
Lesson 13

Task 1

1. Construct a parameterizable binary search tree for storing pointers to different objects.
The class must include functions for inserting a new element and displaying all the
elements sorted in ascending order.

A binary tree is a hierarchical data structure composed of a number of
nodes (one of them represents the root of the tree) interlinked by
edges. Each intermediate node has exactly one ancestor and up to
two descendants. Different values are usually stored in the nodes of a
binary tree.
In a binary search tree the nodes are organized so as the following
properties are satisfied for each node n:

- n’s value is greater than all values in its left subtree;
- n’s value is less than all values in its right subtree;
- both the left and the right subtrees are binary search trees.

As a result, all the nodes are kept sorted according to their values. An
example of a binary search tree keeping integer values is shown in the
figure.

3

4

6

2 7

1

2. Test the developed class with the aid of the following main function:

int main (int argc, char* argv [])
{
 CTree<int> treeInt;
 int array[] = { 3, 1, 6, 7, 4, 2};
 unsigned size = sizeof(array) / sizeof(array[0]);
 for (unsigned i = 0; i < size; i++)
 treeInt += array+i;
 cout << treeInt;

 CTree<char> treeChar;
 char car[] = { 'a', 'x', 'g', 'm', 'b', 'q'};
 size = sizeof(car) / sizeof(car[0]);
 for (unsigned i = 0; i < size; i++)
 treeChar += car+i;
 cout << treeChar;

 CTree<CFigure> treeFig; //the class CFigure is from the lesson 11
 CCircle c1(2.3); CCircle c2(5.3);
 CRectangle r(2,4); CSquare s(2.5);
 treeFig += &c1; treeFig += &c2;
 treeFig += &r; treeFig += &s;
 cout << treeFig;

 CTree<String> treeStr; //the class String is from the lesson 8
 String str[] = {"Aveiro", "Porto", "Minsk", "Lisboa", "Coimbra"};
 size = sizeof(str) / sizeof(str[0]);
 for (i = 0; i < size; i++)
 treeStr += str+i;
 cout << treeStr;

 return 0;
}

