Parallel Data Processing in Reconfigurable Systems Labn22

Parallel Data Processing in Reconfigurable Systems

Lab n2 2

Objectives

= Preparation of test data for experiments

= Design of parallel data sorters

= Introduction to high-level synthesis

= High-level synthesis and optimization of a data sorter
= Testin FPGA and experiments

Part | — Design of a parallel data sorter

1. Create a new project in Vivado for the FPGA of the Nexys-4 board.

2. Use the integrated Vivado IP generator to construct a dual-port ROM for storing 16 8-bit
words (constructed from embedded Block RAM). Initialize the ROM with data specified in
the text file “Test.coe” (shown below).

memory_initialization_radix = 16;
memory_initialization_vector = FF EE DD CC BB AA 99 88
77 66 55 44 33 22 11 08;

3. Design a circuit that would sort the data from the ROM using an iterative even/odd sorting
network. First of all, copy the data to a 16x8-bit register and then work over the register.
The register is organized as follows:

FF EE DD CC BB AA 99 88 77 66 55 44 33 22 11 08
unsorted data

——
ARAAnARAjAAACARD— elofofe 1 o[o]o

X X
bit 127 Y = bit0

sorting

g

sorted data

08 11 22 33 44 55 66 77 88 99 AA BB CC DD EE FF

Figure 1 — Organization of the register for data sort.

4. Show the sorted data on 7-segments displays (4 data at a time). Select the data to show
with switches (1..0). When sw(1..0) = “00” show the smallest sorted data (08 11 22 33 for
the example above); when sw(1..0)="11" show the biggest sorted data (CC DD EE FF for
the example above).

2014/15 Page 1 of 4



Parallel Data Processing in Reconfigurable Systems

Lab n?22

5. Measure how many clock cycles are required to sort the data and show the result on LEDs.

6. The simplified circuit block diagram is illustrated in Fig. 2. Use the following 1/O

components to

interact with the circuit.

“Nexys4_Master.xdc” accordingly.

= eight 7-segment displays — show 4 sorted words

Do not forget to modify the file

= sw(1..0) —select which 4 of 16 available sorted data items to show

= btnC - reset

= btnU — start sorting

» Jed — number of clock cycles used by the sorter

7. Synthesize and implement the project and test it on the board.

8. Write down the resources occupied by the circuit and the number of clock cycles required

for sorting.

IFD FITD § .. jITD
L

e S e

Counter

)C”(
—f reset Debouncer
— dirtyln pulsedOut —
Clock 100 MHz —— pPclka
4 1 — ena
oIk Unroll 2addrl " addra d 8
outa
reset — reset Control addr2 BROM g
(btnC) reg_wri— Lelkb doutb A
1 —{ enb
sort —~ addrb
(btnU) h
>elk
I'es‘EtUnrolled 128
.n Register dout
dinl

clka

start Sorter ready
input_data sorted_data

128

|_. din2

Display Control

Figure 2 — The block diagram of the sorting circuit.

Part Il — Design of a parallel data sorter with high-level synthesis

1. Create a new project in Vivado HLS.

2. Usingeither C or C++ programming language write a function that sorts N M-bit data items
using an iterative even/odd sorting network. The function declaration should be the

following:

ap_uint<N*M> EvenOddlterSorter (ap_uint<N*M> input _data);

3. Include in the project the file “EvenOddIterSorter.h” with the following contents:

2014/15

Page 2 of 4



Parallel Data Processing in Reconfigurable Systems Labn22

#include <ap_int.h>

const unsigned int M 8; //number of bits in each data item
const unsigned int N 16; //number of data items
ap_uint<N*M> EvenOddlterSorter(ap_uint<N*M> input_data);

4. Test you function with the testbench “SorterTb.cpp” that would permit to test the top-
level function EvenOddIterSorter:

#tinclude <iostream>
#tinclude <fstream>
#include "EvenOddIterSorter.h"

//error codes

const int SORT_ERROR = 200;
const int OK = 0;

using namespace std;

int main ()
{ ap_uint<N*M> input_data, sorted_data;
ap_uint<M> item;

ifstream unsorted data_stream("input_data.dat"); // open for reading
ofstream sorted data_stream("sorted data.dat"); // open for writing

//get the input data
cout << "Reading input data" << endl;
for (unsigned i = @; i < N; i++)

{
unsorted_data_stream >> item;
cout << item << endl;
input_data <<= M; // shift left M bits
input_data |= item; // write M LSBs
}

//perform sorting
sorted_data = EvenOddIterSorter(input_data);

//save the result

ap_uint<M> mask = ~0;

for (unsigned i = 0; i < N; i++)

{ // extract M LSBs
sorted_data_stream << (sorted_data & mask) << endl;
sorted_data >>= M; // shift right M bits

}

cout << "Checking the result" << endl;
if (system("diff -w sorted_data.dat sorted_data.gold.dat"))

cout << "FAIL: Output DOES NOT match the golden output." << endl;
return SORT_ERROR;

}

else

{
cout << "PASS: The output MATCHES the golden output!" << endl;
return 0K;

}

2014/15 Page 3 of 4



Parallel Data Processing in Reconfigurable Systems Labn22

10.

The testbench reads test data from a file, such as “input_data.dat”:

1 168 2 167 3 166 4 165
5164 6 163 7 162 8 161

The result is written to the file “sorted_data.dat” and is compared with the known golden
results stored in the file “sorted_data.gold.dat”:

168
167
166
165
164
163
162
161

RPNWAOOONO®

Execute C simulation and debug your code if necessary.

Execute C Synthesis and check the reports. Optimize your design with synthesis directives
so as to reduce the sorter’s latency.

Run C/RTL Cosimulation.

Once your design is optimized and functional, return to the Vivado project from the part |
and replace the sorting circuit (block Sorter in Fig. 2). The synthesized RTL VHDL code
(“EvenOddIterSorter.vhd”) is available in the HLS project folder
/solution1/syn/vhdl/EvenOddIlterSorter.vhd. Include this file as a source and provide for
the required connections with the rest of the blocks shown in Fig. 2.

Synthesize and implement the project and test it on the board.

Write down the resources occupied by the circuit and the number of clock cycles required
for sorting and compare these results with those from the part I.

2014/15 Page 4 of 4



