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Overview

◼ Dynamic Programming

◼ Fibonacci’s Sequence

◼ Memoization

◼ Computing Binomial Coefficients

◼ Computing Delannoy Numbers

◼ The Coin Row Problem

◼ The 0-1 Knapsack Problem

◼ Other Problems
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Dynamic Programming

◼ General algorithm design technique

◼ Apply to

❑ Computing recurrences

❑ Solving optimization problems

◼ How to store “previous” results ?

❑ 2D array

❑ Vector

❑ A few variables 
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Recurrences – Top-Down

◼ Exploit the relationship between
❑ A solution to a given problem instance

❑ Solutions to smaller/simpler instances of the same 
problem

◼ Set up a recurrence !

◼ Decompose into smaller / simpler sub-problems
❑ Parameters ?

◼ Identify the smallest / simplest / trivial problems
❑ Base cases
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Dynamic Programming – Bottom-up

◼ Use a recurrence: BUT go bottom-up !

◼ Start from the smallest / simplest / trivial 
problems

◼ Get intermediate solutions from smaller / simpler 
sub-problems

◼ Which values / results are computed in each 
step ?
❑ How to store ?
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Dynamic Programming – Advantage 

◼ Do sub-problems overlap ?

◼ NOW, there is no need to repeatedly solve 
the same sub-problems !!

◼ Proceed bottom-up and store results for 
later use 

◼ Compare with Divide-and-Conquer !!
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Fibonacci’s Sequence

◼ F(0) = 0 ; F(1) = 1

◼ F(i) = F(i - 1) + F(i - 2) ; i = 2, 3, 4,…

◼ F(6) = ? ➔ Number of recursive calls ?

◼ Do sub-problems overlap ?

◼ Recursion tree vs. recursion DAG !!

◼ Complexity order ?



Tasks – V1

◼ Implement the recursive function of the

previous slide in Python

◼ Count the number of additions carried out for 

computing a Fibonacci number

❑ Use a global variable

◼ Table ?

◼ Complexity order ?
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Fibonacci’s Sequence
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Number of additions ?

◼ A(0) = 0 ; A(1) = 0

◼ A(i) = 1 + A(i - 1) + A(i - 2) ; i = 2, 3, 4,…

◼ Closed formula ?

◼ You can get it, if you remember Discrete 
Mathematics…

◼ BUT, we can get the complexity order from the 
table…
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Fibonacci’s Sequence

◼ F(0) = 0 ; F(1) = 1

◼ F(i) = F(i - 1) + F(i - 2) ; i = 2, 3, 4,…

◼ Use Dynamic Programming !!

◼ Computing F(n) using an array
❑ Complexity order ?

◼ Can we use less memory space ?



Tasks – V2 + V3

◼ Implement two iterative functions for 

computing F(i)

❑ V2 : using an array

❑ V3 : using just 3 variables

◼ Count the number of additions carried out

◼ Table ?

◼ Complexity order ?
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Fibonacci’s Sequence
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Additions – Recursive version

◼ How fast does F(n) grow ?

◼ How fast does A(n) grow ?

◼ From the table we get:

A(n) = F(n+1) – 1 

◼ Exponential growth !!
❑ Why ?

n F(n) Ratio A(n) Ratio
0 0 0
1 1 0

2 1 1 1

3 2 2 2 2

4 3 1,5 4 2
5 5 1,666667 7 1,75
6 8 1,6 12 1,714286
7 13 1,625 20 1,666667
8 21 1,615385 33 1,65

9 34 1,619048 54 1,636364
10 55 1,617647 88 1,62963
11 89 1,618182 143 1,625
12 144 1,617978 232 1,622378
13 233 1,618056 376 1,62069

14 377 1,618026 609 1,619681
15 610 1,618037 986 1,619048
16 987 1,618033 1596 1,618661
17 1597 1,618034 2583 1,618421
18 2584 1,618034 4180 1,618273

19 4181 1,618034 6764 1,618182
20 6765 1,618034 10945 1,618125

1,6180342/)5 (1 =+
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Memoization

◼ Turning the results of a function into 
something to be remembered

◼ I.e., avoid repeating the calculation of results 
for previously processed inputs

◼ Use a table / array to store previously 
computed results

❑ Initialization !

◼ Time vs. space trade-off
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Memoization

◼ Initialize all table entries to “null”

❑ Not yet computed 

◼ Whenever a result is to be computed for a 

given input

❑ Check the corresponding table entry

❑ If not “null”, retrieve the result

❑ Otherwise, compute by a recursive call(s)

❑ And store the result
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Fibonacci’s Sequence
◼ Initialization 

for(i=1, i<n, i++)   f[i] = -1;

◼ Recursive function

int fib( int n ) {

int r;

if( f[n] != -1 )   return f[n];

if( n == 1 )   r = 1;

else if( n == 2 )   r = 1;

else {

r = fib( n – 2 );

r = r + fib( n – 1 );

}

f[n] = r;

return r;

}



The Python way
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The Python way
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Another example

◼ Linear robot

◼ Can move forward by 1 meter, or 2 meters, or

3 meters

◼ In how many ways can it move a distance of

n meters ?

◼ Establish the recurrence !!

❑ Base cases ?
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Tasks – V1 + V2 + V3

◼ Implement three functions for computing R(i)

❑ V1 : using recursion

❑ V2 : using an array

❑ V3 : using a few variables – how many ?

◼ Count the number of additions carried out

❑ Formulas ?

◼ Tables ?

◼ Complexity order ?
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Example – Results table
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Computing Binomial Coefficients

◼ C(n,0) = 1 ; C(n,n) = 1

◼ C(n,j) = C(n -1,j) + C(n -1,j -1) ; j = 1, 2,…, n -1 

◼ Two arguments !!

◼ C(4,3) = ? ➔ Number of recursive calls ?

◼ Do sub-problems overlap ?

◼ Recursion tree vs. recursion DAG !!

◼ Complexity order ?
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Computing Binomial Coefficients

◼ V1 : Compute C(n,j) recursively

◼ V2 : Compute C(n,j) using a 2D array 

❑ How to proceed ?

❑ Have you seen this “triangle” before ?

◼ Can we use less memory space ?

◼ And other, more efficient recurrences ?



Tasks – V1 + V2 + V3

◼ Implement three functions for computing C(n,j)

❑ V1 : using recursion

❑ V2 : using a 2D array

❑ V3 : using a 1D array

◼ Count the number of additions carried out

◼ Tables ?

◼ Complexity order ?
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Pascal’s Triangle
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V1 – Number of additions

U. Aveiro, October 2019 27



V2 – Number of additions
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V3 – Number of additions
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Delannoy Numbers – D(i,j) 

◼ Rectangular grid of size (m,n)

◼ Start at SW corner : (0,0)

◼ Steps allowed in N, E or NE directions

◼ D(i,j) = number of different paths from (0,0) to 

(i,j) 

❑ Recursive definition ?

❑ Trivial cases ?
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◼ D(1,1)

◼ D(2,2)

D(n,n) – Central Delannoy Numbers
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[Mathworld]



◼ D(3,3)

D(n,n) – Central Delannoy Numbers
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[Wikipedia]
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Delannoy Numbers

D(m,n) = 1, if m = 0 or n = 0

D(m,n) = D(m – 1, n) + D(m – 1, n – 1) + D(m, n – 1) 

◼ D(1,1) = ?

◼ D(2,2) = ?

◼ D(2,3) = ?

◼ D(3,2) = ?

◼ Arrange the calculations in a triangular representation !
❑ Have you seen a similar triangle before ?



Tasks – V1 + V2 + V3

◼ Implement three functions for computing D(i,j) 

❑ V1 : using recursion

❑ V2 : using a 2D array

❑ V3 : using two 1D arrays

◼ Count the number of additions carried out

◼ Tables ?

◼ How fast does D(n,n) grow ?
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Delannoy Numbers
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Computing Bernstein Polynomials

B0,0(t) = 1

Bn,0(t) = (1 – t) Bn-1,0(t) ; t in [0,1]

Bn,n(t) = t Bn-1,n-1(t) ; t in [0,1]

Bn,j(t) = (1 – t) Bn-1,j(t) + t Bn-1,j-1(t) ; j = 1, 2,…, n – 1 ; t in [0,1]

◼ There are (n + 1) polynomials of degree n

◼ How to obtain the expression of such a polynomial ? 

◼ Arrange the calculations in a triangular representation !
❑ Have you seen that triangle before ?



◼ How to compute the value of a polynomial for a 
given t* ?

◼ V1 : Compute Bn,j(t*) recursively

◼ B3,2(1/2) = ? 

◼ Number of recursive calls ?

◼ Are there overlapping sub-problems ?
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Computing Bernstein Polynomials



◼ V2 : Compute Bn,j(t*) using a 2D array

◼ B3,2(1/2) = ? 

◼ How to ?

◼ Have you seen a similar procedure before ?

◼ Can we use less memory space ?
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Computing Bernstein Polynomials



Tasks – V1 + V2 + V3

◼ Implement three functions for computing Bn,j(t) 

❑ V1 : using recursion

❑ V2 : using a 2D array

❑ V3 : using a 1D array

◼ Count the number of multiplications carried out

◼ Tables ?

◼ Complexity order ?
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Bernstein Polynomials for t = 0.5
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Multiplications count – Recursive
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Multiplications count – Dynamic Prog.
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Multiplications count – Memoization
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Optimization Problems

◼ Goal

❑ Minimize or maximize an objective function

❑ Store the solution’s components

◼ When can we use dynamic programming ?

❑ Overlapping sub-problems

❑ Optimal substructure

◼ The principle of optimality
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The Principle of Optimality

◼ Does an optimization problem satisfy the 

principle of optimality ?

◼ An optimal solution to any of its instances 

must be made up of optimal solutions to its 

sub-instances. 

◼ Example 

❑ Shortest path
[Wikipedia]

http://upload.wikimedia.org/wikipedia/en/4/42/Shortest_path_optimal_substructure.png


The Coin Row Problem

◼ Row of n coins

◼ Integer values c1, c2, …, cn

❑ Not necessarily distinct

◼ Goal: Pick up the maximum amount of money

◼ Restriction: No two adjacent coins can be

picked up
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The Coin Row Problem

◼ Can we solve it by Exhaustive Search ?

◼ Or using heuristics ?

◼ How ?

◼ Efficiency ?
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The Coin Row Problem

◼ How to derive a recurrence ?

◼ F(n) = ?

❑ Maximum amount that can be picked up from the

row of n coins

◼ nth coin was picked up / not picked up ?

◼ Trivial cases ?
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The Coin Row Problem

◼ F(0) = 0

◼ F(1) = c1

◼ F(n) = max { cn + F(n − 2), 

F(n − 1) }, for n > 1

◼ Example: 5, 1, 2, 10, 6, 2 

◼ F(6) = ?
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The Coin Row Problem

◼ The DP algorithm solves the problem for the

first i coins in the row, 1 ≤ i ≤ n

❑ We get the optimal solution for every sub-problem

◼ How to find the coins of an optimal solution ?

❑ Backtrace the computations

❑ OR use an additional array to record which term

was larger at every step
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Tasks – V1 + V2 + V3

◼ Implement two functions for computing F(n) 

❑ V1 : using recursion

❑ V2 : using a 1D array

❑ V3 : using an extra array to identify the optimal set of

coins

◼ Count the number of comparisons carried out

◼ Tables ?

◼ Complexity order ?
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The 0-1 Knapsack Problem

◼ Find the most valuable subset of items, that 

fit into the knapsack

[Wikipedia]

http://upload.wikimedia.org/wikipedia/commons/f/fd/Knapsack.svg
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The 0-1 Knapsack Problem

◼ Given n items

❑ Known weight w1, w2, … , wn

❑ Known value v1, v2, … , vn

◼ A knapsack of capacity W

◼ Which one is the / a most valuable subset of 

items that fit into the knapsack ?

❑ More than one solution ?
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The 0-1 Knapsack Problem

◼ How to formulate ?

max ∑ xi vi

subject to ∑ xi wi ≤ W

with xi in {0, 1}



The 0-1 Knapsack Problem

◼ An alternative to exhaustive search is to use 

a simple heuristics 

❑ Rule to construct a feasible solution step-by-step

❑ Sometimes, only an approximate solution is found

◼ Very simple idea:

❑ Successively choose the most valuable item that 

still fits into the knapsack 

◼ Apply it to the example

❑ Do you get the optimal solution ?
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The Principle of Optimality

◼ The 0-1 Knapsack Problem satisifies the 

Principle of Optmality !!

◼ We have solved it by exhaustive search…

◼ Now, we can solve it using Dynamic 

Programming !!

◼ Recurrence ?
[Wikiedia]
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The 0-1 Knapsack Problem

◼ Particular instance (i, j)

❑ The first i items (1 ≤ i ≤ n)

◼ Weights w1, w2, … , wi

◼ Values v1, v2, … , vi

❑ Knapsack capacity j (1 ≤ j ≤ W)

◼ Value of an optimal solution to instance (i, j) ?

❑ V[ i, j ] = ? 
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The 0-1 Knapsack Problem

◼ Goal : V[ n, W ] = ?

◼ Recurrence ?

◼ Trivial cases

❑ V[ 0, j ] = 0 , for all j ≥ 0

❑ V[ i, 0 ] = 0 , for all i ≥ 0
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The 0-1 Knapsack Problem

◼ General cases:

◼ The ith item does not fit into the knapsack

❑ V[ i, j ] = V[ i -1, j ] , if j – wi < 0

◼ The ith item fits into the knapsack

❑ V[ i, j ] = max { V[ i -1, j ] , vi +V[ i -1, j - wi ] } , 

if j – wi ≥ 0
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The 0-1 Knapsack Problem

◼ To determine V[ i, j ], if ( j – wi ) ≥ 0 inspect

❑ Element in the same column and previous row

❑ Element in column ( j - wi ) and previous row

◼ How to proceed ?

❑ Fill the table row by row or column by column

◼ Implement an iterative function !!
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The 0-1 Knapsack Problem

◼ Example

❑ Capacity W = 10

❑ 4 items
◼ Item 1 : w = 7 ; v = $42

◼ Item 2 : w = 3 ; v = $12

◼ Item 3 : w = 4 ; v = $40

◼ Item 4 : w = 5 ; v = $25

◼ Optimal solution 

❑ Value ?

❑ Which items ?
◼ Trace back the computations !!



The 0-1 Knapsack Problem

◼ Complexity ?

❑ O( n W )

❑ Pseudo-Polynomial !!

◼ It depends on the magnitude of W !!

❑ Not just on the number of items

❑ It will take much time for very large values of W !!

◼ What happens, if W increases and we need

an additional bit to represent its value ?
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The 0-1 Knapsack Problem

◼ BUT, it is a NP-Complete problem !!

❑ Exhaustive search is exponential

❑ Is there a contradiction ?

◼ Number of bits needed to represent W ?

❑ O( log W )

◼ Complexity in terms of that number of bits ?

❑ O( 2 log W )

❑ Exponential !!
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The 0-1 Knapsack Problem

◼ Could it be different ?

❑ What would that entail ?

◼ Weakly NP-Complete versus Strongly NP-

Complete

◼ The dynamic programming algorithm serves 

our purposes !!

❑ Except for “exponentialy large” values of W
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Tasks – V1 + V2

◼ Implement two functions for computing the

solution to an instance of the Knapsack problem

◼ V1 : a recursive function using the recurrence

defined for the DP approach

◼ V2 : an iterative function implementing the DP 

algorithm

❑ How to identify items belonging to the solution ?
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Tasks – V1 + V2

◼ How to analyze ?

◼ Register execution times for some test instances

◼ What happens if we consider

❑ 1 more item / 2 more items / …

❑ twice the number of items ?

◼ Extrapolate the execution time for much larger

problem instances
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Solution – Dynamic Programming
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The Coin-Changing Problem

◼ Make change for an amount A

◼ Available coin denominations 

❑ Denom[1] > Denom[2] > … > Denom[n] = 1

◼ Use the fewest number of coins !!

◼ Assumption

❑ Enough coins of each denomination !!
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The Coin-Changing Problem

◼ How to formulate ?

min ∑ xi

subject to ∑ xi d[ i ] = A

with xi = 0, 1, 2, …

◼ Compare with the 0-1 Knapsack formulation 
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The Coin-Changing Problem

◼ Particular instance (i, j)

❑ Amount j

❑ Use the smallest (n-i+1) coin denominations (1 ≤ i ≤ n)

◼ Value of an optimal solution to instance (i, j) ?

❑ Minimum number of coins to make change for amount j

❑ C[ i, j ] = ? 

◼ Recurrence ?

◼ Optimal solution ? : C[ 1, A ] = ? 
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The Coin-Changing Problem

◼ Trivial cases

❑ C[ n, j ] = j , for all j ≥ 0

❑ C[ i, 0 ] = 0 , for all i ≥ 0

◼ How to establish the recurrence ?

◼ Try to do it !!

◼ Note

❑ Minimization problem 

❑ Compute row by row

❑ How to start ?
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The String Alignment Problem

◼ Strings S and T

❑ Length n and m, respectively

◼ Sometimes an “exact matching” is not possible !!

❑ DNA

◼ Nature : mutations !!

◼ Lab errors

◼ Computational errors !!

◼ “Soft matching” !!

❑ The string alignment problem
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The String Alignment Problem

◼ Q1 : How to proceed if there is no exact matching ?

◼ String alignment !

◼ Introduce gaps in order to maximize the number of 
coincident chars

◼ Example

❑ TTATGCATAC–C–TCATGGGTACT

❑ TTACGCGTACTCATGGTAC–T––T

❑ Number of coincident chars ?
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The String Alignment Problem

◼ Q2 : How to evaluate the score of a given 
string alignment ?

◼ How to weigh

❑ Matches : σ(X,X) = ?

❑ Mutations : σ(X,Y) = ?

❑ Insertions : σ(–,Y) = ?

❑ Deletions : σ(X, –) = ?

◼ How to compute a final score ?

U. Aveiro, October 2019 74



U. Aveiro, Nov. 2013 75

The String Alignment Problem

◼ A simple scoring matrix

A   C   G   T   –

A  +2 -1  -1  -1   -2

C  -1  +2 -1  -1  -2

G  -1   -1 +2 -1  -2

T   -1   -1  -1 +2 -2

– -2 -2 -2 -2  –
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The String Alignment Problem

◼ Q3 : How to compute an optimal (i.e.,  

maximum score) alignment ?

◼ Ideal situation ?

◼ Is there just one optimal alignment ?

◼ How to proceed ?

❑ Brute-force ?

❑ …
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The String Alignment Problem

◼ Input
❑ Strings S and T

◼ Length n and m, respectively

◼ Aim
❑ Determine an optimal alignment of S* and T*

❑ I.e., with maximal score σopt(S,T)

◼ S* and T* have the same length !!

◼ And are obtained by introducing gaps

◼ A gap does not appear simultaneously in the same 
position of S* and T* 
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The String Alignment Problem

◼ Alignment example

ACGAGTTCACT

CTGGCTTGGAT

AC–GA–GTTC–ACT

–CTGGCT–TGGA–T

◼ Try alternatives !!
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The String Alignment Problem

◼ Brute-force approach ?

◼ Consider all possible gap insertions in each 

string !!

◼ Align and compare all possible string pairs !!

◼ Exponential approach !!
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The String Alignment Problem

◼ Use Dynamic Programming !!

◼ Issues 

❑ Simplest / base cases ?

❑ How to establish a recurrence ?

◼ α(S[0..i],T[0..j]) = ?

❑ Score of the optimal alignment between S[0..i] 

and T[0..j]

❑ Simplify the notation : α[i][j]
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Simplest cases

◼ α[0][0] = 0

❑ Matching two empty strings !!

◼ α[0][j] = ∑ σ(–,T[k]) = α[0][j-1] + σ(–,T[j]) 

❑ Matching the empty string S[0] to string T[1..j]

◼ α[i][0] = ∑ σ(S[k], –) = α[i-1][0] + σ(S[i], –)

❑ Matching string S[1..i] to empty string T[0]
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Recurrence

◼ α[i][j] = max {

α[i-1][j] + σ(S[i], –), // S[i] matches a gap

α[i][j-1] + σ(–,T[j]) , // T[j] matches a gap

α[i-1][j-1] + σ(S[i],T[j])   // S[i] matches T[j]

}
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The String Alignment Problem

◼ Where is the optimal score ?

❑ σopt(S,T) = α[n][m]

◼ Complexity order ?

◼ How to trace back the computations ?

◼ How to identify the optimal gap placement ?
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Example

◼ Compute the optimal alignment score for 

strings AAAC and AGC

◼ What is the score ?

◼ Is there just one optimal alignment ?
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Other Problems

◼ The longest common subsequence problem

◼ Constructing optimal binary search trees

◼ The chain matrix multiplication problem

◼ Warshall’s algorithm for the transitive closure of a 
directed graph

◼ Floyd’s algorithm for the all-pairs shortest path 
problem in a connected graph

◼ …
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Dynamic Programming – Recap 

◼ General algorithm design technique

◼ Apply to

❑ Computing recurrences

❑ Solving optimization problems

◼ Problem solution expressed recursively

◼ BUT, proceed bottom-up and store results for 

later use 
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Dynamic Programming – Recap  

◼ Proceed bottom-up and store results for 
later use 

◼ Big advantage, if sub-problems overlap !!

◼ NOW, there is no need to repeatedly solve 
the same sub-problems !!

◼ Iterative algorithms with “acceptable” 
complexity order
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