
Lesson 14

Task 1:

1. Create a class Exception which includes one member variable of type string. Create a
class ERangeError which includes two data members: unsigned: m_Max (to indicate the
maximal allowed index) and m_Used (to denote the actually used index) both initialized
in the constructor. The classes should posses the following interfaces:

//The implementation has already been included! Do not change!
class Exception
{
 const std::string m_sDescr;
public:
 const std::string& What() const { return m_sDescr; }
 Exception(const std::string& descr) : m_sDescr(descr) { }
 Exception(const Exception& ma) : m_sDescr(ma.m_sDescr) { }
 virtual ~Exception() { }
};

//You have to implement the constructor and the copy-construtor
class ERangeError : public Exception
{
 const unsigned m_Max;
 const unsigned m_Used;
public:
 ERangeError(const std::string& descr, unsigned max,

unsigned used);
 ERangeError(const ERangeError& ma);
 virtual ~ERangeError() {}

 unsigned Max() const { return m_Max; }
 unsigned Used() const { return m_Used; }
};

2. Construct a class CBooleanVector which represents a Boolean vector. The class
CBooleanVector must incorporate a nested friend class CProxy (which includes a
reference to an element of CBooleanVector). Implement all the functions that are
declared in the following code:

class CBooleanVector
{
 unsigned m_nElements; unsigned* m_arElements;

 class CProxy;
 friend class CProxy;
 class CProxy
 {
 unsigned& m_VectorElement;
 public:
 CProxy(unsigned& VectorElement);
 CProxy& operator= (unsigned r); //lvalue
 operator unsigned() const; //rvalue
 };

Lesson 14

public:

 CBooleanVector(unsigned el = 0);
 CBooleanVector(const CBooleanVector& v);
 virtual ~CBooleanVector();

 const CProxy operator[](unsigned pos) const;
 CProxy operator[](unsigned pos);

 CBooleanVector& operator=(const CBooleanVector& rv);
 friend std::ostream& operator << (std::ostream& os,

 const CBooleanVector& v);
};

3. Provide for exception handling. All the functions that manage indices should generate
ERangeError exceptions (in case if an index range is exceeded). An exception Exception
is generated whenever a non Boolean value is assigned to an element of the vector.

4. Test your classes with the following main function:

int main()
{
 using namespace std;
 try
 {
 CBooleanVector v1(3);

 //v1[0] = 5; //test
 //v1[3] = 1; //test
 //v1[-5] = 0; //test

 v1[1] = 1;
 cout << v1 << endl;
 CBooleanVector v2;
 cout << (v2 = v1) << endl;
 CBooleanVector v3 = v2;
 v3[0] = 1;
 }
 //catch all your exceptions here and

//display all the available information about them.

 return 0;
}

5. Try to uncomment each of the marked lines and check how the exceptions are
generated and processed.

	};

