Algorithm Design Strategies 117

Joaquim Madeira

Version 0.2 — October 2019

U. Aveiro, October 2019

Overview

Dynamic Programming
Fibonacci’'s Sequence
Memoization

Computing Binomial Coefficients
Computing Delannoy Numbers
The Coin Row Problem

The 0-1 Knapsack Problem
Other Problems

U. Aveiro, October 2019

Dynamic Programming

General algorithm design technique

Apply to
o Computing recurrences
o Solving optimization problems

How to store “previous” results ?
o 2D array

o Vector

o A few variables

U. Aveiro, October 2019

Recurrences — Top-Down

Exploit the relationship between
o A solution to a given problem instance

o Solutions to smaller/simpler instances of the same
problem

Set up a recurrence !

Decompose into smaller / simpler sub-problems
o Parameters ?

ldentify the smallest / simplest / trivial problems
o Base cases

U. Aveiro, October 2019

Dynamic Programming — Bottom-up

Use a recurrence: BUT go bottom-up !

Start from the smallest / simplest / trivial
problems

Get intermediate solutions from smaller / simpler
sub-problems

Which values / results are computed in each

step ?
o How to store ?

U. Aveiro, October 2019

‘ Dynamic Programming — Advantage

= Do sub-problems overlap ?

= NOW, there is no need to repeatedly solve
the same sub-problems !

= Proceed bottom-up and store results for
later use

= Compare with Divide-and-Conquer !!

U. Aveiro, October 2019

Fibonacci’s Sequence
FO)=0;F1)=1
FO)=F@i-1)+F@i-2);i=2,3,4,...
F(6) =? =2 Number of recursive calls ?
Do sub-problems overlap ?

Recursion tree vs. recursion DAG !

Complexity order ?

U. Aveiro, October 2019

Tasks — V1

Implement the recursive function of the
previous slide in Python

Count the number of additions carried out for
computing a Fibonacci number

o Use a global variable

Table ?
Complexity order ?

U. Aveiro, October 2019

Fibonacci’s Sequence

def fibonacci DC(n)
""" Recursive computation of Fi """
Global variable, for counting the number of additions
global num adds
if (n == 0) or ((n == 1)
return n

num;adds += 1

return fibonacci DC(n - 1) + fibonacci DC(n - 2)

U. Aveiro, October 2019 9

Number of additions ?
AO)=0;A(1)=0
AD=1+A>l-1)+A(1-2);1=2,3,4,...
Closed formula ?

You can get it, if you remember Discrete
Mathematics...

BUT, we can get the complexity order from the
table...

U. Aveiro, October 2019

10

Fibonacci’s Sequence

F(0)=0;F(1) =1

FO)=F(i-1)+F(i-2):i=2,3,4,...

Use Dynamic Programming !!

Computing F(n) using an array
o Complexity order ?

Can we use less memory space ?

U. Aveiro, October 2019

11

‘ Tasks — V2 + V3

= Implement two iterative functions for
computing F(i)
o V2 :using an array
o V3 :using just 3 variables

= Count the number of additions carried out

= Table ?
= Complexity order ?

U. Aveiro, October 2019

12

Fibonacci’s Sequence

i f(i) #ADDs-Rec #ADDs_DP_1 #ADDs DP_2
2 0 0 0 0
1 1 0 0 0
2 1 1 1 1
3 2 2 2 2
4 3 4 3 3
5 5 7 4 4
6 8 12 5 5
7 13 20 6 6
8 21 33 7 7
9 34 54 8 8
10 55 88 9 9
11 89 143 10 10
12 144 232 11 11
13 233 376 12 12
14 377 609 13 13

U. Aveiro, October 2019

13

Additions — Recursive version

How fast does F(n) grow ?
How fast does A(n) grow ?

From the table we get:

A(n)=Fn+1)-1

Exponential growth !!
o Why ?

(1++/5)/2 =1,618034

U. Aveiro, October 2019

n

OCooONOOTUVPBAHDWNRERO

[T S S G G
i WN R O

16

F(n)

0O U1 WINF= KO

13
21
34
55
89
144
233
377
610
987
1597
2584
4181
6765

Ratio

1

2

1,5
1,666667
1,6

1,625
1,615385
1,619048
1,617647
1,618182
1,617978
1,618056
1,618026
1,618037
1,618033
1,618034
1,618034
1,618034
1,618034

A(n)

Nh~_ANER OO

12
20
33
54
88
143
232
376
609
986
1596
2583
4180
6764
10945

Ratio

2

2

1,75
1,714286
1,666667
1,65
1,636364
1,62963
1,625
1,622378
1,62069
1,619681
1,619048
1,618661
1,618421
1,618273
1,618182
1,618125

14

Memoization

Turning the results of a function into
something to be remembered

l.e., avoid repeating the calculation of results
for previously processed inputs

Use a table / array to store previously
computed results

o Initialization |

Time vs. space trade-off

U. Aveiro, October 2019

15

Memoization

Initialize all table entries to “null”
o Not yet computed

Whenever a result is to be computed for a
given input

o Check the corresponding table entry

o If not “null”, retrieve the result

o Otherwise, compute by a recursive call(s)

o And store the result

U. Aveiro, October 2019

16

Fibonacci’s Sequence

Initialization

for(i=1, i<n, i++) f[i] = -1,

Recursive function

int fib(intn) {
Int r;
If(f[n] '=-1) return f[n];
f(ln==1) r=1,
elseif(n==2) r=1,;

else {
r=fio(n-2);
r=r+fib(n-1);
}
fln] =,
returnr,;

U. Aveiro, October 2019

17

The Python way

M. Hetland, Python Algorithms, Apress, 2010 - Chapter 8
from functools import wraps

def memo(func)

cache = {} # Stored subproblem solutions
@wraps (func) # Make wrap look like func
def wrap(*args) : # The memoized wrapper
if args not in cache : # Not already computed?
cache[args] = func(*args) # Compute & cache the solution
return cachelargs] # Return the cached solution
return wrap # Return the wrapper

U. Aveiro, October 2019 18

“The Python way

Testing the memoized version

fibonacci_DC =

memo (fibonacci DC)

WOV PEWN R ®

=

85
86
87
88
89
=17

(1) #ADDs_Memo

259695496911122585
420196140727489673
679891637638612258
110ee87778366101931
1779979416004714189
2880067194370816120

PRRPRRPRRPREPPEPPEPPrOO®

PR R R R R

U. Aveiro, October 2019

19

‘ Another example

= Linear robot

= Can move forward by 1 meter, or 2 meters, or
3 meters

= In how many ways can it move a distance of
n meters ?

= Establish the recurrence !
0 Base cases ?

U. Aveiro, October 2019 20

‘ Tasks — V1 + V2 + V3

= Implement three functions for computing R(i)
o V1 :using recursion

o V2 :using an array
o V3 :using a few variables — how many ?

= Count the number of additions carried out
o Formulas ?

= Tables ?
= Complexity order ?

U. Aveiro, October 2019

21

Example — Results table

i r(i) #ADDs-Rec #ADDs_DP_1 #ADDs DP 2
1 1 Z 2 Z
2 2 0 0 Z
3 4 Z 0 2
4 7 2 2 2
5 13 4 4 4
6 24 8 6 6
7 44 16 8 8
8 81 30 10 10
9 149 56 12 12
10 274 104 14 14
11 504 192 16 16
12 927 354 18 18
13 1705 652 20 20
14 3136 1200 22 22

U. Aveiro, October 2019

22

Computing Binomial Coetticients
C(n,0)=1;C(n,n)=1
Cinp)=C(n-1,))+C(n-1,)-1);j=1,2,...,n-1

Two arguments !!
C4,3)=" => Number of recursive calls ?

Do sub-problems overlap ?
Recursion tree vs. recursion DAG !

Complexity order ?

U. Aveiro, October 2019 23

Computing Binomial Coetticients

V1 : Compute C(n,)) recursively

V2 . Compute C(n,)) using a 2D array
2 How to proceed ?
o Have you seen this “triangle” before ?

Can we use less memory space ?

And other, more efficient recurrences ?

U. Aveiro, October 2019

24

‘ Tasks — V1 + V2 + V3

= Implement three functions for computing C(n,j)
o V1 :using recursion
o V2 :using a 2D array
o V3:using a 1D array

= Count the number of additions carried out

= Tables ?
= Complexity order ?

U. Aveiro, October 2019

25

‘ Pascal’s Triangle

Pascal's Triangle - Recursive Function

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 1@ 10 5 1

1 6 15 20 15 6

1 7 21 35 35 21
1 3 28 56 70 56
1 9 36 84 126 126
1 1@ 45 12e 21e 252

=

84
216

36
120

U. Aveiro, October 2019

26

‘ V1 — Number of additions

Number of Additions - Recursive Function

0

0 e

0 1 >

0 2 2 e

e 3 5 3 >

0 4 9 9 4 0

e 5 14 19 14 5

0 6 20 34 34 20
0 7 27 55 69 55
e 3 35 83 125 125
0 9 44 119 209 251

27
83
209

119

w ®

U. Aveiro, October 2019

27

V2 — Number of additions

Number of Additions - Dynamic Programming - V. 1

0

e e

1 1 1

3 3 3 3

6 6 6 6 6

10 1@ 1@ 10 1@ 1@

15 15 15 15 15 15 15

21 21 21 21 21 21 21 21

28 28 28 28 28 28 28 28 28

36 36 36 36 36 36 36 36 36 36

45 45 45 45 45 45 45 45 45 45

U. Aveiro, October 2019

28

45

V3 — Number of additions

Number of Additions - Dynamic Programming - V. 2

e

e e

e 1 e

e 3 3 e

e 6 6 6 e

e 1@ 1@ 1@ 1@ e

e 15 15 15 15 15 e

e 21 21 21 21 21 21 e

e 28 28 28 28 28 28 28 e
e 36 36 36 36 36 36 36 36
e 45 45 45 45 45 45 45 45

U. Aveiro, October 2019

29

Delannoy Numbers — D(i,))

Rectangular grid of size (m,n)
Start at SW corner : (0,0)
Steps allowed in N, E or NE directions

D(1,)) = number of different paths from (0,0) to
(i.))

o Recursive definition ?

a Trivial cases ?

U. Aveiro, October 2019 30

‘ D(n,n) — Central Delannoy Numbers

oy ||

oer |)/
~r [/
—/

‘ D(n,n) — Central Delannoy Numbers

. D(.3) 20 P B G b b
TS

AT A DT
PARACE LA
2T

T A

R

rrds A

i

:

[Wikipedia]

Delannoy Numbers

D(m,n)=1,fm=00orn=0

D(m,n)=D(m-1,n)+D(m-1,n-1)+D(mM,n-1)

D(1,1) = ?
D(2,2) = ?
D(2,3) = ?
D(3,2) = ?

Arrange the calculations in a triangular representation !
o Have you seen a similar triangle before ?

U. Aveiro, October 2019

33

Tasks — V1 + V2 + V3

Implement three functions for computing D(i,))
o V1 :using recursion

o V2 :using a 2D array

o V3 :using two 1D arrays

Count the number of additions carried out

Tables ?
How fast does D(n,n) grow ?

U. Aveiro, October 2019

34

‘ Delannoy Numbers

Delannoy's Matrix - Recursive Function

1 1 1 1 1 1

1 3 5 7 9 11

1 5 13 25 41 6l

1 7 25 63 129 231

1 9 41 129 321 6381

1 11 61 231 6381 1683
1 13 85 377 1289 3653
1 15 113 575 2241 7183
1 17 145 833 3649 13873
1 19 181 1159 5641 22363
1 21 221 1561 8361 36365

1

13

85
377
1289
3653
8989
19825
48881
75517
134245

1

15

113
575
2241
7183
19825
48639
188545
224143
433985

1 1 1
17 19 21
145 181 221
833 1159 1561

2649 5641 6361

13873 22363 326365

48881 75517 134245
188545 224143 433985
265729 598417 1256465
598417 1462563 2317445
1256465 3317445 8897453

U. Aveiro, October 2019

35

Computing Bernstein Polynomials
Boo(t) =1
B, o(t) = (1= 1) B4 o(t) ; tin [0,1]
B n(t) = t By na(t) ; tin [0,]
By = (L=t By () +tByya(t);j=1,2,...,n=1;tin[0,1]

There are (n + 1) polynomials of degree n
How to obtain the expression of such a polynomial ?

Arrange the calculations in a triangular representation !
o Have you seen that triangle before ?

U. Aveiro, October 2019 36

Computing Bernstein Polynomials

How to compute the value of a polynomial for a
given t* ?

V1 : Compute B, (t*) recursively
B;,(1/2) =7
Number of recursive calls ?

Are there overlapping sub-problems ?

U. Aveiro, October 2019

37

Computing Bernstein Polynomials

V2 : Compute B, (t*) using a 2D array
B;,(1/2) =7

How to ?

Have you seen a similar procedure before ?

Can we use less memory space ?

U. Aveiro, October 2019

38

‘ Tasks — V1 + V2 + V3

= Implement three functions for computing B, ;(t)
o V1 :using recursion
o V2 :using a 2D array
o V3 :using a 1D array

= Count the number of multiplications carried out

= Tables ?
= Complexity order ?

U. Aveiro, October 2019 39

Bernstein Polynomials for t = 0.5

Polynomials' Triangle - Recursive

OO0 OO0 O

. 000
.500
. 250
.125
.062
.031
.016
.008
.004

U. Aveiro, October 2019

OO OO0 O®

.500
.500
.375
. 250
.156
.094
.055
.031

OO0 OO0

. 250
.375
.375
.312
.234
.164
.109

OO0 0000

.125
. 250
.312
.312
.273
.219

00000

Function - t

.062
.156
.234
.273
.273

0.031
0.094
0.164
90.219

0.5

0.016
0.055
0.109

40

‘ Multiplications count — Recursive

Number of Multiplications - Recursive Function

(%]

1 1

2 4 2

3 8 8

4 13 18
5 19 33
6 26 54
7 34 82
8 43 118

13
33
68
124
208

19
54
124
250

5

26 6

82 34 7
208 118 43

U. Aveiro, October 2019

41

‘ Multiplications count — Dynamic Prog.

Number of Multiplications - Dynamic Programming - V. 2

(%]

2 2

6 6 6

12 12 12 12

20 20 20 20 20

30 30 30 30 30 30

42 42 42 42 42 42 42

56 56 56 56 56 56 56 56

72 72 72 72 72 72 72 72 72

U. Aveiro, October 2019 42

‘ Multiplications count — Memoization

Number of Multiplications - Memoized Function

(%]

1 1

1 2 1

1 2 2 1

1 2 2 2 1

1 2 2 2 2 1

1 2 2 2 2 2 1

1 2 2 2 2 2 2 1
1 2 2 2 2 2 2 2

U. Aveiro, October 2019

43

'Optimization Problems

= Goal
o Minimize or maximize an objective function
o Store the solution’s components

= When can we use dynamic programming ?
o Overlapping sub-problems

o Optimal substructure
= The principle of optimality

U. Aveiro, October 2019

44

The Principle of Optimality

Does an optimization problem satisfy the
principle of optimality ?

An optimal solution to any of its instances
must be made up of optimal solutions to Its
sub-instances.

Example
o Shortest path

[Wikipedia]

U. Aveiro, October 2019

45

http://upload.wikimedia.org/wikipedia/en/4/42/Shortest_path_optimal_substructure.png

The Coin Row Problem

Row of n coins

Integer values c,, C,, ..., C,
o Not necessarily distinct

Goal: Pick up the maximum amount of money

Restriction: No two adjacent coins can be
picked up

U. Aveiro, October 2019 46

‘ The Coin Row Problem

= Can we solve it by Exhaustive Search ?
= Or using heuristics ?
= How ?

= Efficiency ?

U. Aveiro, October 2019

47

‘ The Coin Row Problem

= How to derive a recurrence ?

O F(n) =7
o Maximum amount that can be picked up from the
row of n coins

= n'" coin was picked up / not picked up ?

= Trivial cases ?

U. Aveiro, October 2019

48

‘ The Coin Row Problem
N F(O) =0
] F(l) - C

» F(n) =max{ c,+ F(n - 2),
F(n—-1) 1, forn>1

= Example: 5, 1, 2, 10, 6, 2
L] F(G) =7

U. Aveiro, October 2019

The Coin Row Problem

The DP algorithm solves the problem for the
firsticoinsintherow,1<i<n
o We get the optimal solution for every sub-problem

How to find the coins of an optimal solution ?
o Backtrace the computations

o OR use an additional array to record which term
was larger at every step

U. Aveiro, October 2019 50

Tasks — V1 + V2 + V3

Implement two functions for computing F(n)
o V1 :using recursion
o V2 :using a 1D array

o V3 :using an extra array to identify the optimal set of
coins

Count the number of comparisons carried out

Tables ?
Complexity order ?

U. Aveiro, October 2019

51

‘ The 0-1 Knapsack Problem

= Find the most valuable subset of items, that
fit iInto the knapsack

[Wikipedia]

U. Aveiro, October 2019

52

http://upload.wikimedia.org/wikipedia/commons/f/fd/Knapsack.svg

The 0-1 Knapsack Problem

Given n items
o Known weight wy, w,, ..., W
o Known value v, v,, ..., V,

A knapsack of capacity W

Which one is the / a most valuable subset of
items that fit into the knapsack ?

o More than one solution ?

U. Aveiro, October 2019

53

‘ The 0-1 Knapsack Problem

= How to formulate ?

max) XV,

subject to > Xiw. s W

with X In {0, 1}

U. Aveiro, October 2019

54

The 0-1 Knapsack Problem

An alternative to exhaustive search Is to use
a simple heuristics

o Rule to construct a feasible solution step-by-step
o Sometimes, only an approximate solution is found

Very simple idea:

o Successively choose the most valuable item that
still fits into the knapsack

Apply it to the example
o Do you get the optimal solution ?

U. Aveiro, October 2019 55

The Principle of Optimality

The 0-1 Knapsack Problem satisifies the
Principle of Optmality !!

We have solved it by exhaustive search...

Now, we can solve it using Dynamic
Programming !!

Recurrence ?

[Wikiedia]

U. Aveiro, October 2019 56

The 0-1 Knapsack Problem

Particular instance (i,)

o Thefirstiitems (L <i<n)
Weights wy, w,, ... , W,
Values v,, v,, ..., V,

o Knapsack capacity j (1 =j< W)

Value of an optimal solution to instance (i,]) ?
a V[i,j]1=7?

U. Aveiro, October 2019 57

‘ The 0-1 Knapsack Problem

wm Goal:V[n,W]="7
= Recurrence ?
= Trivial cases

o V[O,j]=0,forallj=0
o V[,0]=0,foralli=0

U. Aveiro, October 2019

58

The 0-1 Knapsack Problem

General cases:

The ith item does not fit into the knapsack
o V[i,j1=V[i-1,j],ifj—w,<0

The ith item fits into the knapsack

o V[Lj]=max{V[i-1,j],v,+V[i-1,j-w]},
if j—w; =20

U. Aveiro, October 2019

59

The 0-1 Knapsack Problem

To determine V[i,)], if (]—w;) = 0 inspect
o Element in the same column and previous row
a Element in column (] - w;) and previous row

How to proceed ?
o Fill the table row by row or column by column

Implement an iterative function !

U. Aveiro, October 2019

60

The 0-1 Knapsack Problem

Example

o Capacity W =10

o 4 items
teml1l:w=7;v=%42
tem2:w=3;v=%12
ltem3:w=4;v=3%40
ltem4:w=5;v=%25

Optimal solution

o Value ?

2 Which items ?
Trace back the computations !!

U. Aveiro, October 2019 61

The 0-1 Knapsack Problem

Complexity ?
0 O(nW)
o Pseudo-Polynomial !!

It depends on the magnitude of W !!
o Not just on the number of items
o It will take much time for very large values of W !!

What happens, if W increases and we need
an additional bit to represent its value ?

U. Aveiro, October 2019

62

The 0-1 Knapsack Problem

BUT, it is a NP-Complete problem !!
o Exhaustive search is exponential
o Is there a contradiction ?

Number of bits needed to represent W ?
0 O(log W)

Complexity in terms of that number of bits ?
o O(2 'egW
o Exponential !!

U. Aveiro, October 2019

63

The 0-1 Knapsack Problem

Could 1t be different ?
o What would that entail ?

Weakly NP-Complete versus Strongly NP-
Complete

The dynamic programming algorithm serves

our purposes !
o Except for "exponentialy large” values of W

U. Aveiro, October 2019

64

Tasks — V1 + V2

Implement two functions for computing the
solution to an instance of the Knapsack problem

V1 : arecursive function using the recurrence
defined for the DP approach

V2 . an iterative function implementing the DP
algorithm
o How to identify items belonging to the solution ?

U. Aveiro, October 2019

65

Tasks — V1 + V2

How to analyze ?
Register execution times for some test instances

What happens if we consider
o 1 moreitem/ 2 moreitems/ ...
o twice the number of items ?

Extrapolate the execution time for much larger
problem instances

U. Aveiro, October 2019 66

Solution — Dynamic Programming

©-1-Knapsack - Dynamic Programming Solution

Item Values: [None, 42, 12, 40, 25]
Item Weights: [None, 7, 3, 4, 5]

Capacity: W = © Optimal value: V Items
Capacity: W =1 Optimal value: V Items
Capacity: W = 2 Optimal value: V Items
Capacity: W = 3 Optimal value: V Items
Capacity: W = 4 Optimal value: V Items
Capacity: W = 5 Optimal value: V Items
Capacity: W = 6 Optimal value: V Items
Capacity: W = 7 Optimal value: V Items
Capacity: W = 8 Optimal value: V Items
Capacity: W = 9 Optimal value: V Items
Capacity: W = 10 Optimal value: V Items
Capacity: W = 11 Optimal value: V Items
Capacity: W = 12 Optimal value: V Items

U. Aveiro, October 2019

| WU I Wy Y oy TN oy S |
—

L
—

‘e ‘e ‘e ‘e ‘e

B WwwMhNMND W

‘e

| e B e B e B e B e B e B ey B e B e B ey B e B e B |

The Coin-Changing Problem

Make change for an amount A

Avallable coin denominations
o Denom[1] > Denom|[2] > ... > Denom|n] = 1

Use the fewest number of coins !

Assumption
o Enough coins of each denomination !!

U. Aveiro, October 2019

68

The Coin-Changing Problem

How to formulate ?

min) X

subject to > x.d[i]=A
with xi=0,1, 2, ...

Compare with the 0-1 Knapsack formulation

U. Aveiro, October 2019

69

The Coin-Changing Problem

Particular instance (i, |)
2 Amount |
o Use the smallest (n-1+1) coin denominations (1 <i < n)

Value of an optimal solution to instance (i, |) ?
o Minimum number of coins to make change for amount |
a C[i,j]="7

Recurrence ?

Optimal solution? : C[1, A] =7

U. Aveiro, October 2019 70

‘ The Coin-Changing Problem

= Trivial cases
o C[n,j]=j,forallj=0
o C[i,0]=0,foralli=0

= How to establish the recurrence ?
= Trytodoit!
= Note

o Minimization problem

o Compute row by row
o How to start ?

U. Aveiro, October 2019

71

The String Alignment Problem

StringsSand T
o Length n and m, respectively

Sometimes an “exact matching” is not possible !!

o DNA
Nature : mutations !!
Lab errors
Computational errors !!

“Soft matching™ !
o The string alignment problem

U. Aveiro, NotoRB6d 2019

72

The String Alignment Problem

Q1 : How to proceed if there is no exact matching ?
String alignment !

Introduce gaps In order to maximize the number of
coincident chars

Example

o0 TTATGCATAC-C-TCATGGGTACT
a0 TTACGCGTACTCATGGTAC-T—T

o Number of coincident chars ?

U. Aveiro, NotoRB6d 2019

73

The String Alignment Problem

Q2 : How to evaluate the score of a given
string alignment ?

How to weigh

o Matches : o(X,X)="7?
o Mutations: o(X,Y) =7
o Insertions: o(—,Y) =7
o Deletions: o(X,-)="7?

How to compute a final score ?

U. Aveiro, NotoRB6d 2019

74

‘ The String Alignment Problem

= A simple scoring matrix

A CGT -
A+2 -1-1-1 -2
C -1+2-1-1-2
G -1 -1+2 -1 -2
T -1 -1 -1+2 -2
- -2 -2 -2 -2 -

U. Aveiro, NotoRB6d 2019

75

The String Alignment Problem

Q3 : How to compute an optimal (i.e.,
maximum score) alignment ?

|deal situation ?
Is there just one optimal alignment ?

How to proceed ?
o Brute-force ?

a ...

U. Aveiro, NotoRB6d 2019

76

The String Alignment Problem

Input
o StringsSand T
Length n and m, respectively

Aim

o Determine an optimal alignment of S* and T*
o l.e., with maximal score O,(S,T)

S* and T* have the same length !!

And are obtained by introducing gaps

A gap does not appear simultaneously in the same
position of S* and T*

U. Aveiro, NotoRB6d 2019

77

The String Alignment Problem

Alignment example

ACGAGTTCACT
CTGGCTTGGAT

AC-GA-GTTC-AC
—CTGGCT-TGGA—

Try alternatives !

U. Aveiro, NotoRB6d 2019

78

‘ The String Alignment Problem

= Brute-force approach ?

= Consider all possible gap insertions in each
string !!

= Align and compare all possible string pairs !!

= Exponential approach !!

U. Aveiro, NotoRB6d 2019

79

The String Alignment Problem

Use Dynamic Programming !!

Issues
o Simplest / base cases ?
o How to establish a recurrence ?

a(S[0..i],T[0..j]) = ?
o Score of the optimal alignment between SJ[0..i]
and T[O0..j]

o Simplify the notation : afi][j]

U. Aveiro, NotoRB6d 2019

80

Simplest cases

af0][0] =0
o Matching two empty strings !!

al0]p] = 2. o(=TIk]) = a[0][j-1] + o(=,T]])

o Matching the empty string S[0] to string T[1..]]

afi]lo] = 2 o(S[k],) = a[I-1][0] + o(S]i], -)
o Matching string S[1..1] to empty string T[O]

U. Aveiro, NotoRB6d 2019

81

Recurrence

ali][j] = max {
a[i-1](] + o(S]i], =), // S[i] matches a gap
alil-1] + o(—,T[j]) , // T[j] matches a gap

ali-1][j-1] + o(S[i], T[j])) /I S[i] matches T[j]

‘ The String Alignment Problem

= Where is the optimal score ?
0 Ogn(S,T) = aln][m]

= Complexity order ?
= How to trace back the computations ?

= How to identify the optimal gap placement ?

U. Aveiro, NotoRB6d 2019

83

Example

Compute the optimal alignment score for
strings AAAC and AGC

What is the score ?

Is there just one optimal alignment ?

U. Aveiro, NotoRB6d 2019

84

Other Problems

The longest common subseguence problem
Constructing optimal binary search trees
The chain matrix multiplication problem

Warshall’'s algorithm for the transitive closure of a
directed graph

Floyd's algorithm for the all-pairs shortest path
problem in a connected graph

U. Aveiro, October 2019

85

Dynamic Programming — Recap

General algorithm design technique

Apply to
o Computing recurrences
o Solving optimization problems

Problem solution expressed recursively

BUT, proceed bottom-up and store results for
later use

U. Aveiro, October 2019 86

‘ Dynamic Programming — Recap

= Proceed bottom-up and store results for
later use

= Big advantage, if sub-problems overlap !

= NOW, there Is no need to repeatedly solve
the same sub-problems !!

= [terative algorithms with “acceptable”
complexity order

U. Aveiro, October 2019 87

Retfterences

A. Levitin, Introduction to the Design and Analysis of
Algorithms, 3 Ed., Pearson, 2012

o Chapter 8

R. Johnsonbaugh and M. Schaefer, Algorithms,
Pearson Prentice Hall, 2004

o Chapter 8
T. H. Cormen et al., Introduction to Algorithms, 3"

Ed., MIT Press, 2009
o Chapter 15

U. Aveiro, October 2019 88

