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Abstract 
 

This paper discusses an approach for solving 
combinatorial problems by combining software and 
dynamically reconfigurable hardware (configware). The 
suggested technique avoids instance-specific hardware 
compilation and, as a result, allows obtaining higher 
performance than currently available pure software 
approaches as well as instance-specific reconfigurable 
solutions. Moreover, the technique permits problems to 
be solved that exceed the resources of the available 
reconfigurable hardware. The architecture of 
dynamically reconfigurable hardware problem solver is 
modeled in software allowing to estimate different 
characteristics, such as the time of reconfiguration, 
performance, etc., and to speed up the overall design 
process. 
 
1. Introduction 
 

Combinatorial problems play an important role in the 
computer-aided design and test of integrated circuits 
[1,2], artificial intelligence, embedded systems [3], etc. 
Because of the wide scope of practical applications, these 
problems have been studied extensively. Many of them 
are NP-complete and NP-hard, therefore the complexity 
of the respective algorithms makes it difficult (and 
sometimes even impossible) to solve a problem in a 
reasonable time, or with the available computational 
resources. As a result, many different techniques for 
accelerating the solution of combinatorial problems are 
being constantly proposed, either in software or in 
hardware (for example, in field-programmable gate arrays 
- FPGA). 

Novel methods suggested in the scope of software aim 
at studying and applying optimized data structures, 
exploring alternative algorithmic approaches (such as 
proposing more efficient approximate algorithms based 
on heuristic search), etc. Accelerating the solution of 
combinatorial problems in reconfigurable hardware is 
based primarily on mapping to hardware the existing 
algorithms (which have already been tested exhaustively 
in software) and trying to execute as much work as 
possible in parallel. According to Amdhal‘s law, the gain 

attainable by the parallel execution is limited by the 
portion of the algorithm suitable for parallelization. 

Let us consider backtracking search algorithms, whose 
general structure is depicted in Figure 1. In this case, the 
processes of initial problem simplification and 
decomposition in sub-problems can be executed by a 
number of processing elements working in parallel, 
whereas invoking the algorithm for each of the sub-
problems has to be done sequentially, one by one.  
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Figure 1. General structure of backtracking 
search algorithms 
 

Another very significant bottleneck in executing 
combinatorial search algorithms, either in software or in 
hardware, is access to and management of problem data. 
In software, this issue is solved by both inventing more 
efficient data structures and using caches. What is 
attempted in reconfigurable hardware is to store as much 
data as possible in local memories, which are only 
accessed by a single processing element, and to adapt the 
dimensions of memory blocks to the particular 
requirements of each problem instance. 

The majority of researches in the area of accelerating 
solutions with the aid of reconfigurable (based on FPGA) 
hardware apply an instance-specific approach, i.e. they 
generate a circuit for each particular problem instance to 
be solved [4-6]. In this case the total problem solving 
time is equal to “hardware circuit generation time” + 
“FPGA configuration time” + “actual execution time” + 



“time required to communicate the results”. The major 
advantage of this strategy is that a direct mapping of 
problem structure to functional components permits 
performance to be increased and provides a good 
utilization of the resources. However, the required time 
for hardware compilation is very significant, being 
frequently much higher than the actual time for the 
execution of combinatorial algorithms in hardware. Thus, 
this instance-specific method can only be used effectively 
for complicated problems with large volume of input data 
where the hardware compilation time is offset by the 
reduced execution time. More recent work in this 
direction is targeted at avoiding instance-specific layout 
compilation [7]. 

Another important issue affecting any algorithm 
implemented in reconfigurable hardware is related to the 
capacity of the hardware platform. If the circuit cannot be 
implemented in a single device it is possible to employ 
several components applying methods of multi-device 
partitioning. Nevertheless there is no guarantee that a 
given task can be efficiently solved on a given set of 
reconfigurable hardware resources [8]. Because of this, it 
was proposed to partition the problem solution between 
software and reconfigurable hardware. The partitioning 
process can be conducted in two possible ways: 
automated and manual.  

Automated partitioning supposes that high-level 
general purpose programming languages are employed 
for problem description. Is this case the specification can 
be provided in standard ANSI C/C++ and the algorithm 
can be simulated directly using any available C/C++ 
debugger. After that the code portions, which have to be 
accelerated in an FPGA, are identified; software/hardware 
partitioning is executed, the respective interfaces are 
generated and, for the hardware part, the synthesizable 
HDL code is produced. The results of the last two steps 
are exported to implementation tools, which provide for 
future steps and ultimately generate the FPGA 
configuration file. This approach sounds to be very 
attractive but currently, to the best of our knowledge, 
there exist no efficient solutions of combinatorial 
problems using automated partitioning. 

In the scope of manual software/configware 
partitioning two different methods can be envisioned: 
partitioning according to computational complexity and 
partitioning with respect to logic capacity [9]. The first of 
these methods is based on selecting and assigning the 
most computationally intensive tasks (which are well-
suited to parallel execution) to hardware, while the 
sequential control-oriented tasks are mostly performed in 
software [10]. Reconfigurable systems of this type are 
based on the 90/10 rule, which states that 90% of the 
execution time of an application is spent by 10% of its 
code. Thus, in order to accelerate the solution of a 

particular combinatorial problem, a small portion of the 
algorithm is selected and executed in an FPGA.  

The second method performs partitioning according to 
the available logic capacity of the FPGA [8]. In this case, 
if a problem instance does not “fit” to a chosen device, it 
has first to be decomposed by software into independent 
sub-problems and only the sub-problems satisfying the 
resource constraints are assigned to hardware being the 
remaining part of the problem processed in software. 

Many combinatorial search problems can be efficiently 
formulated and solved over Boolean and ternary matrices 
that keep the initial and all the required intermediate data 
[11]. An analysis of these problems and the respective 
algorithms shows that each of them requires quite a 
limited number of different operations. However, various 
combinatorial problems require different sets of 
operations. It allows concluding the following: 
• reconfigurable devices should be more profitable than 
the respective software solutions; 
• the same computational device can be customized for 
solving different combinatorial problems through 
applying reconfiguration techniques.  

This paper summarizes the recent work in the 
considered scope applying software/configware solutions 
and makes two following fundamental contributions: 
• It describes the suggested architecture of a 
software/configware system for solving combinatorial 
problems and providing virtual partitioning between 
software and run-time reconfigurable hardware; 
• It defines architecture of dynamically reconfigurable 
hardware problem solver and suggests tools for modeling 
this architecture in software, which makes possible to 
estimate the time of reconfiguration, performance and 
other important characteristics for solving a particular 
combinatorial problem.  

The remainder of this paper is organized in 6 sections. 
Section 2 suggests software/configware partitioning. 
Section 3 discusses a reconfigurable architecture. Section 
4 describes the dynamically reconfigurable units for the 
considered architecture, for which section 5 introduces 
different software models. Section 6 is devoted to 
experiments. The conclusion is given in section 7. 
 
2. Software/configware partitioning 
 

The most common approach to solving combinatorial 
problems is based on construction of a search tree [12]. 
The root of the tree represents an initial point, i.e. an 
initial situation that has to be considered and examined. 
All other nodes of the tree correspond to situations that 
can be reached during the search process. If the desired 
solution exists then it can be found in one or more nodes 
of the tree. Thus, if we construct the complete tree we 



will be able to find out a solution or to conclude that the 
problem instance does not have any solution.  

The proposed technique performs software/configware 
partitioning according to the available logic capacity of 
the FPGA and incorporates the following strategy: 
• The root of tree is the starting point for software of the 
host computer; 
• If the problem satisfies the pre-given constraints (for 
the maximum allowed complexity of the given hardware) 
it will be completely solved in hardware. Thus, software 
of the host computer transfers the problem data to the 
attached hardware; 
• If the problem does not satisfy the pre-given 
constraints, the software will apply special decomposition 
and reduction methods trying to obtain a sub-problem that 
satisfies the pre-given constraints. After that the hardware 
will be responsible for the subsequent steps (i.e. the sub-
problem is transferred to the attached hardware); 
• If hardware finds a solution the problem is considered 
to be solved and the result will be dispatched to the host 
computer; 
• If the considered branch of the tree does not allow to 
find a solution the control will be returned to software; 
• If the size of the current intermediate sub-problem 
exceeds the constraints, the execution will be continued in 
software; 
• The considered steps will be repeated until we receive 
either a positive or a negative result, i.e. we will get the 
solution or we will conclude that the problem does not 
have any solution. 
 
2.1. Example of the Boolean satisfiability problem 
 

It is known that product of sums (POS) form is 
composed of a conjunction of a number of clauses, where 
a clause is a disjunction of one or more variables or their 
negations. The satisfiability problem consists in 
determining if a formula in POS is satisfiable, i.e. whether 
there exists an assignment of values to variables that 
forces the formula to evaluate to 1.  

Let us formulate a SAT problem over a ternary matrix 
M by setting a correspondence between clauses and rows 
of M, and between variables and columns of M [8]. Each 
element mij of the matrix M is equal to: 
• 1 – if clause ci contains variable xj; 
• 0 – if clause ci contains negated variable xj; 
• - (don’t care) – if clause ci does not contain variable 
xj; 

Note that the problem of satisfying a Boolean formula 
is equivalent to finding a ternary vector v, which is 
orthogonal to each row of the corresponding matrix M 
[8]. Orthogonality of two ternary vectors is defined as 
follows [12]: (mi ort mj) ⇒ {mi} ∩ {mj} = ∅, where 
{mi} ({mj}) is a set of Boolean vectors that correspond to 

the ternary vector mi (mj) by replacing the don’t care 
values (‘-‘) with all possible combinations of 0s and 1s. If 
and only if two ternary vectors are not orthogonal (let us 
designate this as mi ort mj) they do intersect in the 
Boolean space: (mi ort mj) ⇔ (mi ins mj).  

If vector v cannot be found then the formula is 
unsatisfiable. On the other hand, if the vector v exists 
then the zeros and ones in it correspond to those variables 
that must receive values one and zero respectively in 
order to satisfy the formula.  

For example, the following formula in POS: 
( ) ( ) ( ) ( )21322131 xxxxxxxx ∨∧∨∧∨∧∨      (1) 

can be presented by a ternary matrix M: 
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For this example, one possible solution is v = 10-, 
which means that x1=0 and x2=1. It is easy to check that 
such assignment of values to variables satisfies the 
formula (1). 

In order to solve the SAT problem formulated over a 
ternary matrix we applied the algorithm proposed in [8]. 
The algorithm consists of a sequential application of 
various reduction and decomposition methods. The 
reduction methods allow the matrix M to be simplified by 
deleting rows and columns that cannot influence the final 
solution, and values 1 or 0 to be assigned to some 
components of vector v that initially is completely 
undetermined, i.e. v=[-…-]. The following reduction 
methods have been applied: 
• All the columns that are completely undetermined (i.e. 
do not contain value 0 nor 1) are deleted from the matrix 
M. 
• All the rows that are orthogonal to the vector v are 
deleted from the matrix M. 
• All the columns that correspond to determined 
components of vector v are deleted from the matrix M.  
• If there exists a row in the matrix M that has only one 
component with the value 0 or 1 and all the other 
components are equal to -, then the corresponding 
element of vector v is set to the inverse value. 
• If there exists a column in the matrix M that does not 
contain the value 0 (or 1) then this value is assigned to the 
corresponding component of vector v. 

When further reduction becomes impossible 
decomposition is applied. The adopted method selects an 
undetermined component of vector v and tries to assign a 
value to it. For this purpose a component is chosen that 
corresponds to the more determined column of the matrix 
M, i.e. to a column that has a minimal number of values -. 



The selected vector component represents a decision 
variable, for which first the value 1 is tried and after that 
the value 0.  

If after deleting a row the matrix becomes empty then 
the current value of the vector v represents the solution. 
On the other hand, if the matrix becomes empty after 
deleting a column or if it contains a row without values 1 
and 0, then the current partial assignment of values to 
variables will not lead to the solution. In this case the 
algorithm backtracks to the most-recently assigned 
component of vector v with unfinished revision and 
inverts its value. If backtracking beyond the first decision 
variable is attempted, it means that all possible 
assignments have been exhausted and there is no solution.  

Figure 2 demonstrates software/configware 
partitioning for the SAT problem formulated over a 
ternary matrix. Figure 3 illustrates processing the search 
tree in software and in configware. 
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Figure 2. Software/configware partitioning 
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Figure 3. Processing the search tree in software 
and in configware 

2.2. Example of the covering problem 
 

This subsection shows how to construct a search tree 
for the exact method [12] that permits a minimal column 
cover of a binary matrix to be found, i.e. a minimal subset 
of matrix’s columns containing at least one value 1 in 
each row. The method will be demonstrated through an 
example of the following matrix (columns D, F, G 
represent the minimal column cover): 

      A B C D E F G H  I 
1    1  0  0  0  0 1  0  1  1 
2    0  1  1  0  0 0  1  0  0 
3    0  0  1  1  0 1  0  0  1 
4    1  0  0  1  1 0  0  0  0 
5    0  0  1  0  0 0  1  1  1               (2) 
6    0  1  0  0  0 1  0  0  0 
7    0  1  0  0  1 0  1  0  1 
8    1  0  1  1  0 0  0  1  0 
9    0  0  0  0  0 1  0  1  0 
10  0  0  0  1  0 0  0  0  1 

 
The following set of rules [12], permitting to simplify 

the matrix, will be used: 
• If for i≠j rowi & rowj = rowj then rowi can be removed 
from the matrix, for example, row1 = 100001011, row9 = 
000001010, row1 & row9 = row9 and row1 have to be 
removed from the matrix; 
• If for i≠j columni & columnj = columni then columni 
can be removed from the matrix, for example, after 
deleting rows 1 and 3 using the first rule columnA = 
01000100, columnD = 01000101, columnA & columnD = 
columnA and columnA has to be removed from the matrix.  
• If any column contains just values 0 it has to be 
removed from the matrix; 
• If there is a row, which does not have values 1 then 
covering cannot be found. 

The first two operations are called subsumption 
operations. For decomposition purposes the following 
rules will be used: 
• If a row has just one value 1 then the respective 
column (in which this value 1 appears) must be included 
into the covering; 
• If all rows have more than one value 1 then the first 
row from the top of the matrix that contains the minimum 
number of ones has to be selected. For this row it is 
necessary to analyze all possible sub-problems and the 
number of such sub-problems is equal to the number of 
values 1 in the row. 

Obviously, any branch has to be examined until the 
step where an intermediate result becomes worse than any 
previously discovered covering. Figure 4 shows all the 
steps that are required in order to find out a minimal 
column cover of the matrix (2). The way that leads to the 
minimal cover (columns D, G, F) is shown with the aid of 



double arrows. There are three branching points in Figure 
4: D-E, G-H and D-I. After getting the first solution (D, 
G, F) we are interested just in coverings that contain 2 or 
less columns. Thus, it is not necessary to traverse all 
branches and the search process can be stopped at any 
point that gives a 2-component incomplete solution.  

Like the considered above SAT problem, the search 
algorithm in Figure 4 can be partitioned between software 
and configware. Indeed, any intermediate matrix, 
constructed in the branching points, is smaller than the 
initial matrix. As soon as all the established hardware 
constraints for an intermediate matrix are satisfied the 
problem can be solved in hardware. 
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Figure 4. Search algorithm to find out a minimal 
column cover of the matrix (2) 
 

Similar search algorithms can be used for solving 
many other combinatorial problems. For example, in [13] 
it is shown how a graph coloring problem can be 
formulated over a discrete matrix and an algorithm is 
proposed allowing the problem to be solved by 
backtracking search. Therefore the suggested 
software/configware partitioning method shown in Figure 
2 can be applied directly. 
 
3. Configware architecture 
 

The basic components of the proposed configware 
architecture are shown in Figure 5. The dynamically 
reconfigurable units (DRU) run the algorithms and 
execute operations over matrix rows/columns (such as 
that described in section 2). Stack memory provides 
support for the backtracking process; in particular they 
permit to construct sub-matrices (for each sub-problem) 
sequentially and to return back to any intermediate sub-
matrix if required. General-purpose registers store the 
intermediate data. 

There are two blocks of memory storing matrices in 
Figure 5. The first one corresponds directly to the matrix 
M received from the host computer and the second one 
represents a transpose of M. As a result, we can access 
any row and column of M in one clock cycle. The 
matrices themselves are not modified during the search 
process. All possible changes (such as deleting rows and 
columns) are reflected in the registers (Row mask and 
Column mask in Figure 5). Thus, we avoid the need to 
store the intermediate matrices in the stack. 
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Figure 5. The proposed architecture 
 
4. Dynamically reconfigurable units 
 

DRU is the basic component of Figure 5 and altering 
the functionality of the DRU makes possible to configure 
(i.e. to adapt) the proposed architecture to the concrete 
problem. The proposed architecture for the DRU is shown 
in Figure 6 [14]. There are 8 registers in Figure 6, which 
are the following: 
• operand registers R1 and R2 that store given vectors 
(row/column of the matrix) V1 and V2 and/or intermediate 
result(s) if required; 
• temporary register Rt, which is useful for swapping 
vectors V1, V2 and similar operations;  
• mask register Rm for masking some positions of the 
vectors V1, V2 and Vt;  
• an index register "index" for selecting a desired 
element of the vectors V1 and V2; 
• size register "size" for storing the size of the vectors; 
• counter "count" for performing counting operations; 
• temporary register "temp" for keeping intermediate 
results of counting operations. 

Any ternary vector is composed of two Boolean 
vectors BV0 and BV1. The vector BV0 (BV1) contains 
ones in the positions that have zeros (ones) in the 
respective ternary vector. The component "=" (see Figure 
6) permits values in the registers "index" and "size" to be 
compared.  



Run time changes to the functionality can be achieved 
with the aid of 4 dynamically reconfigurable components, 
which are: 
• RVCC - reconfigurable combinational circuit that 
performs operations logical over entire vectors V1 or/and 
V2; 
• RECC - reconfigurable combinational circuit that 
performs operations over individual elements of V1 and 
V2 with the same index I; 
• RFSM - reconfigurable finite state machine that 
permits to carry out sequential operations over V1 or/and 
V2; 
• RC - reconfigurable comparator that permits the 
selection of different criteria for comparison of the 
registers "temp" and "count".  
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Figure 6. The basic architecture of the DRU 
 

The variables x1,x2,...,x4 and also others that are not 
shown in Figure 6 inform RFSM about the states of the 
DRU, such as "index"="size", "index"≤"size",  etc. The 
variables y1,y2,...,y8 and some others that are not shown in 
Figure 6 enable us to change the states of the DRU. 
Inputs and outputs of the DRU that are marked with 
asterisks are external and they permit loading the vectors, 
setting the mask register Rm and retrieving the result of 
the operation.  

Reconfiguration makes it possible to alter the 
functionality of the blocks RVCC, RECC, RC and RFSM 
and it can be done from the host computer using the 
technique [14, 15]. 
 
5. Modeling the DRU functionality in 
software 
 

We have already mentioned that architecture depicted 
in Figures 5 and 6 can be reused for solving different 
combinatorial problems and the functionality can be 
customized through changes in the reprogrammable 

blocks. Prior to the implementation of a particular circuit 
in hardware, it is important to model and to test it in 
software. This technique is also very helpful for 
debugging purposes and for examining and comparing 
various alternative algorithms. 

A software model of a DRU is organized as a set of 
communicating objects, which are instances of classes 
described in C++. Basic relationships between the classes 
are expressed through aggregates and dependencies (see 
the simplified class diagram in Figure 7). The classes 
enclosed in single-line rectangles (shown at the bottom of 
Figure 7) describe the functionality of a cascaded RFSM 
model and all these classes were considered in [16] with 
detailed examples. The classes enclosed in double-line 
rectangles (shown at the top of Figure 7) express the 
functionality of the DRU without the RFSM.  

The accelerator class models the architecture shown in 
Figure 6 and contains data (objects) of both user-defined 
and predefined C++ types. The objects of the latter type 
are size, count, index and temp and their names are the 
same as the names of the respective components in Figure 
6. There are four objects of user-defined types in the 
accelerator class, namely TV1, TV2, TVt (which are 
instances of the class Ternary_vector) and mask_register 
(which is an instance of the class Boolean_vector). These 
objects model the components R1, R2, Rt and Rm 
accordingly (see Figure 6). The class Ternary_vector 
contains two objects BV1 and BV0 of the type 
Boolean_vector that use the encoding method considered 
in section 4. An object of type FSM_template is invoked 
in the class accelerator in order to provide the required 
sequential functionality. Thus, the behavior of the class 
accelerator depends on the behavior of the RFSM, which 
is indicated by the dependency relationship (see a dashed 
line shown in Figure 7). Rhomboidal symbols indicate 
aggregate relationships. 

 
class accelerator
{   public:   // public functions
private: // see Figure 6

int size;
int count;
int index;
int temp;
bool *comp_memory;
Ternary_vector TV1,TV2,TVt;
Boolean_vector mask_register;   };

class Ternary_vector
{  public: // public functions

friend class accelerator;
private:

Boolean_vector BV1;
Boolean_vector BV0;
int size; };

class Boolean_vector  
{  public: // public functions
private:

short int size;
unsigned vector; };

class FSM_template 
{  public: // public functions
private:

int M_state;
int R_rg;
int N_output;
int L_input;
int Levels;
unsigned*       output_RAM;
Level_RAM*   array_LR;
Register         FSMR;         };

class Register  
{  public: // public functions
private: int R; unsigned storage;  };

class Level_RAM  
{  public: // public functions
private:

Prog_Mux *PM;
unsigned* storage;
int Size; };

class Prog_Mux
{  public:
private:

int Size;
unsigned *RAM_M;

};

Figure 7. Modeling the architecture in Figure 6 
through a set of C++ classes 



An RFSM object is created with the aid of the 
following class constructor: 
FSM_template::FSM_template (int L, int 
R, int M, int N, int levels, unsigned 
RAMI[][16], unsigned *tableI, unsigned 
*tableOUTI); 

where L is the number of RFSM inputs, R is the size 
(number of bits) of the RFSM register, M is the number 
of RFSM states, N is the number of RFSM outputs, levels 
is the number of levels in the cascaded combinational 
circuit of the RFSM [16]. The last three parameters are 
arrays that model reloadable RAM blocks permitting 
RFSM behavior to be altered. The two-dimensional array 
RAMI contains data for the RAM blocks that are required 
for each level (the first dimension corresponds to the 
number of levels and the second dimension to the depth 
of the RAM block for the respective level). The parameter 
tableI is an array that is supplied to the constructor and 
contains the data needed for the RAM block of a 
programmable multiplexer (see [16] for details). The 
parameter tableOUTI is an array that consists of data for 
generating the RFSM outputs [16]. The particular arrays 
can be modeled in software and then used in the host 
computer for reconfiguration of the DRU. 

There is a special function Reload in the 
FSM_template class, which has the following prototype: 
void FSM_template::Reload (unsigned 
RAM[][16], unsigned *table, unsigned 
*tableOUT); 

This function allows the primary arrays mentioned 
above to be reloaded thus enabling the RFSM 
functionality to be changed.  

The behavior of the blocks RC, RECC and RVCC (see 
Figure 6) is modeled through the accelerator class 
functions and overloaded operators.  

Sequential operations are executed by calling special 
functions that establish links between the selected vector 
in the accelerator and the RFSM. These functions have 
the following general prototype: 
unsigned Solve_TVe_BVf (FSM_template 
&FSM_t); 

where FSM_t is a reference to an object (RFSM) that 
controls the desired sequence of steps. A C++ program, 
which models the RFSM functionality, allows RAM 
blocks to be reloaded or switched enabling this 
functionality to be changed. This program was described 
in detail in [16].  

Let us now consider how the designed C++ classes can 
be used for validating, debugging and verification of 
various operations that are allowed for the proposed 
DRU. Figure 8 with a fragment of C++ main function 
demonstrates how to specify the functionality of the 
RFSM and how to change it during execution time. The 

object A of type accelerator models the architecture 
depicted in Figure 6. Two external objects TV1 and TV2 
are copied to the accelerator A using the functions 
write_TV1 and write_TV2. The FSM_template class 
constructor creates an object FSMT, which will specify 
the first type of functionality. 
 

int main(int argc, char* argv[])
{     Ternary_vector TV1(0x4,0x9,4),TV2(0x1,0x8,4);

accelerator A(4,comp_RAM);
A.write_TV1(TV1); // copies TV1 to the ternary vector 1 register
A.write_TV2(TV2); // copies TV2 to the ternary vector 2 register 
FSM_template FSMT(3,3,8,7,3,tableRAM2, table2, tableOUT2);
A.Solve_TV1_BV1(FSMT); 
FSMT.Reload(tableRAM, table, tableOUT); 
FSMT.Reset();
A.Solve_TVt_BV0(FSMT); 
A.Mask_TVt_bits(Boolean_vector(0x4,4));
FSMT.Reset();
A.Solve_TVt_BV0(FSMT); 

// . . . . . . .
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Figure 8. An example of modeling 

 
The function Solve permits the defined RFSM 

behavior to be applied to a vector, which is indicated by 
the function name. Thus, calling Solve_TVt_BV0 (FSMT) 
establishes an interaction between the RFSM and the 
Boolean vector BV0 of the temporary ternary vector 
(TVt). The function Reload makes changes to the RFSM 
functionality and then the new functionality can be 
associated with any vector (see the first and the last 
functions Solve in Figure 8). 
 
6. Experimental results 
 

In order to estimate the effectiveness of the proposed 
approach, a number of experiments have been conducted 
for Boolean satisfiability, matrix covering and graph 
coloring problems. The problems were formulated over 
discrete matrices and were solved using backtracking 
algorithms. For this, all the individual reprogrammable 
components of the circuit in Figure 5 have been modeled 
in software and after that implemented in a PCI FPGA-
based ADM-XRC board [17] with the Xilinx XCV812E 
FPGA. Various modes of static and dynamic 
reconfiguration have been examined. In particular, two 
kinds of implementation have been evaluated:  
• components constructed through programming look-
up tables - LUTs, i.e. on the basis of CLBs configured as 
ROM/RAM.  
• components implemented on the basis of embedded 
memory blocks. 



The results of experiments have shown that the 
proposed technique makes possible to shorten essentially 
the design time of combinatorial processors. The 
hardware compilation time was completely eliminated 
and significant speedups (up to 100) were achieved for 
solution of a number of problem instances (for example, 
available from DIMACS [18]) compared to the equivalent 
solution in software [8, 13]. 

 
7. Conclusion 
 

The paper presents an architecture for combinatorial 
problem solvers that is based on partitioning the problem 
solution between software and dynamically 
reconfigurable hardware. The technique allows instance-
specific hardware compilation to be avoided and permits 
problem instances to be solved that are larger than the 
available capacity of the reconfigurable hardware 
platform. As a result, it is possible to achieve a significant 
speedup (even taking into account the FPGA 
configuration time) compared to the equivalent solutions 
in software.  

Modeling the architecture in software allows to 
estimate the time of reconfiguration, performance and 
other important characteristics for solving a particular 
combinatorial problem and ultimately leads to a 
significant speedup in the design process. 

 
8. References 
 
[1] G. Micheli, Synthesis and optimization of digital 
circuits. McGraw-Hill, Inc., 1994, 570 p. 
[2] P. R. Stephan et al., "Combinational Test Generation 
Using Satisfiability," IEEE Trans. on CAD, vol. 15, no. 9, 
pp. 1167-1176, Sept. 1996. 
[3] R. Feldman, C. Haubelt, B. Monien, J. Teich, “Fault 
Tolerance Analysis of Distributed Reconfigurable 
Systems Using SAT-Based Techniques”, Proceeding of 
FPL’2003, Lisbon, Portugal, 2003, pp. 478-487. 
[4] M. Platzner, “Reconfigurable Accelerators for 
Combinatorial Problems”, IEEE Computer, pp. 58-60, 
April 2000. 
[5] P. Zhong, P. Ashar, S. Malik, M. Martonosi, “Using 
Reconfigurable Computing Techniques to Accelerate 
Problems in the CAD Domain: A Case Study with 
Boolean Satisfiability”, Proc. of the 34th Design 
Automation Conference, 1998, pp. 194-199. 

[6] M. Abramovici, J.T. de Sousa, “A SAT solver using 
reconfigurable hardware and virtual logic”, Journal of 
Automated Reasoning, vol. 24, nos. 1-2, Feb. 2000, pp. 5-
36. 
[7] M. Boyd, T. Larrabee, “ELVIS – A Scalable, 
Loadable Custom Programmable Logic Device for 
Solving Boolean Satisfiability Problems”, Proc. of the 
IEEE FCCM’2000, Napa, California.  
[8] I. Skliarova, A.B. Ferrari. “A 
Software/Reconfigurable Hardware SAT Solver”, IEEE 
Trans. on VLSI, Apr., vol. 12, Nº 4, 2004, pp. 408-419. 
[9] I. Skliarova, A.B. Ferrari, "Reconfigurable Hardware 
SAT Solvers: a Survey of Systems", IEEE Trans on 
Computers, Nov., vol. 53, Nº 11, 2004, pp. 1449-1461. 
[10] J. de Sousa, J.P. Marques-Silva, M. Abramovici, “A 
Configware/Software Approach to SAT Solving”, Proc. 
of the IEEE FCCM’2001. 
[11] A. Zakrevskij, “Combinatorial Problems over 
Logical Matrices in Logic Design and Artificial 
Intelligence”, Electrónica e Telecomunicações, vol. 2, no. 
2, pp.  261-268. 
[12] A.D. Zakrevski, “Logical Synthesis of Cascade 
Networks”, Moscow: Science, 1981. 
[13] V. Sklyarov, I. Skliarova, B. Pimentel, "Modeling 
and FPGA-based implementation of graph coloring 
algorithms", Proceedings of the 3rd International 
Conference on Autonomous Robots and Agents - 
ICARA'2006, Palmerston North, New Zealand, 
December 2006, pp. 443-448. 
[14] V. Sklyarov, I. Skliarova, “Design of Digital Circuits 
on the Basis of Hardware Templates”, Proceedings of the 
International Conference on Embedded Systems and 
Applications – ESA’03, Las Vegas, USA, CSREA Press, 
pp. 56-62, Jun. 2003. 
[15] V. Sklyarov, I. Skliarova, A. Oliveira, A. Ferrari, “A 
Dynamically Reconfigurable Accelerator for Operations 
over Boolean and Ternary Vectors”, Euromicro 
Symposium on Digital System Design, Belek, Turkey, pp. 
222-229, Sept. 2003. 
[16] V. Sklyarov, “Reconfigurable models of finite state 
machines and their implementation in FPGAs”, Journal of 
Systems Architecture, 2002, 47, pp. 1043-1064. 
[17] Available: http://www.alpha-data.com/. 
[18] DIMACS challenge benchmarks. [Online]: 
http://www.intellektik.informatik.tu-darmstadt.de/ 
SATLIB/benchm.html. 
 

 
 


