies moving "back in time".

▪ To restore past program state, one must re-run it and try to find failure source.

▪ This operation may be performed multiple times, moving backward step-by-step, and then forward.

• Deterministic replay reconstructs program execution using previously recorded input data.
▪ The first program run is used to record these inputs into the log.

▪ Then all following runs will reconstruct the same behavior, because the program uses only recorded inputs.

▪ Should included all inputs (disk, network)

João Paulo Barraca 8

REVERSE ENGINEERING

Considerations

(Need for) Safety

• Target binary may be malicious (… it is always malicious until proven safe)

• An important aspect of Reversing binaries is malware analysis
▪ Malware is way to complex to be analyzed statically

▪ But executing the malware may be dangerous
• Most important: dangerous in ways unknown to the reverse engineer

• Solutions must create the adequate isolation boundaries between environments
▪ If stability is required, no interactions with the software under analysis

▪ Sometimes, isolation must be broken to trigger specific behavior
• Network connection allowing contact with a C&C address or to download some payload

• Disk or file presence

• Whenever possible, such resource should be virtualized

João Paulo Barraca 9

REVERSE ENGINEERING

Considerations

(Need for) Support of Heterogeneous Architectures

• Dynamic analysis requires the execution of the program under analysis.

• An analyst will mostly run on an Intel x86 64bits computer (a COTS laptop/server)
▪ Most embedded devices are ARM, which has several variants

▪ Microcontrollers frequently use 8085, AVR or PIC architectures (MIPS)

▪ Several specialty SOCs use custom architectures (the list is large…)

▪ Several binary formats are popular: ELF, PE, DWARF and then many others from IoT

• Frameworks must be extensible in order to support a wide range of architectures
▪ And the related interfaces and customizations

▪ While minimizing the need for new tools

João Paulo Barraca 10

REVERSE ENGINEERING

Considerations

(Need for) Support of Peripherals and external entities

• Reversing an application with external interactions may require the existence
of the related entities
▪ Web sites, servers in fixed/dynamic IP addresses

▪ Common physical devices for user input, storage, …

▪ Exotic external devices communicating through known or unknown buses

▪ Hardware Dongles

• Need to recreate the set of devices/entities required to trigger a specific path
▪ Frequently resorts to device emulation with mock software constructs

João Paulo Barraca 11

REVERSE ENGINEERING

Considerations

(Need for) Context manipulation (instrumentation)

• The main limitation of a dynamic
approach is coverage.

▪ Every path that is not covered by the instrumented
executions cannot be analyzed.

▪ This limitation can be slightly reduced by performing
active instrumentation, and in particular by forcing
conditional branching

João Paulo Barraca 12Example of Intel PIN coverage output provided to IDA
https://hex-rays.com/products/ida/support/tutorials/pin/pin_tutorial.html

REVERSE ENGINEERING

Considerations

(Need for) Context manipulation (instrumentation)

• A reversing task will need to observe structure and behavior
▪ The analysis should have enough coverage to recover the adequate level of detail

▪ But while static analysis aims for wide coverage, dynamic analysis aims for focus

▪ What if a specific course of execution is not triggered?

▪ Results of dynamic analysis are dependent on the context of the execution

• Context manipulation allows setting the adequate state to trigger a specific flow of
execution, increasing the reversing coverage
▪ Achieved by careful manipulation of execution state, registers and memory content

▪ Problems:

• May lead to the recovery of an incorrect design as the found flow may be a decoy!

• May lead to the recovery of artificial vulnerabilities, that do not really exist

João Paulo Barraca 13

REVERSE ENGINEERING

Considerations

Context manipulation (instrumentation)

• Live patching: modifying RAM in a debugger/controlled environment

• File Patching: alter binaries files to replace their content

• Binary Instrumentation: Real time, automated modification

João Paulo Barraca 14

REVERSE ENGINEERING

Considerations

Design Fidelity

• Program under analysis may detect it and try to defend actively against analysis.
▪ For instance, it can hide a part of its behavior if it detects that it is being analyzed.

▪ This anti-debugging and anti-instrumentation techniques are used by many malwares.

• So, when we achieve a hypothesis of a design, how correct it is?

João Paulo Barraca 15https://signal.org/blog/cellebrite-vulnerabilities/

REVERSE ENGINEERING

Considerations

Design Fidelity: example of gdb+br detection
gef➤ disassemble evil

xDump of assembler code for function evil:

 0x0000000008001163 <+0>: endbr64

 0x0000000008001167 <+4>: push rbp

 0x0000000008001168 <+5>: mov rbp,rsp

 0x000000000800116b <+8>: lea rax,[rip+0xe9c] # 0x800200e

 0x0000000008001172 <+15>: mov rdi,rax

 0x0000000008001175 <+18>: call 0x8001030 <puts@plt>

 0x000000000800117a <+23>: nop

 0x000000000800117b <+24>: pop rbp

 0x000000000800117c <+25>: ret

End of assembler dump.

gef➤ br *0x0000000008001163

Breakpoint 1 at 0x8001163

gef➤ r

Starting program: main

[Thread debugging using libthread_db enabled]

Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1".

evil at: 8001163 val: fa1e0fcc

Good code

[Inferior 1 (process 2175) exited normally]

João Paulo Barraca 16

br will modify address to trigger int3
opcode for int3 is 0xcc

execution differs

endbr is 0xfa1e0ff3

REVERSE ENGINEERING

Dynamic Binary Analysis of Binaries

Processes

• Tracing

• Debugging

• Sandboxing

• Emulation

• Instrumentation

João Paulo Barraca 17

REVERSE ENGINEERING

Tracers
… Already briefly discussed in previous lectures

• Tracers execute a binary, logging information about function and system calls

• Binary is executed in the analyst's system
▪ That is: In a VM!

• Tracer adds hooks to application or kernel to gain information about execution
▪ Access to files, packets sent, registry access

• No confinement or security measures in place
▪ Actually, there may be no interaction between the tracer and the application

• Tracer monitors system through kernel debug interfaces

João Paulo Barraca 18

REVERSE ENGINEERING

Tracers
… Already briefly discussed in previous lectures

• Limitations:
▪ No isolation, no capability to analyze malicious or harmful code

▪ Can only inspect interactions between the application and the external environment

▪ Host environment must be compatible with the target binary

• No possibility of analyzing windows binaries on linux, vice-versa, embedded systems on windows, etc…

• Linux: ltrace, strace (ptrace), bpftrace, wireshark,
valgrind, cachegrind, callgrind, helgrind

• Windows: process monitor, wireshark

João Paulo Barraca 19

REVERSE ENGINEERING

$ ltrace -CfirS ./hello
[pid 5287] 0.000000 [0x7f7e47875307] SYS_brk(0) = 0x55582397c000
[pid 5287] 0.000447 [0x7f7e47876363] SYS_mmap(0, 8192, 3, 34) = 0x7f7e47854000
[pid 5287] 0.000166 [0x7f7e478760a7] SYS_access("/etc/ld.so.preload", 04) = -2
[pid 5287] 0.000192 [0x7f7e478761dd] SYS_openat(0xffffff9c, 0x7f7e4787e103, 0x80000, 0) = 3
[pid 5287] 0.000169 [0x7f7e47875fea] SYS_newfstatat(3, 0x7f7e4787ec84, 0x7ffd04c65030, 4096) = 0
[pid 5287] 0.000072 [0x7f7e47876363] SYS_mmap(0, 0x15267, 1, 2) = 0x7f7e4783e000
[pid 5287] 0.000113 [0x7f7e478760c7] SYS_close(3) = 0
[pid 5287] 0.000110 [0x7f7e478761dd] SYS_openat(0xffffff9c, 0x7f7e47854140, 0x80000, 0) = 3
[pid 5287] 0.000077 [0x7f7e47876234] SYS_read(3, "\177ELF\002\001\001\003", 832) = 832
[pid 5287] 0.000146 [0x7f7e4787625a] SYS_pread(3, 0x7ffd04c64db0, 784, 64) = 784
[pid 5287] 0.000078 [0x7f7e47875fea] SYS_newfstatat(3, 0x7f7e4787ec84, 0x7ffd04c65030, 4096) = 0
[pid 5287] 0.000102 [0x7f7e4787625a] SYS_pread(3, 0x7ffd04c64c80, 784, 64) = 784
[pid 5287] 0.000082 [0x7f7e47876363] SYS_mmap(0, 0x1e1f50, 1, 2050) = 0x7f7e4765c000
[pid 5287] 0.000286 [0x7f7e47876363] SYS_mmap(0x7f7e47682000, 0x155000, 5, 2066) = 0x7f7e47682000
[pid 5287] 0.000094 [0x7f7e47876363] SYS_mmap(0x7f7e477d7000, 0x54000, 1, 2066) = 0x7f7e477d7000
[pid 5287] 0.000123 [0x7f7e47876363] SYS_mmap(0x7f7e4782b000, 0x6000, 3, 2066) = 0x7f7e4782b000
[pid 5287] 0.000109 [0x7f7e47876363] SYS_mmap(0x7f7e47831000, 0xcf50, 3, 50) = 0x7f7e47831000
[pid 5287] 0.000113 [0x7f7e478760c7] SYS_close(3) = 0
[pid 5287] 0.000071 [0x7f7e47876363] SYS_mmap(0, 0x3000, 3, 34) = 0x7f7e47659000
[pid 5287] 0.000121 [0x7f7e47870eb5] SYS_arch_prctl(4098, 0x7f7e47659740, 0xffff8081b89a5f30, 34) = 0
[pid 5287] 0.000071 [0x7f7e4786800a] SYS_set_tid_address(0x7f7e47659a10, 0x7f7e47659740, 0x7f7e478890b0, 34) = 5287
[pid 5287] 0.000088 [0x7f7e47868066] SYS_set_robust_list(0x7f7e47659a20, 24, 0x7f7e478890b0, 34) = 0
[pid 5287] 0.000067 [0x7f7e4786809d] SYS_334(0x7f7e4765a060, 32, 0, 0x53053053) = 0
[pid 5287] 0.000176 [0x7f7e478763c7] SYS_mprotect(0x7f7e4782b000, 16384, 1) = 0
[pid 5287] 0.000069 [0x7f7e478763c7] SYS_mprotect(0x555822a8c000, 4096, 1) = 0
[pid 5287] 0.000096 [0x7f7e478763c7] SYS_mprotect(0x7f7e47886000, 8192, 1) = 0
[pid 5287] 0.000097 [0x7f7e47758fa0] SYS_prlimit64(0, 3, 0, 0x7ffd04c65b70) = 0
[pid 5287] 0.000121 [0x7f7e478763a7] SYS_munmap(0x7f7e4783e000, 86631) = 0
[pid 5287] 0.003672 [0x555822a8a14c] puts("Hello Word" <unfinished ...>
[pid 5287] 0.000826 [0x7f7e4775301a] SYS_newfstatat(1, 0x7f7e477f1df3, 0x7ffd04c65cc0, 4096) = 0
[pid 5287] 0.000609 [0x7f7e476f0535] SYS_318(0x7f7e47836498, 8, 1, 4096) = 8
[pid 5287] 0.000107 [0x7f7e477593f7] SYS_brk(0) = 0x55582397c000
[pid 5287] 0.000070 [0x7f7e477593f7] SYS_brk(0x55582399d000) = 0x55582399d000
[pid 5287] 0.000081 [0x7f7e47753b00] SYS_write(1, "Hello Word\n", 11Hello Word
) = 11
[pid 5287] 0.000172 [0x555822a8a14c] <... puts resumed>) = 11
[pid 5287] 0.000084 [0x7f7e4772f995] SYS_exit_group(11 <no return ...>
[pid 5287] 0.000443 [0xffffffffffffffff] +++ exited (status 11) +++

João Paulo Barraca 20

Function calls
System calls

REVERSE ENGINEERINGJoão Paulo Barraca 21

REVERSE ENGINEERING

Debugging

• Applications that can control (trace) a target executing binary
▪ Debuggers can create a process and analyze it or attach to a running process

• Process usually executes in the host system

▪ This is the “typical”, low tech way of dynamically analyzing a program

• Reuses concepts/tools from the engineering process, applied to reverse engineering

• Provide: extensive, interactive control over a process execution flow
▪ Frequently at the level of opcodes and assembly

▪ Can be integrated with static analysis tools

• Combining execution information with decompiled code, CFGs, disassembly

João Paulo Barraca 22

REVERSE ENGINEERING

Debugging

Limitations

• Debugging can be detected and subverted by the target application
▪ Especially popular in malware and DRM systems

• Target application must be executed in a full hosted environment
▪ Without isolation measures, this provides a serious security risk

▪ Remote debugging may be used to circumvent this limitation

• Host system architecture must match the target binary architecture
▪ Binary is loaded to the host system as a standard process

▪ No debugging of windows in Linux, ARM or MIPS in x86

▪ No direct way of debugging shellcode or a binary blob (e.g firmware).

João Paulo Barraca 23

REVERSE ENGINEERING

Debugging

How debuggers work?

• Debuggers explore system calls provided by the operating system
▪ Debuggers either:

• create a child process, sharing the same address space

• attach to an existing process given that the user has the correct permissions (e.g. root)

▪ Linux: ptrace

▪ Windows: provides API for process control

• CreateProcess with specific dwCreationFlags (DEBUG_PROCESS)

• OpenProcess with dwDesiredAccess (PROCESS_VM_READ, PROCESS_VM_WRITE,
PROCESS_VM_OPERATION)

• Debuggers may attach to hardware devices providing external debugging
▪ Used in embedded devices

João Paulo Barraca 25

REVERSE ENGINEERING

Debugging

edb and x86dbg

João Paulo Barraca 26

REVERSE ENGINEERING

Debugging

João Paulo Barraca 27

PTRACE

Signal

Kernel

Debugger Hello

Debugger set breakpoints which
Trigger SIGTRAP, returning control
to the debugger.

Patching the code with 0xCC or using
Hardware breakpoints (through PTRACE)

REVERSE ENGINEERING

Debugging

debugger.c

João Paulo Barraca 28

fork() duplicates the current process. While
sharing the same address space.

One (child) will execute run_target()
Other (parent) will execute run_debugger()

REVERSE ENGINEERING

Debugging

debugger.c

João Paulo Barraca 29

Child process allows tracing

execl will replace the current process image with
the binary loaded from the storage.

In this moment, the processes become different.

REVERSE ENGINEERING

Debugging

debugger.c

João Paulo Barraca 30

Wait for process to start

Get CPU registers

Wait for instruction to finish

Single Step through one instruction (ASM)

REVERSE ENGINEERING

Sandboxing

• Sandboxing improves the control that debuggers provide
▪ Creation of a distinct execution environment

• Different libraries? Restricted view of the filesystem (minimal access to files)

▪ Isolate some actions, providing some safety to analyze malicious applications

• Implementation: lightweight virtual machines or namespaces/containers
▪ Supported my mechanisms of the Operating System or additional tools

▪ Tools: sandboxie, pyrebox, panda

• An agent monitors interactions of the application inside the environment and
may allow instrumentation
▪ File access, network communication

▪ Remote debugging

João Paulo Barraca 35

REVERSE ENGINEERING

Emulators

• Emulators are common backends for secur sandboxes
▪ May provide much better isolation as the guest and host environments are distinct

• Kernel is not shared, hardware is emulated

▪ Tools: QEMU, Virtualbox, Vmware

• Emulation types
▪ Full system emulation

▪ User mode emulation

João Paulo Barraca 36

REVERSE ENGINEERING

Emulators

User Mode Emulation

• Launches a processes directly, but on a restricted environment
▪ Process may be compiled for one CPU and executed on another CPU

▪ Address space is restricted, such as filesystem and libraries available

▪ Interaction with Host OS is mediated by the emulator

• Emulator process native CPU instructions (emulation/translation) and:
▪ Provide means to translate syscalls from guest to host OS

▪ Understand intrinsic characteristics such as clone

• Clone is used to spawn new processes and will require the creation of a new emulation environment

▪ Handle signals between analyzed binary and the host system

• May provide integration with debugging tools

João Paulo Barraca 37

REVERSE ENGINEERING

Emulators

User Mode Emulation with QEMU

• QEMU allows user mode emulation as long as the OS is kept the same

• What it does:
▪ Machine code translation from any CPU to any CPU

▪ Syscall mapping

▪ Data structure conversion (Bit-order and Bit-width conversions)

▪ Extensive tracing capability to the level of Micro Ops

• Provides a gdbserver interface for interaction with GDB

• Usefulness: reverse engineering applications compiled to other architectures

João Paulo Barraca 38

REVERSE ENGINEERINGJoão Paulo Barraca 39

REVERSE ENGINEERING

Emulators

Full System Emulation

• Basically: a full-blown virtual machine
▪ Emulates a highly configurable set of hardware, including embedded devices

▪ Maps interactions to Host resources (screen, disk, network)

▪ RE aware software tools expose debugging interfaces (usually to gdb)

• Provides the best level of isolation
▪ All accesses are mediated by the emulator, reducing the attack surface to emulator components

▪ Allows analyzing other binaries besides standard executable files

• Firmware, MBR, UEFI

• Malware frequently try to detect Virtual Machines, emulators and debuggers…
▪ With variable sophistication

João Paulo Barraca 41

REVERSE ENGINEERING

Remote debugging with emulators

gdb and gdbserver

• gdb can debug remote applications
▪ It can even debug remote kernels and firmware

▪ Why? Consider embedded devices, software inside an emulator

• gdbserver is launched on the target system, with the arguments:
▪ Either a device name (to use a serial line) or a TCP hostname and portnumber, and the path and filename of the executable

to be debugged

▪ It then waits passively for the host gdb to communicate with it.

• gdb is run on the host, with the arguments:
▪ The path and filename of the executable (and any sources) on the host, and

▪ A device name (for a serial line) or the IP address and port number needed for connection to the target system.

• Alternative: the remote application is compiled with a stub that provides a gdbserver interface
when the application is launched

João Paulo Barraca 42

REVERSE ENGINEERING

Example

Reversing an ARM binary

João Paulo Barraca 43

REVERSE ENGINEERING

Example

unknown.bin

• Remember the unknown.bin file?
▪ Well… looks like a PDF (is a PDF)

▪ but $ file unknown.bin returns “unknown.bin: DOS/MBR boot sector”

• What we may extrapolate from that:
▪ Seems to be a DOS/Master Boot Record (Master boot record – Wikipedia)

▪ DOS was only released for i386 (16bits and 32bits)

▪ qemu-system-i386 may boot it if used as a hard disk or floppy disk

João Paulo Barraca 44

https://en.wikipedia.org/wiki/Master_boot_record

REVERSE ENGINEERING

Example

unknown.bin

• How to address such files?
▪ Binary files other than ELFs (or PE or other similar) obey to a fixed set of rules

▪ It is required to check the datasheets and gather information required to load the file.

▪ Important:

• CPU used, CPU mode, relevant or required peripherals: to know how to decode the binary instructions

• Program Entry Point: to know where the program starts, and where disassembly should start

• From a Master Boot Record we may know:
▪ MBR is loaded to address 0x7C00

▪ MBR code runs in Intel x86 Real Mode (16bits)

▪ There are quite a few limitations and assumptions: IBM DOS 2.00 Master Boot Record (pcministry.com)

▪ There is no OS running. Input/Output must use BIOS Interrupts

João Paulo Barraca 45

https://thestarman.pcministry.com/asm/mbr/200MBR.htm

REVERSE ENGINEERING

Example

Loading the unknown.bin in ghidra

João Paulo Barraca 46

REVERSE ENGINEERING

Example

Loading the unknown.bin in ghidra

João Paulo Barraca 47

REVERSE ENGINEERING

Example

Loading the unknown.bin in ghidra

João Paulo Barraca 48

If we state that 0x7C00 has code, looks like we have
something

REVERSE ENGINEERING

Example

Loading the unknown.bin in ghidra

João Paulo Barraca 49

Some check to int 13H
(HDD or Floppy)

A loop XORing data at
0x7C85.

XOR uses a variable key
(register CL). It’s both the

index and the key.

Jumps to 0x7C85 but data at
0x7C85 is decrypted in real
time. Static analysis cannot

see it…

Must use dynamic analysis ☺
for i in range(0x7dfe – 0x7c85):
 ram[0x7c85 + i] ^= i

REVERSE ENGINEERING

Example

Loading the unknown.bin in qemu with gdb

João Paulo Barraca 50

Execute GDB
Connect to the gdbserver

Do some initialization to set the CPU
and display layout

Launch qemu-system-i386 with a
gdbserver socket and monitor socket

It runs and we have
control in GDB

REVERSE ENGINEERING

Example

Loading the unknown.bin in qemu with gdb

João Paulo Barraca 51

Approach:
- Set a breakpoint to 0x7c85

- Continue (let it decrypt)

REVERSE ENGINEERING

Example

Loading the unknown.bin in qemu with gdb

João Paulo Barraca 52

Connect to the QEMU Control socket
Dump physical RAM (1MB)

This file can be loaded in ghidra and should contain
the decrypted code! ☺

Can you recover the flags only with RE? (*)

(*) there may be some additional steps involved. ☺
Analyze CFGs, rename, retype and combine with dynamic analysis whenever relevant
Enjoy the ASCII art and praise @zezadas for the great work with this binary.

REVERSE ENGINEERING

Dynamic Binary Instrumentation (DBI)

What are they

• DBI system as an application virtual machine that interprets the ISA of a specific platform
▪ usually (but not always) coinciding with the one where the system runs

▪ offering instrumentation capabilities to support monitoring and altering instructions and data from an analysis tool
component

▪ Up to the level of a single instruction

• DBI systems expand standard Dynamic Binary Analysis tasks by
▪ Fine grained monitoring capabilities

▪ Full control over data and instructions, potentially increasing Reverse Engineering Scope

• Uses
▪ Measure performance, Detect vulnerabilities, Force code execution, Fuzz binary programs at the scale of a group of

instructions

João Paulo Barraca 53

REVERSE ENGINEERING

Dynamic Binary Instrumentation (DBI)

caveats

• DBI is vulnerable to specific attacks targeting the emulator
▪ Purpose: avoid the use of emulators or induce incorrect results

▪ Exploit the fact that DBI tools are slow

▪ Exploit the fact that the system is emulated and differs from a real system

• Some approaches
▪ Extensive loops Timing measurements

▪ Timing measurements

▪ Testing for system specific behavior

João Paulo Barraca 54

REVERSE ENGINEERING

Dynamic Binary Instrumentation (DBI)

What are they

• Instrumentation
▪ Insert Code

• Dynamic Binary Instrumentation
▪ “Running” Code

João Paulo Barraca 55

REVERSE ENGINEERING

Dynamic Binary Instrumentation (DBI)

What are they

• Instrumentation
▪ Insert Code

• Dynamic Binary Instrumentation
▪ “Running” Code

João Paulo Barraca 56

New
code

REVERSE ENGINEERING

Dynamic Binary Instrumentation (DBI)

What are they

• Instrumentation
▪ Insert Code

• Dynamic Binary Instrumentation
▪ “Running” Code

João Paulo Barraca 57

Force
execution

New
code

REVERSE ENGINEERING

Dynamic Binary Instrumentation (DBI)

How they work?

• Rebuild a program binary code using some JIT technique
▪ Insert trace points and hooks for inspection

▪ Divert execution to additional user specified functions

▪ Monitor access to memory regions

• Potentially triggering callbacks on access

▪ May reimplement access to IOs or even syscalls and interrupts

▪ May create a fully Emulated Execution Environment

• Can be combined with an Emulation platform such as QEMU or Unicorn (a fork from QEMU)

• Popular tools: valgrind, DynamoRIO, Intel PIN, DynInst, Qiling, Frida

João Paulo Barraca 58

REVERSE ENGINEERING

Dynamic Binary Instrumentation (DBI)

Daniele D’Elia et al, SoK: Using Dynamic Binary Instrumentation for Security, AsiaCCS, 2019

João Paulo Barraca 59

REVERSE ENGINEERING

DBI with Qiling

DBI tool that can perform:

• Emulation: Executes binary code step by step, replacing instructions

• Binary instrumentation: allows injection of user specified code

• Cross-platform and cross-architectural analysis: analyze one
architecture or OS on another

• Sandboxing: I/O is redirected to fake devices (files, sockets)

• On raw binaries: used to analyze blobs from binary devices or
shellcode

João Paulo Barraca 61

REVERSE ENGINEERING

DBI with Qiling

Emulation

• Syscalls and interrupt are implemented in python
▪ Program calls syscall/interrupt

▪ Qiling invokes handler in python, which mimics a standard system

▪ Implementation can be overridden by the user

• Host OS is never called, and result is provided by Qiling
▪ Advantages:

• Great control over the execution

• Great isolation

▪ Disadvantages:

• Not all calls are implemented

• Behavior mimics an ideal system and may deviate from reality

João Paulo Barraca 62

REVERSE ENGINEERING

DBI with Qiling

Instrumentation

• User can define hooks to triggering callbacks on an event
▪ Because an emulator is translating code in real time, instruction level hooks are possible

• Example
▪ Code execution reaches a specific address

▪ An address is written or read

▪ A function is called, or is leaving

▪ An instruction is executed

João Paulo Barraca 63

REVERSE ENGINEERING

DBI with Qiling

Cross Platform and Cross Architecture

• Binary code is emulated, allowing cross architecture execution
▪ Target architecture instructions are compiled to native instructions

• Because all syscalls and interrupts are emulated, host platform can differ
from target platform
▪ As Qiling is based on Unicorn (Qemu), a wide range of possibilities is available

João Paulo Barraca 64

REVERSE ENGINEERING

DBI with Qiling

Loading an Elf

• Qiling has several loaders
▪ MBR

▪ PE, ELF, MachO

▪ Unstructured binary (shellcode)

• Loader will make code available to be emulated on a secure rootfs
▪ Calls to interrupts and syscalls are implemented in python

João Paulo Barraca 65

REVERSE ENGINEERINGJoão Paulo Barraca 66

REVERSE ENGINEERING

DBI with Qiling

Overriding a library function

• Functions can be overridden with custom
implementations
▪ Code can access arguments of basic types (Strings,

Ints, Floats)

▪ Inside function, other external functions can be called

▪ Entire set of registries and memory can be
manipulated

▪ Return is provided to the calling function to be
emulated on a secure rootfs

▪ Calls to interrupts and syscalls are implemented in
python

João Paulo Barraca 67

	Slide 1: Binary Analysis – Emulation and Instrumentation
	Slide 2: Binary Analysis Process (cont.)
	Slide 3: Dynamic Binary Analysis
	Slide 4: Dynamic Binary Analysis
	Slide 5: Dynamic Binary Analysis
	Slide 6: Dynamic Binary Analysis
	Slide 7: Considerations
	Slide 8: Considerations
	Slide 9: Considerations
	Slide 10: Considerations
	Slide 11: Considerations
	Slide 12: Considerations
	Slide 13: Considerations
	Slide 14: Considerations
	Slide 15: Considerations
	Slide 16: Considerations
	Slide 17: Dynamic Binary Analysis of Binaries
	Slide 18: Tracers
	Slide 19: Tracers
	Slide 20
	Slide 21
	Slide 22: Debugging
	Slide 23: Debugging
	Slide 25: Debugging
	Slide 26: Debugging
	Slide 27: Debugging
	Slide 28: Debugging
	Slide 29: Debugging
	Slide 30: Debugging
	Slide 35: Sandboxing
	Slide 36: Emulators
	Slide 37: Emulators
	Slide 38: Emulators
	Slide 39
	Slide 41: Emulators
	Slide 42: Remote debugging with emulators
	Slide 43: Example
	Slide 44: Example
	Slide 45: Example
	Slide 46: Example
	Slide 47: Example
	Slide 48: Example
	Slide 49: Example
	Slide 50: Example
	Slide 51: Example
	Slide 52: Example
	Slide 53: Dynamic Binary Instrumentation (DBI)
	Slide 54: Dynamic Binary Instrumentation (DBI)
	Slide 55: Dynamic Binary Instrumentation (DBI)
	Slide 56: Dynamic Binary Instrumentation (DBI)
	Slide 57: Dynamic Binary Instrumentation (DBI)
	Slide 58: Dynamic Binary Instrumentation (DBI)
	Slide 59: Dynamic Binary Instrumentation (DBI)
	Slide 61: DBI with Qiling
	Slide 62: DBI with Qiling
	Slide 63: DBI with Qiling
	Slide 64: DBI with Qiling
	Slide 65: DBI with Qiling
	Slide 66
	Slide 67: DBI with Qiling

