
Object-Oriented Programming, Iouliia Skliarova

The overloaded ++ and -- operators present a dilemma because you
want to be able to call different functions depending on whether they
appear before (prefix) or after (postfix) the object they’re acting upon.

These operators can be implemented as either class member functions or
global (friend) functions.

That is, the compiler differentiates between the two forms by making
calls to different overloaded functions.

class X {
 //...............
public:
 X& operator++(); // prefix
 const X operator++(int); // postfix
};

For the prefix version the compiler generates the following call:

x1.operator++()

x1.operator++(int)

For the postfix version the compiler passes a dummy constant value for
the int argument (which is never given an identifier because the value is
never used) to generate the different signature:

int main ()
{
 X x1(1), x2(2);
 x1 = x2++; // x1=2, x2=3
 x1 = ++x2; // x1=4, x2=4
 return 0;
}

 class X
{ int a;
public:
 X(int aa) { a=aa; }
 X& operator++(); //prefix
 const X operator++(int); //postfix
};

const X X::operator++(int) //postfix
{
 X temp = *this;
 a++;
 return temp;
}

X& X::operator++() //prefix
{
 a++;
 return *this;
}

class base
{ //…
public:
 base& operator= (const base& r);
};

class derived : public derived
{ //…
public:
 derived& operator= (const derived& r);
};

derived& derived::operator = (const derived& r)
{
 if (&r != this)
 {
 base::operator =(r);
 //…
 }
 return *this;
}

When implementing the
operator= in the derived
class, you can call the
base-class operator= !

The compiler will automatically create a type::operator=(type) if you don’t make
one.

The behaviour of this operator mimics that of the automatically created copy-
constructor: if the class contains objects (or is inherited from another class), the
operator= for those objects is called recursively. This is called memberwise
assignment. Afterwards bitwise assignment of the remaining data members is
done.

class A
{ //…
public:
 //…
 A& operator= (const A& r);
};

class B
{
 A object;
public:
 //...
 B& operator= (const B& r);
};

Class B includes an object of type A:

B& B::operator= (const B& r)
{
 if (&r != this)
 {
 object = r.object;
 //...
 return *this;
 }
}

When implementing the
operator= in the class B, you
can call the operator= of the
class A!

In C and C++, if the compiler sees an expression or function call using a type
that isn’t quite the one it needs, it can often perform an automatic type
conversion from the type it has to the type it wants.

In C++, you can achieve this same effect for user-defined types by defining
automatic type conversion functions.

These functions come in two flavours: a particular type of constructor and an
overloaded operator.

You can create a member function that takes the current type and converts it to
the desired type using the operator keyword followed by the type you want to
convert to.

This form of operator overloading is unique because you don’t appear to specify
a return type – the return type is the name of the operator you’re overloading.

For example, to automatically convert an object of type X to an int, the following
operator is created:

X::operator int() const;

class X
{ int m_i;

public:
 X(int i) { m_i = i; }
 operator int() const { return m_i; };
};

X x1(1), x2(2), x3(3);
x3 = x1 + x2;

The objects x1 and x2 will be converted to integers by the operator:
X::operator int().

After adding two integers, the result will be converted back to the type X
by the constructor.

class X
{
 int m_i;
public:
 X (int i) { m_i = i; }
 X (char c) { m_i = int(c); }
 X (double d) { m_i = int(d); }
 friend const X operator+ (const X& l, const X& r)
 { return X(l.m_i + r.m_i); }
};

X x1(4);
X x2 = x1 + 1.4;
x2 = 'g' + x1;

If you define a constructor B that takes as its single argument an object (or
reference) of another type A, that constructor allows the compiler to perform
an automatic type conversion A->B.

Use automatic type conversion carefully.

Too many type conversions can lead to an ambiguity error:

class X
{
 int m_i;
public:
 X(int i) { m_i = i; }
 operator int () const { return m_i; };

 friend const X operator+ (const X& l, const X& r)
 {
 return X(l.m_i + r.m_i);
 }
};

X x1(4);
X x2 = x1 + 3;

There are times when automatic type conversion via the constructor can cause
problems. To turn it off, you modify the constructor by prefacing with the keyword
explicit.

X (int i) { m_i = i; } X x5 = 5;

explicit X(int i) { m_i = i; }

X x1(4);
X x2 = x1 + 3;
X x3 = x1 + X(3);

Bruce Eckel, Thinking in C++, 2nd edition, MindView, Inc., 2003

=> Chapter 12

http://mindview.net/Books/TICPP/ThinkingInCPP2e.html

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14

