
Software/Configware Implementation of Combinatorial Algorithms

Iouliia Skliarova, Valery Sklyarov
University of Aveiro, Department of Electronics, Telecommunications and Informatics, IEETA,

3810-193 Aveiro, Portugal
iouliia@det.ua.pt, skl@det.ua.pt

Abstract

This paper discusses an approach for solving
combinatorial problems by combining software and
dynamically reconfigurable hardware (configware). The
suggested technique avoids instance-specific hardware
compilation and, as a result, allows obtaining higher
performance than currently available pure software
approaches as well as instance-specific reconfigurable
solutions. Moreover, the technique permits problems to
be solved that exceed the resources of the available
reconfigurable hardware. The architecture of
dynamically reconfigurable hardware problem solver is
modeled in software allowing to estimate different
characteristics, such as the time of reconfiguration,
performance, etc., and to speed up the overall design
process.

1. Introduction

Combinatorial problems play an important role in the
computer-aided design and test of integrated circuits
[1,2], artificial intelligence, embedded systems [3], etc.
Because of the wide scope of practical applications, these
problems have been studied extensively. Many of them
are NP-complete and NP-hard, therefore the complexity
of the respective algorithms makes it difficult (and
sometimes even impossible) to solve a problem in a
reasonable time, or with the available computational
resources. As a result, many different techniques for
accelerating the solution of combinatorial problems are
being constantly proposed, either in software or in
hardware (for example, in field-programmable gate arrays
- FPGA).

Novel methods suggested in the scope of software aim
at studying and applying optimized data structures,
exploring alternative algorithmic approaches (such as
proposing more efficient approximate algorithms based
on heuristic search), etc. Accelerating the solution of
combinatorial problems in reconfigurable hardware is
based primarily on mapping to hardware the existing
algorithms (which have already been tested exhaustively
in software) and trying to execute as much work as
possible in parallel. According to Amdhal‘s law, the gain

attainable by the parallel execution is limited by the
portion of the algorithm suitable for parallelization.

Let us consider backtracking search algorithms, whose
general structure is depicted in Figure 1. In this case, the
processes of initial problem simplification and
decomposition in sub-problems can be executed by a
number of processing elements working in parallel,
whereas invoking the algorithm for each of the sub-
problems has to be done sequentially, one by one.

Begin

Reduce
the problem

End

Decompose the
problem into
sub-problems

Invoke the same
algorithm for each
of the sub-problems

Figure 1. General structure of backtracking
search algorithms

Another very significant bottleneck in executing
combinatorial search algorithms, either in software or in
hardware, is access to and management of problem data.
In software, this issue is solved by both inventing more
efficient data structures and using caches. What is
attempted in reconfigurable hardware is to store as much
data as possible in local memories, which are only
accessed by a single processing element, and to adapt the
dimensions of memory blocks to the particular
requirements of each problem instance.

The majority of researches in the area of accelerating
solutions with the aid of reconfigurable (based on FPGA)
hardware apply an instance-specific approach, i.e. they
generate a circuit for each particular problem instance to
be solved [4-6]. In this case the total problem solving
time is equal to “hardware circuit generation time” +
“FPGA configuration time” + “actual execution time” +

“time required to communicate the results”. The major
advantage of this strategy is that a direct mapping of
problem structure to functional components permits
performance to be increased and provides a good
utilization of the resources. However, the required time
for hardware compilation is very significant, being
frequently much higher than the actual time for the
execution of combinatorial algorithms in hardware. Thus,
this instance-specific method can only be used effectively
for complicated problems with large volume of input data
where the hardware compilation time is offset by the
reduced execution time. More recent work in this
direction is targeted at avoiding instance-specific layout
compilation [7].

Another important issue affecting any algorithm
implemented in reconfigurable hardware is related to the
capacity of the hardware platform. If the circuit cannot be
implemented in a single device it is possible to employ
several components applying methods of multi-device
partitioning. Nevertheless there is no guarantee that a
given task can be efficiently solved on a given set of
reconfigurable hardware resources [8]. Because of this, it
was proposed to partition the problem solution between
software and reconfigurable hardware. The partitioning
process can be conducted in two possible ways:
automated and manual.

Automated partitioning supposes that high-level
general purpose programming languages are employed
for problem description. Is this case the specification can
be provided in standard ANSI C/C++ and the algorithm
can be simulated directly using any available C/C++
debugger. After that the code portions, which have to be
accelerated in an FPGA, are identified; software/hardware
partitioning is executed, the respective interfaces are
generated and, for the hardware part, the synthesizable
HDL code is produced. The results of the last two steps
are exported to implementation tools, which provide for
future steps and ultimately generate the FPGA
configuration file. This approach sounds to be very
attractive but currently, to the best of our knowledge,
there exist no efficient solutions of combinatorial
problems using automated partitioning.

In the scope of manual software/configware
partitioning two different methods can be envisioned:
partitioning according to computational complexity and
partitioning with respect to logic capacity [9]. The first of
these methods is based on selecting and assigning the
most computationally intensive tasks (which are well-
suited to parallel execution) to hardware, while the
sequential control-oriented tasks are mostly performed in
software [10]. Reconfigurable systems of this type are
based on the 90/10 rule, which states that 90% of the
execution time of an application is spent by 10% of its
code. Thus, in order to accelerate the solution of a

particular combinatorial problem, a small portion of the
algorithm is selected and executed in an FPGA.

The second method performs partitioning according to
the available logic capacity of the FPGA [8]. In this case,
if a problem instance does not “fit” to a chosen device, it
has first to be decomposed by software into independent
sub-problems and only the sub-problems satisfying the
resource constraints are assigned to hardware being the
remaining part of the problem processed in software.

Many combinatorial search problems can be efficiently
formulated and solved over Boolean and ternary matrices
that keep the initial and all the required intermediate data
[11]. An analysis of these problems and the respective
algorithms shows that each of them requires quite a
limited number of different operations. However, various
combinatorial problems require different sets of
operations. It allows concluding the following:
• reconfigurable devices should be more profitable than
the respective software solutions;
• the same computational device can be customized for
solving different combinatorial problems through
applying reconfiguration techniques.

This paper summarizes the recent work in the
considered scope applying software/configware solutions
and makes two following fundamental contributions:
• It describes the suggested architecture of a
software/configware system for solving combinatorial
problems and providing virtual partitioning between
software and run-time reconfigurable hardware;
• It defines architecture of dynamically reconfigurable
hardware problem solver and suggests tools for modeling
this architecture in software, which makes possible to
estimate the time of reconfiguration, performance and
other important characteristics for solving a particular
combinatorial problem.

The remainder of this paper is organized in 6 sections.
Section 2 suggests software/configware partitioning.
Section 3 discusses a reconfigurable architecture. Section
4 describes the dynamically reconfigurable units for the
considered architecture, for which section 5 introduces
different software models. Section 6 is devoted to
experiments. The conclusion is given in section 7.

2. Software/configware partitioning

The most common approach to solving combinatorial
problems is based on construction of a search tree [12].
The root of the tree represents an initial point, i.e. an
initial situation that has to be considered and examined.
All other nodes of the tree correspond to situations that
can be reached during the search process. If the desired
solution exists then it can be found in one or more nodes
of the tree. Thus, if we construct the complete tree we

will be able to find out a solution or to conclude that the
problem instance does not have any solution.

The proposed technique performs software/configware
partitioning according to the available logic capacity of
the FPGA and incorporates the following strategy:
• The root of tree is the starting point for software of the
host computer;
• If the problem satisfies the pre-given constraints (for
the maximum allowed complexity of the given hardware)
it will be completely solved in hardware. Thus, software
of the host computer transfers the problem data to the
attached hardware;
• If the problem does not satisfy the pre-given
constraints, the software will apply special decomposition
and reduction methods trying to obtain a sub-problem that
satisfies the pre-given constraints. After that the hardware
will be responsible for the subsequent steps (i.e. the sub-
problem is transferred to the attached hardware);
• If hardware finds a solution the problem is considered
to be solved and the result will be dispatched to the host
computer;
• If the considered branch of the tree does not allow to
find a solution the control will be returned to software;
• If the size of the current intermediate sub-problem
exceeds the constraints, the execution will be continued in
software;
• The considered steps will be repeated until we receive
either a positive or a negative result, i.e. we will get the
solution or we will conclude that the problem does not
have any solution.

2.1. Example of the Boolean satisfiability problem

It is known that product of sums (POS) form is
composed of a conjunction of a number of clauses, where
a clause is a disjunction of one or more variables or their
negations. The satisfiability problem consists in
determining if a formula in POS is satisfiable, i.e. whether
there exists an assignment of values to variables that
forces the formula to evaluate to 1.

Let us formulate a SAT problem over a ternary matrix
M by setting a correspondence between clauses and rows
of M, and between variables and columns of M [8]. Each
element mij of the matrix M is equal to:
• 1 – if clause ci contains variable xj;
• 0 – if clause ci contains negated variable xj;
• - (don’t care) – if clause ci does not contain variable
xj;

Note that the problem of satisfying a Boolean formula
is equivalent to finding a ternary vector v, which is
orthogonal to each row of the corresponding matrix M
[8]. Orthogonality of two ternary vectors is defined as
follows [12]: (mi ort mj) ⇒ {mi} ∩ {mj} = ∅, where
{mi} ({mj}) is a set of Boolean vectors that correspond to

the ternary vector mi (mj) by replacing the don’t care
values (‘-‘) with all possible combinations of 0s and 1s. If
and only if two ternary vectors are not orthogonal (let us
designate this as mi ort mj) they do intersect in the
Boolean space: (mi ort mj) ⇔ (mi ins mj).

If vector v cannot be found then the formula is
unsatisfiable. On the other hand, if the vector v exists
then the zeros and ones in it correspond to those variables
that must receive values one and zero respectively in
order to satisfy the formula.

For example, the following formula in POS:
() () () ()21322131 xxxxxxxx ∨∧∨∧∨∧∨ (1)

can be presented by a ternary matrix M:

4

3

2

1

321

c
c
c
c

 0 0
0 1

 1 0
0 0

M

xxx



















−
−

−
−

=

For this example, one possible solution is v = 10-,
which means that x1=0 and x2=1. It is easy to check that
such assignment of values to variables satisfies the
formula (1).

In order to solve the SAT problem formulated over a
ternary matrix we applied the algorithm proposed in [8].
The algorithm consists of a sequential application of
various reduction and decomposition methods. The
reduction methods allow the matrix M to be simplified by
deleting rows and columns that cannot influence the final
solution, and values 1 or 0 to be assigned to some
components of vector v that initially is completely
undetermined, i.e. v=[-…-]. The following reduction
methods have been applied:
• All the columns that are completely undetermined (i.e.
do not contain value 0 nor 1) are deleted from the matrix
M.
• All the rows that are orthogonal to the vector v are
deleted from the matrix M.
• All the columns that correspond to determined
components of vector v are deleted from the matrix M.
• If there exists a row in the matrix M that has only one
component with the value 0 or 1 and all the other
components are equal to -, then the corresponding
element of vector v is set to the inverse value.
• If there exists a column in the matrix M that does not
contain the value 0 (or 1) then this value is assigned to the
corresponding component of vector v.

When further reduction becomes impossible
decomposition is applied. The adopted method selects an
undetermined component of vector v and tries to assign a
value to it. For this purpose a component is chosen that
corresponds to the more determined column of the matrix
M, i.e. to a column that has a minimal number of values -.

The selected vector component represents a decision
variable, for which first the value 1 is tried and after that
the value 0.

If after deleting a row the matrix becomes empty then
the current value of the vector v represents the solution.
On the other hand, if the matrix becomes empty after
deleting a column or if it contains a row without values 1
and 0, then the current partial assignment of values to
variables will not lead to the solution. In this case the
algorithm backtracks to the most-recently assigned
component of vector v with unfinished revision and
inverts its value. If backtracking beyond the first decision
variable is attempted, it means that all possible
assignments have been exhausted and there is no solution.

Figure 2 demonstrates software/configware
partitioning for the SAT problem formulated over a
ternary matrix. Figure 3 illustrates processing the search
tree in software and in configware.

Begin

Configure the FPGA

Start execution
in software

Size
of the matrix
≤ hardware
constraints

Download the matrix
data to the FPGA

Execute the sub-
problem in the FPGA

Was
a solution

found?

Continue execution
in software until

the next decomposition

Ok

End

yes no

no

yes

Figure 2. Software/configware partitioning

original
problem

sub-
problem

... ...

sub-
problem

... ...

...

software
configware

Figure 3. Processing the search tree in software
and in configware

2.2. Example of the covering problem

This subsection shows how to construct a search tree
for the exact method [12] that permits a minimal column
cover of a binary matrix to be found, i.e. a minimal subset
of matrix’s columns containing at least one value 1 in
each row. The method will be demonstrated through an
example of the following matrix (columns D, F, G
represent the minimal column cover):

 A B C D E F G H I
1 1 0 0 0 0 1 0 1 1
2 0 1 1 0 0 0 1 0 0
3 0 0 1 1 0 1 0 0 1
4 1 0 0 1 1 0 0 0 0
5 0 0 1 0 0 0 1 1 1 (2)
6 0 1 0 0 0 1 0 0 0
7 0 1 0 0 1 0 1 0 1
8 1 0 1 1 0 0 0 1 0
9 0 0 0 0 0 1 0 1 0
10 0 0 0 1 0 0 0 0 1

The following set of rules [12], permitting to simplify

the matrix, will be used:
• If for i≠j rowi & rowj = rowj then rowi can be removed
from the matrix, for example, row1 = 100001011, row9 =
000001010, row1 & row9 = row9 and row1 have to be
removed from the matrix;
• If for i≠j columni & columnj = columni then columni
can be removed from the matrix, for example, after
deleting rows 1 and 3 using the first rule columnA =
01000100, columnD = 01000101, columnA & columnD =
columnA and columnA has to be removed from the matrix.
• If any column contains just values 0 it has to be
removed from the matrix;
• If there is a row, which does not have values 1 then
covering cannot be found.

The first two operations are called subsumption
operations. For decomposition purposes the following
rules will be used:
• If a row has just one value 1 then the respective
column (in which this value 1 appears) must be included
into the covering;
• If all rows have more than one value 1 then the first
row from the top of the matrix that contains the minimum
number of ones has to be selected. For this row it is
necessary to analyze all possible sub-problems and the
number of such sub-problems is equal to the number of
values 1 in the row.

Obviously, any branch has to be examined until the
step where an intermediate result becomes worse than any
previously discovered covering. Figure 4 shows all the
steps that are required in order to find out a minimal
column cover of the matrix (2). The way that leads to the
minimal cover (columns D, G, F) is shown with the aid of

double arrows. There are three branching points in Figure
4: D-E, G-H and D-I. After getting the first solution (D,
G, F) we are interested just in coverings that contain 2 or
less columns. Thus, it is not necessary to traverse all
branches and the search process can be stopped at any
point that gives a 2-component incomplete solution.

Like the considered above SAT problem, the search
algorithm in Figure 4 can be partitioned between software
and configware. Indeed, any intermediate matrix,
constructed in the branching points, is smaller than the
initial matrix. As soon as all the established hardware
constraints for an intermediate matrix are satisfied the
problem can be solved in hardware.

Initial matrix

Applying reduction rules and
removing rows 1,3 and column A

Row 4 with 2 values “1”

column D
column E

decomposition

Removing the column D and
rows 4,8,10 that are covered

Removing the column E and
rows 4,7 that are covered

2

1 1

Applying reduction rules and
removing columns C,E,I and row 2

Applying reduction rules and
removing row 5 and column G

Row 5 with 2 values “1”

G

H

stopRemoving the column
G and rows 5,7 that

are covered

Applying reduction rules
and removing columns B,H Row 6 with 1 value “1”

Row 10 with 2 values “1”

D

I

stop stop

2 2

F
Removing the column F

and rows 6,9 that are
covered. The matrix

is empty

2

3

decomposition

decomposition

Figure 4. Search algorithm to find out a minimal
column cover of the matrix (2)

Similar search algorithms can be used for solving
many other combinatorial problems. For example, in [13]
it is shown how a graph coloring problem can be
formulated over a discrete matrix and an algorithm is
proposed allowing the problem to be solved by
backtracking search. Therefore the suggested
software/configware partitioning method shown in Figure
2 can be applied directly.

3. Configware architecture

The basic components of the proposed configware
architecture are shown in Figure 5. The dynamically
reconfigurable units (DRU) run the algorithms and
execute operations over matrix rows/columns (such as
that described in section 2). Stack memory provides
support for the backtracking process; in particular they
permit to construct sub-matrices (for each sub-problem)
sequentially and to return back to any intermediate sub-
matrix if required. General-purpose registers store the
intermediate data.

There are two blocks of memory storing matrices in
Figure 5. The first one corresponds directly to the matrix
M received from the host computer and the second one
represents a transpose of M. As a result, we can access
any row and column of M in one clock cycle. The
matrices themselves are not modified during the search
process. All possible changes (such as deleting rows and
columns) are reflected in the registers (Row mask and
Column mask in Figure 5). Thus, we avoid the need to
store the intermediate matrices in the stack.

Stacks for masks and for

general-purpose registers)

general-purpose registersStorage for
matrices

Column address

Row
address

Column mask

Row
mask

Auxiliary
circuits

Execution Unit
for operations over

Boolean and ternary vectors

Control unit

Dynamically reconfigurable units (DRU)























111111
101001
100001
011000
000101



























11100
10010
11010
10001
10000
11101

Figure 5. The proposed architecture

4. Dynamically reconfigurable units

DRU is the basic component of Figure 5 and altering
the functionality of the DRU makes possible to configure
(i.e. to adapt) the proposed architecture to the concrete
problem. The proposed architecture for the DRU is shown
in Figure 6 [14]. There are 8 registers in Figure 6, which
are the following:
• operand registers R1 and R2 that store given vectors
(row/column of the matrix) V1 and V2 and/or intermediate
result(s) if required;
• temporary register Rt, which is useful for swapping
vectors V1, V2 and similar operations;
• mask register Rm for masking some positions of the
vectors V1, V2 and Vt;
• an index register "index" for selecting a desired
element of the vectors V1 and V2;
• size register "size" for storing the size of the vectors;
• counter "count" for performing counting operations;
• temporary register "temp" for keeping intermediate
results of counting operations.

Any ternary vector is composed of two Boolean
vectors BV0 and BV1. The vector BV0 (BV1) contains
ones in the positions that have zeros (ones) in the
respective ternary vector. The component "=" (see Figure
6) permits values in the registers "index" and "size" to be
compared.

Run time changes to the functionality can be achieved
with the aid of 4 dynamically reconfigurable components,
which are:
• RVCC - reconfigurable combinational circuit that
performs operations logical over entire vectors V1 or/and
V2;
• RECC - reconfigurable combinational circuit that
performs operations over individual elements of V1 and
V2 with the same index I;
• RFSM - reconfigurable finite state machine that
permits to carry out sequential operations over V1 or/and
V2;
• RC - reconfigurable comparator that permits the
selection of different criteria for comparison of the
registers "temp" and "count".

ternary vector 1

ternary vector 2

index

R

BV0
BV1

BV0
BV1

RFSM

x2

x3

size

=
x1

counttemp

result 1

RC
x4

y1

y2

y3

y4

y5

y6

y7

temporary ternary vector
mask register

RVCC

RECC

y8

R1

R2

Rt

Rm

*

*

* *

V1 V2

RO

RO

*

Vt

I

I

*

re
su

lt
2

mask
V1

V2

Figure 6. The basic architecture of the DRU

The variables x1,x2,...,x4 and also others that are not
shown in Figure 6 inform RFSM about the states of the
DRU, such as "index"="size", "index"≤"size", etc. The
variables y1,y2,...,y8 and some others that are not shown in
Figure 6 enable us to change the states of the DRU.
Inputs and outputs of the DRU that are marked with
asterisks are external and they permit loading the vectors,
setting the mask register Rm and retrieving the result of
the operation.

Reconfiguration makes it possible to alter the
functionality of the blocks RVCC, RECC, RC and RFSM
and it can be done from the host computer using the
technique [14, 15].

5. Modeling the DRU functionality in
software

We have already mentioned that architecture depicted
in Figures 5 and 6 can be reused for solving different
combinatorial problems and the functionality can be
customized through changes in the reprogrammable

blocks. Prior to the implementation of a particular circuit
in hardware, it is important to model and to test it in
software. This technique is also very helpful for
debugging purposes and for examining and comparing
various alternative algorithms.

A software model of a DRU is organized as a set of
communicating objects, which are instances of classes
described in C++. Basic relationships between the classes
are expressed through aggregates and dependencies (see
the simplified class diagram in Figure 7). The classes
enclosed in single-line rectangles (shown at the bottom of
Figure 7) describe the functionality of a cascaded RFSM
model and all these classes were considered in [16] with
detailed examples. The classes enclosed in double-line
rectangles (shown at the top of Figure 7) express the
functionality of the DRU without the RFSM.

The accelerator class models the architecture shown in
Figure 6 and contains data (objects) of both user-defined
and predefined C++ types. The objects of the latter type
are size, count, index and temp and their names are the
same as the names of the respective components in Figure
6. There are four objects of user-defined types in the
accelerator class, namely TV1, TV2, TVt (which are
instances of the class Ternary_vector) and mask_register
(which is an instance of the class Boolean_vector). These
objects model the components R1, R2, Rt and Rm
accordingly (see Figure 6). The class Ternary_vector
contains two objects BV1 and BV0 of the type
Boolean_vector that use the encoding method considered
in section 4. An object of type FSM_template is invoked
in the class accelerator in order to provide the required
sequential functionality. Thus, the behavior of the class
accelerator depends on the behavior of the RFSM, which
is indicated by the dependency relationship (see a dashed
line shown in Figure 7). Rhomboidal symbols indicate
aggregate relationships.

class accelerator
{ public: // public functions
private: // see Figure 6

int size;
int count;
int index;
int temp;
bool *comp_memory;
Ternary_vector TV1,TV2,TVt;
Boolean_vector mask_register; };

class Ternary_vector
{ public: // public functions

friend class accelerator;
private:

Boolean_vector BV1;
Boolean_vector BV0;
int size; };

class Boolean_vector
{ public: // public functions
private:

short int size;
unsigned vector; };

class FSM_template
{ public: // public functions
private:

int M_state;
int R_rg;
int N_output;
int L_input;
int Levels;
unsigned* output_RAM;
Level_RAM* array_LR;
Register FSMR; };

class Register
{ public: // public functions
private: int R; unsigned storage; };

class Level_RAM
{ public: // public functions
private:

Prog_Mux *PM;
unsigned* storage;
int Size; };

class Prog_Mux
{ public:
private:

int Size;
unsigned *RAM_M;

};

Figure 7. Modeling the architecture in Figure 6
through a set of C++ classes

An RFSM object is created with the aid of the
following class constructor:
FSM_template::FSM_template (int L, int
R, int M, int N, int levels, unsigned
RAMI[][16], unsigned *tableI, unsigned
*tableOUTI);

where L is the number of RFSM inputs, R is the size
(number of bits) of the RFSM register, M is the number
of RFSM states, N is the number of RFSM outputs, levels
is the number of levels in the cascaded combinational
circuit of the RFSM [16]. The last three parameters are
arrays that model reloadable RAM blocks permitting
RFSM behavior to be altered. The two-dimensional array
RAMI contains data for the RAM blocks that are required
for each level (the first dimension corresponds to the
number of levels and the second dimension to the depth
of the RAM block for the respective level). The parameter
tableI is an array that is supplied to the constructor and
contains the data needed for the RAM block of a
programmable multiplexer (see [16] for details). The
parameter tableOUTI is an array that consists of data for
generating the RFSM outputs [16]. The particular arrays
can be modeled in software and then used in the host
computer for reconfiguration of the DRU.

There is a special function Reload in the
FSM_template class, which has the following prototype:
void FSM_template::Reload (unsigned
RAM[][16], unsigned *table, unsigned
*tableOUT);

This function allows the primary arrays mentioned
above to be reloaded thus enabling the RFSM
functionality to be changed.

The behavior of the blocks RC, RECC and RVCC (see
Figure 6) is modeled through the accelerator class
functions and overloaded operators.

Sequential operations are executed by calling special
functions that establish links between the selected vector
in the accelerator and the RFSM. These functions have
the following general prototype:
unsigned Solve_TVe_BVf (FSM_template
&FSM_t);

where FSM_t is a reference to an object (RFSM) that
controls the desired sequence of steps. A C++ program,
which models the RFSM functionality, allows RAM
blocks to be reloaded or switched enabling this
functionality to be changed. This program was described
in detail in [16].

Let us now consider how the designed C++ classes can
be used for validating, debugging and verification of
various operations that are allowed for the proposed
DRU. Figure 8 with a fragment of C++ main function
demonstrates how to specify the functionality of the
RFSM and how to change it during execution time. The

object A of type accelerator models the architecture
depicted in Figure 6. Two external objects TV1 and TV2
are copied to the accelerator A using the functions
write_TV1 and write_TV2. The FSM_template class
constructor creates an object FSMT, which will specify
the first type of functionality.

int main(int argc, char* argv[])
{ Ternary_vector TV1(0x4,0x9,4),TV2(0x1,0x8,4);

accelerator A(4,comp_RAM);
A.write_TV1(TV1); // copies TV1 to the ternary vector 1 register
A.write_TV2(TV2); // copies TV2 to the ternary vector 2 register
FSM_template FSMT(3,3,8,7,3,tableRAM2, table2, tableOUT2);
A.Solve_TV1_BV1(FSMT);
FSMT.Reload(tableRAM, table, tableOUT);
FSMT.Reset();
A.Solve_TVt_BV0(FSMT);
A.Mask_TVt_bits(Boolean_vector(0x4,4));
FSMT.Reset();
A.Solve_TVt_BV0(FSMT);

//

ternary vector 1

ternary vector 2

index

R

BV0
BV1

BV0
BV1

RFSM

x2

x3

size

=
x1

counttemp

result 1

RC
x4

y1

y2

y3

y4

y5

y6

y7

temporary ternary vector
mask register

RVCC

RECC

y8

R1

R2

Rt

Rm

*

*

* *

V1 V2

RO

RO

*

Vt

I

I

*

re
su

lt
2

mask
V1

V2

instantiates an
object A, which

models the
architecture

TV1 = “01 - 0”

TV2 = “0 - - 1”
Instantiates two
ternary vectors

Constructs RFSM on the basis
of arrays tableRAM2, table2,
tableOUT2, which imitate the
contents of reloadable RAM

blocks

RAM
blocks

RFSM executes the defined algorithm
over the Boolean vector BV1 for

the ternary vector TV1

Dynamic changes to the
RFSM functionality through

using other arrays. This models
reloading the RAM blocks

The same RFSM solves
a different problem

Masking a
bit - 1 - -,

which
permits to

skip it

// resets of RFSM register

Figure 8. An example of modeling

The function Solve permits the defined RFSM

behavior to be applied to a vector, which is indicated by
the function name. Thus, calling Solve_TVt_BV0 (FSMT)
establishes an interaction between the RFSM and the
Boolean vector BV0 of the temporary ternary vector
(TVt). The function Reload makes changes to the RFSM
functionality and then the new functionality can be
associated with any vector (see the first and the last
functions Solve in Figure 8).

6. Experimental results

In order to estimate the effectiveness of the proposed
approach, a number of experiments have been conducted
for Boolean satisfiability, matrix covering and graph
coloring problems. The problems were formulated over
discrete matrices and were solved using backtracking
algorithms. For this, all the individual reprogrammable
components of the circuit in Figure 5 have been modeled
in software and after that implemented in a PCI FPGA-
based ADM-XRC board [17] with the Xilinx XCV812E
FPGA. Various modes of static and dynamic
reconfiguration have been examined. In particular, two
kinds of implementation have been evaluated:
• components constructed through programming look-
up tables - LUTs, i.e. on the basis of CLBs configured as
ROM/RAM.
• components implemented on the basis of embedded
memory blocks.

The results of experiments have shown that the
proposed technique makes possible to shorten essentially
the design time of combinatorial processors. The
hardware compilation time was completely eliminated
and significant speedups (up to 100) were achieved for
solution of a number of problem instances (for example,
available from DIMACS [18]) compared to the equivalent
solution in software [8, 13].

7. Conclusion

The paper presents an architecture for combinatorial
problem solvers that is based on partitioning the problem
solution between software and dynamically
reconfigurable hardware. The technique allows instance-
specific hardware compilation to be avoided and permits
problem instances to be solved that are larger than the
available capacity of the reconfigurable hardware
platform. As a result, it is possible to achieve a significant
speedup (even taking into account the FPGA
configuration time) compared to the equivalent solutions
in software.

Modeling the architecture in software allows to
estimate the time of reconfiguration, performance and
other important characteristics for solving a particular
combinatorial problem and ultimately leads to a
significant speedup in the design process.

8. References

[1] G. Micheli, Synthesis and optimization of digital
circuits. McGraw-Hill, Inc., 1994, 570 p.
[2] P. R. Stephan et al., "Combinational Test Generation
Using Satisfiability," IEEE Trans. on CAD, vol. 15, no. 9,
pp. 1167-1176, Sept. 1996.
[3] R. Feldman, C. Haubelt, B. Monien, J. Teich, “Fault
Tolerance Analysis of Distributed Reconfigurable
Systems Using SAT-Based Techniques”, Proceeding of
FPL’2003, Lisbon, Portugal, 2003, pp. 478-487.
[4] M. Platzner, “Reconfigurable Accelerators for
Combinatorial Problems”, IEEE Computer, pp. 58-60,
April 2000.
[5] P. Zhong, P. Ashar, S. Malik, M. Martonosi, “Using
Reconfigurable Computing Techniques to Accelerate
Problems in the CAD Domain: A Case Study with
Boolean Satisfiability”, Proc. of the 34th Design
Automation Conference, 1998, pp. 194-199.

[6] M. Abramovici, J.T. de Sousa, “A SAT solver using
reconfigurable hardware and virtual logic”, Journal of
Automated Reasoning, vol. 24, nos. 1-2, Feb. 2000, pp. 5-
36.
[7] M. Boyd, T. Larrabee, “ELVIS – A Scalable,
Loadable Custom Programmable Logic Device for
Solving Boolean Satisfiability Problems”, Proc. of the
IEEE FCCM’2000, Napa, California.
[8] I. Skliarova, A.B. Ferrari. “A
Software/Reconfigurable Hardware SAT Solver”, IEEE
Trans. on VLSI, Apr., vol. 12, Nº 4, 2004, pp. 408-419.
[9] I. Skliarova, A.B. Ferrari, "Reconfigurable Hardware
SAT Solvers: a Survey of Systems", IEEE Trans on
Computers, Nov., vol. 53, Nº 11, 2004, pp. 1449-1461.
[10] J. de Sousa, J.P. Marques-Silva, M. Abramovici, “A
Configware/Software Approach to SAT Solving”, Proc.
of the IEEE FCCM’2001.
[11] A. Zakrevskij, “Combinatorial Problems over
Logical Matrices in Logic Design and Artificial
Intelligence”, Electrónica e Telecomunicações, vol. 2, no.
2, pp. 261-268.
[12] A.D. Zakrevski, “Logical Synthesis of Cascade
Networks”, Moscow: Science, 1981.
[13] V. Sklyarov, I. Skliarova, B. Pimentel, "Modeling
and FPGA-based implementation of graph coloring
algorithms", Proceedings of the 3rd International
Conference on Autonomous Robots and Agents -
ICARA'2006, Palmerston North, New Zealand,
December 2006, pp. 443-448.
[14] V. Sklyarov, I. Skliarova, “Design of Digital Circuits
on the Basis of Hardware Templates”, Proceedings of the
International Conference on Embedded Systems and
Applications – ESA’03, Las Vegas, USA, CSREA Press,
pp. 56-62, Jun. 2003.
[15] V. Sklyarov, I. Skliarova, A. Oliveira, A. Ferrari, “A
Dynamically Reconfigurable Accelerator for Operations
over Boolean and Ternary Vectors”, Euromicro
Symposium on Digital System Design, Belek, Turkey, pp.
222-229, Sept. 2003.
[16] V. Sklyarov, “Reconfigurable models of finite state
machines and their implementation in FPGAs”, Journal of
Systems Architecture, 2002, 47, pp. 1043-1064.
[17] Available: http://www.alpha-data.com/.
[18] DIMACS challenge benchmarks. [Online]:
http://www.intellektik.informatik.tu-darmstadt.de/
SATLIB/benchm.html.

