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Overview

Dynamic Programming
Fibonacci’'s Sequence
Memoization

Computing Binomial Coefficients
Computing Delannoy Numbers
The Coin Row Problem

The 0-1 Knapsack Problem
Other Problems

U. Aveiro, October 2019



Dynamic Programming

General algorithm design technique

Apply to
o Computing recurrences
o Solving optimization problems

How to store “previous” results ?
o 2D array

o Vector

o A few variables
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Recurrences — Top-Down

Exploit the relationship between
o A solution to a given problem instance

o Solutions to smaller/simpler instances of the same
problem

Set up a recurrence !

Decompose into smaller / simpler sub-problems
o Parameters ?

ldentify the smallest / simplest / trivial problems
o Base cases
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Dynamic Programming — Bottom-up

Use a recurrence: BUT go bottom-up !

Start from the smallest / simplest / trivial
problems

Get intermediate solutions from smaller / simpler
sub-problems

Which values / results are computed in each

step ?
o How to store ?
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‘ Dynamic Programming — Advantage

= Do sub-problems overlap ?

= NOW, there is no need to repeatedly solve
the same sub-problems !

= Proceed bottom-up and store results for
later use

= Compare with Divide-and-Conquer !!
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Fibonacci’s Sequence
FO)=0;F1)=1
FO)=F@i-1)+F@i-2);i=2,3,4,...
F(6) =? =2 Number of recursive calls ?
Do sub-problems overlap ?

Recursion tree vs. recursion DAG !

Complexity order ?
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Tasks — V1

Implement the recursive function of the
previous slide in Python

Count the number of additions carried out for
computing a Fibonacci number

o Use a global variable

Table ?
Complexity order ?
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Fibonacci’s Sequence

def fibonacci DC( n )
""" Recursive computation of Fi """
# Global variable, for counting the number of additions
global num adds
if ( n == 0 ) or (( n == 1 )
return n

num;adds += 1

return fibonacci DC( n - 1 ) + fibonacci DC( n - 2 )
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Number of additions ?
AO)=0;A(1)=0
AD=1+A>l-1)+A(1-2);1=2,3,4,...
Closed formula ?

You can get it, if you remember Discrete
Mathematics...

BUT, we can get the complexity order from the
table...
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Fibonacci’s Sequence

F(0)=0;F(1) =1

FO)=F(i-1)+F(i-2):i=2,3,4,...

Use Dynamic Programming !!

Computing F(n) using an array
o Complexity order ?

Can we use less memory space ?
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‘ Tasks — V2 + V3

= Implement two iterative functions for
computing F(i)
o V2 :using an array
o V3 :using just 3 variables

= Count the number of additions carried out

= Table ?
= Complexity order ?
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Fibonacci’s Sequence

i f(i) #ADDs-Rec #ADDs_DP_1 #ADDs DP_2
2 0 0 0 0
1 1 0 0 0
2 1 1 1 1
3 2 2 2 2
4 3 4 3 3
5 5 7 4 4
6 8 12 5 5
7 13 20 6 6
8 21 33 7 7
9 34 54 8 8
10 55 88 9 9
11 89 143 10 10
12 144 232 11 11
13 233 376 12 12
14 377 609 13 13
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Additions — Recursive version

How fast does F(n) grow ?
How fast does A(n) grow ?

From the table we get:

A(n)=Fn+1)-1

Exponential growth !!
o Why ?

(1++/5)/2 =1,618034
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13
21
34
55
89
144
233
377
610
987
1597
2584
4181
6765

Ratio

1

2

1,5
1,666667
1,6

1,625
1,615385
1,619048
1,617647
1,618182
1,617978
1,618056
1,618026
1,618037
1,618033
1,618034
1,618034
1,618034
1,618034

A(n)
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12
20
33
54
88
143
232
376
609
986
1596
2583
4180
6764
10945

Ratio

2

2

1,75
1,714286
1,666667
1,65
1,636364
1,62963
1,625
1,622378
1,62069
1,619681
1,619048
1,618661
1,618421
1,618273
1,618182
1,618125
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Memoization

Turning the results of a function into
something to be remembered

l.e., avoid repeating the calculation of results
for previously processed inputs

Use a table / array to store previously
computed results

o Initialization |

Time vs. space trade-off

U. Aveiro, October 2019
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Memoization

Initialize all table entries to “null”
o Not yet computed

Whenever a result is to be computed for a
given input

o Check the corresponding table entry

o If not “null”, retrieve the result

o Otherwise, compute by a recursive call(s)

o And store the result

U. Aveiro, October 2019
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Fibonacci’s Sequence

Initialization

for(i=1, i<n, i++) f[i] = -1,

Recursive function

int fib(intn) {
Int r;
If( f[n] '=-1) return f[n];
f(ln==1) r=1,
elseif(n==2) r=1,;

else {
r=fio(n-2);
r=r+fib(n-1);
}
fln] =,
returnr,;

U. Aveiro, October 2019
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The Python way

# M. Hetland, Python Algorithms, Apress, 2010 - Chapter 8
from functools import wraps

def memo( func )

cache = {} # Stored subproblem solutions
@wraps (func) # Make wrap look like func
def wrap( *args ) : # The memoized wrapper
if args not in cache : # Not already computed?
cache[args] = func( *args ) # Compute & cache the solution
return cachelargs] # Return the cached solution
return wrap # Return the wrapper
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“The Python way

# Testing the memoized version

fibonacci_DC =

memo ( fibonacci DC )

WOV PEWN R ®

=

85
86
87
88
89
=17

(1) #ADDs_Memo

259695496911122585
420196140727489673
679891637638612258
110ee87778366101931
1779979416004714189
2880067194370816120
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‘ Another example

= Linear robot

= Can move forward by 1 meter, or 2 meters, or
3 meters

= In how many ways can it move a distance of
n meters ?

= Establish the recurrence !
0 Base cases ?
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‘ Tasks — V1 + V2 + V3

= Implement three functions for computing R(i)
o V1 :using recursion

o V2 :using an array
o V3 :using a few variables — how many ?

= Count the number of additions carried out
o Formulas ?

= Tables ?
= Complexity order ?

U. Aveiro, October 2019
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Example — Results table

i r(i) #ADDs-Rec #ADDs_DP_1 #ADDs DP 2
1 1 Z 2 Z
2 2 0 0 Z
3 4 Z 0 2
4 7 2 2 2
5 13 4 4 4
6 24 8 6 6
7 44 16 8 8
8 81 30 10 10
9 149 56 12 12
10 274 104 14 14
11 504 192 16 16
12 927 354 18 18
13 1705 652 20 20
14 3136 1200 22 22
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Computing Binomial Coetticients
C(n,0)=1;C(n,n)=1
Cinp)=C(n-1,))+C(n-1,)-1);j=1,2,...,n-1

Two arguments !!
C4,3)=" => Number of recursive calls ?

Do sub-problems overlap ?
Recursion tree vs. recursion DAG !

Complexity order ?
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Computing Binomial Coetticients

V1 : Compute C(n,)) recursively

V2 . Compute C(n,)) using a 2D array
2 How to proceed ?
o Have you seen this “triangle” before ?

Can we use less memory space ?

And other, more efficient recurrences ?

U. Aveiro, October 2019
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‘ Tasks — V1 + V2 + V3

= Implement three functions for computing C(n,j)
o V1 :using recursion
o V2 :using a 2D array
o V3:using a 1D array

= Count the number of additions carried out

= Tables ?
= Complexity order ?

U. Aveiro, October 2019
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‘ Pascal’s Triangle

Pascal's Triangle - Recursive Function

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 1@ 10 5 1

1 6 15 20 15 6

1 7 21 35 35 21
1 3 28 56 70 56
1 9 36 84 126 126
1 1@ 45 12e 21e 252

=

84
216

36
120
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‘ V1 — Number of additions

Number of Additions - Recursive Function

0

0 e

0 1 >

0 2 2 e

e 3 5 3 >

0 4 9 9 4 0

e 5 14 19 14 5

0 6 20 34 34 20
0 7 27 55 69 55
e 3 35 83 125 125
0 9 44 119 209 251

27
83
209

119

w ®
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V2 — Number of additions

Number of Additions - Dynamic Programming - V. 1

0

e e

1 1 1

3 3 3 3

6 6 6 6 6

10 1@ 1@ 10 1@ 1@

15 15 15 15 15 15 15

21 21 21 21 21 21 21 21

28 28 28 28 28 28 28 28 28

36 36 36 36 36 36 36 36 36 36

45 45 45 45 45 45 45 45 45 45
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V3 — Number of additions

Number of Additions - Dynamic Programming - V. 2

e

e e

e 1 e

e 3 3 e

e 6 6 6 e

e 1@ 1@ 1@ 1@ e

e 15 15 15 15 15 e

e 21 21 21 21 21 21 e

e 28 28 28 28 28 28 28 e
e 36 36 36 36 36 36 36 36
e 45 45 45 45 45 45 45 45
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Delannoy Numbers — D(i,))

Rectangular grid of size (m,n)
Start at SW corner : (0,0)
Steps allowed in N, E or NE directions

D(1,)) = number of different paths from (0,0) to
(i.))

o Recursive definition ?

a Trivial cases ?
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‘ D(n,n) — Central Delannoy Numbers
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‘ D(n,n) — Central Delannoy Numbers
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Delannoy Numbers

D(m,n)=1,fm=00orn=0

D(m,n)=D(m-1,n)+D(m-1,n-1)+D(mM,n-1)

D(1,1) = ?
D(2,2) = ?
D(2,3) = ?
D(3,2) = ?

Arrange the calculations in a triangular representation !
o Have you seen a similar triangle before ?

U. Aveiro, October 2019
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Tasks — V1 + V2 + V3

Implement three functions for computing D(i,))
o V1 :using recursion

o V2 :using a 2D array

o V3 :using two 1D arrays

Count the number of additions carried out

Tables ?
How fast does D(n,n) grow ?

U. Aveiro, October 2019
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‘ Delannoy Numbers

Delannoy's Matrix - Recursive Function

1 1 1 1 1 1

1 3 5 7 9 11

1 5 13 25 41 6l

1 7 25 63 129 231

1 9 41 129 321 6381

1 11 61 231 6381 1683
1 13 85 377 1289 3653
1 15 113 575 2241 7183
1 17 145 833 3649 13873
1 19 181 1159 5641 22363
1 21 221 1561 8361 36365

1

13

85
377
1289
3653
8989
19825
48881
75517
134245

1

15

113
575
2241
7183
19825
48639
188545
224143
433985

1 1 1
17 19 21
145 181 221
833 1159 1561

2649 5641 6361

13873 22363 326365

48881 75517 134245
188545 224143 433985
265729 598417 1256465
598417 1462563 2317445
1256465 3317445 8897453
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Computing Bernstein Polynomials
Boo(t) =1
B, o(t) = (1= 1) B4 o(t) ; tin [0,1]
B n(t) = t By na(t) ; tin [0,]
By = (L=t By () +tByya(t);j=1,2,...,n=1;tin[0,1]

There are (n + 1) polynomials of degree n
How to obtain the expression of such a polynomial ?

Arrange the calculations in a triangular representation !
o Have you seen that triangle before ?
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Computing Bernstein Polynomials

How to compute the value of a polynomial for a
given t* ?

V1 : Compute B, (t*) recursively
B;,(1/2) =7
Number of recursive calls ?

Are there overlapping sub-problems ?

U. Aveiro, October 2019
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Computing Bernstein Polynomials

V2 : Compute B, (t*) using a 2D array
B;,(1/2) =7

How to ?

Have you seen a similar procedure before ?

Can we use less memory space ?

U. Aveiro, October 2019
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‘ Tasks — V1 + V2 + V3

= Implement three functions for computing B, ;(t)
o V1 :using recursion
o V2 :using a 2D array
o V3 :using a 1D array

= Count the number of multiplications carried out

= Tables ?
= Complexity order ?

U. Aveiro, October 2019 39



Bernstein Polynomials for t = 0.5

Polynomials' Triangle - Recursive

OO0 OO0 O

. 000
.500
. 250
.125
.062
.031
.016
.008
.004
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.375
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OO0 0000
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. 250
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.273
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00000

Function - t

.062
.156
.234
.273
.273

0.031
0.094
0.164
90.219

0.5

0.016
0.055
0.109
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‘ Multiplications count — Recursive

Number of Multiplications - Recursive Function

(%]

1 1

2 4 2

3 8 8

4 13 18
5 19 33
6 26 54
7 34 82
8 43 118

13
33
68
124
208

19
54
124
250

5

26 6

82 34 7
208 118 43

U. Aveiro, October 2019

41



‘ Multiplications count — Dynamic Prog.

Number of Multiplications - Dynamic Programming - V. 2

(%]

2 2

6 6 6

12 12 12 12

20 20 20 20 20

30 30 30 30 30 30

42 42 42 42 42 42 42

56 56 56 56 56 56 56 56

72 72 72 72 72 72 72 72 72
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‘ Multiplications count — Memoization

Number of Multiplications - Memoized Function

(%]

1 1

1 2 1

1 2 2 1

1 2 2 2 1

1 2 2 2 2 1

1 2 2 2 2 2 1

1 2 2 2 2 2 2 1
1 2 2 2 2 2 2 2
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'Optimization Problems

= Goal
o Minimize or maximize an objective function
o Store the solution’s components

= When can we use dynamic programming ?
o Overlapping sub-problems

o Optimal substructure
= The principle of optimality

U. Aveiro, October 2019
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The Principle of Optimality

Does an optimization problem satisfy the
principle of optimality ?

An optimal solution to any of its instances
must be made up of optimal solutions to Its
sub-instances.

Example
o Shortest path

[Wikipedia]

U. Aveiro, October 2019
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The Coin Row Problem

Row of n coins

Integer values c,, C,, ..., C,
o Not necessarily distinct

Goal: Pick up the maximum amount of money

Restriction: No two adjacent coins can be
picked up
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‘ The Coin Row Problem

= Can we solve it by Exhaustive Search ?
= Or using heuristics ?
= How ?

= Efficiency ?

U. Aveiro, October 2019
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‘ The Coin Row Problem

= How to derive a recurrence ?

O F(n) =7
o Maximum amount that can be picked up from the
row of n coins

= n'" coin was picked up / not picked up ?

= Trivial cases ?

U. Aveiro, October 2019
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‘ The Coin Row Problem
N F(O) =0
] F(l) - C

» F(n) =max{ c,+ F(n - 2),
F(n—-1) 1, forn>1

= Example: 5, 1, 2, 10, 6, 2
L] F(G) =7
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The Coin Row Problem

The DP algorithm solves the problem for the
firsticoinsintherow,1<i<n
o We get the optimal solution for every sub-problem

How to find the coins of an optimal solution ?
o Backtrace the computations

o OR use an additional array to record which term
was larger at every step
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Tasks — V1 + V2 + V3

Implement two functions for computing F(n)
o V1 :using recursion
o V2 :using a 1D array

o V3 :using an extra array to identify the optimal set of
coins

Count the number of comparisons carried out

Tables ?
Complexity order ?

U. Aveiro, October 2019
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‘ The 0-1 Knapsack Problem

= Find the most valuable subset of items, that
fit iInto the knapsack

[Wikipedia]

U. Aveiro, October 2019
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The 0-1 Knapsack Problem

Given n items
o Known weight wy, w,, ..., W
o Known value v, v,, ..., V,

A knapsack of capacity W

Which one is the / a most valuable subset of
items that fit into the knapsack ?

o More than one solution ?

U. Aveiro, October 2019
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‘ The 0-1 Knapsack Problem

= How to formulate ?

max ) XV,

subject to > Xiw. s W

with X In {0, 1}

U. Aveiro, October 2019
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The 0-1 Knapsack Problem

An alternative to exhaustive search Is to use
a simple heuristics

o Rule to construct a feasible solution step-by-step
o Sometimes, only an approximate solution is found

Very simple idea:

o Successively choose the most valuable item that
still fits into the knapsack

Apply it to the example
o Do you get the optimal solution ?
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The Principle of Optimality

The 0-1 Knapsack Problem satisifies the
Principle of Optmality !!

We have solved it by exhaustive search...

Now, we can solve it using Dynamic
Programming !!

Recurrence ?

[Wikiedia]
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The 0-1 Knapsack Problem

Particular instance (i, )

o Thefirstiitems (L <i<n)
Weights wy, w,, ... , W,
Values v,, v,, ..., V,

o Knapsack capacity j (1 =j< W)

Value of an optimal solution to instance (i, ]) ?
a V[i,j]1=7?
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‘ The 0-1 Knapsack Problem

wm Goal:V[n,W]="7
= Recurrence ?
= Trivial cases

o V[O,j]=0,forallj=0
o V[,0]=0,foralli=0

U. Aveiro, October 2019
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The 0-1 Knapsack Problem

General cases:

The ith item does not fit into the knapsack
o V[i,j1=V[i-1,j],ifj—w,<0

The ith item fits into the knapsack

o V[Lj]=max{V[i-1,j],v,+V[i-1,j-w]},
if j—w; =20

U. Aveiro, October 2019
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The 0-1 Knapsack Problem

To determine V[ i, )], if (]—w;) = 0 inspect
o Element in the same column and previous row
a Element in column (] - w; ) and previous row

How to proceed ?
o Fill the table row by row or column by column

Implement an iterative function !

U. Aveiro, October 2019
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The 0-1 Knapsack Problem

Example

o Capacity W =10

o 4 items
teml1l:w=7;v=%42
tem2:w=3;v=%12
ltem3:w=4;v=3%40
ltem4:w=5;v=%25

Optimal solution

o Value ?

2 Which items ?
Trace back the computations !!
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The 0-1 Knapsack Problem

Complexity ?
0 O(nW)
o Pseudo-Polynomial !!

It depends on the magnitude of W !!
o Not just on the number of items
o It will take much time for very large values of W !!

What happens, if W increases and we need
an additional bit to represent its value ?

U. Aveiro, October 2019
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The 0-1 Knapsack Problem

BUT, it is a NP-Complete problem !!
o Exhaustive search is exponential
o Is there a contradiction ?

Number of bits needed to represent W ?
0 O(log W)

Complexity in terms of that number of bits ?
o O( 2 'egW
o Exponential !!

U. Aveiro, October 2019
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The 0-1 Knapsack Problem

Could 1t be different ?
o What would that entail ?

Weakly NP-Complete versus Strongly NP-
Complete

The dynamic programming algorithm serves

our purposes !
o Except for "exponentialy large” values of W

U. Aveiro, October 2019
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Tasks — V1 + V2

Implement two functions for computing the
solution to an instance of the Knapsack problem

V1 : arecursive function using the recurrence
defined for the DP approach

V2 . an iterative function implementing the DP
algorithm
o How to identify items belonging to the solution ?

U. Aveiro, October 2019
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Tasks — V1 + V2

How to analyze ?
Register execution times for some test instances

What happens if we consider
o 1 moreitem/ 2 moreitems/ ...
o twice the number of items ?

Extrapolate the execution time for much larger
problem instances
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Solution — Dynamic Programming

©-1-Knapsack - Dynamic Programming Solution

Item Values: [None, 42, 12, 40, 25]
Item Weights: [None, 7, 3, 4, 5]

Capacity: W = © Optimal value: V Items
Capacity: W =1 Optimal value: V Items
Capacity: W = 2 Optimal value: V Items
Capacity: W = 3 Optimal value: V Items
Capacity: W = 4 Optimal value: V Items
Capacity: W = 5 Optimal value: V Items
Capacity: W = 6 Optimal value: V Items
Capacity: W = 7 Optimal value: V Items
Capacity: W = 8 Optimal value: V Items
Capacity: W = 9 Optimal value: V Items
Capacity: W = 10 Optimal value: V Items
Capacity: W = 11 Optimal value: V Items
Capacity: W = 12 Optimal value: V Items

U. Aveiro, October 2019
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The Coin-Changing Problem

Make change for an amount A

Avallable coin denominations
o Denom[1] > Denom|[2] > ... > Denom|n] = 1

Use the fewest number of coins !

Assumption
o Enough coins of each denomination !!

U. Aveiro, October 2019
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The Coin-Changing Problem

How to formulate ?

min ) X

subject to > x.d[i]=A
with xi=0,1, 2, ...

Compare with the 0-1 Knapsack formulation

U. Aveiro, October 2019
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The Coin-Changing Problem

Particular instance (i, |)
2 Amount |
o Use the smallest (n-1+1) coin denominations (1 <i < n)

Value of an optimal solution to instance (i, |) ?
o Minimum number of coins to make change for amount |
a C[i,j]="7

Recurrence ?

Optimal solution? : C[ 1, A] =7
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‘ The Coin-Changing Problem

= Trivial cases
o C[n,j]=j,forallj=0
o C[i,0]=0,foralli=0

= How to establish the recurrence ?
= Trytodoit!
= Note

o Minimization problem

o Compute row by row
o How to start ?

U. Aveiro, October 2019
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The String Alignment Problem

StringsSand T
o Length n and m, respectively

Sometimes an “exact matching” is not possible !!

o DNA
Nature : mutations !!
Lab errors
Computational errors !!

“Soft matching™ !
o The string alignment problem

U. Aveiro, NotoRB6d 2019
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The String Alignment Problem

Q1 : How to proceed if there is no exact matching ?
String alignment !

Introduce gaps In order to maximize the number of
coincident chars

Example

o0 TTATGCATAC-C-TCATGGGTACT
a0 TTACGCGTACTCATGGTAC-T—T

o Number of coincident chars ?

U. Aveiro, NotoRB6d 2019
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The String Alignment Problem

Q2 : How to evaluate the score of a given
string alignment ?

How to weigh

o Matches : o(X,X)="7?
o Mutations:  o(X,Y) =7
o Insertions:  o(—,Y) =7
o Deletions: o(X,-)="7?

How to compute a final score ?

U. Aveiro, NotoRB6d 2019
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‘ The String Alignment Problem

= A simple scoring matrix

A CGT -
A+2 -1-1-1 -2
C -1+2-1-1-2
G -1 -1+2 -1 -2
T -1 -1 -1+2 -2
- -2 -2 -2 -2 -

U. Aveiro, NotoRB6d 2019
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The String Alignment Problem

Q3 : How to compute an optimal (i.e.,
maximum score) alignment ?

|deal situation ?
Is there just one optimal alignment ?

How to proceed ?
o Brute-force ?

a ...

U. Aveiro, NotoRB6d 2019
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The String Alignment Problem

Input
o StringsSand T
Length n and m, respectively

Aim

o Determine an optimal alignment of S* and T*
o l.e., with maximal score O,(S,T)

S* and T* have the same length !!

And are obtained by introducing gaps

A gap does not appear simultaneously in the same
position of S* and T*

U. Aveiro, NotoRB6d 2019
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The String Alignment Problem

Alignment example

ACGAGTTCACT
CTGGCTTGGAT

AC-GA-GTTC-AC
—CTGGCT-TGGA—

Try alternatives !

U. Aveiro, NotoRB6d 2019
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‘ The String Alignment Problem

= Brute-force approach ?

= Consider all possible gap insertions in each
string !!

= Align and compare all possible string pairs !!

= Exponential approach !!

U. Aveiro, NotoRB6d 2019
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The String Alignment Problem

Use Dynamic Programming !!

Issues
o Simplest / base cases ?
o How to establish a recurrence ?

a(S[0..i],T[0..j]) = ?
o Score of the optimal alignment between SJ[0..i]
and T[O0..j]

o Simplify the notation : afi][j]

U. Aveiro, NotoRB6d 2019
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Simplest cases

af0][0] =0
o Matching two empty strings !!

al0]p] = 2. o(=TIk]) = a[0][j-1] + o(=,T]])

o Matching the empty string S[0] to string T[1..]]

afi]lo] = 2 o(S[k], ) = a[I-1][0] + o(S]i], -)
o Matching string S[1..1] to empty string T[O]

U. Aveiro, NotoRB6d 2019
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Recurrence

ali][j] = max {
a[i-1](] + o(S]i], =), // S[i] matches a gap
alil-1] + o(—,T[j]) , // T[j] matches a gap

ali-1][j-1] + o(S[i], T[j])) /I S[i] matches T[j]



‘ The String Alignment Problem

= Where is the optimal score ?
0 Ogn(S,T) = aln][m]

= Complexity order ?
= How to trace back the computations ?

= How to identify the optimal gap placement ?

U. Aveiro, NotoRB6d 2019
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Example

Compute the optimal alignment score for
strings AAAC and AGC

What is the score ?

Is there just one optimal alignment ?

U. Aveiro, NotoRB6d 2019
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Other Problems

The longest common subseguence problem
Constructing optimal binary search trees
The chain matrix multiplication problem

Warshall’'s algorithm for the transitive closure of a
directed graph

Floyd's algorithm for the all-pairs shortest path
problem in a connected graph

U. Aveiro, October 2019
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Dynamic Programming — Recap

General algorithm design technique

Apply to
o Computing recurrences
o Solving optimization problems

Problem solution expressed recursively

BUT, proceed bottom-up and store results for
later use
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‘ Dynamic Programming — Recap

= Proceed bottom-up and store results for
later use

= Big advantage, if sub-problems overlap !

= NOW, there Is no need to repeatedly solve
the same sub-problems !!

= [terative algorithms with “acceptable”
complexity order
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