
U. Aveiro, October 2019 1

Algorithm Design Strategies IV

Joaquim Madeira

Version 0.2 – October 2019

U. Aveiro, October 2019 2

Overview

◼ Dynamic Programming

◼ Fibonacci’s Sequence

◼ Memoization

◼ Computing Binomial Coefficients

◼ Computing Delannoy Numbers

◼ The Coin Row Problem

◼ The 0-1 Knapsack Problem

◼ Other Problems

U. Aveiro, October 2019 3

Dynamic Programming

◼ General algorithm design technique

◼ Apply to

❑ Computing recurrences

❑ Solving optimization problems

◼ How to store “previous” results ?

❑ 2D array

❑ Vector

❑ A few variables

U. Aveiro, October 2019 4

Recurrences – Top-Down

◼ Exploit the relationship between
❑ A solution to a given problem instance

❑ Solutions to smaller/simpler instances of the same
problem

◼ Set up a recurrence !

◼ Decompose into smaller / simpler sub-problems
❑ Parameters ?

◼ Identify the smallest / simplest / trivial problems
❑ Base cases

U. Aveiro, October 2019 5

Dynamic Programming – Bottom-up

◼ Use a recurrence: BUT go bottom-up !

◼ Start from the smallest / simplest / trivial
problems

◼ Get intermediate solutions from smaller / simpler
sub-problems

◼ Which values / results are computed in each
step ?
❑ How to store ?

U. Aveiro, October 2019 6

Dynamic Programming – Advantage

◼ Do sub-problems overlap ?

◼ NOW, there is no need to repeatedly solve
the same sub-problems !!

◼ Proceed bottom-up and store results for
later use

◼ Compare with Divide-and-Conquer !!

U. Aveiro, October 2019 7

Fibonacci’s Sequence

◼ F(0) = 0 ; F(1) = 1

◼ F(i) = F(i - 1) + F(i - 2) ; i = 2, 3, 4,…

◼ F(6) = ? ➔ Number of recursive calls ?

◼ Do sub-problems overlap ?

◼ Recursion tree vs. recursion DAG !!

◼ Complexity order ?

Tasks – V1

◼ Implement the recursive function of the

previous slide in Python

◼ Count the number of additions carried out for

computing a Fibonacci number

❑ Use a global variable

◼ Table ?

◼ Complexity order ?

U. Aveiro, October 2019 8

Fibonacci’s Sequence

U. Aveiro, October 2019 9

Number of additions ?

◼ A(0) = 0 ; A(1) = 0

◼ A(i) = 1 + A(i - 1) + A(i - 2) ; i = 2, 3, 4,…

◼ Closed formula ?

◼ You can get it, if you remember Discrete
Mathematics…

◼ BUT, we can get the complexity order from the
table…

U. Aveiro, October 2019 10

U. Aveiro, October 2019 11

Fibonacci’s Sequence

◼ F(0) = 0 ; F(1) = 1

◼ F(i) = F(i - 1) + F(i - 2) ; i = 2, 3, 4,…

◼ Use Dynamic Programming !!

◼ Computing F(n) using an array
❑ Complexity order ?

◼ Can we use less memory space ?

Tasks – V2 + V3

◼ Implement two iterative functions for

computing F(i)

❑ V2 : using an array

❑ V3 : using just 3 variables

◼ Count the number of additions carried out

◼ Table ?

◼ Complexity order ?

U. Aveiro, October 2019 12

Fibonacci’s Sequence

U. Aveiro, October 2019 13

U. Aveiro, October 2019 14

Additions – Recursive version

◼ How fast does F(n) grow ?

◼ How fast does A(n) grow ?

◼ From the table we get:

A(n) = F(n+1) – 1

◼ Exponential growth !!
❑ Why ?

n F(n) Ratio A(n) Ratio
0 0 0
1 1 0

2 1 1 1

3 2 2 2 2

4 3 1,5 4 2
5 5 1,666667 7 1,75
6 8 1,6 12 1,714286
7 13 1,625 20 1,666667
8 21 1,615385 33 1,65

9 34 1,619048 54 1,636364
10 55 1,617647 88 1,62963
11 89 1,618182 143 1,625
12 144 1,617978 232 1,622378
13 233 1,618056 376 1,62069

14 377 1,618026 609 1,619681
15 610 1,618037 986 1,619048
16 987 1,618033 1596 1,618661
17 1597 1,618034 2583 1,618421
18 2584 1,618034 4180 1,618273

19 4181 1,618034 6764 1,618182
20 6765 1,618034 10945 1,618125

1,6180342/)5 (1 =+

U. Aveiro, October 2019 15

Memoization

◼ Turning the results of a function into
something to be remembered

◼ I.e., avoid repeating the calculation of results
for previously processed inputs

◼ Use a table / array to store previously
computed results

❑ Initialization !

◼ Time vs. space trade-off

U. Aveiro, October 2019 16

Memoization

◼ Initialize all table entries to “null”

❑ Not yet computed

◼ Whenever a result is to be computed for a

given input

❑ Check the corresponding table entry

❑ If not “null”, retrieve the result

❑ Otherwise, compute by a recursive call(s)

❑ And store the result

U. Aveiro, October 2019 17

Fibonacci’s Sequence
◼ Initialization

for(i=1, i<n, i++) f[i] = -1;

◼ Recursive function

int fib(int n) {

int r;

if(f[n] != -1) return f[n];

if(n == 1) r = 1;

else if(n == 2) r = 1;

else {

r = fib(n – 2);

r = r + fib(n – 1);

}

f[n] = r;

return r;

}

The Python way

U. Aveiro, October 2019 18

The Python way

U. Aveiro, October 2019 19

Another example

◼ Linear robot

◼ Can move forward by 1 meter, or 2 meters, or

3 meters

◼ In how many ways can it move a distance of

n meters ?

◼ Establish the recurrence !!

❑ Base cases ?

U. Aveiro, October 2019 20

Tasks – V1 + V2 + V3

◼ Implement three functions for computing R(i)

❑ V1 : using recursion

❑ V2 : using an array

❑ V3 : using a few variables – how many ?

◼ Count the number of additions carried out

❑ Formulas ?

◼ Tables ?

◼ Complexity order ?

U. Aveiro, October 2019 21

Example – Results table

U. Aveiro, October 2019 22

U. Aveiro, October 2019 23

Computing Binomial Coefficients

◼ C(n,0) = 1 ; C(n,n) = 1

◼ C(n,j) = C(n -1,j) + C(n -1,j -1) ; j = 1, 2,…, n -1

◼ Two arguments !!

◼ C(4,3) = ? ➔ Number of recursive calls ?

◼ Do sub-problems overlap ?

◼ Recursion tree vs. recursion DAG !!

◼ Complexity order ?

U. Aveiro, October 2019 24

Computing Binomial Coefficients

◼ V1 : Compute C(n,j) recursively

◼ V2 : Compute C(n,j) using a 2D array

❑ How to proceed ?

❑ Have you seen this “triangle” before ?

◼ Can we use less memory space ?

◼ And other, more efficient recurrences ?

Tasks – V1 + V2 + V3

◼ Implement three functions for computing C(n,j)

❑ V1 : using recursion

❑ V2 : using a 2D array

❑ V3 : using a 1D array

◼ Count the number of additions carried out

◼ Tables ?

◼ Complexity order ?

U. Aveiro, October 2019 25

Pascal’s Triangle

U. Aveiro, October 2019 26

V1 – Number of additions

U. Aveiro, October 2019 27

V2 – Number of additions

U. Aveiro, October 2019 28

V3 – Number of additions

U. Aveiro, October 2019 29

Delannoy Numbers – D(i,j)

◼ Rectangular grid of size (m,n)

◼ Start at SW corner : (0,0)

◼ Steps allowed in N, E or NE directions

◼ D(i,j) = number of different paths from (0,0) to

(i,j)

❑ Recursive definition ?

❑ Trivial cases ?

U. Aveiro, October 2019 30

◼ D(1,1)

◼ D(2,2)

D(n,n) – Central Delannoy Numbers

U. Aveiro, October 2019 31

[Mathworld]

◼ D(3,3)

D(n,n) – Central Delannoy Numbers

U. Aveiro, October 2019 32

[Wikipedia]

U. Aveiro, October 2019 33

Delannoy Numbers

D(m,n) = 1, if m = 0 or n = 0

D(m,n) = D(m – 1, n) + D(m – 1, n – 1) + D(m, n – 1)

◼ D(1,1) = ?

◼ D(2,2) = ?

◼ D(2,3) = ?

◼ D(3,2) = ?

◼ Arrange the calculations in a triangular representation !
❑ Have you seen a similar triangle before ?

Tasks – V1 + V2 + V3

◼ Implement three functions for computing D(i,j)

❑ V1 : using recursion

❑ V2 : using a 2D array

❑ V3 : using two 1D arrays

◼ Count the number of additions carried out

◼ Tables ?

◼ How fast does D(n,n) grow ?

U. Aveiro, October 2019 34

Delannoy Numbers

U. Aveiro, October 2019 35

U. Aveiro, October 2019 36

Computing Bernstein Polynomials

B0,0(t) = 1

Bn,0(t) = (1 – t) Bn-1,0(t) ; t in [0,1]

Bn,n(t) = t Bn-1,n-1(t) ; t in [0,1]

Bn,j(t) = (1 – t) Bn-1,j(t) + t Bn-1,j-1(t) ; j = 1, 2,…, n – 1 ; t in [0,1]

◼ There are (n + 1) polynomials of degree n

◼ How to obtain the expression of such a polynomial ?

◼ Arrange the calculations in a triangular representation !
❑ Have you seen that triangle before ?

◼ How to compute the value of a polynomial for a
given t* ?

◼ V1 : Compute Bn,j(t*) recursively

◼ B3,2(1/2) = ?

◼ Number of recursive calls ?

◼ Are there overlapping sub-problems ?

U. Aveiro, October 2019 37

Computing Bernstein Polynomials

◼ V2 : Compute Bn,j(t*) using a 2D array

◼ B3,2(1/2) = ?

◼ How to ?

◼ Have you seen a similar procedure before ?

◼ Can we use less memory space ?

U. Aveiro, October 2019 38

Computing Bernstein Polynomials

Tasks – V1 + V2 + V3

◼ Implement three functions for computing Bn,j(t)

❑ V1 : using recursion

❑ V2 : using a 2D array

❑ V3 : using a 1D array

◼ Count the number of multiplications carried out

◼ Tables ?

◼ Complexity order ?

U. Aveiro, October 2019 39

Bernstein Polynomials for t = 0.5

U. Aveiro, October 2019 40

Multiplications count – Recursive

U. Aveiro, October 2019 41

Multiplications count – Dynamic Prog.

U. Aveiro, October 2019 42

Multiplications count – Memoization

U. Aveiro, October 2019 43

U. Aveiro, October 2019 44

Optimization Problems

◼ Goal

❑ Minimize or maximize an objective function

❑ Store the solution’s components

◼ When can we use dynamic programming ?

❑ Overlapping sub-problems

❑ Optimal substructure

◼ The principle of optimality

U. Aveiro, October 2019 45

The Principle of Optimality

◼ Does an optimization problem satisfy the

principle of optimality ?

◼ An optimal solution to any of its instances

must be made up of optimal solutions to its

sub-instances.

◼ Example

❑ Shortest path
[Wikipedia]

http://upload.wikimedia.org/wikipedia/en/4/42/Shortest_path_optimal_substructure.png

The Coin Row Problem

◼ Row of n coins

◼ Integer values c1, c2, …, cn

❑ Not necessarily distinct

◼ Goal: Pick up the maximum amount of money

◼ Restriction: No two adjacent coins can be

picked up

U. Aveiro, October 2019 46

The Coin Row Problem

◼ Can we solve it by Exhaustive Search ?

◼ Or using heuristics ?

◼ How ?

◼ Efficiency ?

U. Aveiro, October 2019 47

The Coin Row Problem

◼ How to derive a recurrence ?

◼ F(n) = ?

❑ Maximum amount that can be picked up from the

row of n coins

◼ nth coin was picked up / not picked up ?

◼ Trivial cases ?

U. Aveiro, October 2019 48

The Coin Row Problem

◼ F(0) = 0

◼ F(1) = c1

◼ F(n) = max { cn + F(n − 2),

F(n − 1) }, for n > 1

◼ Example: 5, 1, 2, 10, 6, 2

◼ F(6) = ?

U. Aveiro, October 2019 49

The Coin Row Problem

◼ The DP algorithm solves the problem for the

first i coins in the row, 1 ≤ i ≤ n

❑ We get the optimal solution for every sub-problem

◼ How to find the coins of an optimal solution ?

❑ Backtrace the computations

❑ OR use an additional array to record which term

was larger at every step

U. Aveiro, October 2019 50

Tasks – V1 + V2 + V3

◼ Implement two functions for computing F(n)

❑ V1 : using recursion

❑ V2 : using a 1D array

❑ V3 : using an extra array to identify the optimal set of

coins

◼ Count the number of comparisons carried out

◼ Tables ?

◼ Complexity order ?

U. Aveiro, October 2019 51

U. Aveiro, October 2019 52

The 0-1 Knapsack Problem

◼ Find the most valuable subset of items, that

fit into the knapsack

[Wikipedia]

http://upload.wikimedia.org/wikipedia/commons/f/fd/Knapsack.svg

U. Aveiro, October 2019 53

The 0-1 Knapsack Problem

◼ Given n items

❑ Known weight w1, w2, … , wn

❑ Known value v1, v2, … , vn

◼ A knapsack of capacity W

◼ Which one is the / a most valuable subset of

items that fit into the knapsack ?

❑ More than one solution ?

U. Aveiro, October 2019 54

The 0-1 Knapsack Problem

◼ How to formulate ?

max ∑ xi vi

subject to ∑ xi wi ≤ W

with xi in {0, 1}

The 0-1 Knapsack Problem

◼ An alternative to exhaustive search is to use

a simple heuristics

❑ Rule to construct a feasible solution step-by-step

❑ Sometimes, only an approximate solution is found

◼ Very simple idea:

❑ Successively choose the most valuable item that

still fits into the knapsack

◼ Apply it to the example

❑ Do you get the optimal solution ?

U. Aveiro, October 2019 55

U. Aveiro, October 2019 56

The Principle of Optimality

◼ The 0-1 Knapsack Problem satisifies the

Principle of Optmality !!

◼ We have solved it by exhaustive search…

◼ Now, we can solve it using Dynamic

Programming !!

◼ Recurrence ?
[Wikiedia]

U. Aveiro, October 2019 57

The 0-1 Knapsack Problem

◼ Particular instance (i, j)

❑ The first i items (1 ≤ i ≤ n)

◼ Weights w1, w2, … , wi

◼ Values v1, v2, … , vi

❑ Knapsack capacity j (1 ≤ j ≤ W)

◼ Value of an optimal solution to instance (i, j) ?

❑ V[i, j] = ?

U. Aveiro, October 2019 58

The 0-1 Knapsack Problem

◼ Goal : V[n, W] = ?

◼ Recurrence ?

◼ Trivial cases

❑ V[0, j] = 0 , for all j ≥ 0

❑ V[i, 0] = 0 , for all i ≥ 0

U. Aveiro, October 2019 59

The 0-1 Knapsack Problem

◼ General cases:

◼ The ith item does not fit into the knapsack

❑ V[i, j] = V[i -1, j] , if j – wi < 0

◼ The ith item fits into the knapsack

❑ V[i, j] = max { V[i -1, j] , vi +V[i -1, j - wi] } ,

if j – wi ≥ 0

U. Aveiro, October 2019 60

The 0-1 Knapsack Problem

◼ To determine V[i, j], if (j – wi) ≥ 0 inspect

❑ Element in the same column and previous row

❑ Element in column (j - wi) and previous row

◼ How to proceed ?

❑ Fill the table row by row or column by column

◼ Implement an iterative function !!

U. Aveiro, October 2019 61

The 0-1 Knapsack Problem

◼ Example

❑ Capacity W = 10

❑ 4 items
◼ Item 1 : w = 7 ; v = $42

◼ Item 2 : w = 3 ; v = $12

◼ Item 3 : w = 4 ; v = $40

◼ Item 4 : w = 5 ; v = $25

◼ Optimal solution

❑ Value ?

❑ Which items ?
◼ Trace back the computations !!

The 0-1 Knapsack Problem

◼ Complexity ?

❑ O(n W)

❑ Pseudo-Polynomial !!

◼ It depends on the magnitude of W !!

❑ Not just on the number of items

❑ It will take much time for very large values of W !!

◼ What happens, if W increases and we need

an additional bit to represent its value ?

U. Aveiro, October 2019 62

The 0-1 Knapsack Problem

◼ BUT, it is a NP-Complete problem !!

❑ Exhaustive search is exponential

❑ Is there a contradiction ?

◼ Number of bits needed to represent W ?

❑ O(log W)

◼ Complexity in terms of that number of bits ?

❑ O(2 log W)

❑ Exponential !!

U. Aveiro, October 2019 63

The 0-1 Knapsack Problem

◼ Could it be different ?

❑ What would that entail ?

◼ Weakly NP-Complete versus Strongly NP-

Complete

◼ The dynamic programming algorithm serves

our purposes !!

❑ Except for “exponentialy large” values of W

U. Aveiro, October 2019 64

Tasks – V1 + V2

◼ Implement two functions for computing the

solution to an instance of the Knapsack problem

◼ V1 : a recursive function using the recurrence

defined for the DP approach

◼ V2 : an iterative function implementing the DP

algorithm

❑ How to identify items belonging to the solution ?

U. Aveiro, October 2019 65

Tasks – V1 + V2

◼ How to analyze ?

◼ Register execution times for some test instances

◼ What happens if we consider

❑ 1 more item / 2 more items / …

❑ twice the number of items ?

◼ Extrapolate the execution time for much larger

problem instances

U. Aveiro, October 2019 66

Solution – Dynamic Programming

U. Aveiro, October 2019 67

U. Aveiro, October 2019 68

The Coin-Changing Problem

◼ Make change for an amount A

◼ Available coin denominations

❑ Denom[1] > Denom[2] > … > Denom[n] = 1

◼ Use the fewest number of coins !!

◼ Assumption

❑ Enough coins of each denomination !!

U. Aveiro, October 2019 69

The Coin-Changing Problem

◼ How to formulate ?

min ∑ xi

subject to ∑ xi d[i] = A

with xi = 0, 1, 2, …

◼ Compare with the 0-1 Knapsack formulation

U. Aveiro, October 2019 70

The Coin-Changing Problem

◼ Particular instance (i, j)

❑ Amount j

❑ Use the smallest (n-i+1) coin denominations (1 ≤ i ≤ n)

◼ Value of an optimal solution to instance (i, j) ?

❑ Minimum number of coins to make change for amount j

❑ C[i, j] = ?

◼ Recurrence ?

◼ Optimal solution ? : C[1, A] = ?

U. Aveiro, October 2019 71

The Coin-Changing Problem

◼ Trivial cases

❑ C[n, j] = j , for all j ≥ 0

❑ C[i, 0] = 0 , for all i ≥ 0

◼ How to establish the recurrence ?

◼ Try to do it !!

◼ Note

❑ Minimization problem

❑ Compute row by row

❑ How to start ?

U. Aveiro, Nov. 2013 72

The String Alignment Problem

◼ Strings S and T

❑ Length n and m, respectively

◼ Sometimes an “exact matching” is not possible !!

❑ DNA

◼ Nature : mutations !!

◼ Lab errors

◼ Computational errors !!

◼ “Soft matching” !!

❑ The string alignment problem

U. Aveiro, October 2019 72

U. Aveiro, Nov. 2013 73

The String Alignment Problem

◼ Q1 : How to proceed if there is no exact matching ?

◼ String alignment !

◼ Introduce gaps in order to maximize the number of
coincident chars

◼ Example

❑ TTATGCATAC–C–TCATGGGTACT

❑ TTACGCGTACTCATGGTAC–T––T

❑ Number of coincident chars ?

U. Aveiro, October 2019 73

U. Aveiro, Nov. 2013 74

The String Alignment Problem

◼ Q2 : How to evaluate the score of a given
string alignment ?

◼ How to weigh

❑ Matches : σ(X,X) = ?

❑ Mutations : σ(X,Y) = ?

❑ Insertions : σ(–,Y) = ?

❑ Deletions : σ(X, –) = ?

◼ How to compute a final score ?

U. Aveiro, October 2019 74

U. Aveiro, Nov. 2013 75

The String Alignment Problem

◼ A simple scoring matrix

A C G T –

A +2 -1 -1 -1 -2

C -1 +2 -1 -1 -2

G -1 -1 +2 -1 -2

T -1 -1 -1 +2 -2

– -2 -2 -2 -2 –

U. Aveiro, October 2019 75

U. Aveiro, Nov. 2013 76

The String Alignment Problem

◼ Q3 : How to compute an optimal (i.e.,

maximum score) alignment ?

◼ Ideal situation ?

◼ Is there just one optimal alignment ?

◼ How to proceed ?

❑ Brute-force ?

❑ …

U. Aveiro, October 2019 76

U. Aveiro, Nov. 2013 77

The String Alignment Problem

◼ Input
❑ Strings S and T

◼ Length n and m, respectively

◼ Aim
❑ Determine an optimal alignment of S* and T*

❑ I.e., with maximal score σopt(S,T)

◼ S* and T* have the same length !!

◼ And are obtained by introducing gaps

◼ A gap does not appear simultaneously in the same
position of S* and T*

U. Aveiro, October 2019 77

U. Aveiro, Nov. 2013 78

The String Alignment Problem

◼ Alignment example

ACGAGTTCACT

CTGGCTTGGAT

AC–GA–GTTC–ACT

–CTGGCT–TGGA–T

◼ Try alternatives !!

U. Aveiro, October 2019 78

U. Aveiro, Nov. 2013 79

The String Alignment Problem

◼ Brute-force approach ?

◼ Consider all possible gap insertions in each

string !!

◼ Align and compare all possible string pairs !!

◼ Exponential approach !!

U. Aveiro, October 2019 79

U. Aveiro, Nov. 2013 80

The String Alignment Problem

◼ Use Dynamic Programming !!

◼ Issues

❑ Simplest / base cases ?

❑ How to establish a recurrence ?

◼ α(S[0..i],T[0..j]) = ?

❑ Score of the optimal alignment between S[0..i]

and T[0..j]

❑ Simplify the notation : α[i][j]

U. Aveiro, October 2019 80

U. Aveiro, Nov. 2013 81

Simplest cases

◼ α[0][0] = 0

❑ Matching two empty strings !!

◼ α[0][j] = ∑ σ(–,T[k]) = α[0][j-1] + σ(–,T[j])

❑ Matching the empty string S[0] to string T[1..j]

◼ α[i][0] = ∑ σ(S[k], –) = α[i-1][0] + σ(S[i], –)

❑ Matching string S[1..i] to empty string T[0]

U. Aveiro, October 2019 81

U. Aveiro, Nov. 2013 82

Recurrence

◼ α[i][j] = max {

α[i-1][j] + σ(S[i], –), // S[i] matches a gap

α[i][j-1] + σ(–,T[j]) , // T[j] matches a gap

α[i-1][j-1] + σ(S[i],T[j]) // S[i] matches T[j]

}

U. Aveiro, October 2019 82

U. Aveiro, Nov. 2013 83

The String Alignment Problem

◼ Where is the optimal score ?

❑ σopt(S,T) = α[n][m]

◼ Complexity order ?

◼ How to trace back the computations ?

◼ How to identify the optimal gap placement ?

U. Aveiro, October 2019 83

U. Aveiro, Nov. 2013 84

Example

◼ Compute the optimal alignment score for

strings AAAC and AGC

◼ What is the score ?

◼ Is there just one optimal alignment ?

U. Aveiro, October 2019 84

U. Aveiro, October 2019 85

Other Problems

◼ The longest common subsequence problem

◼ Constructing optimal binary search trees

◼ The chain matrix multiplication problem

◼ Warshall’s algorithm for the transitive closure of a
directed graph

◼ Floyd’s algorithm for the all-pairs shortest path
problem in a connected graph

◼ …

U. Aveiro, October 2019 86

Dynamic Programming – Recap

◼ General algorithm design technique

◼ Apply to

❑ Computing recurrences

❑ Solving optimization problems

◼ Problem solution expressed recursively

◼ BUT, proceed bottom-up and store results for

later use

U. Aveiro, October 2019 87

Dynamic Programming – Recap

◼ Proceed bottom-up and store results for
later use

◼ Big advantage, if sub-problems overlap !!

◼ NOW, there is no need to repeatedly solve
the same sub-problems !!

◼ Iterative algorithms with “acceptable”
complexity order

U. Aveiro, October 2019 88

References

◼ A. Levitin, Introduction to the Design and Analysis of

Algorithms, 3rd Ed., Pearson, 2012

❑ Chapter 8

◼ R. Johnsonbaugh and M. Schaefer, Algorithms,

Pearson Prentice Hall, 2004

❑ Chapter 8

◼ T. H. Cormen et al., Introduction to Algorithms, 3rd

Ed., MIT Press, 2009

❑ Chapter 15

