
Iouliia Skliarova – DETI-UA

LAB. 2

Objectives

• Allow the FPGA circuits to interact with peripheral devices;

• Provide interface with a VGA monitor;

• Provide interface with a keyboard;

• Design and implement a simple arithmetical circuit, which receives input data from a
keyboard and displays the results of arithmetical operations on a VGA monitor screen.

Task

Implement a calculator which executes operations of addition, subtraction, multiplication, and
integer division over two operands that range from 0 to 99. The operands are specified with the
aid of keyboard and the results of all the operations have to be displayed on a VGA monitor
screen as shown on figure below.

FPGA
Receive data

from keyboard.
Execute

arithmetical
operations.

Send the results
to VGA

RAM

Operand 1 = 33
Operand 2 = 55
Sum = 88
Difference = -22
Product = 1815
Division = 00

Details

1. Blocks that manage interface with keyboard and VGA monitor will be provided.

2. The arithmetical block must have the following external interface:

entity ArithmeticBlock is
 generic (AddressBits : natural;
 StateMaxValue : positive;
 NumberOfColumns : natural);
 port (ASCII_in : in std_logic_vector (7 downto 0);
 ASCII_out : out std_logic_vector (7 downto 0);
 Address_in : in std_logic_vector (AddressBits - 1 downto 0);
 Address_out : out std_logic_vector (AddressBits - 1 downto 0);
 clk : in std_logic;
 rst : in std_logic;

Iouliia Skliarova – DETI-UA

 WE_in : in std_logic;
 WE_out : out std_logic);
end ArithmeticBlock;

where

AddressBits is the width of address bus for VGA RAM (fixed);

StateMaxValue is the number of states required to display all your data (one state per one
graphical symbol to be displayed on monitor screen – you have to calculate this parameter);

NumberOfColumns is the number of text columns which can be displayed with available monitor
resolution (fixed);

ASCII_in - ASCII code received from the keyboard;

Address_in – serial number of ASCII code received from the keyboard (all codes received from
the keyboard are numbered from 0 to 2AddressBits-1) - you would use this address in order to
distinguish the first operand from the second;

Address_out – address of VGA RAM to which you would like to write a byte of information (ASCII
code of a symbol that you would like to display at position Address_out);

clk – main clock to be used by VGA controller, keyboard, and your arithmetical circuit;

rst – reset signal generated by DCM (it is active only while DCM has not achieved lock);

WE_in – is active when new ASCII code has arrived from the keyboard;

WE_out – controls writing operation to VGA RAM.

3. Start with one-digit operands (that range from 0 to 9). Receive the respective ASCII codes from
the keyboard – assume that the first dialed digit (and all subsequent odd dialed digits)
corresponds to the first operand and the second digit (and all subsequent even dialed digits) – to
the second operand (discard all non-digits). Convert the received ASCII codes to 4-bit binary
values.

4. Realize the operations of addition, subtraction (note that the result might be negative), and
multiplication.

5. Convert the results of arithmetical operations to BCD and then to ASCII. Note that the result of
multiplication operation might range from 0 to 81. Consequently, you would need two digits in
order to display the product. You can use a simple ROM to perform conversion of product result
to BCD.

6. Send everything (the operands, the results, and auxiliary text) to VGA RAM and test your
circuit on the prototyping board.

7. Provide support for integer division. You may use a simple algorithm which sequentially
subtracts the second operand (different from 0!) from the first until the first operand turns out to
be smaller than the second operand, incrementing each time an auxiliary counter.

8. Now switch to two-digit operands (that range from 0 to 99) and repeat all previous steps. Note
that the result of multiplication operation now might range from 0 to 9801. Use “Shift and Add-3”
algorithm to convert the operands and the results of operations to BCD.

Iouliia Skliarova – DETI-UA

Appendix

Shift and Add-3 Algorithm

1. Shift the binary number left one bit.

2. If 16 shifts have taken place, the BCD number is in the Thousands, Hundreds, Tens, and Units
columns.

3. If the binary value in any of the BCD columns is 5 or greater, add 3 to that value in that BCD
column.

4. Go to 1.

Example:

Convert number 9801 to BCD. 980110 = 264916= 0010 0110 0100 10012 = ? BCD

Operation Thousands Hundreds Tens Units Binary number

start 0010 0110 0100 1001

shift left (1) 0 010 0110 0100 1001

shift left (2) 00 10 0110 0100 1001

shift left (3) 001 0 0110 0100 1001

shift left (4) 0010 0110 0100 1001

shift left (5) 0 0100 110 0100 1001

shift left (6) 00 1001 10 0100 1001

add 3 and shift left (7) 001 1001 0 0100 1001

add 3 and shift left (8) 0011 1000 0100 1001

add 3 and shift left (9) 0 0111 0110 100 1001

add 3 and shift left (10) 01 0101 0011 00 1001

add 3 and shift left (11) 011 0000 0110 0 1001

add 3 and shift left (12) 0110 0001 0010 1001

add 3 and shift left (13) 1 0010 0010 0101 001

add 3 and shift left (14) 10 0100 0101 0000 01

add 3 and shift left (15) 100 1001 0000 0000 1

add 3 and shift left (16) 1001 1000 0000 0001

BCD 9 8 0 1

