
Lesson 3

Task 1: a library project

1. Construct a class CBook which includes information about book’s title (represented as a string)
and its publication year.

2. Implement a member function that prints all the information about a book on a monitor screen.

3. Implement a linked list (CLibraryList) of pointers to books. Construct methods that allow:

- check if the list is empty (IsEmpty);

- calculate the length of the list (Length);

- add a new element to the end of the list (AddTail);

- delete an element from the end of the list (DeleteTail);

- add a new element to the beginning of the list (AddHead);

- delete an element from the beginning of the list (DeleteHead);

- consult an element at a given position within the list (LookAt);

- delete all the elements from the list (DeleteAll).

The list should not have size restrictions. Try to design a generic list of pointers so that you could
reuse this class in further projects (use typedef CBook* DataPtr;).

4. Implement a global function (DisplayList) which receives a pointer to a list and displays all the
information about the books stored in the list.

5. Implement a dynamic array (CLibraryArray) of pointers to books. Construct methods that
allow:

- check if the array is empty (IsEmpty);

- calculate the length of the array (Length);

- add a new element to the end of the array (AddTail);

- delete an element from the end of the array (DeleteTail);

- add a new element to the beginning of the array (AddHead);

- delete an element from the beginning of the array (DeleteHead);

- consult an element at a given position within the array (LookAt);

- delete all the elements from the array (DeleteAll).

The array should not have size restrictions. Try to design a generic array of pointers so that you
could reuse this class in further projects (use typedef CBook* DataPtr;).

6. Implement a global function (DisplayArray) which receives a pointer to an array and displays
all the information about the books stored in the array.

Lesson 3

7. Assure that your classes do not have memory leak problems.

8. Test the developed classes with the aid of the following main function:
int main(int argc, char* argv[])
{
 using namespace std;

 CBook a = CBook("C++", 2014);
 CBook b = CBook("Physics", 1960);
 CBook c = CBook("History", 1934);

 CLibraryList list;
 DisplayList(&list);
 cout << "The list is " << (list.IsEmpty() ? "empty." : "not empty.") << endl;
 list.AddHead(&a); list.AddTail(&c); list.AddHead(&b);
 DisplayList(&list);
 list.DeleteHead(); list.AddHead(&b); DisplayList(&list);
 list.DeleteTail(); list.AddTail(&c); DisplayList(&list);
 cout << "The list has " << list.Length() << " elements" << endl;
 DisplayList(&list);
 list.DeleteAll();
 list.LookAt(8);
 list.AddHead(&a);
 list.DeleteHead();
 list.DeleteTail();

 cout << "--------*******************------------" << endl;

 CLibraryArray larray;
 DisplayArray(&larray);
 cout << "The array is " << (larray.IsEmpty() ? "empty." : "not empty.") << endl;
 larray.AddHead(&a); larray.AddTail(&c); larray.AddHead(&b);
 DisplayArray(&larray);
 larray.DeleteHead(); larray.AddHead(&b); DisplayArray(&larray);
 larray.DeleteTail(); larray.AddTail(&c); DisplayArray(&larray);
 cout << "The array has " << larray.Length() << " elements" << endl;
 DisplayArray(&larray);
 larray.DeleteAll();
 larray.LookAt(8);
 larray.AddHead(&a);
 larray.DeleteHead();
 larray.DeleteTail();

 return 0;
}

9. Compare the classes CLibraryList and CLibraryArray in terms of efficiency when adding,
deleting and accessing elements. Write a short conclusion.

Lesson 3

Task 2:

Imagine that you have a class with the following structure:
class CSimple
{
 int m_nSize;
public:
 CSimple (int nSize) { m_nSize = nSize; };
 ~ CSimple() { } ;
};

The main function is implemented as follows:

int main(int argc, char* argv[])
{
 {
 CSimple s1; //1
 CSimple s2(2); //2
 CSimple* ps = new CSimple(3); //3
 delete ps; //4
 } //5
 return 0;
}

Try to answer the following questions without using a computer.

a) Is the code above correct?

b) Which functions are invoked in each of the numbered lines?

Task 3:

What is the output of the following program (do not use a computer to answer):

void f(int* p)
{
 int k = 1;
 p = &k;
 *p = 100;
}

int main(int argc, char* argv[])
{
 using namespace std;

 int x = 55;
 cout << "x = " << x << endl;
 int* ptr = &x;
 f(ptr);
 cout << "x = " << x << endl;
}

Lesson 3

Task 4: Select true (T) or false (F)
1. One of the supposed benefits of object-oriented programming is code reuse.

2. A C++ variable of type T* can have value 0.

3. If a C++ class’ only constructor is declared private, no instances of the class can be created.

4. In C++, all classes derive, directly or indirectly, from the Object class.

5. A class can have two destructors (one for destroying an object from stack and another one for
destroying an object from heap).

	Task 1: a library project
	Task 2:
	Imagine that you have a class with the following structure:
	};
	The main function is implemented as follows:
	int main(int argc, char* argv[])
	{
	} //5
	return 0;
	}
	Try to answer the following questions without using a computer.
	a) Is the code above correct?
	b) Which functions are invoked in each of the numbered lines?
	Task 3:
	What is the output of the following program (do not use a computer to answer):
	}
	Task 4: Select true (T) or false (F)
	1. One of the supposed benefits of object-oriented programming is code reuse.
	2. A C++ variable of type T* can have value 0.
	3. If a C++ class’ only constructor is declared private, no instances of the class can be created.
	4. In C++, all classes derive, directly or indirectly, from the Object class.
	5. A class can have two destructors (one for destroying an object from stack and another one for destroying an object from heap).

