
Binary Analysis - 2
REVERSE ENGINEERING

João Paulo Barraca

REVERSE ENGINEERING

Binary Analysis Process

• Up to now we know how ELF files are structure, but the question
remains: how do we analyse ELF files?
▪ Or any other binary

• A possible flow can be:
▪ File analysis (file, nm, ldd, content visualization, foremost, binwalk)

▪ Static Analysis (disassemblers and decompilers

▪ Behavioral Analysis (strace, LD_PRELOAD)

▪ Dynamic Analysis (debuggers)

João Paulo Barraca 2

REVERSE ENGINEERING

Identifying a file

• Files should be seen as containers (this includes ELF files)
▪ May have the expected content type

• But it may have an unexpected behavior (e.g. bug or malware)

▪ May have unexpected, additional content (e.g. polyglots)

• More common in DRM schemes and malware in order to hide binary blobs

• Files should not be trusted
▪ Both the expected and additional content may be malicious

▪ Static analysis is safe (as long as nothing is executed)

▪ Dynamic analysis is not safe. Sandboxes and VMs must be used

João Paulo Barraca 3

REVERSE ENGINEERING

Questions to answer

• What type of file we have?
• Are there hidden contents?

• What is the architecture?

• Is it 64/32 or ARM7/ARM9/ARM9E/ARM10?

• Where is the starting address?

• What the main function does?

• What will the program will actually do?

João Paulo Barraca 4

REVERSE ENGINEERING

Questions to answer

Some basic tools go a long way

• file: (try to identify) the type of file
▪ Only applies to a top container. File is not able to look into enclosed binary blobs

▪ Alternatives that complement file are binwalk and foremost

• xxd: hexdump the file, allowing to rapidly detect patterns
▪ less also helps to hold the content in the terminal

• strings: prints null terminated sequence chars
▪ By default, with more than 4 characters (-n setting)

• ldd: print shared object dependencies
▪ Libraries registered in the ELF that are required (typically for dynamically relocate symbols)

• nm: dumps symbols from .symtab (or .dyntab with –D)

João Paulo Barraca 5

REVERSE ENGINEERING

Disassembler basics with ghidra

• ghidra is a open source tool developed by NSA and released to the
public doing Disassembly and Static Analysis
▪ Development branch has support for Dynamic Analysis (should be released “soon”)

• Works on Windows, Linux and macos
▪ Java based

• Not the most important tool (IDA is), but is gaining a huge traction
▪ It’s free and very powerful with a huge number of platforms and a fine decompiler

João Paulo Barraca 6

REVERSE ENGINEERINGJoão Paulo Barraca 7

Top menu and tools for quick access.

REVERSE ENGINEERINGJoão Paulo Barraca 8

Executable Structure (ELF, PE…)

All that was previously addressed can be
inspected here.

Particular relevant to check content of
additional sections, .got .symtab and
.dynamic

Clicking on the file name will present the
header, which contains the entry point.

REVERSE ENGINEERINGJoão Paulo Barraca 9

Functions declared in the code. Not only the user defined
functions, but also additional ones injected by the compiler, or
required to the OS and linker.

Exports are functions declared in the binary file, which are
available for use by another programs. That is: a name that points
to some code.

Imports are functions used from external libraries. It includes the
libraries required for the resolution of the said names.

REVERSE ENGINEERINGJoão Paulo Barraca 10

Data types are methods to organize and represent memory in the
scope of the program address space. While developing a program
we call these as Enums or Structures.

By clicking on the low arrow we can define new structures. The
interface will ask us to state a name, and then add fields with a
type. The type can be a basic one (int, short, double, or a
complex one)

In File -> Parse C Source we can include a C header (.h) with types
directly to our program

REVERSE ENGINEERINGJoão Paulo Barraca 11

Listing view of the program segments.

The different bytes are displayed according to their type. Code is
disassembled and the instructions are presented. For x86, the
Intel format is used by default

The format is something like:
Address bytes interpretation comments

REVERSE ENGINEERINGJoão Paulo Barraca 12

Decompiled view of the current selected function (in the listing
view)

At first stage the decompiled view can be complex. The trick is to
rename function/variable names (pressing L) and setting the
correct data types for arguments and variables (CTRL-L). Ghidra
will propagate types and update the listing view and decompiler
view.

Be aware that the decompiler may not be fully reliable as perfect
Decompilation is not always possible.

REVERSE ENGINEERINGJoão Paulo Barraca 13

Calls to a function or from the current function are presented in
the bottom

Listing view presents References to
memory locations, which are locations
where code refers to a given memory
address.

May be used to identify location of
arguments, function callers or data chunks
used in the program

Listing view presents functions with name,
if the name is in the .dynamic or .symtab.

Otherwise, it will name functions as
FUN_ADDRESS.

Functions can be identified by the symbols
associated with an address or with
assembly instructions. Functions are at
address that are called and usually start by
a stack ini

REVERSE ENGINEERINGJoão Paulo Barraca 14

Tools can find functions by the symbols
associated with an address or by analyzing
the code.

Functions are at address that are called and
frequently (but not always) start by a stack
initialization block, and end with RET.

REVERSE ENGINEERINGJoão Paulo Barraca 15

In Menu->Window->Function Graph

A logical structure of the function is
presented. This is generated by interpreting
the branches that segment the function
code.

Called: Control-Flow Graphs

REVERSE ENGINEERINGJoão Paulo Barraca 16

In Menu->Window->Function Call Graph

A logical structure of the program is
presented, starting the current function. At
each node we can Show/Hide Calling
functions or Called functions. We can
effectively have a full representation of the
program structure.

HINT: It makes much more sense with
symbols or renamed functions

Called: Call Graphs

REVERSE ENGINEERING

CFGs

• It is useful to think of machine code in a graph structure, called a
control-flow graph

• A node in a CFG is a group of adjacent instructions called a basic
block:
▪ The only jumps into a basic block are to the first instruction

▪ The only jumps out of a basic block are from the last instruction

▪ I.e., a basic block always executes as a unit

• Edges between blocks represent possible jumps
João Paulo Barraca 17

REVERSE ENGINEERING

CFGs

• Basic block a dominates basic block b if every path to b passes
through a first
▪ strictly dominates if a != b

• Basic block b post-dominates a if every path through a also passes
through b later

João Paulo Barraca 18

REVERSE ENGINEERING

Disassembly

• The disassembly process involves analyzing the binary, converting binary code
to assembly
▪ But “binary” is just a sequence of bytes, that must be mapped in the scope of a given architecture

▪ Conversion depends on many factors, including compiler and flags

• Process is not perfect and may induce RE Analysts in error
▪ Present instructions that actually do not exist

▪ Ignore instructions that are in the binary code

• Main approaches:
▪ Linear Disassembly

▪ Recursive Disassembly

João Paulo Barraca 19

REVERSE ENGINEERING

Linear Disassembly

• Simplest approach towards analyzing a program: Iterate over all code
segments, disassembling the binary code as opcodes are found

• Start at some address and follow the binary
▪ Entry point or other point in the binary file

▪ Entry point may not be known

• Works best with:
▪ binary blobs such as from firmwares (start at the beginning)

▪ objects which do not have data at the beginning

▪ architecture uses variable length instructions (x86)

João Paulo Barraca 20

REVERSE ENGINEERING

Linear Disassembly

João Paulo Barraca 21

It is vital to define the initial address for
decompiling.

An offset error will result in invalid or
wrong instructions being decoded.

Linear disassembly will also try to
disassemble data from the binary as if it
was actual code.

Linear Disassembly is oblivious to the
actual Program Flow.

With x86, because it each opcode has a
variable length, the code tends to auto
synchronize, but the first instructions will
be missed

REVERSE ENGINEERING

Linear Disassembly

Issues

• With ELF files in x86, linear disassembly tends to be useful
▪ Compilers do not emit inline data and the process rapidly synchronizes

▪ Still, padding and alignment efforts may create some wrong instructions

• With PE files, compilers may emit in inline data and Linear Disassembly
is not adequate
▪ Every time data is found, disassembly becomes desynchronized

• Other architectures (ARM) and binary objects usually are not suited for
Linear Disassembly
▪ Obfuscation may include code as data, which is loaded dynamically

▪ Fixed length instruction sets will not easily synchronize

João Paulo Barraca 22

REVERSE ENGINEERING

Linear Disassembly

So why is it useful?

• Code in the binary blob may be executed with a dynamic call
▪ Some JMP/CALL with an address computed dynamically and unknown to the static

analyzer

• Linear Disassembly will decompile everything:
▪ whether or not it is called - May be useful to uncover hidden program code

▪ even if the binary blob is not a structured executable – Boot sector, firmware

• Readily available with simple tools: objdump and gdb
▪ Gdb memory dump (x/i) will also use Linear Disassembly

João Paulo Barraca 23

REVERSE ENGINEERING

Recursive Disassembly

• More complex approach that disassembles code since an initial point,
while following the control flow.
▪ That is: follows jmp, call and ret

• As long as the start point is correct, or it synchronizes rapidly, flow can
be fully recovered
▪ This is the standard process for more complex tools such as ghidra and IDA

• Goes around inline data as no instruction will exist that will make the
program execute at such address
▪ Well… control flow can easily be forged with ((void (*)(int, char*)) ptr)()

João Paulo Barraca 24

REVERSE ENGINEERINGJoão Paulo Barraca 25

Example of a program without visible structure being
decompiled from the start.

Disassembler stops as invalid operations are found. The
entry point may be wrong (this may be data and not
code), the architecture may be wrong (or both).
More insight (or trial and error is needed)

REVERSE ENGINEERING

Function detection

• Functions frequently include known prolog and epilogues
▪ Prolog: setup the stack and optionally setup Stack Guard Canaries

▪ Epilog: optionally check the canaries and release stack

• This information may be used to determine function boundaries
▪ But it is architecture and compiler dependent

• Alternatives:
▪ Pattern matching (automatic, done by disassemblers) can also recover functions

▪ Exception handling code in the .eh_frame section

▪ gcc intrinsics to cleanup stacks with exceptions __attribute__((__cleanup__(f))) and __builtin_return_address(n)

João Paulo Barraca 26

REVERSE ENGINEERING

Function detection

Typical Prologue with Stack Guard

João Paulo Barraca 27

Stack allocation code
- Stores RBP
- Makes RBP = RSP
- Allocates 0x30 bytes

Canary setup
- Fetches value from FS:[0x28] to RAX
- Stores value at RBP+local_10 (top of

the local stack)
- Erase RAX

Stores register in stack

REVERSE ENGINEERING

Function detection

Typical Epilogue with Stack Guard

João Paulo Barraca 28

Fetches the Canary

Deallocate stack and return to caller

- XORs the Canary with reference value
- This sets the Zero flag if they are equal
(No corruption)
- Jumps to end of program, or crashes
the program with __stack_chk_fail

REVERSE ENGINEERING

Calling Conventions

• Compilers handle the function calling processes differently, and we
have several conventions
▪ Adapted to how programmers use the languages (number of arguments)

▪ Adapted to number of registers and other architecture details

• These dictate:
▪ How arguments are passed to the callee

▪ How return codes are passed to the caller

▪ Who allocates the stack

▪ Who stores important registers such as the Program Counter
João Paulo Barraca 29

REVERSE ENGINEERING

Calling Conventions

cdecl

• Originally created by Microsoft compilers, widely used in x86,
including GCC
▪ Standard method for most code in x86 environments

• Arguments: passed in the stack, in inverted order (right to left)
▪ First argument is pushed last

• Registers: Mixed
▪ Caller saves RIP, A, C, D

▪ Callee saves BP, and others and restores RIP

João Paulo Barraca 30

REVERSE ENGINEERING

Calling Conventions

cdecl

João Paulo Barraca 31

Allocate stack

Add two arguments.
Array at EBP-20 and argument at EBP+8

Restore EBP, EIP

Prepare arguments to be sent

Call the function. Automatically stores EIP in stack

Deallocate stack

Add 4 to EAX (EAX contains return from callee)

REVERSE ENGINEERING

Calling Conventions

stdcall

• Official call convention for the Win32API (32 bits)

• Arguments: passed in the stack from right to left
▪ Additional arguments are passed in the stack

• Registers: Callee saves
▪ Except EAX, ECX and EDX which can be freely used

• Stack Red Zone: Leaf functions have a 128 byte area kept safe which doesn’t
need to be allocated
▪ Can be used for local variables, and avoids the use of two operations (sub rsp, add rsp)

▪ Leaf functions are functions that do not call others

João Paulo Barraca 32

REVERSE ENGINEERING

Calling Conventions

stdcall

João Paulo Barraca 33

Allocate stack

Add two arguments.
Array at EBP-20 and argument at EBP+8

Free Stack

Restore RIP

Prepare arguments to be sent

Call the function. Automatically stores EIP in stack

Add 4 to EAX (EAX contains return from callee)

REVERSE ENGINEERING

Calling Conventions

fastcall

• Official call convention for Win32API 64bits

• Arguments: left to right, first as registers
▪ Additional arguments are passed in the stack

• Registers: Caller saves

• Stack Shadow Zone: Leaf functions have a 32 byte area kept safe which
doesn’t need to be allocated
▪ Can be used for local variables, and avoids the use of two operations (sub rsp, add rsp)

▪ Leaf functions are functions that do not call others

João Paulo Barraca 34

REVERSE ENGINEERING

Calling Conventions

fastcall (32bits)

João Paulo Barraca 35

Add two arguments

Stores arguments to stack

Restore EIP

Prepare arguments to be sent

Call the function. Automatically stores IP in stack

Add 4 to EAX (EAX contains return from callee)

Allocate stack

REVERSE ENGINEERING

Calling Conventions

João Paulo Barraca 36

cdecl stdcall fastcall

REVERSE ENGINEERING

Calling Conventions

Fastcall for 64bits (Windows)

• Official convention for x86_64 architectures with MSVC (Windows)
▪ Mandatory if compiling for x86_64 in Windows

• Arguments: passed as RDX, RCX, R8, R9
▪ Additional arguments are passed in the stack (right to left)

• Registers: Mixed
▪ Caller save: RAX, RCX, RDX, R8, R9, R10, R11

▪ Callee save: RBX, RBP, RDI, RSI, RSP, R12, R13, R14, and R15

• Stack Red Zone: Leaf functions have a 32 byte area kept safe, allocated by the callee
▪ Can be used to store RDX, RCX, R8, R9

▪ (Leaf functions are functions that do not call others)

João Paulo Barraca 37

REVERSE ENGINEERING

Calling Conventions

fastcall (64bits)

João Paulo Barraca 38

Add two arguments

Stores arguments to shadow

Restore RIP

Prepare arguments to be sent

Call the function. Automatically stores IP in stack

Add 4 to EAX (EAX contains return from callee)

Free Stack

REVERSE ENGINEERING

Calling Conventions

System V AMD64 ABI

• Official convention for x64 architectures using Linux, BSD, Unix, Windows

• Arguments: passed as RDI, RSI, RDX, RCX, R8, R9
▪ Additional arguments are passed in the stack

• Registers: Caller saves
▪ Except RBX, RSP, RBP, R12-R15 which callee must save if they are used

• Stack Red Zone: Leaf functions have a 128 byte area kept safe which doesn’t
need to be allocated
▪ Can be used for local variables, and avoids the use of two operations (sub rsp, add rsp)

▪ Leaf functions are functions that do not call others

João Paulo Barraca 39

REVERSE ENGINEERING

Calling Conventions

System V AMD64 ABI

João Paulo Barraca 40

Leaf function uses stack directly

Adds value with argument

Restore RIP

Prepare arguments to be sent

Call the function. Automatically stores RIP in stack

Add values. EAX will contain the result

REVERSE ENGINEERING

Calling Conventions

64bits

João Paulo Barraca 41

System V AMD64 ABI fastcall

REVERSE ENGINEERING

Common Logic Structures

• When analyzing code, it’s important to recognize basic flow control
structures
▪ Remember that the decompiler may be unreliable

• Basic structures:
▪ If else

▪ Switch case

▪ For

João Paulo Barraca 42

REVERSE ENGINEERING

Common Logic Structures

Conditional Branches (if else)

• Basic control-flow instructions: move execution to a defined address
if a condition is true
▪ Usually, one condition tested at a time. Complex If/else must be broken

• Assembly code is structed as a graph with tests and execution
statements (the conditions body)

• x86 and most architectures have inherent support for many types of
comparisons.
▪ In x86 this is the jXX family of instructions.

João Paulo Barraca 43

REVERSE ENGINEERINGJoão Paulo Barraca 44

REVERSE ENGINEERINGJoão Paulo Barraca 45

REVERSE ENGINEERING

Common Logic Structures

Conditional Branches (if else)

• Signed comparison: l < , le <=, g >, ge >=

• Unsigned comparison: b <, be <=, a >=, ae >=
▪ Below and Above

• Equality e

• Every condition can be negated with n

João Paulo Barraca 46

REVERSE ENGINEERING

Common Logic Structures

Conditional Branches (if else)

• z, s, c, o, and p for ZF, SF, CF OF, and PF
▪ ZF: Zero Flag, 1 if last operation was 0

▪ CF: Carry Flag. Last operation required an additional bit (e.g. 255 + 1, which has 9 bits)

▪ OF: Overflow Flag. Last operation had an arithmetic overflow (127 + 127 in a signed variable results in overflow)

▪ PF: Parity Flag. 1 if last operation resulted in a value with even number of 1

▪ SF: Sign Flag. 1 if last operation resulted in a signed value (MSB bit = 1)

• s means negative, ns non-negative
▪ Signal or not signal

• p and np are also pe “parity even” and po “parity odd”

João Paulo Barraca 47

REVERSE ENGINEERING

Common Logic Structures

Conditional Branches (if else)

• and, or, and xor clear OF and CF, and set ZF, SF, and PF
based on the result

• test is like and but only sets the flags discarding the result

• Checking nz after test is like if (x & mask) in C

• test a register against itself is the fastest way to check for zero or
negative

João Paulo Barraca 48

REVERSE ENGINEERING

Common Logic Structures

Conditional Branches (if else)

• Direct jump: target(s) specified in code (harcoded)

• Indirect jump: target selected from runtime data like register or
memory contents

• Conditional jump: target differs based on a condition

João Paulo Barraca 49

REVERSE ENGINEERING

Common Logic Structures

Conditional Branches (If else)

• Structure can be
recognized by
one or more
conditional
branches,
without loops

• je: jump equal

• js: jump is sign

• …etc…

João Paulo Barraca 50

REVERSE ENGINEERING

Common Logic Structures

Switch case
• Structure can be recognized by several

comparisons and jumps or jump table

• Observe the difference between what a
programmer writes and what is produced
▪ Switch is written as an atomic instruction, but it isn’t

▪ Also, it is dangerous because of missing breaks;

• Test: compare two registers. Set 3 flags:
▪ PF: Even number of bits

▪ ZF: Zero

▪ SF: Signed value

João Paulo Barraca 51

REVERSE ENGINEERING

Common Logic Structures

loops

• For, while and
do while are
generally the
same

• Identified by:
▪ an index

▪ an increment

▪ a comparison

▪ two jumps

João Paulo Barraca 52

Prepares stack

- r12d will contain the
number of iterations
- ebx will be the counter

- Loop body

Jump to top of loop

REVERSE ENGINEERING

C++ code

• C++ is very popular, and adds an additional layer of complexity
▪ A program doesn’t have functions, has methods

▪ Methods have a shared context (the object)

▪ Methods can be overridden due to inheritance

▪ The this pointer commonly allows access to data outside the function stack

▪ Contructors, new…?

▪ Strings are complex objects

João Paulo Barraca 53

REVERSE ENGINEERING

C++ code

• this pointer
▪ The “this” pointer plays a crucial role in the identification of C++ sections in the assembly code.

It is initialized to point to the object used, to invoke the function, when it is available in non-
static C++ functions.

• Vtables
▪ Eases runtime resolution of calls to virtual functions.

▪ The compiler generates a vtable containing pointers to each virtual function for the classes
which contain virtual functions.

• Constructors and destructors
▪ A member function which initializes objects of a class and it can be identified in assembly by

studying the objects in which it’s created.

João Paulo Barraca 54

REVERSE ENGINEERING

C++ code

• Runtime Type Information (RTTI)
▪ Mechanism to identify the object type at run.

▪ These keywords pass information, such as class name and hierarchy, to the class.

• Structured exception handling (SEH)
▪ Irregularities in source code that unexpectedly strike during runtime, terminating the program.

▪ SEH is the mechanism that controls the flow of execution and handles errors by isolating the code
section where the unexpected condition originates. Inheritance

• Inheritance
▪ allows new objects to take on existing object properties.

▪ Observing RTTI relationships can reveal inheritance hierarchy

João Paulo Barraca 55

REVERSE ENGINEERING

hello1.cpp

A simple hello world

João Paulo Barraca 56

REVERSE ENGINEERING

hello1.cpp

João Paulo Barraca 57

REVERSE ENGINEERING

C++ code

João Paulo Barraca 58

No C++ class
declarations, but C++
class use.

- Constructors
- Methods
- Destructors

REVERSE ENGINEERING

C++ code

João Paulo Barraca 59

Standard ASM code
with function
invocation, using
arguments in registers
and values stored in the
stack

Additional Hints related
to exception handling

REVERSE ENGINEERING

C++ code

João Paulo Barraca 60

.eh_frame ELF section contains information about the multiple methods.

Required for unwinding frames, when iterating over the function frames. Contains language specific
information, organized in Call Frame Information records

REVERSE ENGINEERING

C++ code

João Paulo Barraca 61

this is passed as an additional, hidden argument
In this case, in RDI as the method has no arguments

